
RELATIVE FILES - INTRODUCTION

Page -1-

TABLE OF CONTENTS

PAGE DESCRIPTION

2 INTRODUCTORY COMMENTS

4 OVERVIEW - A SHORT PROGRAM THAT DOES IT ALL

$• PROGRAMS TO CREATE RANDOM FILES

).6 FILE MAINT. PROGRAMS - PRELIMINARY FUNCTIONS

24 FILE MAINT. PROGRAM - USER OPTIONS - THE MENU SCREENS

/ 27 FILE MAINT. PROGRAM - TRANSACTIONS

36 DOCUMENTATION

PROGRAM LISTINGS

37 RELTVTEST

39 NUPDATE

45 COPYN&A

Copyright 1982 J. H. Harvey, 159 Dover Rd., Spartanburg, S. C. 29301

RELATIVE FILES - INTRODUCTION

Page -2-

INTRODUCTORY COMMENTS

A relative file provides the computer owner with comparatively quick
access to a specific record for information, or for updating of the
information in the record. When a program is run which activates a file
of information for that type of activity, there is generally no
predetermined limit to the length of time the program is "On Line".
This determination is usually made by the person running the computer,
after the information and updating requirements are completed.

For home application, most information storage/retrieval needs can be
met by using a relative file. Included are a Family Budget system, a
Things To Do listing system, an Appointment Scheduling system, Name &
Address systems, various inventory files, and other applications. For a
small business, many applications for this kind of file can be conceived
by the business man, from general accounting to unique systems. Those
with small businesses will find almost infinite versatility in the Texas
Instruments, Inc., TI-99/4A disk system.

For most applications, all it takes is a file and a program to maintain
the file. Besides file maintenance, the program should include routines
to print or display file changes, records in the file, and file totals
accumulated from specific fields in each of the file records. With the
Extended Basic Command Module, it is an easy task to link two or more
programs to the same file and is a way to get around the program size J
limitations which exist. Really sophisticated small business computer ^
systems are possible using this computer.

The programs on the disk you purchased from me will provide you with
hands on experience when loaded into the computer and run. These
programs are also discussed in the text, at least those areas of the
program which are appropriate to the subject being covered by the text.
All the programs on the disk can be used without change after you have
finished with the information in this text.

The text is written with the assumption that you are as familiar with
the format of the instructions used in the example programs as possible,
but that your understanding of them is not complete. The necessary
understanding of the instruction formats can be obtained by a review of
the programming guide which comes with your computer. I am more
concerned with the use of certain instructions than I am with an

explanation of their formats.

Computer hardware required to use this training disk: The 99/4 or 99/4A
computer, a monitor, a disk drive controller and one disk drive. The
programs used as examples use the monitor, rather than a printer. If
your interest is in business systems, there are differences between them
and home applications. I will cover the differences and provide
programming examples. However, the completed examples are for a home
application, because home applications are less complex, have a wider >
audience, and are easier to understand. The functions written into ^^
those programs are used in business systems as well and should not be

>%£*>'

RELATIVE FILES - INTRODUCTION

Page -3-

ignored by those of you who are strictly interested in business
programs. I will often give extreme examples, both simple and complex,
on the assumption that with anything in between, you should be able to
work out on your own. My objective is to help you understand how to
develop and program your own computer systems using relative files. If
you have a printer, and/or the additional memory unit, I know this
information will help you develop systems using those components.

In the section of the text that follows, I explain a program on your
disk which you can run. By using the different options available to you
from the menu screen, you can get a good feel of how a file maintenance
program works.

The next section of text explains how to write a program to create a
relative file. A relative file is created containing X number of dummy
records. A file's size is determined by the length of each record and
the number of records in the file. Both of these factors are under the
control of the program that creates the file. Files are very easy to
create, if you know how. It can be done with six or more lines of code,
so you should have no problems learning how.

Dummy files are usually created with null characters in alphabetic
fields and with a zero in numeric fields. Another program will be
required to read and update the records in the file. That would be the
file update program. They are much more difficult to program.
Consequently, the majority of the text will be devoted to various
aspects of the file update program.

RELATIVE FILES - OVERVIEW

Page -4-

OVERVIEW

In the Program Listings section of this text is a listing of a program
named RELTVTEST. It is a very short program - 56 lines of instructions
and comments - but contains an ultra simple example of most of the
things that a person would want a relative file program to do. A
summary of the main program functions are noted in the following, along
with the beginning and ending program line numbers.

LINE NUMBERS

FROM TO FUNCTION OF THE INSTRUCTIONS

100 140 Establishes the initial value of some variables used
later in the program.

150 230 Creates a relative file containing 151 records.
240 260 Displays on the monitor screen an explanation of the

options available to the user. Commonly referred to as
the "Menu Screen".

270 320 Requests the user to enter thru the keyboard one of the
available options defined on the screen. Accepts that
entry and branches to the part of the program that
performs the requested function.

330 350 Routine to read and display the requested record
information on the monitor screen.

360 490 Routine to change a file record, then to update the file
record on the disk.

500 630 Reads the file records sequentially and accumulates a
total on one of the fields under certain conditions.
When finished, displays the accumulated total.

640 650 Routine to wind-up the processing. It closes and deletes
the file created earlier. Normally you will do all that
you can to preserve the file, but some design
considerations may call for deleting a file after it has
been used.

The example program has very little value except as a way to illustrate
the various elements in a file maintenance program. It should be
obvious though, that if a file maintenance program develops into a large
and hard-to-analize program, the size and complexity of the program must
be attributed to the complexity of the processing logic, rather than to
the code needed to satisfy unique requirements of random file
processing. Since the file create and maintenance program has value
only as a teaching aid, the two programs, normally separate, were
combined into one program.

Run the program and use each of the options available to you. Several
conclusions can then be verified about random file systems, which will
help you recognize when such a program would be an appropriate solution
to one of your data processing problems:

You will find that you have more or less instant access to any of

NSjjB^'

RELATIVE FILES - OVERVIEW

Page -5-

the records on the file by entering the record number for the one
you want. If the record number is not known, then the computer
might take several minutes to search the file for the desired
record. To read a record into the computer from the disk file, the
INPUT # statement must specify the record number. That number may
come from the computer operator, or it may be obtained in other
ways. All of the "other ways" are much slower, but may save time in
the long run by reducing the manual effort required from the
computer operator to determine the record number.

You will get a good feel for how long it takes the computer to get a
disk record and display it on the monitor screen.

Random files can be processed by the computer program either
randomly or sequentially (record number sequence). It will not be
unusual for a program to contain the programming routines to do both
types of processing.

Because of the possibility of human errors when recording or
entering a record number to change, it would be very easy to update
the wrong record. Various editing and other types of programmed
routines can be used to reduce this risk.

Report information can be displayed on the monitor, listed on the
printer , or both.

When one of the functions has been completed by the computer, the
program normally will display a menu screen and request the operator
to enter the next function the computer is to perform. Normally,
one of the options is to end processing. If the program contains
more than one menu screen, each of the screens will contain an
option to allow the operator to go from one menu screen to the
other.

To run the program, go to your computer, insert the disk you have
received from me, and enter the following:

OLD DSK1.RELTVTEST

After the program is loaded into the computer, you need to type in RUN
and press the Enter key. To stop the program run, enter record number
9999. That not only stops processing, but deletes the file from the
disk.

Each of the major program functions are discussed in detail in the
following sections of this manual, so a detailed analysis of this
program would be redundant. However, I suggest that." you turn to the
program listing and see if you can follow the logic of the program
instructions. If you run the program for a while, the programming

^ instructions should be easier to understand. If you cannot understand
what the program is doing by reading the instructions, you need to go
thru the rest of this course.

RELATIVE FILE CREATION

Page -6-

CREATING RELATIVE FILES

In the Overview Section, I presented a program which creates a file,
then updates the file. In practical applications, these two functions
are separate programs. Once the programs have been written and are
functioning properly, there is no longer a need for the file create
program, except as a way to create another blank file on another disk.
However, the file update and maintenance program has to refer to file
name, and must define the attributes of the file generated by the file
create program. Also, the file read and write statements in the
maintenance program(s) generally will mirror the field names used by the
create program when the new file was generated. If one person is
•writing both programs, the logical program to start is with the file
create program.

This section will discuss ways to create files suitable for both home
and business applications. If you are interested in developing business
systems, I give some programming examples, but the complete programs
used for illustration are more for home use. The difference between the

two is that business systems are more complex. The programming
requirements for business systems are more involved. For example,
multiple record format files are the rule, rather than the exception for
business systems. Creating files with multiple record formats is
possible with this computer. There are some programming differences ^
which I will ' illustrate later in this section. The upper limits on w
program size and on disk space are factors that have to be considered,
but they can more or less be ignored as factors that will prevent
including program functions that are necessary for the system. Along
that same line of thought, the number of records a disk can hold is
limited, but the file can be expanded to include two or more disks.

For home applications, single file, single record formats are probably
most frequently used. These systems are relatively easier to define and
program. They are easier to illustrate and to understand from a
student's point of view. There are some differences between the two
types of systems. But once the differences are understood, what is said
about home applications can be applied to more complex systems.

PRELIMINARY PLANNING STEPS

Files contain records and records contain fields. Fields contain
information of two types, numeric or alpha/numeric. The two types
require separate fields, because they are referenced by two types of
variable names. Fields need to be considered distinct from one another
because they contain information pertaining to different subjects. This
is the extent that data is segregated in files. The length of the
information in a field may vary with respect to the same field in the
other records. The only restriction which exists is the total number of
characters that one record may hold.

It will be necessary to do some preliminary planning before sitting down

XjjBsr'

VijjBP'

RELATIVE FILE CREATION

Page -7-

and writing the program instructions to create the file you wish to use.
Once the file has been created, you cannot go back and insert another
field or two that you had forgotten about. You can go back and create
another file containing the missing fields, but the file would contain
dummy records. The information would have to be transferred to the new
file, by another program. These, then, are the planning steps that I
would recommend you follow, before writing the file create program:

1. Determine how many records your file should contain.

2. Establish the fields of information that each record is to contain.
I will provide you with examples later that should help you
determine what fields are.

3. Estimate the maximum length of information each of the fields will
hold. If the field is to hold numeric information, you have no
choice in the matter. All numeric information is carried in an 8
digit field, with one more character required for use by the
computer's operating system. For example, if you want to reserve a
field in the record for a 1 digit numeric code, it still will occupy
9 characters in the record. Alpha/numeric fields are 1 character
longer than the information that is there, so they vary in size from
one record to the next. The computer makes up the difference
between what is actually there and the total record length by
padding the record with characters.

The objective here is to determine how long each record needs to be.
Each record has to be the same length, but the length of the
alpha/numeric fields can and does vary within each record. The
record has to be able to accomodate the maximum length of the
information to be entered into each of the fields.

4. Establish your file record length from the maximum field length
requirements, then add one character per field required by the
operating system, for either numeric or alpha/numeric fields.

5. Assign variable name codes to each field on your list. These
variable field name codes should be short to reduce program entry
time. The PRINT # statement limit of 112 characters is the major
restriction on field name length. Once the program is up and
running, the variable names used will not be of interest to anyone
other than the programmer who has to look at the program listing to
insert program changes. The name codes have to be unique - no
duplicates.

PLANNING EXAMPLES

A HOME APPLICATION

For demonstration purposes, we will create a file to hold information on
friends and relatives. The information to be stored will be name,
address, phone number, birthdate and an extra field for miscellaneous

RELATIVE FILE CREATION

Page -8-

information. At the first of each month I want to go to the file and
obtain a list o.f all who will be having birthdays that month. The file
will also be used to look up the mailing address of those to whom I want
to write.

1. Estimate the number of records needed.

I'm convinced that a file containing 150 records will provide plenty of
space for my needs. As friends come and go, information on a record can
be deleted and new information stored in its place. By delete, I mean
the information in a record is deleted, not the record itself.

2. Identify record fields

A status code will be used to distinguish between active and inactive
records. , One field each is required for name, street, city, a second
name line, telephone number, and birthday. A birthday month field is
necessary to select those having a birthday in any given month.

3. Determine field length.

Since it is necessary to come up with a total record length, list the
field names in one column, and set up another column to list the length
in number of characters considered necessary.

FIELD NAME SIZE

Record Status Code 1

Full Name 25

Optional Name line 20
Street No., or P 0 Box 20
City, State & Zip Code 25
Phone number 20

Birthday month 2
Birthday 15

COMMENTS

Use A for active, I for inactive

Wife/Husband's name, or children

Should all fit

Make it an alpha/numeric field.
Make it an alpha/numeric field.
Alpha/numeric too

Note that record number is not one of the fields that must be in the
record. This means that the computer's operating system finds any
record specified in the PRINT #, or INPUT # statements by counting
records, starting with record number 0. It also means that we have to
live with that kind of record numbering scheme.

4. Determine record length.

By adding the number of characters for each field, data requirements
total out to 128 characters. The operating system also needs 1
character per field, or 8 more characters. That totals out to a record
length of 136 characters (usually referred to as bytes). In the file
create program it is necessary to specify the record length.

Once the record length has been determined, multiply that number times
the number of records wanted in your file. If the result exceeds the

RELATIVE FILE CREATION

Page -9-

number of characters your disk will hold, then consider making it a 2
disk system. A 40 track, single density disk will hold a least 358
records, as there are 358 sectors on a disk, each 256 characters long.
The computer will not place a record on the disk so as to span two
sectors. Any record length which exceeds half a sector will occupy one
sector. With lengths of less than half a sector, the computer can place
two or more records in a sector.

OTHER PLANNING CONSIDERATIONS

Once a file has been defined and you start using the file update
program, then it becomes a relatively inflexible file. You will not be
able to add new fields of information to the file. One way to allow for
that type of expansion is to define one or more dummy fields which can
be used if something needs to be added. I didn't do that in the example
above. To add a dummy field, give it a field name and include it, for
later use, in the INPUT and PRINT statements in the maintenance program.
At a later date the maintenance program can be revised to include
statements which use and maintain those reserved fields.

The need for more records is a problem which is simple to solve.
Additional record space is easily obtained by taking another disk and
running the file create program again. The file maintenance program
will work just as well with the new disk file as it did with the
previous one.

