KRNGRER
[FGETE

GRAIT KRACKER &y

THE LITTLE BOX
THAT COULD

COnvPILED FOR THE LA B38ERES
BY MIKE DODD

@1 1SSz B
LA SS9ERS COMPUTER GROUP
PLELE 2547 G HENERIGECE e EE e

BE__O

TS

Introduction to Kracker Facts........ ceeeas

IntrOdUCtion tO GPL codectnvv"v'VIUUOIllI'II"'I!"'

by craig Miller

Explanation of the GPL XML statement......ccecccuueee

by Craig Miller

Programming examples of the GPL MOVE statement.......

by Craig Miller

CALL CAT GPL source CoGB.ccccececccscesns .

by Craig Miller

Extended BASIC auto-load bypass patch.....

by Craig Miller

e 6 086 088 0000 00

® 60 00 00 0 0 0

Notes on ROM/RAM space at >6000 = >7FPP. . isitsacssaasca

by Craig Millex

Changing the BEEP and HONK sounds...................;

by Mike Dodd

by Walt Howe

Changing the keyboard.......ccceeceevnen

by Mike Dodd

Notes on MYARC XB II and the GRAM Kracker......ceoe0e0

by Craig Miller

Disabling the MYARC RAM-disk power up routine........

by Mike Dodd

Checking the write protect switch in XB.....v0cvceeee

by Mike Dodd

Changing the Extended BASIC LIST width..

by Craig Miller

CALL INIT correction..voooooooon'ooo'.lo

by Cralg Miller

e o 6 ¢ 800 0000 00

® 6 060 0 a0 00 0000

Changing the cursor shape in XB, BASIC, & E/A........

by Mike Dodd

GK Utility I enhancements and modifications........ .

by Tom Freeman

Extended BASIC program loader.......... oo

by Mike Dodd and Tom Freeman
WRTGRM - a routine to write to GRAM from XB..........

by Mike Dodd

B/A-GRMDSK informtion. e @ & 6 0 06 8 0 0

by Craig Miller

Changing the cursor in E/A-GRAMDSK..... .

by Tom Freeman

o 6 0 060 8 0 0 000

e s 8 85 08 000 06 00

Changing the default drive in E/A and TI-Writer......

by Tom Freeman

Changing Disk Manager II to accept nine drives.......

by Tom Freeman

Early Logo Learning Fun £ix......... ceee

by Cralg Miller

video Chess fllename entry...ceeeeecsecee

by Mike Dodd

TIW-MOVER fixo'ooo'oooooo ooooooooooooo Ty

by Craig Miller

Removing foreign languge options from TI-Writer & DM2

by Mike Dodd

GRAMPaCkeI hints.oaQano.Aboocotaooocoo

by Tom Freeman
GRAM Packer aid.....
by Mike Dodd

ooooooooooooooooooo

® @0 00 8 T OV O OPECELE

® 2 0 0 6 000 ¢ 000

14

16

16

18
18
19
19

21
21
21
24
25
27
27
28
29
29
30
30
31
31

32

INTRODUCTION TO KRACKER FACTS

Rver since the GRAM Kracker was released in late 1985, people have come up with
many changes to the operating system and the cartridges. Some were uploaded to
CompuServe, some to GEnie, some were published in newsletters, and some were just
passed around by word of mouth. Unfortunately, there was no one place that someone
could look for all of the changes.

Vhen MG released Danny Michael's excellent GK Utility I disk, it was very helpful
- many changes on one disk, ready to run. But there were still many changes that
people had made, and they were scattered all over the four corners of the TI
community.

This booklet, Kracker Pacts, is an attempt by the Los Angeles 99er Users' Group
to assemble all of the articles and modifications for the GRAM Kracker in one
publication.

In here are articles by Tom Preeman, Millers Graphics (Craig Miller and D.C.
Warzen), Mike Dodd, and Walt Howe. All are targeted towards getting more out of your
GRAM Kracker. We hope you enjoy them.

-y e ey ot s @ = D wb " " = - -y - oo -—— - - = - - as ey - - -

A LITTLE INTRODUCTION TO GPL CODE
by Craig Millar (MG)

We thought you might like to see what a powerful and compact language GPL code
is. With the GRAM KRACKER and a GPL Assembler you will be able to write programs that
can reside in the Module space and will be displayed on your Main Menu as a selection.
GPL can also link to Assembly and BASIC programs! So you will have FULL use of the
THREE built-in lanquages in our 4As (Basic, GPL and Assembly). Eat your hearts out
all you Atari, Commodore, IBM and other computer owners!

t Disassembly of part of the Editor/Assembler Module *
% gtarting at Grom >6069 thru >6132 *

x et o o e e e e e e R e e 0 e %
>6069 MOVE 7 FROM G@RBGﬂAI TO VRO1 Load the Vdp registers
CALL CHKMEM Go check for memory expansion and

load the (C) character data
MOVE 16 PROM GEBCURSOR TO V@>08F0 Load the box and solid cursor data

* Pput up the first Menu Screen

8T >7E,Q8UB3TK Initialize the¢ Sub Return stack pointer
DCLR QERRCODE Zero out A/L Evror Code indicator

DCLR QGROMFLG Zero the Grom Flag

ALL SPACE ' Clear the screen with space characters
FMT Start formatted screen output

ROW 2 At row 2

KRACKER FACTS - PAGE 1

co. 1
HTEXT '* EDITOR/ASSEMBLER * '

At column 1 (note 0,0 is home position)
Put up horizontal text

ROW+ 2 At current row plus 2

coL 1 At column 1

HTEXT 'PRESS:' .

ROW+ 2 .

coL 2 .

HTEXT '1 TO EDIT' . ete,

ROW+ 2 Note: VTEXT, HCHAR, VCHAR are also

coL 2 allowed in a FMT, so is

HTEXT '2 ASSEMBLE' FOR xx - where xx equals

ROW+ 2 the repeat loop counter

coL 2

HTEXT '3 LOAD AND RUN'®

ROW+ 2

con 2

HTEXT '4 RUN'

ROW+ 2

coL 2

HTEXT 'S RUN PROGRAM FILE'

ROW+ 6

coL 2

HTEXT >0A >0A is the (C) character

HTEXT '1981 TEXAS INSTRUMENTS'

PEND End the formatted screen output
GETKY SCAN Scan the keyboard for a key press

BR GBTKY BR (Branch on Reset) no NEW key pressed

CEQ FCTN9,EKEY Vas PCTN 9 (Back) Pressed

BR GETKY1 NO! check the other keys

BXIT YES! Execute the Power Up routine
GETKY1l SUB >31,@KEBY Subtract >31 from the keycode (0 - ?)

CHE >05,QKEY If it's now Higher than 4 - wrong key

BS GETKY 80, go walt for another key press

CASE @KEY Otherwise 1f @KEY equals

BR EDIT 0 - goto Edit Menu

BR ASSEM 1 - goto Load Assembler Prompt

BR LODRUN 2 - goto Load and Run prompt

BR RUN 3 - goto Run Program prompt

BR RUNPRG 4 - goto Run Program File prompt

Notes:

The above code only requires 202 bytes of memory and that includes 119 bytes of
text! So that means the actual instruction code only uses 83 bytes of memory! There
isn't another language available for our 99/4As that is as compact as GPL. And, when
compared to Assembly, it is much easier to program in. This is THE Language that TI
should have released to us in the first place!

Most instructions can work with bytes or words. The D in front of an instruction
indicates a word operation. The £irst operand to is SOURCE and the second is the
DESTINATION. ie: ST >03,QTEMPl stores one byte with the value of 3 Iinto location
TEMP1.

The COND bit in the GPL Status register (>837C) is turned ON if the test is TRUB
and OFF when PALSE. It is also turned on when a NBW key is pressed on a keyboard scan

KRACKER FACTS - PAGE 2

or when the result of certain instrxuctions is zero.

BR = Branch On Reset... or Branch if the COND bit in the GPL Status register is
OFF

BS = Branch On Set..... or Branch if the COND bit in the GPL Status register is
oy

CASE is 1like ON X GOTO except it starts at zero instead of 1 (Note: the
COND bit is always turned OFF (reset) for a CASE or DCASR)

A CALL wvorks like a GOSUB or Assembly's BL (Branch and Link)

'ALL' fills the screen with the one byte character following the instruction.
(That's right only 2 bytes to clear the screeni!i!)

MOVE is a very powerful GPL instruction. With it you can MOVE x number of bytes
FROM any type of memory TO any type of memory You can also move bytes to the VDP
Registers! The MOVE instruction only requires 6 to 7 bytes for its object code!

8CAN (to scan the keyboard) only reguires 1 byte of object codef!! (SCAN = >03)

Speed Test:

We ran the old 1 to 10,000 timing test in GPL to see how it compares to the other
languages and here is how it came out.

1. In an incrementing loop with a DCEQ (double Compare Equal) 6.8 seconds.

2. In a decrementing loop (no compare just BR (not zero)! 4.3 seconds.

As we have seen from previous tests this places third on the list.
1. Assembly - well under .5 second

2. Porth - approx 1.3 seconds

3. GPL - 4.3 to 6.8 seconds

4. Pascal - I think this is where it falls
4, XB - 33.9 seconds

5. Basic - weeks (just kidding)

Since its not as fast as Assembly or Forth you are probably wondering why we are
so excited about GPL2! True, a CRAY 3 it's not. However, it requires LESS THAN one
half the space of Assembly code! With the Gram Kracker you have up to 58K of GPL
program space (with 6K reserved for the Operating System), which would require AT
LBAST 116K of Assembly code. This still leaves ALL of memory expansion free plus the
16K of cartridge RAM free for other things or for Assembly routines for your GPL
programs to link to (another 48K). That gives us a TOTAL program space of 106K plus
16K of VDP Ram for a total of 122K (128K with the Operating System area). Also with
GPL you can EXPAND or modify existing Modules. And, last but certainly not least, GPL
is the controlling language for our 4As, so now you make it do most anything you want!