5. Assign variable code names to each field.

Variable codes are of two types. String variables (alpha/numeric) end
with a $ sign. Numeric variables do not. Under number 3. above, eight
fields were listed and they were all defined as string variables to
reduce the space requirements. All that needs to be done is to assign
codes to each field:

CODE FILED NAME

P$ Status Code

Q$ Full Name
R$ Optional Information Line
S$ Street Address, or P 0 Box Number
T$ City, State, and Zip Code
U$ Phone Number
V$ Birthday Month
W$ Full Birthdate

PLANNING FOR BUSINESS SYSTEMS

My experience indicates that computer systems developed for a specific
company are either conversions of the manual records system to a
computer, or are conversions required to move the existing programs from
obsolete equipment to a more advanced computer. While all businesses
need certain types of accounting systems, most have developed one that

RELATIVE FILE CREATION

Page -10-

is more or less unique. Since very little originality is usedI when
converting from a manual system to a computer, the problem of defining
information fields for the computer system becomes much easier.
The previous example was a very simple record format. For a business
system a more complex record set will be used. Many people feel that J
payroll system is among the most difficult to develop. For the next
example, let's define a payroll file. The example will contain 5
different record formats. There will be 5 record sets for each
employee. You do have the option of either .creating | different files,
or one file with record sets. The programming will differ slightly to
create a file with more than one record format. That is one or tne
reasons it is necessary to provide more than one example.

When determining file record field names, take a sheet of paper and make
a list of the fields. Next, go through the list and record the maximum
field lengths, as was done in the above example. One additional P.r0Dlem
will be to assign each field to a particular record. If ^ will be
using a lot of numeric fields, it is easy to get too many fields m one
record. For example, in the PRINT # statements, there is a limit as to
how many fields you can list. That limit is 112 characters or
whole statement, including line number, the instruction, the field names
and the commas which separate the field names. All of the .field? *nn!;!?!
record have to be included in the PRINT # statement. This is a definate
limiting factor, and needs to be considered in the Planning phase when j
assigning fields to a record. As a general rule, 20 to 25 fields per
record is a safe estimate. The example for a payroll system follows:

VARIABLE ESTIMATED

CODE SIZE FIELD NAME

Status code

Employee No.
Full Name

Street Address

City, State, & Zip Code
Phone no.

Social Security no.
Shift code

Pay rate code
Pay rate
Sick leave accrual %
Vacation pay accrual %
Federal Withholding %
State With. %
Company retirement accrual %

„« Reserved for later use
Total:—151 Characters, plus 16 fields = 167 character record length for
red. #1.

Last Payday Record ' \
AH 8 Hours worked (for hourly paid employees) ^
AI 8 O/T hours paid
AJ 8 Vacation $ paid

AA§ 1

AB$ 2

AC$ 25

AD§ 20

AE$ 25

AF$ 15

AG$ 12

AH$ 1

AI$ 1

AA 8

AB 8

AC 8

AD 8

AE 8

AF 8

AG 8

RELATIVE FILE CREATION

Page -11-

AK 8 Sick leave hours paid
AL 8 Gross pay
AM 8 Fed. With.
AN 8 State With.
AO 8 FICA With.
AJ$ 2 Deduction type code
AP 8 Deduction amount
AK$ 2 Deduction type code
AQ 8 Deduction amount
AL$ 2 Deduction type code
AR 8 Deduction amount
AM$ 2 Deduction type code
AS 8 Deduction amount
AN$ 2 Pay adjustment type code
AT 8 Pay adjustment amount
AU 8 Net pay
AV 8 Balance sick leave earned
AW 8 Balance Vacation $ earned
YTD Tota].s

AX 8 YTD Gross earnings
AY 8 YTD Fed With.
AZ 8 YTD State With.
Total: 162 characters, plus 24 fields = 186 char, record length fo
red. # 2.»

BA 8 YTD FICA With.

QTD Tota].s
BB 8 QTD Gross earnings
BC 8 QTD Fed. With.
BD 8 QTD State With.
BE 8 QTD FICA With.
Deductions Authorized
A0$ 2 Type Code
BF 8 $ Amount per payday
AP$ 2 Type Code
BG 8 $ Amount per payday
AQ$ 2 Type Code
BH 8 $ Amount per payday
AR$ 2 Type Code
BI 8 $ Amount per payday
AS$ 2 Type Code
BJ 8 $ Amount per payday
BK 8 Balance Due

Employee history, & misc. information
AT$ 2 Federal - No. of exemptions
AU$ 2 State - No. of exemptions
AV$ 1 Marital status code

AW$ 2 Education level code

BA$ 2 Work skills 1 code

BB$ 2 Work skills 2 code

BC$ 2 Work skills 3 code

BD$ 2 Work skills 4 code

Total: 113 characters, plus 24 fields = 137 character record length for

RELATIVE FILE CREATION

Page -12-

rcd. #3.

BE$ 3 Current job no.
BF$ 8 Start date
BG$ 3 *2 Job no.
BH$ 8 Start date
BI$ 3 3 Job no.
BJ$ 8 Start date
BK$ 3 4 Job no.
BL$ 8 Start date
Pay history
BM$ 1 l Pay rate code
BL 8 1 Pay rate
BN$ 8 1 Start date
B0$ 1 2 Pay rate code
BM 8 2 Pay rate
BP$ 8 2 Start date

BQ$ 1 3 Pay rate code
BN 8 3 Pay rate
BR$ 8 3 Start date
BS$ 8 Hire date
BT$ 8 Termination date
BU§ 2 Termination reason code
BV$ 8 Layoff date
BW$ 2 Rehire evaluation code
Total: 123 characters, plus 22 fields = 155 character record length for ^j
red. #4.

CA$ 8 Last work evaluation review date
CB$ 2 Evaluation code - Last review
CC$ 2 Group insurance plan code
CD$ 8 Birthdate

CE$ 2 Company retirement plan code
BO 8 Co. retirement YTD accrual
BP 8 Co. retirement Total accrual - all years
BQ 8 Co. retirement current payday accrual
CF$ 4 Standard labor distribution charge no.
BR 8 Advances to be repaid on termination
CG$ 3 Current department no.
Total! 61 characters, plus 11 fields = 72 character record length for
red #5.

Record #2 requires 186 characters, and is the longest of the five. This
means all five records must be 186 characters in length.

One more record will be added at the end of the file to hold information
pertinent to the system, but not to individual records. With this
information accessable to the operator, he can revise the values, rather '
than make a program change to accomplish the revision:

BS 8 FICA Rate
BT 8 FICA Maximum
CH$ 22 Dept. No. and Name
CI$ 22 Dept. No. and Name
CJ$ 22 Dept. No. and Name

\i^

RELATIVE FILE CREATION

Page -13-

CK$ 22 Dept. No. and Name
CL$ 22 Dept. No. and Name
CM$ 22 Dept. No. and Name
CN$ 22 Dept. No. and Name

THE PROGRAM

The computer does not keep track of variable names assigned to record
fields. It does know the data type a field contains (numeric or string
data). It would be possible to use different variable field names in
each INPUT # and PRINT # statement in the program. A general rule to
follow is to use the same variable field names to minimize the memory
space required to store the variable information. Other programs which
use the same file can use other field names. The information stored on
a disk does not include field name assignments.

As a general rule, file create programs are short, while the file
maintenance programs tend to exceed the limits of the computer's memory.
The file create program is a good place to list the variable names
assigned to each of the fields. Realistic variable names are 1, 2, or 3
digit alphabetic codes used in lieu of the longer, but more descriptive
field names. These codes have to be as short as possible to allow all
the fields in a record to fit in the PRINT # instruction. In fact, that
is the next step.

It is important to use REM statements in the program to identify the
code/field name assignments. This is because one or two months after
the program is up and running well, the variable code assignments will
have been forgotten. Later program revisions become almost impossible
if that information is not available. The example file create program
on the disk you received from me is the program to create the friends
and relatives file. Rather than use REM statements, I assigned field
names to the variables. See if you can anticipate what that does to the
file which is created when the program is run.

The file create program for the friends and relatives file is so short
it can be listed here in its entirety without any problem. You can load
and run it anytime you wish. The maintenance program has an option to
delete the file. If you do not wish to keep the file, you can use the
update program (NUPDATE) to delete it from your disk. The first
programming example is a copy of the friends and relatives file create
program. Following that will be the instructions to create the payroll
file:

80 PRINT "PROGRAM NAME = NAMECREATE"

90 PRINT "COPYRIGHT 1982, J. H. HARVEY"
100 REM SET VARIABLES USED IN THE INACTIVE RECORDS

110 P$="I"

120 Q$="NAME FIELD"
13 0 R$="OPTIONAL NAME LINE"
140 S$="STREET ADDRESS"
150 T$ ="CITY,/-STATE & ZIP CODE"

RELATIVE FILE CREATION

Page -14-

160 U$="PHONE NO."
170 V$="MO"
180 W$="FULL BIRTHDATE"
190 OPEN #1:"DSK1.NAME&A",RELATIVE,INTERNAL,FIXED 136

The "DSK1. part is always used, but what follows (NAME&A") is
whatever name you want to give to the file. That name must
appear in the Open statement in any program that wishes to
access the file.

200 FOR 1=0 TO 150

210 PRINT #1,REC I:P$,Q$,R$,S$,T$,U$,V$,W$
220 NEXT I

These 3 instructions create 151 inactive records in the file.
The FOR - NEXT Loop is used to increment the record number
variable I in the PRINT instruction. The information written
into each field when the records are created is whatever the
value of the variables are at the time. In this case, their
values were set in lines 110 thru 170. If those lines had been
missing, their values would have been "" (a null character) for
$ variables and 0 for numeric variables.

230 PRINT "FILE CREATE FUNCTION COMPLETED" J
24 0 PRINT W
250 PRINT "TO MAINTAIN AND USE THIS FILE LOAD AND RUN THE PROGRAM NAMED

NUPDATE."

260 CLOSE #1
270 END

It takes the computer about 2 1/2 minutes to create the file. As you
can see, these are not complicated programs to write. This is an
example of how to create a single format record file. When creating
files containing 2 or more record formats, programming instructions are
a^ bit different. A separate PRINT # statement is required for each
record format, due to the difference in variable names, and in the
number of fields. In the second example, where we have 5 different
record formats, the program listed below will create 40 sets of records.
At the end of the file the program will add one more record to hold
variables for system constants which need not be included in each
employee's record. Assume that the variable code assignments to field
names has already been done using REM statements:

1630 OPEN #1:"DSK1.PAYFILE",RELATIVE,INTERNAL,FIXED 186
1640 FOR H=l TO 40

1650 PRINT #1,REC I:AA$,AB$,AC$,AD$,AE$,AF$,AG$,AH$,AI$,AA,AB,AC,AD,AE,
AF,AG

1660 1=1+1

1670 PRINT #1,REC I:AH,AI,AJ,AK,AL,AM,AN,AO,AJ$,AP,AK$,AQ,AL$,AR,AM$,AS, \
AN$,AT,AU,AV,AW,AX,AY,AZ W>

1680 1=1+1

1690 PRINT #1,REC I:BA,BB,BC,BD,BE,AO$,BF,AP$,BG,AQ$,BH,AR$,BI,AS$,BJ,

%s^

N&ffi*

RELATIVE FILE CREATION

Page -15-

BK,AT$,AU$,AV$,AW$,BA$,BB$,BC§,BD$
1700 1=1+1

1710 PRINT #1,REC I:BE$,BF$,BG$,BH$,BI$,BJ$,BK$,BL$,BM$,BL,BN$,BO$,BM,
BP$,BQ$,BN,BR$,BS$,BT$,BU$,BV$,BW$

1720 1=1+1

1740 P2J+T #1,REC I:CA$'CB^'CC$'CD$,CE$,BO,BP,BQ,CF$,BR,CG$
1750 NEXT H

1760 PRINT #1,REC I:BS,BT,CH$,CI$,CJ$,CK$,CL$,CM$,CN$
1770 PRINT "FILE CREATION FUNCTION COMPLETED."
1780 CLOSE #1
1790 END

The above program example was not recorded on your disk. I have no
intention of writing the update program to use that file. However, I
did enter the instructions into the computer in order to confirm that it
would create the file.

The maintenance program for the second example should contain edits to
assure that any record number specified by the operator ended with a 5
or a 0. The operator would then be limited to specifying the first
record in the set for an employee. The maintenance program will then
have no problems reading in all five records for an employee. I suspect
that some of you are wondering how to edit for a 5 or 0 input from the
operator. This can be done by dividing the record number entered, by 5.
Assign the length of that result to a variable. Obtain the integer
value of the same division result, to truncate any decimal remainder,
using another variable. Now compare the length of the two variables.
If their length is the same, the number entered by the operator ended in
a 5 or 0.

RELATIVE FILES - FILE MAINTENANCE PROGRAMS
PRELIMINARY FUNCTIONS SECTION

Page -16-

FILE MAINTENANCE PROGRAM - PRELIMINARY FUNCTIONS

The file maintenance program can either be a single program or may be
split up into any number of programs which work with the same file. The
determining factor is the upper limit on memory space available to hold
the program. Proceed on the assumption that it can all be done in one
program. If you do get a "Memory Full" message before the program is
complete, it will be necessary to either buy the additional memory unit,
or split the menu functions into two programs. Deleting REM statements
and using the CALL FILES(1) command explained in the Disk Memory System
manual will also buy a little more space, but usually not enough.

The preliminary part of a program contains statements and routines which
are to be executed only once while the program is running, and which can
logically be placed in the first part of the program. To start the
coding of a program, take care of the preliminary program functions
first. Sit down at a desk with a pad of paper and start recording the
instructions. Write in the line numbers in the same way you will have
the computer assign them. Line numbers are necessary to complete the
GOTO, GOSUB, and IF statements. Preliminary functions are easy to code.
This way, if you develop and work out each of the menu functions one at
a time time, you will get to the END statement with a minimum amount of
wasted effort and thought.