Start thinking about those changes you've wanted to make for the last 6 years, your
chance is coming!!!

AN EXPLANATION OF THE GPL XML INSTRUCTION
by Craig Miller (MG)

If you are using Gzam to st;ie an Assembly file in that is MOVE4 out by a CALL or
a GPL program (patch) you can start the Assembly program with a GPL XML statement.

The Opcode for GPL XML is >0F xx - where xx represents the XML table to use for
the start vector (See the Explorer Manual page 77 for the XML tables). For example
let's say you used a GPL MOVE to move an 8K assembly program out of Gram 7 (>E000) to
high Memory Expansion and now you want to go out of GPL and execute your Assembly
program. Let's say that your Assembly program starts at address >A040, this could be

KRACKER FACTS - PAGE 3

the code you could use to do this task.

31 20 00 MYPROG MOVE >2000,G@>E000,82>A000

8P 1D 00

BO 00

BF 00 A0 DST >A040,8>8300 (store start address)
40

OF FO XML >FO0 (go to >8300 to get start address)
00 RTN

vhen your Assembly program is finished you can then B @>006A to go back to the
GPL Interpreter. Don't forget to reset the Grom Address If your Assembly program
changed it. When the GPL Interpreter starts back up it will grab the >00 opcode (RTN)
and return from the CALL MYPROG that you set up somewhere else in Gram to start the
above routine. By the way, the Opcode for a CALL is >06 so the CALL MYPROG would be
06 xx xx where xx xx = the address in Gram where you placed the above code.

PROGRAMMING EXAMPLES OF THE GPL "MOVE" INSTRUCTION
by Craiqg Miller (MBG)

Listed below are a number of examples of the GPL MOVE statement. This is a LIST
file generated by the GPL Assembler.

When the GPL Interpreter talks to CPU Memory it offsets the CPU address by >8300.
This can be seen in the OPCODBS for the third move statement which breaks down as
follows:

>35 MOVE

21234 >1234 bytes

>8F to CPU Memory (non-indexed) (>AF = VDP memoxy)
>9000 at >2000 (>9000+>8300=>2000)

>8F from CPU Memory (non-indexed)

>1D00 at >a000 (>1000+>8300=>A000)

vhen the GPL Interpreter talks to CPU Scratch Pad Memory Below >8380 or when a
Scratch Pad address is used for indexing it is referenced by one byte (i.e. >831F
will appear as >1F in the Opcode).

99/4 GPL-ASSEMBLBR (Pass 1) correct PAGE 0001
GROM 3 - MOVE TEST

<0001>

<0002> GROM 3

<0003> AORG 0

<0004>

<0005> * GPLL MOVE STATEMENT

<0006> x

<0007> x MOVE #bytes,source,destination
<0008> x

<0009> 6000 21,12,34 MOVE »>1234,G@>C000,Ga>E000

6003 E0,00,C0

KRACKER FACTS - PAGE 4

<0010>

<0011>

<0012>

<0013>

<0014>
<0015>

<0016>

<0017>

<0018>

<0019>
<0020>

<0021>

<0022>

<0023>

<0024>
<0025>

<0026>

<0027>
<0028>

<0029>

<0030>
<0031>
<0032>
<0033>
<0034>
<0035>
<0036>

6006
6007
600A
600D
6010
6013
6016
6019
601C
601F
6020
6023
6026

6028
602B
602E
6030
6033
6036
6038
6038
603E
6041

00
35,12,34
AF, 30,00
AF, 10,00
35,12,34
8F, 9D, 00
8%, 10,00
35,12,34
1F, 8%, 1D
00
35,12, 34
80,98, 8F
1D, 00

31,12,34
AF, 30,00
c9,00

31,12, 34
8%, 9D, 00
co,00

31,12,34
1¥,C0,00
31,12,34
80,98, CO

6044 00

6045
6048
604B
604D
6050
6053
6056
6059
605C
605D
6060
6063

6065
6068
606B
606D
6070
6073
6076
6079
6078
6078
6081
6082
6085

831F
839E

6088

25,12,34
0,00, AP
10,00
35,12,34
8%, 9D, 00
AF, 10,00
35,12,34
1F,AF,10
00
35,12,34
80,98, AP
10,00

25,12,34
co,00,8F
90,00
35,12,34
AF,10,00
8P,9D,00
35,12,34
2F,1F
35,12,34
80,AE, 80
9B
35,12,34
1F,80,98

29,12,34

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

* INDEXED MOVES

TEMP1 EQU
TEMP2 EQU

MOVE

>1234,v@>1000,v@>3000

>1234,2>A000,@>2000

>1234,8>A000,8>831F

>1234,8>A000,8>839E

>1234,GR>C000,V@>3000
>1234,G@>C000,@>2000
>1234,68>C000,8>831F
>1234,6G@>C000,8>839B
>1234,v@>1000,G8>C000
>1234,v@>1000,8>2000
>1234,V@>1000,8>831F

>1234,v@>1000,8>839E

>1234,8>2000,G@>C000
>1234,8>2000,ve>1000

>1234,@>331F,8>832F
>1234,@>839E,@>83AE

>1234,@>8398,8>831F

>831F
>839E

51234,G@>C000,G@2 (ATEMP2)

KRACKER FACTS - PAGE 5

- — - - — . - - - - -

<0037>

<0038>

<0039>

<0040>

<0041>
<0042>

<0043>

<0044>

<0045>
<0046>
<0047>
<0048>

<0049>

<0050>

<0051>

<0052>
<0053>

<0054>

<0055>
<0056>

608B
608E
6090
6093
6096
6098
609B
609
60A1
60A4
60A7
60A9
60AC
60AF

60B2
60BS
60B8
60BB
60BB
60C1
60C4
60C7
60CA
60CD

60CF
6002
60D5
60D6
6009
60DC
60DD
6080
60E3
60ES
60ES8
60EB

60ED
60F0
60F3
60F6
60F8
60FB
60FE

00,02,98
0,00

31,12,34
£0,02,98
co,00

31,12,34
c¥,1D,02
9E, C0, 00
31,12,34
co,0F,1F
co, 00

28,12, 34
00,02,98
00,01,1F

2D,12,34

00,02,98
8F,1D,00

35,12,34

£0,02,9E
EO0,01,1F
35,12,34
CF, 7D, 02
98,CF, 7D
01,1F

31,12,34
BO,9E,CO
00
31,12,34
90,9E,C0
00
31,12,34
Do, 0F,1F
33,12,34
90,9E,00
01,1F

35,12,34
FF,7D,02
9E,FF, 1D
01,1F
35,12,34
90, 98,90
1F

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

* INDIRECT MOVES

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

END

>1234,G8>C000,V@2(ATEMP2)
>1234,G@>C000,22(ATEMP2)
>1234,6@>C000,8>830F (QTEMP])

»1234,G@1(QTEMP1),G@2 (@TEMP2)

>1234,@>A000,G82 (RTEMP2)
>1234,VR1(QTEMP1),VR2(ATBMP2)

>1234,@1(QTEMP1),@82(@TEMP2)

>1234,G@5C000, VATEMP2

>1234,G@>C000, *TEMP2

>1234,G8>C000,*>330F (@TEMP1)

>1234,G@1(@TEMP1), *TEMP2

>1234,V*1(@TEMP1),V*2(@TEMP2)

>1234,*TEMP1, *TEMP2

KRACKER FACTS - PAGE 6

wCALL CAT® GPL SOURCE CODE
by Craig Miller (MB)

The following file is a LIST file from the GPL Assembler. we uploaded it to give
you an example of a GPL program that is on the ¢inal Gram Kracker Utlllty diskette.
This is a nevw CALL for Extended Basic that will patch ttself to XB version 110. The
call is CALL CAT("DSK1.") to catalog the £loppy in drive 1. This cataloger will also
support other divices that contain 2 nCATALOG" routine such as the MYARC Hard Disk and
the MYARC RAM disk.

By comparing the OPCODEs in the third column with other Grom/Gram code Yyou should
be able find out what is going on in other modules and in Grom 0.

Hope this file helps Yyou understand GPL 2 1ittle more. Have fun.
T199/4 GPL-ASSEMBLER

GROM 6 - XB Cat 12,17,85

<0001> GROM 6

<0002> AORG >1C00 *+ Routine loads at GRAM >DC00
<0003>

<0004> *

<0005> * Absolute equates into version 110 X-BASIC cartridge
<0006> *

¢0007> 6A78 CHKEND EQU >6A78 Routine to check end of statement
<0008> 6D178 ERR EQU >6D78 Brror routine

<0009> €533 ERRSYN EQU »CS533 SYNTAX erxror

<0010> CS92 ERRCIP EQU >C592 COMMAND ILLEGAL IN PROGRAM errot
<0011> C59A ERRBA EQU >C5%A BAD ARGUMENT error

<0012> *

<0013> t PAD equates

<0014> x ‘

<0015> 8304 PABPTR BQU >8304 PAB pointer register

<0016> 8310 TEMP EQU >8310 Temporary registers

<0017> 8312 TEMP1 EQU >8312 -

<0018> 8314 TEMP2 EQU >8314 .