The main menu screen is usually the first major function to follow the
preliminary part of the program. The part of the program which begins
with the first instruction in the program and ends with the first
instruction in the menu screen display routine, is the area that this
section of the text is to cover. The following types, or categories of
instructions and routines usually will be included in the preliminary
part of the program, if they are included at all:

PROGRAM FUNCTION AND NAME

This is optional, but if you routinely print out your programs and file
them, use the REM statement to identify the program and to describe its
functions in a general way. The program name will be the name required
to load it into the computer from disk.

INITIALIZE THE CONSTANTS USED BY THE PROGRAM

Most programs use constants in one form or another. Listed are three
ways to get them into the program:

1. Assign constant values to variables.

Variables are used for constants, as well as for field names. For
example, if your program will calculate State Sales Tax for certain
types of transactions, and it will always be, say 5%, you can set a
numeric variable, say T, as being equal to either .05, or 1.05,
depending on your calculation formula. The instruction to set that

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

PRELIMINARY FUNCTIONS SECTION

Page -17-

variable would be: T=1.05, or T=.05. T will equal 0 if that
variable code assignment is not in your program. After the RUN
command executes, T will equal 0 until the instruction is executed
which sets the value to 1.05, or to .05.

2. Store the constants in a file record, or records.

If the constant is subject to change beyond the control of the
computer system, you can carry the constant in a file record field.
The field can then be updated as often as necessary by the operator.
In the previous example, if T=1.05, and the State decides to change
their Sales Tax rate, it will take a program revision to change the
value of T, if a program instruction is used to set the value of T.
Before making the change, the programmer has to first figure out
which of the variable codes is for the State tax rate. The use of
REM statements to define those variable codes can reduce an
otherwise time consuming process when program revisions are
necessary.

In the previous section on File Creation, you were given a
programmed example of a payroll file. One additional record was
added to the end of the file to hold variable information that
could be revised by the operator. FICA rate and the FICA maximum
were two of the constants provided for in that record. The Payfile
maintenance program will have to include a menu option to allow the
operator to revise those fields. The changes can then be taken care
of by the operator selecting that option from the menu screen to
change the field value, rather than having to revise the program.

The preliminary part of the program will contain instructions to
read a file record to get the value of the variable. The variable
code was established when it was assigned to the record field.
Therefore, just reading in the record in the preliminary part of the
program, will set the variable with the right value. To do that,
simply code in an INPUT statement that specifies the right record
number •

3. Use of INPUT statements

Constants may be entered by the operator through the keyboard, using
INPUT statements. This method is always used when the program has
to have the date. Since that entry is only required once during the
run, the routine to get it should be in the preliminary part of the
program. An example: INPUT "ENTER TODAY'S DATE":D$ The string
variable D$ will then equal whatever the operator types into the
computer before pressing the Enter key.

COPYRIGHT STATEMENTS

If you routinely copyright your programs, PRINT statements to the
monitor will display the notice. Since it needs to be done only once
during the run, the instruction should be in the preliminary part of the

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

PRELIMINARY FUNCTIONS SECTION

Page -18-

program.

DIMENSION STATEMENTS

These too should only be processed once during a program run. An
example of DIM is included in the COPYN&A program listing:

10 DIM A$(150),C$(150),D$(150),E$(150),F$(150),G$(150),H$(150),
I$(150)

The string arrays this statement initializes is used later in the
program to read in a complete file of 151 records, and to write them out
onto another disk. Due to memory limitations, this was done in three
passes, but could possibly have been done with two.

If you plan to use numeric or string arrays in your program for a table
look-up, or something similar, this statement is required to set the
number of repetitions. DIM statements should appear in the preliminary
section of the program.

SPECIAL INSTRUCTIONS TO THE OPERATOR

The preliminary part of the program is also the place to code special
instructions, or reminders to the operator, which do not have to be
repeated each time the menu screen is displayed. j

PROVIDE THE ABILITY TO CHANGE DISKS

If the data file is on one disk, and the maintenance program on another,
there is a need to code in a program execution halt before any file Open
statement is executed. This allows the operator time to exchange disks.
It is a very simple routine that can be done two ways:

1. PRINT "INSERT THE FILE DISK. PRESS ENTER WHEN READY."

INPUT C$

2. INPUT "INSERT THE FILE DISK. PRESS ENTER WHEN READY.":C$

The character the Enter key generates is non-numeric, so the variable
used has to end with a $ symbol. These instructions effectively halt
processing until the operator presses the Enter key.

THE FILE OPEN STATEMENT(S)

Files are usually opened at the beginning of a run, and closed just
prior to executing the END statement. When using multiple disk files,
it is possible to switch disks anytime the disk drive light is out
without Closing and Opening the file. To test this, do trie following:
1) Run the NAMECREATE program twice to create the same file on two
disks. 2) Load and run the NUPDATE program. Use the menu option to - ,
display the file records. Switch disks several times to check it out. ^J
However, if you have reasons to change disks under program control,

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

PRELIMINARY FUNCTIONS SECTION

Page -19-

offer that as one of the menu options.

The file Open statement to use in the maintenance program has to be
exactly the same as the one used in the file create program. Open
statements are also used to initialize the printer and the other
components the program will be using. The Open statement cannot be
repeated until after a Close statement, so be careful to conform to that
requirement. If you plan to leave the file open while the program is
"on line", the Open statement should be in the preliminary part of the
program. Its' position in the program is fairly critical. It should
appear after the routine to get the operator to insert the file disk,
and has to be executed before any of the file read instructions,
including the reads to establish values for variables and reads to
create tables from information carried in the file. Both of those
routines will also be in the preliminary part of the program.

MEMORY TABLES

This is such an important subject that more than one page will be used
to cover this aspect of file maintenance. Memory tables are essentially
numeric or string arrays containing information stored in the computer's
memory. The information in the arrays will be used by program routines
as required to complete functions selected from the menu screen. Memory
tables are almost always loaded from a file that contains the data which
goes into the table. Loading the table can generally be accomplished by
just reading the file records, if the array variable is incremented as
the records are read.

The examples which follow will demonstrate how to build and use memory
tables taken from a single record format file, then a more complex
example will be given. The objective of both examples will be to create
and use a memory table to convert stock numbers in an inventory system
to the record number. Record numbers are not known, but the stock
numbers are known, and are unique for each inventory item. The
conversion is necessary in order for the computer to read in the right
record to update. In both examples, the complete inventory file will be
read into the computer from instructions located in the preliminary
section of the program. This has to be done only once to get the
information into the array, so from that point on, the conversions are
accomplished by a memory search instead of a disk search. Conversions
of this type will slow down transaction entry, but do save manual
effort. The computer could accept transactions faster if the operator
is able to enter the record number. The gain and the loss would best be
balanced on a cost scale to determine which way to go with the program.

EXAMPLE #1 - USING A 1 DISK INVENTORY FILE WITH 1 RECORD FORMAT

A preliminary step is to roughly determine if the array will fit into
the available memory space. To do this for string data, multiply the
number of records times twice the length of the data in each record. The
stock number looks like this: 23-2279. This is 14 characters times 501

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

PRELIMINARY FUNCTIONS SECTION
Page -20-

records, or slightly over 7,000 bytes. Since there is a dash in the
stock number, a string variable will be used for the array. To roughly
calculate the space required for numeric arrays, assume each numeric
field will require 8 characters of memory.

The inventory record field names and assigned variable codes are as
follows:

AB$ = Record status code.

AC$ = Part number
AD$ = Stock number
AB = Quantity on order
AC = Reorder point
AD = Quantity balance
AE = Cost per unit

The program statement to read a file record looks like this:

INPUT #1,REC I:AB$,AC$,AD$,AB,AC,AD,AE

The programming requirements can be summarized as follows:

1. Dimension the array Variable. This is accomplished by the following
program instruction:

60 DIM A$(500)

2. Read the file and build the array. The instructions have to follow
the file Open statement. The routine to load the array belongs in
the preliminary part of the program. The array may be loaded from
the file using the following three instructions:

110 FOR 1=0 To 500

120 INPUT #1,REC I:AB$,AC$,A$(I),AB,AC,AD,AE
130 NEXT I

Comments on the above routine: Each time a record is read, the
values in all the variables, except A$(I), are overlaid by the data
in the new record. Since I is incremented each time the program
goes thru the FOR/NEXT loop, it eventually creates 501 different A$
variables.

3. Write a subroutine to convert the stock number into the record
number. If there is no matching stock number in the array, the
program is to return a record number over 500. By programming the
conversion routine as a subroutine, any of the menu options which
accept a stock number in lieu of the record number can use the
subroutine to accomplish the conversion. The subroutine will
normally appear in the main body of the program, rather than in the
preliminary section of the program. But to complete the example,
the subroutime will be shown. Most likely the subroutine will be
placed near the END statement:

Vfjjlgp'

RELATIVE FILES - FILE MAINTENANCE PROGRAMS
PRELIMINARY FUNCTIONS SECTION

Page -21-

710 REM SUBROUTINE TO CONVERT STOCK NO. INTO RECORD NO.
720 K=0

730 IF C$=A$(K) THEN 790
74 0 K=K+1

750 IF K>500 THEN 770
760 GOTO 730
770 1=600

780 GOTO 800
790 I=K

800 RETURN

Comments on the above routine: I is the record number and C$ is the
stock number which has to be converted. K is the counter used to
step thru the array in line 730. The value of K becomes the record
number when there is a match of stock numbers.

STOCK NUMBER CONVERSION - MULTIPLE FORMAT RECORDS, MULTIPLE DISKS

The conversion programming requirements will be similar if a more
complex file is used, but there will be enough differences in the
program statements that you need to look at another example. To set the
stage: All conditions are the same as with the simple inventory
records system, except there are three records in the file for each
stock number. The file will consist of 5 disks, each containing 151
inventory record sets. Memory space will not be a problem as the
Expansion Memory unit is to be used. The system will be on line 80% of
the time to accept transactions entered thru the computer's keyboard.
The program will do a record number conversion for each transaction.
Then write them to a transaction file for later updating of the file.
The record number for new inventory items being added to the file will
be established by another routine that we will not be concerned about
here.

The programming requirements applicable to the table array are about the
same as for the simple system, with the following differences:

1. The dimension instruction should set the array large enough to
handle up to 5 disks of inventory records.

2. When the table is being generated, the exchange of disks should be
under program control.

3. The conversion subroutine will have to return the disk number as
well as the record number. If no matching stock number exists,
convert disk number to 21 and record number to 999.

The dimension statement will look something like this:

50 DIM A$(754)

The following routine will build the in-memory array:

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

PRELIMINARY FUNCTIONS SECTON

Page -22-

210 FOR M=0 TO 150

220 INPUT #1,REC I:AB$,AC$,A$(N),AB,AC,AD,AE
230 1=1+3

240 N=N+1

250 Next M

260 1=0

270 INPUT "INSERT NEXT INV. FILE DISK IN NUMERIC SEQUENCE. ENTER A 9 IF
THERE ARE NO MORE INV. DISKS.":E$

280 IF E$="9" THEN 300
290 GOTO 210 .
300 N=N-1

Since the value of N is incremented by 1 each time a record is read, the
A$(N) value is retained in memory (line 220). I is the record number
variable used in the Input statement. It is incremented by 3 after each
read. The Input statement reads every third record in the file starting
with record 0. Each time another disk is inserted, it is necessary to
start over at record # 0, which is the reason for the instruction at
line 260. The variable N can later be used in the conversion subroutine
to determine when to stop searching the array for a stock number match.
The M FOR/NEXT loop makes sure that 151 records on each disk is read for
the array.

Another variable array could be dimensioned to carry the disk number,
but it consumes valuable memory space and, if used, could cut down on
the maximun number of disks the system can handle. In this situation,
it will be preferable to calculate the disk number. The subroutine in
the simple example will be replaced with the following:

610 REM SUBROUTINE TO OBTAIN RECORD NO. AND DISK NO.

620 K=0

630 IF C$=A$(K) THEN 710
640 K=K+1

650 IF K>N THEN 670
660 GOTO 630

670 1=999

680 DISK=21

690 GOTO 810
700 REM CALCULATIONS

710 B=K/151
720 DISK=INT(B)+1
730 II=DISK-1

740 IF 11=0 THEN 790

750 I=K-(II*151)
760 1=1*3

770 GOTO 810

780 REM 11=0

790 DISK=1

800 I=K*3

810 RETURN ^

RELATIVE FILES - FILE MAINTENANCE PROGRAMS
PRELIMINARY FUNCTIONS SECTION

Page -23-

Conversions using subroutines similar to this should average 10 to 15
seconds each. The time required to load the array into memory will run
about 4 to 5 minutes a disk. In a test run using an array containing
1,427 numbers, the program stepped thru the complete array in 37
seconds, looking for an invalid number. It would have taken over 20
minutes to do a disk search. The time savings is considerable.

Here, K is another numeric variable which is used to step through the
stock numbers in the memory array. Its value is set to zero when the
subroutine is entered (line 620). The stock number entered by the
operator (C$) is compared to the first stock number in the array. If
the two numbers do not match, the value of K is increased by 1 and the
procedure repeated, except the next stock number in the array is used in
the comparison.

The numeric variable N was incremented by 1 as the array was loaded into
memory. Refer to line number 240 in the previous example. N's value is
used to tell the subroutine when the search for a match has reached the
end of the array, then a no match condition will exist. The routine
starting with line 650 handles this condition by setting record number
to 999 and the disk number to 21. The program routines which use the
subroutine will check for those values and will notify the operator of
the rejection.

The above example starts very much like the previous subroutine example,
but does not end that way. Go to line 630 and assume the computer found
a match when K had been incremented to 325. The disk number will be 3
and the record number will be 69. Keep in mind there are 3 records in
every inventory record.

Arrays (or tables) are usually loaded in from another file. This
information does not necessarily have to be taken. from the main file.
It can be a separate file established and maintained just to .provide the
information for the array. The programming to do this will be very
similar to the example given. If information is read in from a separate
file, you will want to include in the routine a file Close statement as
soon as the array is complete, assuming the program has no further need
to read from that file.

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

THE MENU SCREENS
Page -24-

\jggp»

USER OPTIONS - THE MENU SCREENS

The purpose of the menu screen is to provide the Operator with a list of
functions the program will perform. The functions are associated with
codes, which when entered, will identify the function selected to the
computer program. It is doubtful any two programs can be found (other
than duplicated programs) which have the same menu screen. With so much
diversification, this aspect of file maintenance programs will be
covered in general terms only. Refer to the NUPDATE program listing,
lines 120 through 340, for an example of a menu screen routine.

In going back over my own programs, the menu screen section of the
majority, are composed of the following type of instructions, appearing
in the order listed:

A REM statement to note the start of the menu screen routine
Print statements to note the option codes & function descriptions.
An INPUT statement to accept the operator's selection.
IF statements, one for each code, to determine where in the program
to go to perform the requested function.
An error message at the end of the IF statements to notify the
operator that one of the valid codes was not received.
A GOTO statement to display the menu screen again, ^because if the
program gets to this instruction it means that an invalid code has j
been entered by the operator.

The above outlines the programming functions, but fails to address the
contents of a menu screen. That subject will be next. Before any
programming instructions are coded, the programmer needs to sit down and
list the functions which the program has to perform. The functions
which belong in the preliminary part of the program are separate from
the others. Those which may be selected by the operator belong on the
menu screen. Any remaining functions either belong in the preliminary
part of the program, or are included in the end of processing routine.
My experience has been that even the most complex programs will fit
within that framework. It is one of many ways to approach the problem,
and it works.

Most file update programs will provide the operator with the ability to
perform the following functions:

A way to add new records to the file. Since a file is created with
a certain number of records and the number itself is fixed, the
maintenance program needs the ability to change inactive records to
active ones. This type of change will generally require edits in
the program to assure enough information has been entered to satisfy
the processing requirements of the other routines in the program.
The programmer must decide which fields in the new record are
optional and which are required. The decision is usually based on .
the information requirements of the other routines in the program. W
Refer to the NUPDATE program listing, lines 350 through 860, for an

RELATIVE FILES - FILE MAINTENANCE PROGRAMS
THE MENU SCREENS

Page -25-

example of an add routine.

A routine to delete a record which has become obsolete. This
generally means changing a record status code from active to
inactive. Moreover, this function should include the routines to
delete all of the information which exists in the obsolete record.
This needs to be done so that a part of the old record does not
become a part of the new record. It is an easy, but tedious,
routine to code. Refer to the NUPDATE program, lines 870 thru 1090
for an example of a delete routine.

Provide for an interim change of record status code, when necessary.
Some business programs will be involved with updating files
containing information which have reporting requirements that go
beyond the change of status for the record. The reporting
requirements may prevent the deletion of the information in the
record. In such a situation, an interim status code may be used as
a way to reflect the change of status. The interim code used can be
any code other than the ones used to show active or inactive status.

Another function common to most file maintenance programs is to
display all or selected parts of any records which the operator
wishes to see. This is a display only type option. Routines of
this kind generally identify the fields by name, then display the
information in the record. Refer to lines 1520 thru 1710 of the
NUPDATE program listing for an example of this type of programming.

The maintenance program should provide ways to revise all fields of
information in the record. If there are a limited number of fields
involved, the revisions can be taken care of as illustrated by the
NUPDATE program. Refer to lines 1720 thru 2470 in the program
listing. This aspect of the file maintenance programming is the
most time consuming and difficult.

Providing reports of various kinds are another function of the
maintenance programs. The individual reports are usually tied to
separate screen option codes. I advocate using the printer as
little as possible. Using the monitor screen for reporting not only
saves wear and tear on the printer, but can save processing time.
It is well known that the computer can be tied up for long periods
of time listing information on the printer. For reports which must
be saved, consider storing the information on a disk and providing a
program to display the information when needed.

The End Processing function - This function should at least include
a CLOSE and an END statement. The CLOSE statement will complete the
posting of any file update records being held in the output buffer,
before going on to the END statement. If you just turn off the
equipmemt instead of using an end processing function, some file
updates could be lost - whatever was in the output buffer at the
time the computer was turned off will be lost.

RELATIVE FILES - FILE MAINTENANCE PROGRAMS
THE MENU SCREENS

Page -26-

The following is applicable only to business systems which are used ^J
so much that one or more computers are dedicated to one application.
If one program is retained "On Line" for extended periods of time,
consider providing a way for the computer operator to shut off the
equipment for a brief period of time, with the ability to continue
on where processing had stopped. To accomplish this requires the
program to store certain variable values in a special disk record,
and reading them back into memory later to restore the processing
status. This will require the menu screen to give the operator two
more option codes. One is used to store the value of the variables
in the disk record. The other option resets the computer to its
original status. More information on this approach is provided in
the section of the text dealing with transactions.

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

TRANSACTION PROCESSING

Page -27-

FILE UPDATING FROM TRANSACTIONS

DEFINITIONS

File updating, from a programmers' point of view, is the function which
reads in a file record, allows the operator to revise the information in
one or more fields in the record, then writes the updated record to the
disk file.

Transactions are the activity which trigger the file updating. For home
applications, this activity is always less formally documented than it
is for business systems. Although there are some exceptions, files in
general contain information (fields) on a lot of items (records), and
the information is in a constant state of change (dynamic) . If the
changes are not recorded by the computer, the information in the file
very quickly becomes obsolete. When this happens, the file is worthless
as a source of reliable information. These changes are generally
referred to as transactions, regardless of the form they take.

General Comments

One of the primary functions of a file maintenance program is to provide
the computer operator with a way to update the file using change
transactions. My objective with this section is to cover the subject of
transactions without becomming bogged down in a lot of detail.

GENERAL METHODS USED TO UPDATE FILE FECORDS

Assigning a code to each field

The easiest way to handle the update function is to assign a code to
each field, read the record(s) into memory, have the operator enter the
field code, then the change information, revise the field, and write the
record back to the file when the operator is through with the changes
for that record. This method is illustrated in the NUPDATE program
listing, starting with line number 1720, and continuing to line number
2470.

This method works best for files which are contained on one floppy disk.
If multiple disks are required to hold the file, it becomes less
attractive due to a rise in the potential for human error, plus the
extra manual work required of the operator to separate the transactions
into 2 or more piles. But, for most home and simple business
applications, this method should work very well.

Another general rule is that the file is updated before the computer
displays the menu screen in preparation for the next transaction.

Transaction Forms

With the more complex business systems, two or more people will usually

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

TRANSACTION PROCESSING
Page -28-

be recording and processing transaction activity which affects the same
file. For example, with an inventory system, sales personnel will be
writing sales tickets which represent sales of inventory items.
Production personnel. will be preparing stock requisitions for supplies
and materials. Buyers will be issuing orders for low stock items.
Shipping personnel should note actual stock withdrawals and back-ordered
inventory already sold. Inventory personnel will be generating records
of physical inventory counts. There will also be receiving reports
issued when new purchases arrive. All this represents activity which
must be posted to the file as change activity. As a general rule, the
system is programmed on the premise that the information, or the forms
will be routed to the computer operator for posting to the file records.

While preparing to create such a system, the programmer will look upon
those forms as a way to segregate transaction types. It is also a good
way to identify the fields of information which must be included in each
type transaction. This is done to establish the format of the
transaction to be used by the operator to update the file. Most of the
forms will contain some information which is not maintained in the
inventory file. This type of information does not have to be entered by
the operator. Some companies will have their employees transcribe the
information onto a keypunch form as a way to eliminate the unnecessary
information. Since this requires additional manual effort, other
companies have the operator enter the information directly from the
form. j

Transaction types differ. For example: What is the difference between
a customer sales ticket and a stock requisition for material going to
the shop? Both are inventory withdrawals. The difference is in the way
the accountant records the transactions. The Credit may be to the same
inventory general ledger account, but the corresponding Debit should
differ. Consequently, the programmer of most business systems should be
coordinating with the accountant, as a way to establish the accounting
requirements, before finalizing the preliminary planning of the
transaction types to use in the system. If the system is programmed
correctly, reports from the system can save the Accounting Department a
great deal of effort by providing totals to post to their ledgers. It
is often possible for the computer to provide detail support for the
totals, in the form of transaction files and/or listings.

If the volume of the transaction activity is high, the pressure on the
computer operator is to get those transactions entered. In this kind of
situation, the operator can enter more transactions if it is not
necessary to read and write the file record for each transaction. The
method used under those conditions is to accept the transactions as fast
as they are entered, then store them in another file. The master file
can be updated later using the transaction file.

Such a file update run idealy needs to be scheduled early enough to
allow the operator the time to follow-up and correct transactions which
are rejected during the run, before the end of the shift. The best way ^J
to handle rejections from a transaction file is to list the rejected

RELATIVE FILES - FILE MAINTENANCE PROGRAMS
TRANSACTION PROCESSING

Page -29-

transactions on the printer, in order for the computer to continue
processing. The operator should not be expected to make the correction
on the spot. Most of the time the operator will need to call someone
else to determine the correct information. Those calls need to be
placed before the people go home, or even worse, go off on vacation.
Generally there will be no problem in handling the corrected entry in
the next day's business, or entering them in with the next shift's
transactions.

I think this computer can handle really complex business systems. The
programming can be done, and I think the hardware can withstand being
used for long periods of time, particularly if a good surge protector is
on the power line between the outlet and the computer equipment. In my
opinion a good surge protector is essential equipment. I've had my
computer turned on 10, 11 hours at a time without any problems.

PROGRAMMING CONSIDERATIONS WHEN USING TRANSACTION FILES

There are two major functions involved, and they will be covered
separately. One is the creation of the transactions in a disk file from
change activity entered by the computer operator. The other function is
updating of the master file from the the transaction file. As a general
rule these two major functions will be accomplished by different
programs, to allow as much space as possible for in-memory arrays.

Creating the Transaction File

Initially, the file is created the same as any other random file. That
procedure has already been discussed in the file create section of this
text, and another programming example is unnecessary. By way of an
example, I will define a universal record format for a transaction file,
one which can be used to satisfy most file updating requirements. This
approach would not necessarily be the best, and is certainly not the
only format for transaction file records.

To implement the scheme, a basic rule to follow is that for every field
to be revised, the program is to generate one transaction record. Each
of the master file record fields will be assigned a number. This number
will be used in the transaction record to identify the field to change
in the master file record.

Let's go ahead and define the transaction record fields. We will need
the record number and the disk number, if the master file is on multiple
disks. Another requirement is a code to tell the update program if the
transaction has been posted. That would be our rerun provision. A
transaction code field is required to identify the type of change the
update program is to make. Last, but not least, we need a data field to
hold the change-to information. Since numeric information can be
assigned to a string variable, that is what will be used for a data
field. Numeric string data can be converted to a numeric variable later

i^, as required.

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

TRANSACTION PROCESSING

Page -30-

Listed are the field names for the transaction records, their maximum
length, and the variable codes assigned to each field:

\u$0f

V. Code Field Name Max. Length Comments

PSTAT Posted Status Code 8 One digit required
DISK Master File Disk No. 8 2 digits required at most.
RCD Master File Record No. 8 Four digits required
FLD Field No. to Update 8 2 digits
T/C Transaction Code 8 2 digits
DAT$ Change Data 25 Alpha/Numeric

Total ."53"
+ 1 character per field 0. H. = 6

Total Record Length 71 Characters

The variable codes assigned to the fields are longer than usual, and
more descriptive. There is no problem getting six variable names into a
PRINT # statement. If the names are too long, it becomes a chore to use
them in the program statements.

Transaction Files, Miscellaneous Considerations

1. Transaction codes need to be discussed further. This code has to
indicate to the update program how numeric data is to affect the master
file field. With string data, the only option available is to replace J
the old data with the new data. With numeric fields, the code must tell ^
the update program if it is to add to, subtract from, or replace
existing information. Only three codes are necessary to satisfy this
minimum requirement. However, a more complex numbering scheme is
generally used. The accountants and other management people want more
detail to properly segregate accounting totals accumulated during
processing runs. The complex numbering scheme is used to accomodate
their reporting requirements.

2. What to do about new additions to the file - The computer operator
will be entering some transactions which will revise more than one field
in the master file. When those transactions are entered by the
operator, the program generating the record for the transaction file
will have to produce one record for each changed field. A new add
transaction would conceivably change every field in a record. This
requires the program to generate a multitude of transaction records. It
is best to update the master file record directly for new adds, if
possible.

3. After all transactions are entered, it is easy for the update
program to determine when the end of the file has been reached if the
unused records in the transaction file are filled with zeroes, or null
characters.

4 Another consideration is to provide the operator with a way to turn
off the computer for short periods. The system must be able to keep ^
adding transactions to the end of the file when the operator returns.

RELATIVE FILES - FILE MAINTENANCE PROGRAMS
TRANSACTION PROCESSING

Page -31-

This presents something of a problem to the programmer. To allow the
computer program to continue processing as if no interruption had
occurred, the value of some variables must be saved on disk before the
program run terminates. Then the system must restore those values when
the operator returns. Accomplishing this objective requires the
Programmer to do three things:

Include instructions in the file create program to produce a special
record containing fields in which the variables can be stored. The
programmer must plan this aspect of the update processing before
writing the file create program. In the File Create section of this
text, I provided a programming example for a payroll file which
includes a special record added to the end of the file.

Provide a menu screen option to allow the operator to shut off the
computer temporarily. This routine saves the variable values on the
special disk record, then closes the files before going to the End
statement.

Provide a menu screen option to allow the operator to return from a
temporary shut off of the computer. This routine reads the special
record to restore the variable values. With a normal start-up, the
first transaction written to the transaction file goes to record

, number 0. On a return from a temporary break, the next transaction
W to process must be placed at the end of the file. One of the

variables to save is the transaction file record number. Other
variables to save are any of the total accumulations being performed
by the program.

File Updating From the Transactions.

Updating a master file from a transaction file complicates the
programming requirements and is an option which results in a master file
that is not current most of the time. Whenever possible, it is better
to update the master file as the change transactions are entered by the
operator. However, if the master file is on 6 disks, the operator would
rebel at having to change disks for every transaction that processes.
Also, the potential for operator error would be very high.