<0019> 8342 CHAT EQU »8342 Last character register
€0020> 8344 RUN BQU >8344 Running program flag

<0021> 8356 NMPNTR EQU »8356 DSR name length pointer
<0022> 8375 KBY EQU >8375 Key code returned by key scan
<0023> %

<0024> + YML equates lnto X-BASIC cartridge

<0025> %

<0026> 0073 CNS EQU >73 convert floating to string
<0027> 0074 PARSE EBQU T4 parse routine

<0028> 0079 PGMCH EQU >79 Advance character routine
<0029> 0083 SCROLL EQU >83 screen scroll routine

<0030> 2

<0031> + ypP equates

<0032> *

€0033> 0820 PAB EQU >0820 PAB. Crunch buffer area
<0034> 0836 VBUFF EQU »0836 puffer location

<0035> 0828 VLENA EQU >0828 File name length in crunch buffer
¢0036> 0829 VLENB EQU 50829 File name length in PAB
<0037> 08CA RCLBUF EQU »08CA Recall buffer address

<0038> x

<0039> 2 Misc. equates

<0040> *

KRACKER FACTS - PAGE 7

<0041>
<0042>
<0043>
<0044>
<0045>
<0046>
<0047>
<0048>
<0049>
<0050>
<0051>
<0052>
<0053>
<0054>
<0055>
<0056>
<0057>
<0058>
<0059>
<0060>
<0061>
<0062>
<0063>
<0064>
<0065>
<0066>
<0067>
<0068>
<0069>
<0070>
<0071>
<0072>
<0073>
<0074>
<0075>
<0076>
<0077>
<0078>
<0079>
<0080>
<0081>
<0082>
<0083>
<0084>
<0085>
<0086>

<0087>

© <0088>

<0089>
<0090>

<0091>
<0092>
<0093>
<0094>
<0095>

00B6
0087
020D
0100
0020
0002
0012

DCO0
DCo2

DCO4
DCo?7

DCO9

DCOB
DCoD

DCOE
DCl1

DC13
DC15

DC17
DClA

DC1C
DCLF

DC21
DC23
DC26
DpC27
DC2A

DC2C
DC2P
DC32

DC3S
DC37

DC39
DC3C

8B, 44
45,92

D6,42,B7
45,33

OF,79

orP,74
B6

D6,4C, 65
45,9

8F, 50
65,9A

cs,51,08
65,9

D6,42,B6
45,33

86,10
BC,11,a8
28

BD, 14,10
91,10

35,00,01
£8,28,10
ES8,27,10

93,10
5¢C, 2C

31,00,09

RPAR EQU »>B6
LPAR EQU >B7
READ EQU >020D
CLOSE BQU >010D
SPACE EQU >20
FCTN4 EQU >02
RRTN EQU >0012

ZERTLE LR L LR LR L LR LR RARRARZERNRXERLRLRLXLIARLERRRRD

% % % N N N N N

5

X-BASIC DEVICE CATALOGER

Loads at GRAM address >DC00

Accessed with a CALL

Right paren. token
Left paren. token
DSR read code

DSR close code

Space char.

CLEAR char.

GROM 0 return routine

PAB is installed in Crunch buffer area

D.C. Warren 12/17/85

CZ
BR

€RUN
ERRCIP

CEQ
BR

LPAR, @CHAT
ERRSIN
XML PGMCH

XML
BYTE

PARSE
RPAR *

565, @FAC+2
ERRBA

CEQ
BR

DCZ
BS

@FAC+6
ERRBA

CH
BS

11,@FAC+7
ERRBA

CEQ
BR

RPAR, @CHAT
ERRSYN

Set up PAB at 820

RERRER LR LERREL AL DL RLRERRRLRRARRNRLRARLXRLRELENRL LY

Is a program running?
YBS! Brror so tell user

Do we have a '(' ?
NO! SYNTAX errox

Advance program pointer
Parse to ')!

Do we have a string?
NO! Bad Argqument

Is it a null stzring?
YES! Bad Argument

Don't allow device name
greater than 11 chars.

Last char a ')'?
NO! Syntax exror

* The next 7 lines move the name over one byte!!

4

CaTl

CLR @QTEMP
ST

DST @QTEMP,QTEMP2
DINC QTEMP

DDEC QTEMP
BR CaAT1

VAVLENA, QTEMP+1

Get name length

Save name length
Adjust TEMP

MOVE 1,V@VLENA-1(QTEMP),VEVLENA(QTEMP) Move a

* byte over
Keep going until whole
name is moved

MOVE 9,GEPABDAT,V@PAB Install PAB

KRACKER FACTS - PAGE 8

DCIF 38

<0096> *

<0097> * Open Device

<0098> x

<0099> DC40 06,DE,23 CALL DSRER Link to device

<0100> ®

<0101> * Read first record

<0102> ®

<0103> DC43 BF,A8,20 DST READ, V@PAB Make PAB a read
DC46 02,00

<Q104> DC48 06,DE,23 CAT2 CALL DSRER Link to device

<0105> L

<0106> t put disk information on the screen

<0107> *

<0108> DC4B 07,80 ALL >80 Clear screen

<0109> DC4D 34,14,A2 MOVE ATEMP2,V@RCLBUF,V@>282 Put device name up
DCS0 82,A8,CA

<0110>

<0111> DCS3 08 FMT

<0112> DCS4 FC,60 S8CRO >60

<0113> DCS6 FE,14 ROW 20

<0114> DCS8 FF,09 coL 09

<0115> DCSA 09,20, 44 HTEX ' Diskname='

DCSD 69,73,6B
DC60 6B, 61,6D

DC63 65,3D
<0116>
<0117> DC65 A0 ROW+ 1
<0118> DC66 FF,02 coL 2
<0119> DC68 15,41,76 HTEX ‘'Avallable= Used='

DCSB 61,69,6C
DCSE 61,62,6C
pc7l 65,30,20
DC74 20,20,20
DC77 20,20,20
DC7A 55,73,65

DC7D 64,30
<0120>
<0121> DC7F A0 ROW+ 1
<0122> DC80 FF,02 coL 2
<0123> DC82 1C,20,46 HTEX ' Filename Size Type P!

DC85 69,6C,65
Dc88 6E,61,6D
DC8B 65,20,20
DCSE 53,69,7A
DCI1 65,20,20
DC34 20,20,54
DC97 79,790,65
DCSA 20,20,20
pCc9o 20,20,50

<0124 .

<0125> DCAO A0 ROW+ 1

<0126> DCAl FF,02 coL 2

<0127> DCA3 1C,2D,2D HTEX '---=--c-== ==m= =mme—m———-- -
DCAS 2D,2D,2D
DCA9 2D, 2D, 2D

DCAC 2D,2D,20
DCAF 2D, 2D, 2D
DCB2 2D,20,2D

KRACKER FACTS ~ PAGE 9

<0128>
<0129>
<0130>
<0131>
<0132>
<0133
<0134>
<0135>
<0136>
<013D
<0138>
<0139
<0140>
<0141>
<0142>
<0143>
<0144>
<0145>
<0146>
<0147>

<0148)>

<0149>
<0150>
<0151>
<0152>
<0153>

<0154>

<0155>
<0156>

<0157>
<0158>
<0159>
<0160>
<0161>
<0162>
<0163>
<0164>
<0165>
<0166>
<0167>
<0168>
<C169>
<0170>
<0171>
<0172>
<0173>
<0174>
<0175>
<0176>
<0177>

DCBS
DCB8
DCBB
DCBEB
pCcCl

DCC2
DCCS
pceT

DCCI
pCca
pccc
DCCB
DCDO
DCD2

DCD3
DCD6

2D, 2D, 2D

20,2D,2D.

2D,2D,2D
2D,20,2D
FB

06,DE, 00
88, 4B
7C,D3

08
FC,60
FB,].‘
FF,14
B9,4C
FB

Al,10,4A
A3,10,00

DCDY 13

DCDA
DCDD
DCDB

DCE1

BF,14,02
AC
06,0D,E4

a7,10,00

DCE4 09

DCBS
DCES8
DCEB
DCED
DCFO
DCF1

DCP4
DCFS
DCPF7
DCFA
DCFC
OCFF

DDO1
DDO2
DDO4
D007
DDO09
poacC

DDOE

35,00,08
sc,B0,10
or, 07

B8
06,DD,BA

03

5D, OB
D6,75,02
,€2
D§, 75,20
5p, 0B

03
5D, 01
D6, 75,02
0, C2
D6, 75, 20
50,01

oF,83

t put disk name on screen

4

FEND

CALL
CZ
BS

FNT

DISSTR
QFAC+L
CAT3

SCRO >60

ROW

COL

20
20

HSTR 10,@FAC+2

FEND

Get string into FAC
Skip 1f zero length

Put disk name on screen

.
*
.

* Display AVAILABLE device space on screen

]
CAT3

z

DADD
DADD

DST >2AC, @TEMP2

CALL

@FAC, @TEMP
19,QTEMP

DISNUM

Go to next field
Continue to last fleld

Set up screen address

Display AVAILABLE space

* Display USED device space on the screen

% List
*

CATA

CAT4A

CAT4B

DSUB

MOVE 8,VETEMP, QARG

XML

DST >2B8,QTEMP2

CALL

9, 8TEMP

FSUB

DISNU1

catalog

SCAN
BR
CEQ
BS
CEQ
BR

SCAN
BR
CEQ
BS
CEQ
BR

XML

CAT4B
FCTN4, 8KEY
DONE
SPACE, @KBY
CAT4B

CAT4A
FCTN4,QKEY
DONE
SPACE, @KBY
CAT4A

SCROLL

KRACKER FACTS

Point to FORMATTED space
Move it into ARG

Developed USBD value
Set up screen address

Display USED space

Scan the keyboard
Contlinue if no nev key
CLEAR key?

YES! Abort

SPACE key?