The error I am referring to is the operator inserting the wrong disk.
It is possible to program in a check of a disk's name to eliminate
errors of this type. A less atractive alternative is to carry the stock
number in the transaction record for comparison when the transaction is
processed by the update program. The disk's name is on the 0 record of
the disk's index file. The Disk Memory System manual explains how to
check that record. I'll concede that it is possible to reduce that risk
using a programmed routine to make that check. Even so, the time
consumed by changing disks, then making the test of the disk's name,
would probably slow down the updating function so much that updating

(^ from a transaction file is a more attractive alternative. The file
update program will be programmed to make one pass through the

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

TRANSACTION PROCESSING

Page -32-

transaction file for each disk, and in that way reduces the amount of
Circumstances can exist wheredisk swapping required of the operator,

the logical choice is to update the file from a transaction file.

If the field to be updated in a master file record is determined from a
field number in the transaction record, it implies the update program
will contain X number of field update routines - A separate routine for
each field in the master file. This makes X equal the number of fields
in the master file. The update program will select a transaction to
process, determine the field affected from the information in the
transaction record, and branch to the routine that updates that field.

Under ideal conditions, the computer system will consist of two disk
drives, so that the master file disk is located in one drive, and the
transaction file disk is in the other drive. If the equipment is
limited to one disk drive, the transactions will have to be read in then
stored in a memory array. If the volume of transactions is very high,
this procedure might be repeated several times to process all of the
transactions. The programming to accomplish this is illustrated in the
COPYN&A program listing located in the last few pages of this text.

MISCELLANEOUS FUNCTIONS APPLICABLE TO TRANSACTIONS

EDITING

With business systems, I advocate that one person or department be
responsible for the accuracy of each file. Someone other than the
computer operator. If all transactions are funneled through that
department, they have the opportunity to check the documents for
propriety, completeness of information, readability of the information
to be entered, and the opportunity to establish control totals on
critical fields, where input errors cannot be tolerated. In most
companies, every employee has more work than they can do. If no one has
been assigned responsibility for the accuracy of a file, chances are
good the files will be neglected.

People catch problems which the computer cannot detect. On the other
hand, people reviews tend to vary in quality and may not be done at all
if the pressures are great to do other work. The computer can detect
some types of errors that a reviewer would not be expected to catch.
Checks programmed into the computer can be counted upon by the managers
to function reliably. However, certain types of errors cannot be
detected by the computer. For instance, if the operator types in 97
instead of 79, a transposition error, the computer has no way of knowing
what should hve been entered. Errors of this kind can be flagged as
having occurred only if there is an item by item manual review, or by
using control totals.

Checks the computer can make of the data it is to process will pay off
by rejecting the data before it can affect the file and other output.
It is a hundred times better to reject bad transactions than to try to

S&^'

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

TRANSACTION PROCESSING

Page -33-

reverse the effects of one that did process. The amount of effort
expended on controls has to be tempered by the importance of the data
and the result if errors did occur. The cost of manual controls should

not be more than the controls are worth. It is best to concentrate on
the more critical areas.

It is also helpful to know where errors will originate. The computer
keyboard is one source of possible error. Some keyboards duplicate
characters at random frequencies and typing errors are common. If data
entry is based on hand written documents, errors will result from trying
to interpret illegible writing.

It is generally up to the programmer to determine which edits to include
in the program. The department responsible for the accuracy of the file
should know what those edits are, and be given the opportunity to accept
or reject proposals in that area. A program without edits to detect and
reject data input errors is not an acceptable program, particularly
business system programs.

Report Rejected Input Data

If data entered by the operator is rejected, for any reason, it has to
be reported in order to correct and reprocess the transaction. The
rejected transaction cannot just disappear. If the update is' being
accomplished by a dialogue between the computer and the operator, the
rejection can be noted on the monitor screen, with the expectation that
the operator will make the correction right away. However, if the
transaction is one of many being processed from a file of transactions,
it is best to print the rejection notice on the printer and have the
computer program continue processing, using the next transaction.

Total Accumulations for Accounting

Nearly every business system is an opportunity to provide the Accounting
Department with totals for posting to ledgers, and with the detail
supporting the totals. A good example is the inventory adjustments
resulting from physical inventory counts. If the accountants record the
adjustments, the difference between the count and the inventory records
is important to them. When recording the count, the computer can
accumulate this difference in terms of quantity and dollars. It also
has the ability to produce a file containing just these differences as a
way to support the posting total. If this file can be listed on the
monitor, it may not be necessary to print the file. Other routines can
be added to the program to display significant adjustments which could
trigger a recount.

Disks containing transactions are dangerous things to leave lying
around. The danger is that the transactions may be processed more than
once. If it is not necessary to keep the file after the transactions
process, I suggest the following programming approach:

1. Have the program which writes the transactions to the file, create

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

TRANSACTION PROCESSING

Page -34-

the file as a new file each time the program runs. This is
logically done in the preliminary portion of the program. Next,
write the transactions to the file, closing the file normally when
the session is over.

2. The program which reads the transactions for the file updating
function should close and then delete the file when finished. This

ensures that the transactions will not be posted twice.

If it is necessary to retain the transaction file, the programmer will
have to provide some way to prevent the file from being posted twice.
One way is to reserve a particular record in the transaction file for
use as an indicator. The indicator can tell the update program that the
file has already been posted. This brings up another important
programming consideration - electric power failure.

Sooner or later this is going to happen to you, and a well designed
system will provide for that occasion. The electricity doesn't have to
be off very long before the program in memory is erased. Assuming there
is no disk or equipment damage, the file update program will have to be
reloaded and the transaction updates continued. The file as it stands
has been updated by some transactions and not by others. If the update
is from a transaction file, then how does the computer or the operator
know where or how to restart processing? In that situation, the program
has to be able to pick up where it left off. If you have a copy of the
file as it was before the update, then you are in good shape. Simply
rerun the program, being sure to use the back-up disk file. Another way
to do it without having to have a back-up disk file is to update the
transaction record with an indicator as each transaction is processed.
This approach requires a two disk drive computer system, but saves the
time it takes to back-up the file after every update. It also calls for
routines in the update program to test the indicator and not use the
transactions that have already been posted. I have mentioned two ways
to provide for a rerun, and you can probably think of other ways. The
important thing is to design the system to include the rerun capability,
if transaction files are used to update the master file.

FILE CONTROLS

File controls are really a management tool to check on the integrity of
the system. Control totals are usually used to report the status of the
check. If the control totals are out of balance, they are not much help
in locating the problem. They more or less indicate the extent of the
problem. ' Outside audit firms are required to point out the absense of
file controls. I can tell you how to use totals for file controls. The
decision to included them in a program depends a lot on the information
which will be in the file.

Input Transaction File Control Totals

Let's go back to an inventory system as an example. Assume that the
department given the responsibility for the accuracy of the file decides

\sff

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

TRANSACTION PROCESSING

Page -35-

they want the computer to print out a report total of number of
transactions it got by transaction type and a total on the quantity
field in those transactions. If the department also had access to the
transaction file created for the file update, it is possible to resolve
any differences between their totals and the totals processed by the
computer. This is an effective control over the transactions that the
computer processes. It would be very difficult for anyone to slip in an
unauthorized transaction without some one knowing about it. If the
controls are checked and out of balance conditions resolved before the

update run, the control is even better. Such a control will also catch
input typing errors that affect the quantity field.

Master File Control Totals

The controls are very similar to the controls used on transactions.
They generally consist of two totals. One total is the number of active
records, and the other is a total on one of the file record fields. The
quantity field again will be used as an example. There will be a record
in the file reserved for control totals. One total is for the number of
active records in the file as of the end of the last file update run.
The other total is a sum of the inventory quantity balance in each
record. Those fields will provide the beginning balance at the start of
the next file update run. The control record also provides fields for
additions and deletions from transaction update activity. These totals
are accumulated during the update run by the update program and posted
to the control record at the end of the processing run. They can also
be posted as necessary if the transaction file approach is not used.
After they have been posted, it is possible to calculate how many active
records should be in the file and what the new quantity balance ought to
be. To find out if that is the case, a sequential pass through the file
is necessary. A printed report will be produced at the end of the
sequential run, the transaction activity totals deleted, and the new
balances posted to the control record. The report should go to a
manager. If there is an out of balance condition indicated, the problem
will have to be investigated and corrected.

Testing

Programs need to be tested to be sure they will run and produce the
right results. It is relatively easy to find out if the program will
run. Determining if the program is producing the right results takes
time. The updated file records, transactions files and reports need to
be checked, using fictitious transactions, to test the accuracy of the
processing routines in the program. During the tests, every type of
transaction the system is designed to process should be used. Testing
has to be a mix of valid and invalid data. If the edits are good
enough, they will reject the invalid transactions. The proper mix is
about 5 to 10 invalid transactions to every good transaction. Reporting
accuracy must be confirmed through manual calculations. Each total
accumulation and detail line type needs to be verified as accurate. The
file create program may be used to provide a file free of tests results,
after the testing phase is finished.

RELATIVE FILES - FILE MAINTENANCE PROGRAMS

DOCUMENTATION

Page -36-

DOCUMENTATION

HOME APPLICATIONS - SELF PROGRAMMED

The documentation for these programs are usually minimal. One suggested
method is to take a printed copy of the final version of the program and
paste it onto note paper, then file it in a note-book. On the first
page, record the name of the program used to load it into the computer.
The disk the program is stored on is also good information to keep.
Behind the printed program listing I will file an explanation of
variable codes used in the program. This would be the extent of my
documentation. It provides enough information to run the program, or to
figure out any program changes to make.

HOME APPLICATIONS - COMMERCIAL

If you are selling your programs to other computer owners, it is an
entirely different situation. The primary objective is for the written
description of the program to contain sufficient detail to enable the
customer to use it. A secondary objective may be to provide customers
with the type of information which will allow tailoring the program to
individual preferences.

The bulk of the documentation will be devoted to explaining in detail to
customers how to load and use the program. The first page will probably *r
be an index where each of the functions are listed. Next, include a
detailed explanation of those functions. If any of the functions have
been written in such a way as to allow the program to abort under
certain conditions, consider including a description of how the customer
is to get back to where they were before the abort took place.

The instructions may include a write-up covering why and how to make
back-up copies of the program and data files.

100

110
120

130

140
150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

RELATIVE FILES - PROGRAM LISTINGS
PROGRAM NAME: RELTVTEST

Page -37-

OVERVIEW PROGRAM

PROGRAM NAME: RELTVTEST

Q$ =""

L=l

M=50

N=100

0=150

OPEN #1:"DSK1.CUSTOM",RELATIVE,INTERNAL,FIXED 60
FOR 1=0 TO 150
L=L+1

M=M+1

N=N+1

0=0+1

PRINT

NEXT I

RESTORE #1
PRINT "ENTER

#1,REC I:Q$,L,M,N,0

"ENTER

888 TO

RECORD NO. YOU WANT DISPLAYED FROM 0-150"
PRINT

PRINT

ENTER

PRINT

INPUT I

IF 1=9999 THEN 640
IF 1=999 THEN 360
IF 1=888 THEN 500
IF I>150 THEN 240
INPUT #1,REC I:Q$,L,M,N,0
PRINT "Q$ = ";Q$:"L = ";L:"M =
GOTO 240

REM CHANGE ROUTINE

PRINT "ENTER RCD # - USE 999 TO GO BACK TO DISPLAY RECORDS.
REM ACCEPT ENTRY FROM KEYBOARD
INPUT I

IF 1=999 THEN 240
IF I>150 THEN 370
Q$="RCD UPDATED"
L=L+1

M=M+1

N=N+1

0=0+1

PRINT "RECORD ";I;", ";Q$;
PRINT #1,REC I:Q$,L,M,N,0
GOTO 370

REM READ FILE SEQUENTIALLY & ACCUM L FROM CHANGED RCDS ONLY.
RESTORE #1
I=REC(1)

INPUT #1,REC I:Q$,L,M,N,0
PRINT "PROCESSING RCD # ";I
IF 1=150 THEN 590
IF Q$= "'» THEN 520

999 TO CHANGE A
READ FILE SEQ."

RCD. ENTER 9999 TO STOP PROGRAM.

;M:"N = ";N:"0 = ";0

;L; ;M; N ;0

RELATIVE FILES - PROGRAM LISTINGS

PROGRAM NAME: RELTVTEST

Page -38-

570 LL=LL+L

580 GOTO 520

590 IF Q$="" THEN 610
600 LL=LL+L

610 PRINT "ACCUM OF THE L FIELD FOR ALL ACTIVE RECORDS IS n;LL
620 RESTORE #1
630 GOTO 240

640 CLOSE #1:DELETE
650 END

RELATIVE FILES - PROGRAM LISTINGS
PROGRAM NAME: NUPDATE

Page -39-

The following program uses and maintaines a Name and Address file
created by the NAMECREATE program used as an example program in the file
create section of the text.

The name of this program is NUPDATE, and the file it uses is named
NAME&A.

90 REM PROGRAM NAME IS NUPDATE
100 PRINT "COPYRIGHT 1982, J. H. HARVEY"
110 OPEN #1:"DSK1.NAME&A",RELATIVE,INTERNAL,FIXED 136
120 REM MAIN MENU SELECTION SCREEN
130 PRINT

140 PRINT "ENTER THE OPTION CODE FOR THE FUNCTION YOU WANT TO USE."
150 PRINT

160 PRINT "1 = ADD A NEW NAME AND ADDRESS TO THE FILE."
170 PRINT "2 = DELETE AN EXISTING NAME & ADDRESS."
180 PRINT "3 = LIST UNUSED RECORD NO'S AVAILABLE"
190 PRINT "4 = LIST EVERY ONE HAVING A BIRTHDAY THIS MONTH."
200 PRINT "5 = DISPLAY REQUESTED RECORDS"
210 PRINT "6 = REVISE EXISTING NAME AND ADDRESS RECORD."
220 PRINT "9 = END PROCESSING AND SAVE THE FILE."
230 PRINT "98= END PROCESSING AND DELETE THE FILE."