NO! Keep going

Scan keyboard

Loop until new key press
CLBAR?

YES! Abort

SPACE key?

NO! Continue to wait

Scroll the screen

~ PAGE 10

<0178>
<0179>
<0180>
<0181>
<0182>
<0183>
<0184>
<0185>
<0186>
<0187>
<0188>
<0189>
<0130>
<0191>
<0192>

<0133>
<0194>
<0135>

<0196>
<0197>
<0198>

<0199>

<0200>
<0201>
<0202>
<0203>
<0204>
<0205>

<0206>
<0207>
<0208>
<0209>
<0210>
<0211>
<0212>
<0213>
<0214>
<0215>
<0216>
<0217
<0218>
<0219>
<0220>
<0221>

0222
<0223>
<0224>
<0225>
<0226>
0227>
<0228>
<0229>

oD10

DD13
DDlé
DD18

DD1A
DD1B
DD1D
DD1F
DD21
DD23

DD24
DD27
DD2A
DD2B
DD2B
DD30
DD33
DD34

DD37
DD3A
DD3B
DD3B
DD41

DD43
DD45

DD47
DD4A
DD4B

DD4D

DD4F
DDS1
DD53
DD55
DD57
DDS9

DDSB
DDSC
DDSE
DD60
DD62
DD6S
DD68
DD6A
DD6B

DD6D
DD6E
DD70
DD72
DD74

06,DE, 23

06,DE, 00
88, 4B
D, 24

08
PC, 60
FE,17
FP,02
B9, 4C
P8

Al,10,4A CATS
A3,10,00

0A

8F,B0,10
0,2

BF, 14,02

EC

06,DD,B4

A?,10,00
09
35,00,08
4A,B0,10
oF,12

8B, 4A
70,40

BE,A2,FE
B9

83,42
92,4B CATSA
8A, 4B

SD' SB

5D, 6D

5D, 7P

5D, 91

5D, A3

08 DF
FC,60

FB,17

PP, 12
06,44,69
73,2F,46
69,78

FB

5D, BS

08 DV
FC, 60

FB,17

?,12
06,44,69

CALL DSRER

CALL DISSTR
CZ @PACtl
BS CATS

FNT

SCRO >60

ROW 23

coL 02

HSTR 10,@PAC+2
FEND

DADD
DADD

@FAC, 8TEMP
10,QTENP

DCZ VETEMP
BS DONE
DST >2EC,@TEMP2

CALL DISNUM

DSUB 9,QTEMP

MOVE 8,V*TEMP,@FAC

XML CFl
CZ @FAC
BS CATSA

ST >B9,V@>2FE

DNEG @FAC

DEC @QFAC+l
CASE @FAC+]
BR DP
BR DV
BR IF
BR IV
BR PR

FMT

SCRO >60

ROW 23

COL 18

HTEX 'Dis/Fix'

FEND
BR CAT6

FMT
SCRO >60
ROW 23
COL 18
HTBX 'Dis/Var!'

Link to device
Get string into PAC

Skip display if zero
length

put disk name on screen

Go to next field
Continue another field

Time to get out if
zero flle size

Set up screen address

Display file length

Back a field

Move it into FAC

Convert it to an int.

Non-negative?
YBS! File not protected

Put a 'Y' on screen
Make number positive
Adjust for CASE

Show file type

KRACKER FACTS - PAGE 11

<0230>
<0231>
<0232>
<0233
<0234>
<0235>
<0236>
<0237>

<0238>
<0239>
<0240>
<0241>
<0242>

<0243>

<0244>
<0245>

<0246>
<0247>
<0248>
<0249>
<0250>
<0251>
<0253>

<0254>
<0255>
<0256>
025>

<0258>

<0259>
<0260>
<0261>
<0262>
<0263>
<0264>
<0265>
<0266>
<0267>
<0268>
<0269>
<0270>
<0271>
<0272>

<0273>

<0274>
<027%>

<0276>

0077
DD7A
DD7C
DD7D

DD7F
DD8O
DD82
DD84
DD86
DD89
DD8cC
DDSE
DD8F

DDI1
DD92
DD94
DD96
DD98
D098
DDIE
DDAO
DDAl

DDA3
DDA4
DDA6
DDAA
DDAD
DDBO
DDB2
DDB3

DDBS

13,2F,56
61,72

FB

5D, B5

08 IF
FC,60

FE,17

FF,12

06' 49'63
74,2F,46
69,78

FB

SD,BS

11 Iv
FC,60
FE,17

08 PR

FE,17
06,50,72
6F,67,72
61,6D
FB

5C,P4

A3,10,00 CATS

DDB8 12

DDB9

BF,14,02

DDBC F9

DDBD
DDCO

DDC2
DDC4
DDC?
DDCY
DbCC
DOCE

DDD1
DDD1
DuD4
DDD5
pops
DDDY
popC
DDDF
DDEO

06,0D,E4
5C,P4

oF,83
06,DE,1A
0P, 79
06,6a,78
45,33
06,00,12

DONE

* Pile

ERROR
BF, 04,08

1c

BD,10,A8

20

06,DB,1A

BD, A8,20

10

06,6D,78

FEND
BR CATS
FMT
SCRO >60
ROW 23
coL 18

HTEX 'Int/Fix’

FEND
BR CaTé
PMT
8CRO >60
ROW 23
coL 18

HTBX 'Int/Var'

FEND
BR CaTé

FMT

SCRO >60

ROW 23

HTEX ‘'Program’

FEND
BR CAT4

DADD 18,QTEMP
>2F9, TEMP2

CALL DISNUM
CAT¢

SCROLL
CLSFL
PGMCH
CHKEND
ERRSYN
RRTN

ERERER ®

errot

EQU 8

DST PAB-4,@PABPTR

DST V@PAB,QTEMP

CALL CLSFL
DST QTEMP,VEPAB

CALL ERR

Advavce two flelds
Set up screen address

Display record length
Do it all aqain

One last scroll

Close flle

Parse past ')’

SYNTAX error Lf not end

Return to X-BASIC

Fake a BASIC PAB
Save error

Close file
Restore error

Return through BRR

KRACKER FACTS - PAGE 12

<0277>
<0278>
<0279>
<0280>
<0281>
<0282>
<0283>
<0284>
<0285>
<0286>
<0287>

<0288>
<0289>
<0290>

<0291>

<0292>
<0293>
<0294>
<029%>
<0296>
<0297>
<0298>
<0299
<0300>
<0301>
<0302>
<0303>

<0304>
<030%>

<0306>
<0307>
<0308>
<0309>

<0310>

<0311>
<0312>
<0313>
<0314>
<0315>

<0316>
<0317>
<0318>
<0319>
<0320>
<0321
<0322
<0323

<0324>
<0325>
<0326>

DDE3

DDE4
DDEB?
DDEA
DDEC
DDEE
DOF1
DDF2
DOP5
DDF7
DOF9
DDFB
DOFD
DDFF

DE0GO
DEO3
DEO4
DEO6
DEQ9
DEOA

DEOGC
DEOF
DE12
DEl4
DE17
DE19

DE1A
DE1D
DE1F
DE22

DE23
DE26
DE28
DE2B
DE2C
DEZE

24

35,00,08
4A,B0,10
86,55
oF, 13
A2,90,55
60
BC,BO,14
30,55
91,14
90,55
92,56
5p,ER

00

BF,10,08
36

86,4A
BC,4B,B0
10

91,10

BE, 4C, 20
35,00, 09
4D, 4C
34,42, 4C
80,10

00

BF, A8, 20
01,00
06,DE, 2F
00

06,DB, 2F
70,01
D6,28,21
0D

5D, D1

00

BYTE 36 * I/Q0 BRROR XX

R E R AR LR AR R IR TR RN AR L LR RN RL LRI E AR LRI AL

* gubroutines

LR A AR AN R E R AR R AR LRI XXX R AR AR AR RL RN XX

k
Display number subroutine

*
* ENTER: Floating number in FAC for DISNUl
2 Screen address in TEMP2

»

DISNUM MOVE 8,V:TEMP,@FAC Move PLP number to FAC
DISNU1l CLR @&FAC+1l1 Indicate a free format

ML Qs Convert PAC to a string
DISNU2 ADD >60,*FAC+l1l Add offset to string

ST *FAC+ll1l,V*TEMP2 Put a char on the screen

DINC QTEMP2 Increment screen addr.

INC @FAC+11 Increment FAC addr.