L 240 INPUT A
w 250 IF A=l THEN 350

260 IF A=2 THEN 870
270 IF A=3 THEN 1100
280 IF A=4 THEN 1270
290 IF A=5 THEN 1520
300 IF A=6 THEN 1720
310 IF A=9 THEN 2480
320 IF A=98 THEN 2500
330 PRINT "OPTION CODE ";£;" INVALID, TRY AGAIN."
340 GOTO 130

350 REM FILE ADDITIONS ROUTINE
360 PRINT

370 PRINT "ENTE^ RECORD NUMBER TO USE FOR NEW ADD."
380 PRINT "OR, ENTER 999 TO RETURN TO THE MAIN MENU SCREEN."
390 PRINT

400 INPUT I

410 IF 1=999 THEN 130
420 IF I>150 THEN 510
430 IF I<0 THEN 510
440 INPUT #1, REC I:P$,Q$,R$,S$,T$,U$,V$,W$
450 IF P$="A" THEN 470
460 GOTO 550

470 PRINT

480 PRINT "RECORD IS ACTIVE, SO CANNOT BE USED."
/ 490 PRINT "NEED AN INACTIVE RECORD NO."
^ 500 GOTO 360

510 PRINT

RELATIVE FILES - PROGRAM LISTINGS

PROGRAM NAME: NUPDATE

Page -40-

520 PRINT "RECORD NO. ";I;" IS OUT OF THE VALID RANGE."
530 PRINT "TRY AGAIN."

540 GOTO 360

550 P$="A"
560 INPUT "ENTER NAME":Q$
570 IF Q$="" THEN 560
580 INPUT "OPTIONAL: ENTER BUSINESS NAME, OR PRESS THE ENTER KEY TO

CONTINUE.":R$
590 INPUT "STREET ADDRESS OR P O BOX NO.":S$
600 INPUT "NOW CITY, STATE AND ZIP CODE":T$
610 INPUT "PHONE NO., OR IF NOT KNOWN PRESS THE ENTER KEY TO

CONTINUE.":U$
620 INPUT "BIRTHDAY MO.

TO CONTINUE.":V$
630 IF V$="" THEN 730
640 C=ASC(V$)
650 IF C>57 THEN 680
660 IF C<49 THEN 680
670 GOTO 710

680 PRINT "MONTH OF ";V$;n IS OUT OF VALID RANGE. TRY AGAIN."
690 PRINT

700 GOTO 620

710 C=LEN(V$)
720 IF C>2 THEN 680
730 INPUT "ENTER FULL BIRTHDAY, OR PRESS ENTER TO CONTINUE.":W$
740 X$=P$&Q$&R$&S$&T$&U$&V$&W$
750 B=LEN(X$)
760 IF B>128 THEN 810
770 PRINT

780 PRINT "RECORD NO. " ;I;" DISK RECORD UPDATED TO ADD "?Q$
790 PRINT #1,REC I:P$,Q$,R$,S$,T$,U$,V$,W$
800 GOTO 360

810 E=B-128

820 PRINT "RECORD IS TOO LONG BY ";E;"
830 PRINT "DISK RECORD WAS NOT ADDED."

840 PRINT "RECORD LENGTH CANNOT EXCEED

850 PRINT "TRY AGAIN."

860 GOTO 360

870 REM DELETE PROCEDURE

880 PRINT

890 INPUT "ENTER RECORD NO. TO DELETE

900 IF I>150 THEN 970
910 IF I<0 THEN 970
920 INPUT #1,REC I:P$,Q$,R$,S$,T$,U$,V$,W$
930 IF P$="A" THEN 990
940 PRINT "RECORD ALREADY DELETED."
950 PRINT "NO ACTION TAKEN"

ONLY AS A NO. FROM 1 THRU 12, OR PRESS ENTER

CHARACTERS."

128 CHARACTERS."

FROM 0 THRU 150. ":I

RELATIVE FILES - PROGRAM LISTINGS

PROGRAM NAME: NUPDATE

Page -41-

960 GOTO 130

970 PRINT "RECORD NO. ";I;" OUT OF THE VALID RANGE."
980 GOTO 950

990 P$="I"
1000 R$=""
1010 S$=""
1020 T$=""
1030 U$=""
1040 V$ =""
1050 W$ = ""
1060 Q$="DELETED"
1070 PRINT #1,REC I:P$,Q$,RrS,T$,U$,V$,W$
1080 PRINT "RECORD NO. ";I;" DISK RECORD DELETED."
1090 GOTO 130

1100 REM LIST UNUSED RECORDS
1110 F=0

1120 G=0

1130 FOR 1=0 to 150

1140 INPUT #1,REC I:P$,Q$,R$,S$,T$,U$,V$,W$
1150 IF P$="A" THEN 1230
1160 PRINT "RECORD NO. AVAILABLE ";I
1170 F=F+1

1180 G=G+1

(^ 1190 IF G<15 THEN 1230
1200 INPUT "PRESS ENTER KEY WHEN READY FOR MORE.":Z$
1210 G=0

1220 PRINT

1230 NEXT I

1240 PRINT "TOTAL OF " ;F;" RECORDS AVAILABLE."
1250 INPUT "PRESS ENTER KEY WHEN FINISHED.":Z$
1260 GOTO 130

1270 REM ROUTINE TO LIST ALL WITH BIRTHDAYS THIS MONTH.
1280 INPUT "ENTER THE MONTH AS A NO. FROM 1 TO 12.":G

1290 IF G>12 THEN 1500
1300 IF G<1 THEN 1500
1310 FOR 1=0 TO 150

1320 INPUT #1,REC I:P$,Q$,R$,S$,T$,U$,V$,W$
1330 IF P$="A" THEN 1350
1340 GOTO 1450

1350 REM IF ACTIVE CK. FOR A MATCH ON MONTH

1360 Y$=STR$(G)
1370 IF Y$=V$ THEN 1390
1380 GOTO 1450

1390 PRINT "RECORD NO. " ;I;" ";Q$;" BIRTHDAY IS ";W$
1400 F=F+1

1410 IF F>10 THEN 1430
1420 GOTO 1450

RELATIVE FILES - PROGRAM LISTINGS

PROGRAM NAME: NUPDATE

Page -42-

1430 F=0

1440 INPUT "PRESS THE ENTER KEY TO CONTINUE ":Z$
1450 NEXT I

1460 PRINT

1470 PRINT "SEARCH OF THE FILE FINISHED"

1480 INPUT "PRESS THE ENTER KEY WHEN FINISHED":Z$
1490 GOTO 130

1500 PRINT "MONTH OUT OF RANGE ";G
1510 GOTO 1280

1520 REM DISPLAY REQUESTED RECORDS
1530 PRINT "ENTER RECORD NUMBER FROM 0 TO 150, OR ENTER 999 TO RETURN

TO THE MAIN MENU."

1540 INPUT I

1550 IF 1=999 THEN 130

1560 IF I<0 THEN 1700
1570 IF I>150 THEN 1700
1580 INPUT #1,REC I:P$,Q$,R$,S$,T$,U$,V$,W$
1590 PRINT "THIS IS RECORD NO. ";I
1600 PRINT "RECORD STATUS CODE = ";P$
1610 PRINT "NAME ";Q$
1620 PRINT "OPTIONAL NAME ";R$
1630 PRINT "ADDRESS ";S$
1640 PRINT "CITY, ETC ";T$
1650 PRINT "PHONE ";U$
1660 PRINT "BIRTH MONTH ";V$
1670 PRINT "BIRTHDAY ";W$
1680 PRINT

1690 GOTO 1530

1700 PRINT "RECORD NO.";I;" NOT IN THE VALID RANGE."
1710 GOTO 1530

1720 REM ROUTINE TO REVISE AN EXISTING RECORD

1730 PRINT "MAKE A NOTE OF THESE CHANGE CODES."

1740 PRINT "1 = RECORD STATUS CODE"
1750 PRINT "2 = CHANGE NAME"

1760 PRINT "3 = CHANGE THE OPTIONAL NAME LINE"

1770 PRINT "4 = STREET ADDRESS"

1780 PRINT "5 = CHANGE CITY, STATE AND ZIP CODE"
1790 PRINT "6 = TO CHANGE PHONE NO."
1800 PRINT "7 = BIRTHDAY MO. CODE"
1810 PRINT "8 = CHANGE BIRTHDAY DATE"

1820 PRINT "9 = HAVE THE COMPUTER UPDATE THE DISK FILE AND RETURN TO
THE MAIN MENU."

1830 PRINT

1840 PRINT "CHANGES ARE MADE TO EACH FIELD BY REPLACING WHAT WAS THERE

WITH WHAT YOU ENTER."

1850 INPUT "ENTER RECORD NO. YOU WISH TO CHANGE":I
1860 IF I>150 THEN 1890

\jj5gSr

NlgjB^"

RELATIVE FILES - PROGRAM LISTINGS
PROGRAM NAME: NUPDATE

Page -43-

1870 IF I<0 THEN 1890
1880 GOTO 1910

1890 PRINT "RECORD NO. ";I;" OUT OF VALID RANGE."
1900 GOTO 1850

1910 INPUT #1,REC I:P$,Q$,R$,S$,T$,U$,V$,W$
1920 PRINT "RECORD NAME NOW IS: ";Q$
1930 U=0

1940 INPUT "ENTER CHANGE CODE ";C
1950 IF C=9 THEN 2350
1960 IF C>8 THEN 1990
1970 IF C<1 THEN 1990
1980 GOTO 2010
1990 PRINT "CODE ";C;" OUT OF RANGE."
2000 GOTO 1940

2010 INPUT "ENTER REVISED INFORMATION ":C$
2020 U=l

2030 IF C=l THEN 2110
2040 IF C=2 THEN 2140
2050 IF C=3 THEN 2170
2060 IF C=4 THEN 2200
2070 IF C=5 THEN 2230
2080 IF C=6 THEN 2260
2090 IF C=7 THEN 2290
2100 IF C=8 THEN 2320
2110 PRINT "STATUS CODE WAS ";P$;"NOW: ";C$
2120 P$=C$
2130 GOTO 1940

2140 PRINT "NAME WAS: ";Q$;" NOW: ";C$
2150 Q$=C$
2160 GOTO 1940

2170 PRINT "OPTIONAL NAME WAS: ";R$:" NOW ";C$
2180 R$=C$
2190 GOTO 1940

2200 PRINT "ADDRESS WAS: ";S$;" NOW: ";C$
2210 S$=C$
2220 GOTO 1940

2230 PRINT "CITY, ETC WAS: ";T$;" NOW: ";C$
2240 T$=C$
2250 GOTO 1940

2260 PRINT "PHONE NO. WAS: ";U$;" NOW: ";C$
2270 U$=C$
2280 GOTO 1940
2290 PRINT "BIRTH MONTH WAS: ";V$;" NOW: "C$
2300 V$=C$
2310 GOTO 1940

2320 PRINT "BIRTHDAY WAS: ";W$;" NOW: ";C$
2330 W$=C$

RELATIVE FILES - PROGRAM LISTINGS

PROGRAM NAME: NUPDATE

Page -44-

2340 GOTO 1940

2350 IF U=l THEN 2370

2360 GOTO 130

2370 X$=P$&Q$&R$&S$&T$&U$&V$&W$
2380 B=LEN(X$)
2390 IF B>128 THEN 2440
2400 PRINT #1,REC I:P$,Q$,R$,S$,T$,U$,V$,W$
2410 REM NOTICE MESSAGE

2420 PRINT "DISK RECORD UPDATED FOR ";Q$
2430 GOTO 130

2440 D=B-128

2450 PRINT "RECORD IS TOO LONG BY ";D;" CHARACTERS."
2460 PRINT "MORE REVISIONS ARE REQUIRED."
2470 GOTO 1940

2480 CLOSE #1

2490 GOTO 2510

2500 CLOSE #1:DELETE
2510 END

%&*

RELATIVE FILES - PROGRAM LISTINGS

PROGRAM NAME: COPYN&A

Page -45-

A PROGRAM TO COPY THE NAME & ADDRESS FILE ONTO ANOTHER DISK

10 DIM A$(150),C$(150) ,D$(150),E$(150),F$(150) ,G$(150),H$(150) ,I$(150)
20 GOSUB 550

30 FOR 1=0 TO 60
40 GOSUB 580

50 NEXT I

60 CLOSE #1
70 GOSUB 640

80 INPUT -B$
90 GOSUB 550

100 FOR 1=0 TO 60

110 GOSUB 610

120 NEXT I

130 CLOSE #1
140 GOSUB 670

150 INPUT B$
160 GOSUB 550

170 FOR 1=61 TO 122

180 GOSUB 580

190 NEXT I

200 CLOSE #1
210 GOSUB 640

220 INPUT B$
230 GOSUB 550

240 FOR 1=61 TO 122

250 GOSUB 610

260 NEXT I

270 CLOSE #1
280 GOSUB 670

290 INPUT B$
300 FOR 1=0 TO 122

310 A$(I)='
320 C$(I)='
330 D$(I)='
340 E$(I)=
350 F$(I)='
360 G$(I)=
370 H$(I)='
380 I$(I)='
390 NEXT I

400 GOSUB 550

410 FOR 1=123 TO 150

420 GOSUB 580

430 NEXT I

440 CLOSE #1

450 GOSUB 640

460 INPUT B$
470 GOSUB 550

480 FOR 1=123 TO 150

490 GOSUB 610

RELATIVE FILES - PROGRAM LISTINGS

PROGRAM NAME: COPYN&A

Page -46-

500 NEXT I

510 CLOSE #1

520 PRINT "FILE COPY FUNCTION COMPLETED"

530 GOTO 690

540 REM FILE OPEN SUBROUTINE

550 OPEN #1:"DSK1.NAME&A",RELATIVE,INTERNAL,FIXED 136
560 RETURN

570 REM FILE READ SUBROUTINE

580 INPUT #1,REC I:A$(I),C$(I),D$(I),E$(I) ,F$(I),G$(I) ,H$(I),1$(I)
590 RETURN

600 REM FILE WRITE SUBROUTINE

610 PRINT #1,REC I:A$ (I) ,C$(I),D$(I),E$(I),F$(I) ,G$(I),H$(I),1$(I)
620 RETURN

630 REM MESSAGE SUBROUTINE

640 PRINT "INSERT BACK-UP DISK. PRESS ENTER WHEN READY."
650 RETURN

660 REM MESSAGE SUBROUTINE

670 PRINT "INSERT DISK WITH FILE TO BE COPIED. PRESS ENTER WHEN READY."
680 RETURN

690 PRINT "TO PROCESS THIS FILE COPY, LOAD AND RUN PROGRAM NAMED
NUPDATE."

700 PRINT "INSERT THIS DISK AFTER PROGRAM HAS BEEN LOADED INTO THE

COMPUTER,"
710 PRINT "BUT BEFORE THE RUN INSTRUCTION."