DBC @FAC+12 Decrement string length count

BR DISNU2 Loop until done

RTN Return to caller

t prepare a VDP string for FORMAT statement
*t LBAVE: FAC has string leagth (word)

2 FAC+2 has string
* TEMP pointing to next string in record
DISSTR DST VBUFF,QTEMP Get buffer address
CLR @PFAC Clear MSB of FAC word
ST V:TEMP,@FAC+1 Store disk name length
DINC @TEMP Point to string
ST >20,8FAC+2 Clear out string space

MOVE 9,@FAC+2,QPACH3
MOVE @FAC,V*TEMP,@FAC+2 Move disk name into FAC

RTN
*

* Close fille
2

CLSFL DST CLOSE,VEPAB

A close operation
CALL DSR Link to device
RTN Return to caller

* DSR LINK with error handling
]

DSRER CALL DSR
BS ERROR Branch on no-device
CEQ >0D,VEPAB+1 Check for device errors
BR ERROR
RTN Return to caller

KRACKER FACTS - PAGE 13

<0327> * DSR LINK routine

<032%> *

<0329> DBR2F BF,56,08 DSR DST VLENB,@NMPNTR Name length pointer
DE32 29

<0330> DE33 06,00,10 CALL >10 Call DSR

<0331> DE36 08 BYTE 8 * DSR call

<0332> DE37 01 . RTNC Return with COND bit

<0333 x

<0334 * PAB data

<0335> t

<0336> DE38 00,0D,08 PABDAT BYTE >00,>0D,>08,>36,>00,>00,>00,>00,>00
DE3B 36,00,00
DE3E 00, 00,00

symbol Table
DC0O car DpC2C Carl. DC48 CaT2 DCD3 CAT3 DCF4 CAT4
DDO1 CATYA DDOE CAT4B DD24 CATS DD4D CATSA DDBS CATS®
8342 CHAT 6A78 CHKEND 010D CLOSE DE1A CLSFL 0073 CNS
DDSB DF DDEA DISNUl1 DDEB DISNU2 DDE4 DISNUM DEOO DISSTR
DDC2 DONB DE2F DSR DB23 DSRER DD6D DV 6D78 ERR
CS9A ERRBA CS92 ERRCIP DDD1 ERROR C533 ERRSYIN 0002 FCTN4
DD7F IF DD91 IV 8375 KEY 00B7 LPAR 8356 NMPNTR
0820 PAB DEB38 PABDAT 8304 PABPTR 0074 PARSE 0079 PGMCH
DDA3 PR 08CA RCLBUF 020D READ 00B6 RPAR 0012 RRTHN
8344 RUN 0083 SCROLL 0020 SPACE 8310 TEMP 8312 TEMP1
8314 TEMP2 0836 VBUFF 0828 VLENA 0829 VLENB

EXTENDED BASIC AUTO-BOOT (“DSK1.LDAD“) BYPASS PATCH

Pirst LOAD Extended Basic into the Gram Kracker.

From the Gram Kracker menu select 5 Memory Editor. Then press FPCTN = for HEX,
FCTN 1 for the Gram Memory Window and then press FCTN 5 for SEARCH.

Type in >6300 for the START address and >6400 for the FINISH address. Press FCTN
9 to put the cursor in the Search String Input area and type in 86 A3 71 and then
press PCTN S (left arrow) to put the cursor on the last byte to search for. HNext
press ENTER to start the Search. :

For most Bxtended Basic modules this Hex string will be found at >63CD. We'll
call that "address A". Now press FCTN 5 to leave SEARCH and then press FCTN 9 to put
the cursor in the Memory Window. Turn off the Write Protect (turn it to Bank 1). Now
change the first two bytes (86 A3) to 58 00. This is a BRANCH ON RESET to >7800
instruction.

Press FCTH 9 and change the Memory Window to g7800. You will see garbage here
(UNLESS YOU HAVE PREVIOUSLY PUT SOMETHING IN THIS SPACE!!). The GROMs are only 6K in
length so the bytes in the last 2K are "garbage wrap around" read by the Gram Kracker
Save routine. 8o, it's a good area for adding routines to your modules.

Press FCTN 9 to put the cursor in the Memory Window and at the g7800 memory
location, put in the following code:

86 A3 71 CLR Va>371 Clear Auto Load needed flag
03 SCAN scan the Keyboard
D6 75 20 CEQ >20,8>8375 13 the Space Bar pressed

KRACKER FACTS - PAGE 14

Now take your "“address A" and add 6 to Lt]
>63CD + 6 = >63D3 |
303

BS "address A" plus 6 bytes YES! (Branch on Set)

{Take your "address A", add 3 to it and replace the first digit with 4]
]

{>63CD + 3 = 6300 change it to 43D0
4300

BR "address A" plus 3 bytes

NO! (Branch on Reset)

For a module with a >63CD “address A" your memory window should now look like

this:
g7800

33 13- %-1- 1+ -t 1111t g
86 A3 71 03 D6 75 20 63 D3 43 DO xx
XX XX XX XX XX XX XX XX XX XX XX XX

xx = don't care

Now restore the Write Protect, retuzn to the Gram Kracker menu and

rodule.

resave your

Now when you select BXTENDED BASIC you can bypass the auto-load command by
holding down the space bar!l (No more DSK1.LOAD search)

NOTE: 1f you are using the GK Utility I version of Extended Basic,

you do not

need to make this change, as it is included in the GK Utility patches.

NOTES ON THE ROM/RAM SPACE AT
>6004 - 7FFF
by Craig Millaer (MG)

modules that contain ROM
memory space, >6000 -
banks or as a form of
the module loaded into
the Gzam Kracker is of this type you MUST
have the Write Protect switch in the
Write Protect position in order to wuse
them. One example of this is TI BExtended
Basic. It writes to >6000 to enable bank
1 and >6002 to enable bank 2 of its ROM
memory. .

Some of the
write to their
>TFFP, to switch
protection. If

Some of the software currently
available that loads into a Super Cart,
6000 - >7FFF expects RAM In this area
and as such will only work properly if
the Write Protect switch is NOT in the -
Write Protect position. One example of
this is the modified Super Bug that loads
at >6000. This program sets its
workspace in the >6000 - D>7FFF area of
memory.

Since you have manual control over
the Bank 1 - Bank 2 switch it is possible
to have 2 different 8K Assembly programs
in the cartridge RAM area, >6000 - >7FFF.
For example you could have the above
mentioned Super Bug in Bank 1 and say a

Screen Dump program, that loads into this
area, in Bank 2. Then with the flip of a
switch you could have one or the other
appear on the menu without having to
re-load 1t.

Here is some information on the Bank
Switching of the 8K ROM/RAM cartridge
space.

With the WRITB PROTECT ON a plece of
software can write to:

>6000, >6004, >6008 ... >7FF8,
>7PPC etc. to select Bank 1

6002, 6006, >600A ... >TFFA,
>TFFB etc. to select Bank 2

This 1is how Extended Basic bank

swaps the upper 4K (>7000 - >7FFF) to get
12K out of an 8K space. This ls also how
the Atari modules do bank swapping to get
16K out of an 8K space.

The software you write can also do
this with a CLR @>6000 for Bank 1 and a
CLR @>6002 for Bank 2 - BUT VWRITE
PROTECTION MUST BE ON or the banks won't
swap, you'll just clear the word at that
address. Bank swapping is disabled when
Write Protection is turned off so we
could load this space without it swapping
banks.

KRACKER FACTS - PAGE 15

To see bank swappling work, go into
the Gram Kracker and load BExtended Basic.
Next select 5 Memory Bditor from the Gram
Kracker Menu. Type in c6FF0 for the
Memory address and press FCTN = for Hex.
Press FCTN 9 to put the cursor in the
Memory Window, make sure Write Protection
is ON and press and hold down the 1 key.
As the cursor moves across the screen you
will see the address space from >7000 to
>7FFF swap banks. In reality the entire
8K block ls switching banks but the flrst
4K (>6000 - >6FFF) is the same in both
banks. This gives the appearance that
the last 4K 1is bank switching and
simulates the 12K of Rom in the Bxtended
Basic's banks.

CHANGING THE BEEP AND HONK SOUNDS
by Mike Dodd

To change the sounds of the beep and
honk, go into the GRAM Kracker memory
editor. Press FCTN 1 for GRAM, PFCTN =
for hex, and FCTN S to searxch.
for the start, 1000 for the end. Press
FCTN 9 to enter the search window and
type 05 92 0A 01 9F (don't type the
spaces)., VWhen it finds it (mine was at
>047E), press FCTN 5 to leave the search,
FCTN 9 to enter the memory window, enable
bank 1, and change the 05 to a new number
(I used 10). '

For the honk sound, follow the same
procedure, except this time search for 20
90 OA 01 9F. Mine was at >0489. Change
the 20 to a new number (I used 25).

The best way to hear the new sounds
is to press CTRL = to get out of the
memory editor, press 1 for load module,
FCTN 3 and ENTER. That way you will hear
both the heep and the honk.

When you've set them to your liking,
save GRAM 0 to disk. .

Type 0000

TITLE SCREEN REDESIGN
by Walt Howe

With the help of the GRAM KRACKER

manual, "TI99/4A INTERN®™ by Heiner
Martin, and my own poking around, I have
put together this partial gquide to

modifying GROM 0, particularly the title
screen and character sets. I can see
that a lot more than this can be done as
I begin to unravel the Graphic
Programming Language code contalned in
GROM 0, but this guide will concentrate
on the changes that can be made by
changing nothing more than data tables
and text strings.

TEXT MODIFICATIONS:

Most of the text on the title screen
and the following menu screen appears Iin
a single string beginning at (or near)
memory address g048F. The string begins
with the copyright symbol (hex OA). For
the sake of illustration here, I will use
the "@" in its place. The complete
string is "Q1981 TEXAS INSTRUMENTSHOME
COMPUTER®™. The copyright character will
not appear in the GRAM KRACKER editor in
ASCII mode. You have to switch to hex
mode to see the 0A character. The
copyright symbol itself is defined at
g0998 - more about this later. If you do
not want to keep the copyright symbol,
you can overwrite it with whatever
character you want or even redefine the
symbol. The top text line on the screen
uses the 8th through 24th characters of
the string. The second 1line uses
characters 25 through 37. The bottom
line on the screen uses characters 1
through 24. Count spaces as characters,
of course, and notice that there are two
spaces after ™1981". The top two lines
are repeated on the following menu
screen. The main things to realize are
that any modifications to the string at
g048F will appear in three different
places, and that your replacement string
cannot be longer than the given one.
Other text appears as follows:

g014B - READY-PRESS ANY KEY TO BEGIN

g025D - PRESS

g094D - FOR

The Texas Instruments logo - the
state of Texas with the embedded "t" and
"i® - {s defined beginning at or near
g0950. Nine special graphics characters
are designed which fit together in a 3x3

KRACKER FACTS - PAGE 16

pattern to create the logo. The pattern
is as follows:

123

456

789 ‘

The logo appears on the title
screen, the menu screen, and is sometimes
used by cartridge based programs, as
well. If you substitute your own design,
be prepared to £ind it appearing in
unexpected places. The nine characters
are defined by eight hex character pairs
each or by 16 hex characters just as they
are in basic/xbasic. In case you have
one of the slightly different operating
systems, look at or near g0950 for hex
characters beginning 01 03 03 03 03 03 03
03 03 FC... .

Immediately after the logo patterns
appear 8 hex pairs at or near g0998
defining the copyright sign. This
pattern begins 3C 42 99 Al... text
character in your own character string,
or substitute your own pattern for your
own purposes. It is ldentified in text
by the hex pair OA. It will not show up
on screen in the GRAM KRACKER editor
ASCII mode - only the hex mode.

EDITING COLORS & COLOR BARS:

The color table for the title screen
and follow-on menu screen is located at
or near g0459, beginning with a series of
12 hex 17's. The 17's define the
character set colors (black on cyan).
You can, of course, change these to any
other preferred text and background
colors. FPollowing the 17's, the next 16
hex pairs, all beginning with 0, define
the different colors that appear in the
color baxs. Change these to substitute
your own color patterns as you wish. If
you make them all the same color, the
bars will be a solid color instead of a
pattern of colored squares, for example.
Vhatever you select will appear in both
the top and bottom color bars. Finally,
the edge color is defined as the second
digit of hex location g0458, which is PF7.
Change the 7 (cyan) to anything else you
want,

CHARACTER SETS:

There are three character sets in
GROM 0 - the 1large eight dot high
capitals (with numbers and symbols -
ASCII 32 through 95 or Nhex >20 through
>6F), the 7-dot high capitals (likewise),
and the so-called lower case characters,
which are really small capitals. The

NBWCHARS utility provided with the GRAM
KRACKER alters the last two sets, but not
the title screen capitals set. The eight
dot set begins at g04B4 with a series of
8 00's, which is the space character, of
course (ASCII 32 or hex >20). The
smaller capitals begin immediately
following the large capitals at g0684
with 7 00's for the space character. The
lower case begins at g0874 with 00 20 10
08 00 00 00 representing the grave accent
(*) or ASCII character 96 (>60) and
continuing through character 127 (>7F).
The set concludes at g094C, just before
text "FOR" and the TI logo set.

SUMMARY OF KEY ADDRESSES:

HEX

ADDR
014B 52 45 41 44
025D 50 52 45 53
0458 F7

0459 17 17 17 17
0466 06 03 01 0B
048F O0A 31 39 38
04B4 00 00 00 00

BEGINS WITH TEXT OR PURPOSE

READY-PRESS ANY KEY
PRESS
7 is cyan edge color
Black on cyan chars.
Color bar colors
1981 TEXAS INSTRUM
Large capital set.
0684 00 00 00 00 Regular capital set.
0874 00 20 10 08 Lower case char set.
094D 46 4F 52 FOR
0950 01 03 03 03 TI logo definition
0998 3C 42 99 Al Copyright definition

TO BXPLORE FURTHER:

It is falrly easy to move the color
bars, change their size, and change and
move text and graphics, but the systems
of numbering screen locations are complex
and far from obvious at first look (yes,
I meant systems.) One of the systems is
the consecutive numbering of locations in
hex that s used in Assembly language.
Another {s to specify row and column
addresses, but the addresses as they
appear in hex code (the way you see it
from the GRAM KRACKER) are a different’
story. Row addresses begin with A0 and
column addresses begin with 80. A third
system {s to specify row and column
offsets from the last address. If you
have the book "PTI99/4A INTERN", this
should be enough to help you figure out
the addressing systems. If you do not, I
don't -advise your trying to touch this
area unless you are a very knowledgable
programmer. To explain the uses of the
different systems used by the GPL would
approach book length (and I hope someone
writes it!).

KRACKER FACTS - PAGE 17

CHANGING THE KEYBOARD
by Mike Dodd

with the GRAM Kracker, you «can
finally change the keys on the 99/4A.
One productive use of mwodifying the

keyboard is to add printer codes - add
keys for consensed, BSCAPE (ASCII 27),
enlarged, etc. That way, while in

console Basic or XB, you can type a PRINT
$1:" command and type the keys, rather
than having to use CHR$ statements.

Probably the best way to add new
keys is to change the SHIFT, FCTN, and
CTRL key codes for the SPACE and ENTER
keys. TI left the ASCII codes the same
for those two keys in all the modes.
Here are the addresses, in GROM 0, of the
SPACE and ENTER combinations.

KBY SPACE ENTER
FCTN 1766 - 1765
CTRL 1796 1795

SHIPT 1736 1735

If they aren't right at
locations,
there. The hex code for SPACE 1is >20,
for ENTER it's >0D.

If you want to try to change other
keys, here are the start addresses for
each of the six tables:

16B0 Joystick codes

1700 Lower case

1730 SHIFT codes

1760 PCTN codes

1790 CTRL codes

17C0 Key scan units 1 and 2

To figure out what keys correspond
to what codes in these tables, convert to
decimal and compare to the charts in the
T! Basic manval 1listing PFCTN and CTRL
keys.

Rememer that all address are in
GROM/GRAM, and you will need to enable
bank 1 or 2 when making any changes.

A note about the lower case key
scanning: when you have Alpha-Lock down,
in the capitals position, the key scan
routine reads the key code from the LOWER
CASE table, NOT the SHIFT table. If the
key is a letter (ASCII range 97-122) and
the Alpha-Lock is down, the key scan
subtracts ASCII 32 from the key code,
which moves 1t from the lower case
portion of the alphabet to the upper case
portion. If, however, the Alpha-Lock is
down AND you are pressing SHIFT, It gets
the key code from the SHIFT table.

those

you can look for them around-

One final caution: a few programs
include thelir own key scan routine, and
as such, the don't scan GROM for the key

cede. Thus, the keyboard will revert
back to normal when running these
programs. Two programs that do this are

MG Bxplorer and the GRAM Kracker Memory
BEditor. Wwhile these programs are few and
far between, you should keep it in mind
if considering any major changes to the
keyboard (i.e. converting it to DVORAK).
But you should not let this stop you from
making minor changes, like adding printer
control codes for (X)Basic.

A FEW NOTES ABOUT MYARC'S EXTENDED
BASIC AND THE GRAM KRACKER
by Craig Miller (MG)

Quite a few people have asked us
about the MYARC Extended Basic and its
use in the Gram Kracker.

Part of the MYARC XB system is an 8K
RAM Module and a new PROM for your
128K/512K RAM Disk Cards. The module
only contains 8K of static RAM, it does
not contain any programming. The new
PROM that s installed in your RAM Disk
has a power up routine that loads some
information into this 8K Ram module every
time you go back to the title screen.

I1f you want to use this XB with the
Gram Kracker simply leave the Wwrite
Protect switch in the Bank 1 or Bank 2
position and then press RESBT. This will
allow the MYARC PROM to .down load its
information into that RAM Bank in the
Gram Kracker, and appear on Yyour menu.
You MUST leave the Write Protect switch

in the Bank 1 or 2 position in order forx

MYARC's XB to execute properly.

One thing to remember is, whatever
vas in the selected Ram Bank will be
wiped out by the 128K/512K power up
routine. (See the article on disabling
the MYARC RAM-disk to fix this problem -
MDD.) S0 if you had TI Extended Basic
loaded into the Gram-Kracker and you left
the Write Protect switch turned off, then
both XBs would appear on the menu BUT
only the MYARC XB will work. TI Extended

KRACKER FACTS - PAGE 18

Basic contalns 2 banks of ROM and one of
them will be wiped out so it will not
execute properly.

There are a number of TI modules
that do not contain any ROM they only
contain GROM. As such these modules can
properly reside in the Gram Kracker along
with Myarc's XB. To find out if a medule
contains ROM simply plug it into the Gram
Kracker's Module port and select 5 EDIT
MEMORY. Next press FCTN = for HEX and
set the address to C6000. If the memory
window is full of 00 or FF, depending on
your console, then that module only
contains GROM. A few of the popular GROM
only modules are, Editor/Assembler, TI-
Writer, Disk Manager I & 1II, - Multiplan
and PRK.
only modules are TI Extended Basic, Mini
Memory, Atari and most other third party
modules.

DISABLING THE MYARC RAM-DISK POWER UP

by Mike Dodd

If you have the MYARC XBII
cartridge, you have noticed that the
RAM-disk always wipes out your ROM bank
if you forget -to- enable the wxite
protection. The following patch will
disable the power up routine in the
RAM-disk, which prevents it from clearing
-out your ROM bank. Now you can leave the
write-protect off (e.g. to act as a
- Super-cart) and not worry about it being
zapped!

To make the change, enter the GRAM
Kracker Memory - editor. Press FCTN 1 to
select GRAM, and FCTN S5 for search. Type
0000 for the start, and 0300 for the end.
Press FCTN 9 to enter the search window
and type 8780D0. Press FPCTN S to back
the cursor onto the "0" in DO, and press
ENTER. When it £finds the string (mine
was at g0183), press PCTN 5 to leave the
search and FCTN 9 to enter the memory
field. write down the address it is at.