720 END ^J

The routine starting with line 300 and ending with 390 are to gain more
memory space by replacing the file information in the numeric array with
null characters - One null character per field. The array holds the
file records in memory. The records that have been placed on the
back-up file allready are replaced with null characters. That is done
to prevent a program abort when available memory is exhausted. However,
if you use the file and get a memory full abort message, the routine at
lines 300 thru 390 will have to be repeated (a program revision) , and
inserted between lines 130 and 140, as follows:

60

NUM 131,1

131 FOR 1=0 TO

132 A$(I)=""
133 C$(I)=""
134 D$(I)=""
135 E$(I)=""
136 F$(I)=""
137 G$(I)=""
138 H$(I)=""
139 I$(I)=""
140 NEXT I

141 GOSUB 670

Then you can resequence it if you want to. Save the program using the
old name, COPYN&A before running the copy program over again.

TI BASIC SORT UTILITY PROGRAM LISTING AND INSTRUCTIONS
BY JAMES HARVEY, 159 DOVER RD., SPARTANBURG, S.C. 29301

Page -1-

SORT UTILITY - USER INSTRUCTIONS

In summary, your responsibilities will be to accomplish the following:

1. Enter the program into the computer from the program listing.
2. Save the program on a floppy disk.
3. Load the program into the computer, using TI Basic Mode, when ready

to sort a file.

4. Fix the INPUT # statement to read your file, using the variable,
JP(KQ) for the field to be sorted.

5. Run the program and be prepared to supply the name of the file.
6. Replace the disk containing the sort program with the disk

containing the file to be sorted. The timing of this exchange is
to be consistant with instructions that will appear on the monitor
screen.

7. After the sort program reads your file, you are given the
opportunity to change to a disk with enough space available to hold
the sorted output file. Regardless of the size of your file, the
sorted output file will occupy 57 sectors on a disk. If there is
room on your file disk, that is where the output file should be
stored, to make it possible for an update program to open both
files in the same run without having to change disks.

This may seem strange,, but it is true, this program will sort any length
file under 501 records. At that point, the program quits reading the
file. The program assumes the file contains the same record format for
each record in the file. The program will have to be modified to read
every second, or every third record in a file. That can be done easily
and will be necessary, if the file you want sorted contains sets of
records.

It is not necessary for you to tell the program the number of records in
your file. Nor is it necessary for you to code the file OPEN' statement.
For fixed length files, the length of the file records is obtained from
the file index. The only tailoring that must be done, is to be sure the
field to be sorted is properly identified using the JP(KQ) variable.

On page 39 of my "Disk Memory System" TI Manual, field 2 of the Disk
Index File record format is explained. Five file types are listed. The
1 and 5 file types will not be sorted by this program. Type 5 is for
programs, and type 1 would be Sequential/Relative fixed length records,
using display type data. The display data type classification would
cause this program to abort after reading the last record in the file.
The abort problem can be circumvented in TI Extended Basic, but that is
not how this program was written. I doubt that many people would choose
Display over Internal, when Internal is so easy to work with. File types
2, 3, and 4 may be sorted by this program, assuming the number of records
do not exceed 501.

Copyright 1982 J. H. Harvey, 159 Dover Rd., Spartanburg, S. C, 29301.

TI BASIC SORT UTILITY PROGRAM LISTING AND INSTRUCTIONS

BY JAMES HARVEY, 159 DOVER RD., SPARTANBURG, S.C. 29301
Page -2-

If the file you wish to sort is classified as File Type 2
(Display/Variable) , it will be a sequential file. It will be necessary
to revise line number 480 before running the sort utility program. If it
is a file type 3, it will be necessary to revise line 630. Change line
number 780 if the file type is a 4. These are the INPUT # statements
which read your file. The changes required are to assign the variable
codes so that the sort program reads the file. The program is only
interested in reading the field in each record containing the number that
is to be sorted. I'll explain the the type change you will have to make:

Assume the file records each contain 7 fileds. Starting at the left, the
first field is numeric, the next numeric, the third alpha/numeric, the
fourth alpha/numeric, the fifth, sixth, and seventh fields are numeric
fields. The field to be sorted is the fifth field. The normal file read
statement used in the file update program looks like this:

INPUT #1,REC I:A,B,A$,B$,C,D,E

It would look like that if the file is a random file. If the file is

sequential, the normal file read statement looks like this:

INPUT #1:A,B,A$,B$,C,D,E

In either case, C is the field to use for the sort. The input statement
in the Sort Utility program looks like this:

INPUT #1,REC KQ:JP(KQ),A,B
Or:

INPUT #1:JP(KQ),A,B

Neither instruction would read the file, because the third variable is
for a numeric field, and the third field in the file is alpha/numeric.
Also, JP(KQ) needs to be where C is located in the list of variables.

The revision required will be:

INPUT #1,REC KQ:A,B,A$,B$,JP(KQ)

INPUT #1:A,B,A$,B$,JP(KQ)
Or:

Note that there is no point in reading the information fields beyond the
sort field. That is why JP(KQ) was not followed by two more variable
codes.

When making the revisions, take care not to use variable codes which are
being used by the Sort Utility program. The variable codes already
assigned are as follows:

NUMERIC VARIABLES: CI DJ EK FL GM JP(KQ) KQ LR MS NT PV(KQ) QW RX TA UB

STRING VARIABLES: BY$ CZ$ DI$ EJ§

TI BASIC SORT UTILITY PROGRAM LISTING AND INSTRUCTIONS

BY JAMES HARVEY, 159 DOVER RD., SPARTANBURG, S.C. 29301
Page -3-

Though A and B appear in the INPUT # statements referred to, they are not
used by the program, and you should feel free to use them in the
revision. So, from the File Open statement in your maintenance program,
compare file characteristics to the Disk Memory Manual to determine which
program line number to revise. Load the program into TI Basic, type in
the line number followed by the up arrow, to bring in the line to revise.
Make the changes, then run the program. The change can be made permanent
by saving the sort utility progaram before entering the run instruction.
Otherwise, the change will be for the one run only.

THE SORT UTILITY OUTPUT FILE

The file produced by the utility program is 502 records long, and
contains three numeric fields in each record. These are the key fields
most likely to be used in random file update, or report processing
programs. Record length is 27 characters, which makes it 3, 9 character
numeric fields. Let's call them fields A,B,C. Field A in the SORTED
file will contain a list of obsolete record numbers in your file. Random
files are likely to have unused records, while sequential files probably
will have none. Unused record numbers are detected by the sort program
when the field value in the sort field is zero. Field A will contain the
number 9999 when the field does not identify an unused record number.

Field B contains the number used in the sort taken from your file record
, sort field. To get assigned to this variable, the sort field number must
W be greater than zero. The number in this field will be zero from the end

of your file, through record number 500.

Field C contains the record number in your file which corresponds to the
number in field B. The zero record will be indicated by field B being
greater than zero, even though field C contains a zero.

*

Record number 501 in the SORTED file contains file total information in

three fields. Let's call them D,E,F. Field D is the total number of
obsolete records in your file. Field E is the number of sorted records,
and this relates to fields B and C. Field F is the total number of
records in your file processed by the sort program. This should equal
the sum of D plus E.

There is another program listing following the sort program, which I call
SHOWSORT. This program is 46 lines long. It opens the sort utility
output file and displays on the monitor excerpts from the file so that
you should know exactly how the output file is structured. It also
provides an example of the instructions you will need to use to read the
file. If your concept of the structure of the SORTED file is still a
little hazy, enter and run this program for a clear understanding of the
sorted file.

SUGGESTED USES FOR THE SORT UTILITY

i This sort program is intended primarily for use with random files that
are defined using the Internal format. The sort program will sort the

TI BASIC SORT UTILITY PROGRAM LISTING AND INSTRUCTIONS
BY JAMES HARVEY, 159 DOVER RD., SPARTANBURG, S.C. 29301

Page -4-

key field for sequential files with variable length records, but I have
been unable to figgure out a way you could use the output file. If those
are the types of. files you are concerned about, it will be necessary to
adapt the sort routine to your particular file. One suggestion - You
could convert your file to a sequential or random fixed length, internal
file. Then process that output file as a random file for reports, etc..
It wouldn't take much of a program to make that conversion, and then by
working with it as a relative file, there would be no problem producing
reports in the proper sequence. To make that clearer, let me give you a
fictitious example:

Say I have a sequential file containing three fields: A,B,C$, and C$
could be any length. I want the sort to be on field B. I would run the
sort program, changing line 480 to read: INPUT #1:A,JP(KQ). This would
produce an output SORTED file. To convert my file to a random, fixed
length file, I would write the following program:

10 OPEN #1:"DSK1.SORTED",RELATIVE,INTERNAL,FIXED 27
20 INPUT #1,REC 501:A,B,C
30 CLOSE #1
20 OPEN #1:"DSK1.MYFILE",DISPLAY,VARIABLE

30 C=B-1

40 OPEN #2:"DSK1.MYFIEE",RELATIVE,INTERNAL,FIXED 254
50 FOR 1=0 TO C

60 INPUT #1:A,B,C$
70 PRINT #2,REC I:A,B,C$

80 NEXT I

90 CLOSE #1

100 CLOSE #2

110 END

You get the idea, anyway. Additional instructions may be required, if
disk space is a problem. If necessary, you could read from fil-e #1,
create an array, then change disks and write the array onto file #2.
Then repeat the process, till file #1 has been completely transferred.
The example program is not going to handle all situations, but is an
indicator of what can be done to adapt to the sort utility. A good
programmer never gives up till all possibilities have been exhausted.

Now that all of your files have been converted to Type 3 files, let's go
on from there. The information from SORTED can be read into your update
or report program as an array, or you could read the file sequentially.
Let's say the only thing you are interested in is record number in your
file. The sorted record numbers. Let's use the previous three field
file example. This is a program to print the complete file in sequence
by field B.

10 DIM D(500)
20 OPEN #1:"DSK1.SORTED",RELATIVE,INTERNAL,FIXED 27
30 INPUT #1,REC 501:A,B,C
40 C=B-1

50 FOR 1=0 TO C

TI BASIC SORT UTILITY PROGRAM LISTING AND INSTRUCTIONS
BY JAMES HARVEY, 159 DOVER RD., SPARTANBURG, S.C. 29301

Page -5-

^ 60 INPUT #1,REC I:A,B,D(I)
70 NEXT I

80 CLOSE #1

90 INPUT "YOUR CHANCE TO INSERT THE FILE DISK: ":A$
100 OPEN #1:"DSK1.MYFIEE",RELATIVE,INTERNAL,FIXED 254
110 FOR 1=0 TO C
120 INPUT #1,REC D(I):A,B,C$
130 PRINT A;B;C$
140 NEXT I

150 CLOSE #1
160 END

I'm sure your print program will be more detailed than that, but this
illustrates how you can use the SORTED file information as an array in
your print program. It is not necessary to use all fields of information
carried in the SORTED file.

For what it is worth, here is my own opinion. Any sort program will be
a time consuming program run. If you have a relative file, you could run
the sort program to establish the initial sort sequence, then code in
routines to maintain the sort seqence from that point on. As new records
are added to the file, adjust the arrays to reflect the change. As
records are deleted, again adjust the array. At the end of a processing
run, save the arrays and change the total record, 501. At the beginning
of the program run, read in the SORTED file as an array. By maintaining
the arrays so they are always current, you can avoid having to run the
sort utility program to print a report. I'll admit those are brain
buster type programming routines to code, but once developed, you will
find the arrays can be used in many way, besides printing reports in
sequence. If you try that type of programming, and give up, I have
developed such a routine in the SCHEDULE program, which I sell as Item
No. 5, for $30.00, delivered.

TI BASIC SORT UTILITY PROGRAM LISTING AND INSTRUCTIONS
BY JAMES HARVEY, 159 DOVER RD., SPARTANBURG, S.C. 29301

Page -6-

SORT UTILITY PROGRAM

FOR FILES CREATED IN TI BASIC AND UNDER 501 RECORDS

10 PRINT "SORT UTILITY PROGRAM":" "

20 PRINT "COPYRIGHT 1982 J. H. HARVEY 159 DOVER RD., SPARTANBURG,
SOUTH CAROLINA, 29301":" "

30 DIM JP(500),PV(500)
40 PRINT "INSERT DISK CONTAINING THE FILE TO BE SORTED.":" "
50 INPUT "PRESS THE ENTER KEY WHEN READY: ":BY$
60 CALL CLEAR

70 INPUT "NEED THE NAME OF THE FILE TO BE SORTED: ":CZ$
80 PRINT

90 OPEN #1:"DSK1.",INPUT,RELATIVE,INTERNAL
100 FOR CI=0 TO 127

110 IF DJ=1 THEN 170

120 INPUT #1,REC CI:DI$,EK,FL,GM
130 IF DI$="" THEN 160

140 IF DI$=CZ$ THEN 160
150 GOTO 170

160 DJ=1

170 NEXT CI

180 IF DI$=CZ$ THEN 260
190 PRINT "FILE NAME COULD NOT BE FOUND. "; CZ$:" "
200 INPUT "PRESS ENTER TO TRY AGAIN, OR ENTER A 9 TO STOP PROCESSING: ^