Now disable write protect and type
05190A. Press PCTN 9 again, use FPCTN 8
to back over to the memory address, and
type 190A. Press FCTN 9, ENTER to home

-regset,
A few of the ROM/GROM or ROM

- write-protect

the cursor, and type BF 80 DO 11 00 BF 80
D2 40 04 0S5S. Now take the address you
wrote down and add 3 to it (>0183 + >0003
= >0186). Type that address. Turn your
write protect back on, press CTRL = to
leave the editor, and re-save GROM 0 to
disk. To save GROM 0, press 4 for
Load/Save console, 3 for GROM 0, and 2
for Save console. Type the filename and
press ENTER. Press space (the correct

. GROMs are already enabled), let it finish

saving, and press space again. That's

all there is to it!

If you wish to run MNYARC XBII,
disable your write protection, change
switch 2 from GRAM 0 to Op Sys, and press
¥ith GRAM 0 loaded, the patch is
not in effect, so the MYARC RAM-disk will
execute its normal power up routine.
¥hen the title screen appears, you can
re-enable GRAM 0 and proceed as normal to
load MYARC XBII.

FPinal note: if your RAM-disk is not
backed up by an external power supply,
you MUST run the power-up routine when
you first turn the computer on. Aftex
that, if you reset the system you will
not need to run the power-up routine
again. ou have to run it the first time,
otherwise the CALL PART and CALL EMDK
commands will crash. To run it without
it crahing your RAM bank, disable GRAM 0
(turn to Op Sys) when you turn on the
computer, making sure that the
is on. hen the title
screen appears, enable GRAM 0 and don't
worry about it again.

CHECKING THE W/P SWITCH IN XBASIC
by Mike Dadd

As you may have noticed, Lf you
enter Bxtended Basic with the write
protection off, your computer will lock
up. If it doesn't immediatly, it will as
soon as you type a command. This patch
will make XB <check the position of the
write protect every time you enter XB.
I1f the W/P is off, it will reset to the
title screen and refuse to let you enter
the cartridge.

To make the patch, load your GK

KRACKER FACTS - PAGE 189

Utility I version of Bxtended Basic.
Type G6372 for the memory address, FCIN =
for hex mode, and FCTN 9 to enter the
memory window. Enable bank 1 and type 06
D8 FB (don't type the spaces, they're
just a gquide). Press FCTN 9, back the
cursor up over the memory address, and
type D8FB. Press FCTN 9 and ENTER to
home the cursor, and type:

86 A3 70 86 8F FC FA BD 00 8F ED 00

86 8¥ FC FC DS 00 8F BD 00 59 13 0B

00

Now, restore write protect, press
CTRL = to leave the memory editor, and
resave your cartridge to disk.

CHANGING THE XB "LIST" WIDTH
by Craig Miller (MG)

With Bxtended Basic loaded into the
Gram Kracker you can change the LIST
"device® width for your output device.
This allows you to easily 1list your
programs to printer in 28 columns,. 132
columns or any width you choose. This
same change will also change the DIS/VAR
file width if you LIST to disk.

To make this change load Bxtended
Basic into the Gram Kracker and then use

the Gram Kracker's Edit Memory selection. -

Next press FPCTN = for Hex, FCITN 1 for
Gram Memory and PCTN 5 to activate the
Search function. The Start address |is
9000 and the Pinish address is 9800. The
Hex string to search for is: 00 12 00 00
00

when this 1is found press FCTN S5 to
leave Search and FCTN 9 to put the cursor
in the Memory Window. Turn on Bank 1 to
disable Write Protection and move the
cursor to the third 00 after 12 and
change it to the width you would like (in
Hex). In our XB this was found at g9170
and the byte to change was at g9174.

Bxamples:

00 12 00 00 00
00 12 00 00 1iC
00 12 00 00 84
00 12 00 00 FE

default 80 column

28 column listings
132 column listings
254 column listings

i u hou

The area you are changing is part of
the default PAB for an Bxtended Basic
LIST to a device. Since most of it is
zeroed out it allows the card's DSR (l.e.
RS232 or DSK) to set its own default for
width. When you place a value here the
card will use it instead of the default
of 80 (>50).

If you want to LIST a 28 column
program to disk and then load 1t into
PI-Writer or the B/A Editor you will need
to convert the file back into DIS/VAR 80
format. To do this simply run it through
the following XB program, where TEST 1s a
DIS/VAR 28 file and TESTA will be the
DIS/VAR 80 £ile to be 1loaded into an
editor.

100 OPEN #1:"DSK1.TEST",VARI
ABLE 28

110 OPEN #2:"DSK1.TESTA"

120 LINPUT I1:A$

130 PRINT #2:A$:: PRINT AS
170 IF BOF(1)THEN CALL CLSAL
L BLSE 120

I1f the file is large you can easily
convert it from DIS/VAR 28 to DIS/VAR 80
with a sector editor such as Advanced
Dlagnostics. To do this find the File's
Header (File Descriptor Record) by doing
a Find Flle. The "Sector" polnter at the
top of AD's screen points to the File's
Header Sector. Bdit this sector and
change the 17th byte, in hex, from 1C to
50 and. then rewrite the sector. NOTE:
This will only work if you are converting
files to a longer logical record length,
{.e. DIS/VAR 28 or DIS/VAR 40 into
DIS/VAR 80. It won't work for longer to
shorter, i.e. DIS/VAR 132 or DIS/VAR 254
into DIS/VAR 80

NOTB: if you are using the GK
Utility I version of Bxtended Basic, you
do not need to make this change, as
included in the GK Utility patches are a
method of setting the line width with the
LIST command.

KRACKER FACTS - PAGE 20

EXTENDED BASIC CALL INIT CORRECTION
by Craig Miller (MG)

Presently the CALL INIT 1loads >600
bytes starting at >2000 in Low Expansion

Memory but only >4P3 bytes need to be

moved. Because of this, some routines
that were loaded into Low Bxpansion
Memory get overwritten. The patch

corrects this situation.

With EXTENDED BASIC loaded in the
Gram Kracker, select 5 Memory Editor from
the Gram Kracker menu.

Press PCTN = for HEBX, FCTN 1 for
Gram Memory Window and then FCTN 5 for
SEARCH=

Type in C200- for the START address
and C300 for the PINISH address. Press
PCTN 9 to put the cursor in the Search
String Input fleld and type in 31 06 00.
Press PCTN S (left arrow) to place the
cursor on top of the last byte to search
for and press enter. -

Turn off Write Protection, press
FCTN 5 to leave SBARCH and press FCIN 9
to put the cursor in the Memory Window.
Nov replace 31 06 00 with 31 04 F3.

Restore write protect, return -to
Gram Kracker loader and resave module.

CALL INIT will now work "a llittle"
quicker and it will not move unnecessary

bytes out to Low Memory Expansion.

NOTB: if you are using the GK
Utility 1 version of Extended Basic, you
do not need to make this change, as it is
included in the GK Utility patches.

- D D A D D O D W A D~ A S W G P P P S D D W e =

CHANGING THE CURSOR SHAPE
by Mike Dodd

To change the cuzsor shape, in
XBasic and Basic, search for 00 7C 7C 17C
7€ 17C 17C 17C.

g6000-7800. With Basic, search from
g2000-3000 (remember to turn off the
loader!). Vith the Bditor/Assembler,

search for 00 7B 42 42 42 42 7E 00 from
g6000 to g7800, unless you've moved it
elsewvhere. If you moved it to Gram 7,
search from gB000-gF800. Once you find
it, change it to whatever shape you
desire. It's the same format as in a
CALL - CHAR statement. Remember to turn
off write protect before you change it
and then turn it back on wvhen you're
done.

6K UTILITY 1 ENHANCEMENTS AND HODIFIbATIDNS

- wn = an wn o= o g o= o=

by Tom Freeman, LA 9%erg

RETAIN GRAMS 1 AND 2 FOR YOUR OWN USE

Some users who have loaded Danny Michael's fine new combination BExtended Basic
and Editor/Assembler modules into their Gram Krackers may wish to preserve the use of

TI-Writer at the same time.
respectively,

and ASSM2 files for rapid loading, were no longei avallable.

I had previously loaded GRAMs 1 and 2 with B/A and TI-W
and thus this new program, which uses these two GRAMs to hold the ASSM1

I had already modified

these modules to load the files from my RAMdisk. which is also quite rarid, so I did

not need Danny's rapld loader.

However, I did wish to use the comblnation and make

use of the other enhancements, such as cataloging from B/A and preserving file names.

The following modifications to your FINISHED files will accomplish the task.

Bssentially, 1 went to the area of Danny's code where the assembler was

loaded from

GRAM into CPU, and changed it back to the original B/A code, with some address changes

because of the move to GRAM 7, and screen location changes.

All the other routines

KRACKER FACTS - PAGE 21

With XBasic, search from -

used by B/A to get the program from the disk were preserved.

To accomplish the changes, go to the GRAM KRACKER memory editor (press 5 on GK
title screen), then PCTN 1 to get to GRAM memory, PCTN = to get to HEX, enter, and
then type in E658. You should see in the memory window code beginning with the
following bytes: 06 P4 60. Press FCTN 9 to replace the first three lines of code with
the following (where you see ASCII text you can type in ASCII, which saves half the
typing - also remember to push the W/P switch to Bank 1 or 2 while you are typing):

© gE658 08 8B Al 14 4C 6F 61 64 20 41 73 73 '##220ad Ass' 'tiptrritrainl
gB664 65 6D 62 6C 65 72 28 S9 2F 4E 29 3F ‘embler(Y/N)?' 'tarrrzattaa!
gB670 20 FB 06 BE7 9F D6 75 OF 60 5A D6 75 ' rrattyszay! frrizjyezayal
gBS7C 4B 60 SA 06 BS B2 B6 28 06 BS-D4 BF 'N°Zrrar(ffax! (2Raxapeaeay !