»:BY$
210 PRINT

220 IF BY$="9" THEN 1350
230 CLOSE #1

240 DJ=0

250 GOTO 40

260 EJ$="DSK1."&CZ$
270 CLOSE #1

280 IF EK=1 THEN 330

290 IF EK=2 THEN 430

300 IF EK=3 THEN 580

310 IF EK=4 THEN 730

320 IF EK=5 THEN 370

330 PRINT "THIS IS THE TYPE FILE MY T I BASIC SORT ROUTINE CANNOT
HANDLE.":" "

340 PRINT "HARVEY'S EXTENDED BASIC VERSION OF THE SORT UTILITY IS THE
VERSION YOU NEED.":" "

350 PRINT "TERMINATING THE PROGRAM.":" "
360 GOTO 1440

370 PRINT "THE NAME ";CZ$;" BELONGS TO A PROGRAM. TO GET THE RIGHT
NAME, CHECK THE INDEX, OR THE FILE":" "

380 INPUT "OPEN STATEMENT. PRESS ENTER TO TRY AGAIN, OR ENTER A 9 TO
STOP PROCESSING: ":BY$

390 PRINT

400 IF BY$="9" THEN 1440 \
410 DJ=0 ^

XjjjS^

TI BASIC SORT UTILITY PROGRAM LISTING AND INSTRUCTIONS
BY JAMES HARVEY, 159 DOVER RD., SPARTANBURG, S.C. 29301

Page -7-

420 GOTO 40

430 TA=480
440 GOSUB 1370
450 OPEN #1:EJ$,DISPLAY,VARIABLE
460 FOR KQ=0 TO 500
470 IF LR=1 THEN 530
480 INPUT #1:JP(KQ),A,B
490 MS=MS+1
500 IF EOF(1)<>0 THEN 520
510 GOTO 530
520 LR=1

530 NEXT KQ
540 CLOSE #1
550 LR=0

560 GOSUB 1390
570 GOTO 870
580 TA=630
590 GOSUB 1370

600 OPEN #1:EJ$,RELATIVE,INTERNAL,FIXED GM
610 FOR KQ=0 TO 500
620 IF LR=1 THEN 680
630 INPUT #1,REC KQ:JP(KQ),A,B
640 MS=MS+1

650 IF EOF(1)<>0 THEN 670
660 GOTO 680
670 LR=1
680 NEXT KQ
690 CLOSE #1
700 LR=0
710 GOSUB 1390
720 GOTO 870
730 TA=780
740 GOSUB 1370

750 OPEN #1:EJ$,INTERNAL,VARIABLE
760 FOR KQ=0 TO 500
770 IF LR=1 THEN 830
780 INPUT #1:JP(KQ),A,B
790 MS=MS+1
800 IF EOF(1)<>0 THEN 820
810 GOTO 830
820 LR=1
830 NEXT KQ
840 CLOSE #1
850 LR=0
860 GOSUB 1390
870 FOR KQ=0 TO MS-1
880 IF JP(KQ)=0 THEN 900
890 GOTO 920
900 PV(NT)=KQ
910 NT=NT+1
920 NEXT KQ
930 REM

TI BASIC SORT UTILITY PROGRAM LISTING AND INSTRUCTIONS
BY JAMES HARVEY, 159 DOVER RD., SPARTANBURG, S.C. 29301

Page -8-

940 PRINT "SORTING - THIS WILL TAKE 5 TO 90 MINUTES TO COMPLETE":" " ^J
950 PRINT "THE DISK DRIVE LIGHT WILL GO ON AND OFF TILL THE SORT IS

OVER PLEASE WAIT.":" "
960 OPEN #1:"DSKl.SORTED",RELATIVE,INTERNAL,FIXED 27
970 FOR KQ=NT TO 500
980 PV(KQ)=9999
990 NEXT KQ
1000 IF NT=MS THEN 1090
1010 FOR KQ=0 TO MS-1
1020 IF JP(KQ)=0 THEN 1070
1030 IF QW=0 THEN 1050
1040 IF QW<=JP(KQ) THEN 1070
1050 QW=JP(KQ)
1060 RX=KQ

1070 NEXT KQ
1080 IF QW=0 THEN 1160
1090 PRINT #1,REC UB:PV(UB),QW,RX
1100 UB=U3+1

1110 JP(RX)=0
1120 QW=0
1130 RX=0

1140 IF UB=MS THEN 1160

1150 GOTO 1000
1160 IF UB=500 THEN 1250

1170 QW=0
1180 RX=0 j
1190 FOR KQ=UB TO 500 ^
1200 PRINT #1,REC KQ:PV(KQ),QW,RX
1210 NEX KQ
1220 IF NT=MS THEN 1240
1230 GOTO 1250

1240 UB=0
1250 PRINT #1,REC 501:NT,UB,MS
1260 CLOSE #1

1270 PRINT

1280 PRINT "ACTIVITY SUMMARY":" "
1290 PRINT "OBSOLETE RECORDS ARE OF INTEREST WITH RANDOM FILE

PROCESSING.":" "
1300 PRINT "NO. OBSOLETE RECORDS IN THE FILE: ";NT:" "
1310 PRINT "NO. ACTIVE RECORDS SORTED: ";UB:" "
1320 PRINT "NUMBER OF RECORDS IN YOUR FILE: ";MS:" "
1330 PRINT "HAVE A GOOD DAY!":" "
1340 GOTO 1440

1350 CLOSE #1

1360 GOTO 1440
1370 PRINT " ":"PROCESSING ON THE ASSUMPTION THAT YOU HAVE REVISED LINE

NO.: ";TA;" TO READ YOUR FILE.":" "
1380 RETURN

1390 PRINT "YOUR FILE HAS BEEN READ.":" "
1400 PRINT "THE NEXT USE OF THE DISK DRIVE WILL BE TO RECORD THE SORT

FILE.":" "
1410 INPUT*"YOUR CHANCE TO CHANGE DISKS. PRESS THE ENTER KEY WHEN READY: ^

yiii^s

TI BASIC SORT UTILITY PROGRAM LISTING AND INSTRUCTIONS
BY JAMES HARVEY, 159 DOVER RD., SPARTANBURG, S.C. 29301

Page -9>

":BY$

1420 PRINT

1430 RETURN

1440 END

THE SHOWSORT PROGRAM

If you have problems visualizing the structure and format of the file
produced by the sort utility program, the following short program will
display the pertinent 3 parts of the file, which should give you a clear
understanding of how the file is constructed. It also provides an
example of the code required to read the file.

10 CALL CLEAR

20 PRINT "PROGRAM DISPLAYS THE SORTED FILE RECORDS ON THE MONITOR.":"
ti

30 OPEN #1:"DSK1.SORTED",RELATIVE,INTERNAL,FIXED 27
40 INPUT #1,REC 501:A,B,C
50 PRINT "NO. OBSOLETE RECORDS";A:" "
60 PRINT "NO. SORTED RECORDS: ";B:" "
70 PRINT "NO. RECORDS IN YOUR FILE: ";C:" "
80 PRINT "COLUMN 1 = SORT FILE RCD. NO.":" "
90 PRINT "COLUMN 2 = OBSOLETE RCD. NO. IN YOUR FILE.":"WILL BE 9999 IF

NOT A RCD. NUMBER.":" "
100 PRINT "COLUMN 3 = A NO. FROM YOUR FILE RCD. SORT FIELD.":" "
110 PRINT "COLUMN 4 = THE RECORD NO. IN YOUR FILE FOR THE NO. SHOWN IN

COLUMN 3.":" "

120 INPUT "PRESS ENTER KEY WHEN READY TO CONTINUE: ":A$
130 CALL CLEAR

140 FOR 1=0 TO 22

150 INPUT #1,REC I:D,E,F
160 PRINT I;D;E;F
170 NEXT I

180 INPUT "PRESS ENTER TO CONTINUE: " :A$
190 IF A>22 THEN 210
200 GOTO 320

210 G=A-5

220 H=G+22

230 IF H>501 THEN 400
240 CALL CLEAR

250 PRINT "SHOWING END OF OBSOLETE RCDS":" "

260 FOR I=G TO H

270 INPUT #1,REC I:D,E,F
280 PRINT I;D;E;F

290 NEXT I

300 INPUT "PRESS ENTER TO CONTINUE: ":A$
310 CALL CLEAR

320 IF J=l THEN 400

330 IF J=2 THEN 450

340 J=l

350 G=B-5

TI BASIC SORT UTILITY PROGRAM LISTING AND INSTRUCTIONS
BY JAMES HARVEY, 159 DOVER RD., SPARTANBURG, S.C. 29301

Page -10-

360 H=G+22

370 IF H>500 THEN 400
380 PRINT "SHOWING THE END OF FILE FOR YOUR RECORDS: ":" "
390 GOTO 260

400 J=2

410 G=490

420 H=501

430 PRINT "SHOWING FILE TOTAL RCD. 501. COLUMNS 2, 3, & 4 ARE YOUR FILE
TOTALS. ":" "

440 GOTO 260

450 CLOSE #1
460 END

MODIFICATION TO THE TI BASIC SORT UTILITY PROGRAM
CONVERSION TO TI EXTENDED BASIC

BY JAMES HARVEY, 159 DOVER RD., SPARTANBURG, S.C., 29301

The following type files will be passed over by the TI Basic sort utility
as one which will not be sorted. The file OPEN statement would define
those files as sequential or relative, using the display data type, and
fixed length records. The program would abort if it attempted to sort
that type of file. The ON ERROR instruction can be used to circumvent the
problem, but the instruction is only accepted when in the TI Extended

program attempts to read beyond the end of the file. That is a no, no,
and triggers an abort of the sort program.

In TI Extended Basic, the same problem exists, but the abort condition can
be used as a way to indicate when the end of the file has been reached.
The ON ERROR instructions allow processing to continue, and prevents the
run abort, as long as the file is not closed. The following modification
to the TI Basic Sort program includes the ON ERROR instruction and does
not close your file. That means you must close the file manually when the
sort program is finished. This may be accomplished either by running
another program, or entering BYE. Do not turn off the computer equipment
till one or the other of those commands are executed.

This modification will work if the following two conditions are true:
1. You have the TI Basic Sort program stored on a floppy disk.
2. You used the same program line numbers as are on the printed

program listing.

ENTERING THE MODIFICATION

STEP 1 From a cold start, turn on the equipment and get into TI Extended
Basic.

STEP 2 Load the TI Basic version of the sort program into the computer
from disk storage.

STEP 3 Delete program line numbers 330, 340, 350 and 360. That is
accomplished by typing in the line numbers and pressing the Enter key.

STEP 4 Type in the following command, then press the Enter key: NUM 330,1

STEP 5 Enter the following program instructions:

330 TA=336

331 GOSUB 1370

332 OPEN #2:EJ$,RELATIVE,DISPLAY,FIXED GM
333 ON ERROR 345

334 FOR KQ=0 TO 500
335 IF LR=1 THEN 341

336 INPUT #2,REC KQ:JP(KQ),A,B
337 MS=MS+1

1 338 IF EOF(2)<>0 THEN 340
339 GOTO 341

340 LR=1

341 NEXT KQ

342 LR=0

343 GOSUB 1390
344 GOTO 870
345 LR=1 ^J
346 ON ERROR 334
347 RETURN

STEP 6 Resequence the program, if you wish, but all the TA variable
values will have to be changed to specify the revised line numbers. That
would be a good reason not to resequence the program.

STEP 7 Save the program on disk, using another program name. You want to
finish with two versions of the program stored on a disk, because with
this modification, the program will not run in TI Basic.

\^0r

%&? RCD.

RECORD NUMBER CROSS-REFERENCE FORM

LAST NAME LAST NAME LAST NAME

0 ! I i

11 I !

2 1 ! 1

3 i ! !

4 ! ! !

5 ! ! i

6 ! ! i

7 1 ! !

8 ! ! i

9 1 I !

10 ! ! i

11 1 1 !

12 ! • i

13 i ! i

14 ! i »

15 ! ! !

16 1 ! !

17 ! 1 !

18 i ! I

19 ! i !

20 i ! !

21 ! i !

22 ! ! •

23 ! ! 1

24 I I I

25 ! ! !

26 1 i I

RCD.

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

RECORD NUMBER CROSS-REFERENCE FORM

LAST NAME LAST NAME LAST NAME

RECORD NUMBER CROSS-REFERENCE FORM

RCD. LAST NAME LAST NAME LAST NAME

54 ! 1 1 1

55 i 1 1 I

56 1 I I I

57 ! 1 1 1

58 i ! 1 1

59 1 1 1 1

60 i 1 1 1

61 ! I 1 1

62 ! 1 1 1

63 1 1 1 1

64 i 1 1

65 1 1 1

66 ! 1 1

67 • ! 1

68 ! 1 1

69 ! 1 1

70 ! 1 1

71 ! 1 1

72 ! 1 1

73 1 1 1

74 ! 1 1

75 ! 1 1

76 1 1 1

77 ! 1 1

78 1 1 1

79 1 1 1

80 1 1 1

RECORD NUMBER CROSS-REFERENCE FORM

.-vCD. LAST NAME LAST NAME LAST NAME

81 i i !

82 ! 1 !

83 i ! i

84 ! ! 1

85 i I i

86 ! i t

87 ! ! i

88 I I i

89 ! « i

90 I I !

91 ! ! !

92 ! ! i

93 i ! t

94 ! ! i

95 ! ! J

96 ! ! I

97 ! ! i

98 I ! i

99 ! ! •

100 ! 1 !

101 i ! i

102 ! « i

103 ! ! i

104ill ;

105 1 ! i

106 ! ! i ;

107 ! ! 1 1

N^|F

RCD.

RECORD NUMBER CROSS-REFERENCE FORM

LAST NAME LAST NAME LAST NAME

108 ! ! I I

109 i ! ! i

110 ! ! I t

Ill 1 1 ! !

112 ! ! ! i

113 i * ! ! 1

114 ! ! ! !

115 i ! ! i

116 I ! ! i

117 ! ! i !

118 1 1 1 1

119 ! i ! . !

120 ! ! 1 !

121 ! 1 1 !

122 i i ! i

123111 !

124 i i ! i

125 i i i !

126 ! 1 i 1

127 1 1 ! 1

128 ! 1 1 1

129 i 1 1 I

130 1 1 1 1

131 ! 1 1 I

132 ! 1 1 1

133III 1

134 i 1 1 1

RCD.

RECORD NUMBER CROSS-REFERENCE FORM

LAST NAME LAST NAME LAST NAME

135 I I 1

136 ! ! !

137 ! ! I

138 i ! !

139 ! i !

140 ! ! !

141 ! ! !

142 ! • !

143 ! ! !

144 ! ! !

14 5 ! ! !

146 ! ! !

147 ! ! !

14 8 ! ! !

149 i i !

150 ! ! !
— —' — —— — ______ 1 ____ _____________!_______________ ______

\titfjif

	content001
	content002
	content003