Defaults for Assembler Source Code Pile
Danny's mods retain separate default areas in GRAM 2 for all the file or device

names you lnput - only those for LOAD and SAVE file in the Editor are the same. I
personally vish to have the last file name I used for SAVE in the Bditor appear as the
default for the Source Code in the Assembler, since I normally assemble source code I
have just written and saved. This is easily done by positioning the cursor after the
g in the upper left corner, typing F347, then FCTN 9 to get in the memory window.
Replace the first byte 4C with- 88 - (W/P off!).

vhile you are making changes, you might consider the following:

1) if you are in fact loading the TI-W and B/A utility files from RAMdisk, then
you should change the device name/number at gBS1B (I use DSK4.) The length should
still be 5 bytes.

2) I have also changed the name of the default program name for option 5 Run
Program File from UTILL to another name. You can do this at gB62D (see article on
changing drive defaults elswhere in Kracker Pacts).

3) The format RAMdisk option from Danny's main B/A screen does not work {f you
have the RAMdisk with XBasic, because the CALL PART now requires three numbers rather
than 2. To make sure you do not choose this optlon by mistake, go to gEOF8 and change
the words "Format RAMdisk"™ to "Non-valid Key " and change the bytes at gEO05A from 52
Bl to 40 SA. You will now stay on the menu screen if you hit 7.

BE SURE you have saved your original modified module BEFORE you make the changes.
You should now save your newly modified module under a different name. GRAMs 1 and 2
will no longer be used for the ASSM files-and you can go back to keeping other modules
in this space, so long as the high bytes in GRAM 2 from SED4 to S5FFP are not used
(Danny uses them to hold the default file names- in B/A). Also note that because these
2 GRAMs in the GK are not used, Danny's meds are now also useful in the 56K version of
GRAM KRACKER. However the default file names for E/A mentioned above will no longer
work; you would always see garbage when you are prompted for a file name. It ls
easily eliminated with FCTN 3.

Using MSAVE
As there are still 2609 bytes of memory free at the top of the EB/A in GRAM 7

(Ezom D>PSCE on) you could still store a few short Basic programs if you use the
following (slightly cumbersome)-method:

: 1) If you are using GRAM 2, save it using Option 4 Load/Save Console from the GK
main menu. The thizd switch must be in the GRAM 1-2 position. Also save the "module"
(Menu 2) since we will be clearing the module space. If you have a 56K GK without
GRAMS 1-2 see NOTE below.

2) Move the entire contents of GRAM 7 to GRAM 2 (Gram memory - FCTN 1 until a g
appears in the upper left corner 1f it isn't already there, B00O for Start, FFFF for
FPinish, g4000 for Dest, then FCIN 2 to move).

3) Initialize the module space (Menu 3).

4) Load module (Menu 1) with MSAVE from the original GK utility disk.

KRACKER FACTS - PAGE 22

5) Go back to the Memory Bditor (Menu 5), FCTN 1 to get to G memory, FCTN = for
HEX. Press enter, then type in E012. In the memory window you should see B2 B7 E2
B7. Press PCTN 9 to get the cursor in there, then type F5 TE FS CE (W/P offl). FCTN
9 again, move the cursor back over the memory address and change it to E1DD, FCTN 9
and change this B2 B7 to FS CE also.

6) Move the 35 bytes at B2B7 to PSCE by entering E2B7 for Start, B2DY for Finish,
and gP5CE for Dest. Then PCTN 2 to move. Put Switch 4 back in W/P position.

This new MSAVE will save Basic programs starting at FSCE, rather than R2B7,
leaving enough room for the B/A module. Save it with a new name (such as MSAVE plus
your initials) with Menu 2

You may now go to Basic (GRAM 1-2 switch down and Loader OFF), enter your basic
programs, and save them by entering CALL MSAVE. When you are done, and quit Basic,
you should see them on the main console menu.

Now go back to the GRAM KRACKER, and save module again (using yet another name,
just in case). You are now ready for your final modification of GRAM 7.

7) Go back to the GK Memory Editor, FCTN 1, FCTN =, and examine the 2 bytes at
E012. This represents the first free address after your programs. Therefore you will
want to save all the bytes from FSCE to that address.

8) Making sure that g is in the upper left cormer, and 3rd switch is in GRAMS 1-2
position type in PSCE for Start, the bytes you just found for Finish, and g55CE for
Dest, and press FCTN 2 to move.

9) fThe final change is at g4010. This is the address for the next application
header after Bditor/Assembler and must contain FSCE. Type it in.

10) Reload the module you saved in. Step 1). 11) Move the entire- modified
contents of GRAM 2 to GRAM 7 by typing 4000 - for Start,SFFF for Pinish, gE000 for Dest
and then press FCIN 2.

12) Save your new "module® with resident Basic programs under a new name.
Remember that to USE these Basic programs the loader must be OFPF, and switch 3 must be
in TI Basic position.

NOTB: If you have a 56K GK, make the follwing changes in above steps:

1) You can't save GRAM 2

2) Move GRAM 7 to GRAM 3 by using g6000 for Dest. MOW clear everything else by
a) Start 8000 Pinish PFFP, W/P to Bank 1, FCTN 3 (FILL). b) PCTN 1 twice to get to
CPU memory, Start 6000, Pinish TFFF, PCTN 3 c) switch W/P to bank 2 and hit FCTN 3 4)
Save "module® (Menu 2) - this should give you one file on disk e} W/P ON (mid
position).

3) to 7) are the same

8) Pirst reload the "module® you saved in Step 2d). Then move the bytes with
g75CE as Dest

9) The change is at g6010. BEFORE going to next step, a) Move GRAM 3 to GRAM 7
(Start 6000 Pinish 7FFF Dest gB000, W/P to Bank 1, FCTN 2 b) Clear GRAM 3 (Start &
Pinish the same, FCTN 3) c) W/P ON (mid position) d) Save module - this will give GRAM
7 only. -
10) is the same
11) Load the "module™ saved i{n 94)
12) is the same

All this is not as complicated as it sounds - I just detailed all the steps so-
you won't make any mistakes.

- an - - - - — —— - i — 25 >

KRACKER FACTS - PAGE 23

EXTENDED BASIC PROGRAM LOADER
program by Mike Dadd
technical information by Tom Freeman
article by Mike Dodd and Tom Freeman

1 once asked Craig-Miller whether it was possible to run XBasic programs directly
off the menu, as MSAVE does with Basic programs. The answer was no, and essentially
that is true, at 1least as far as having them run directly from GRAM is concerned,
since the XML instruction needed exists only in Basic. But I kept on thinking that if
XBasic can lead a program called LOAD automatically from drive #1, why can't it do
others as well! What follows is a program for doing this! The method involves the
following concept: when XBasic starts up, it does a certain amount of housekeeping,
and then inserts the string DSK1.LOAD into the crunch buffer in VDP ram, preceded by
the length byte >0B and followed by byte >00, and then "pretends®" that you typed it in
with RUN, and runs it. It turns out that this area is never touched by the
housekeeping chores, and hence can be done right at the start. Thus my method
involves inserting the program name of your choice there Instead, and setting up
proper code to make an additional item on the menu. If the program isn't there, you
get the same result as XBasic if LOAD isn't in drive 1 - just the "ready" prompt.

When you run the program, it first checks to see if the WRTGRM subroutine is
loaded. If not, it attempts to load an object file called DSK1.WRTGRM/O (see article
on vriting to GRAM from XB elsewhere in Kracker Pacts). After the routine is loaded,
or 1f it is already loaded, the program presents a title screen and asks you to enter
the start hex address to store the loaders. You should consult your GK Utility I
manual for the locations of free space. A good place to store it is starting at hex
B601 and continuing to BTFF, which is enough room for many loaders. If you are not
using the GK Utility I version of Bxtended Basic, you can use 7800-7FFF, 9800-9FFF, oz
B800-BFFF, as these areas are free. Note that if you install the auto-load bypass
patch into XB (see elsewhere in Kracker FPacts), 7800-780A are used. After you enter
the address, it will instruct you to enable bank 1 and press FCTN. Do so. It will
then instruct you to restore the write protect switch and press FCTN. Agalin, do so.

Now it will ask you for the menu entries. The program will display the current
hex address. You should be sure that it doces not go past the last free address in
your memory space. If it does, you should break the program and re-run it to avoid
overwriting existing code in your cartridge. The computer will now ask you for the
name to be placed on the menu. The name may not be more than 18 characters long, and
it must be in all capital letters. It will then ask you for a fllename (e.qg.
DSK1.MENU, DSKR.FWR, RD.XXB). Note that the filename can not be greater than 15
characters. After you enter the filename, the program will tell you if either of the
entries are too long. After a short pause, the program will prompt you for another
menu name and filename. When you are done entering all the 1loaders you wish to
install, enter #*t (three SHIPT 8s) for the menu name. The computer will then prompt
you to enable bank 1 and press FCTN. Do so. The computer will now.write-the loaders
out to the Bxtended Basic cartridge. After it is done it will prompt you to restore
the write protect and press FCTN. After you press FCTN, the program will end. You
may nov type BYE, enter the GRAM Kracker Loader and save your modifled cartridge.

By the way, after the GKXBLOAD program is a short program that I (T.F.) wrote
alloving you to set up all ‘'your favorite programs to run without typing in the names:
you merely insert them in the DATA statement, and follow the last with a an, If you
save this program on your-utility disk and create a menu entry for it with GKXBLOAD,
you will quickly get a menu of these programs when you press the "MISC. PROGRAMS" key
and be able to pick your program with one more key press. This way you can still have
the auto load of DSK1.LOAD for use with programs that need it. For this program to
run properly you MUST type in line 170- f£irst, exactly as written!

KRACKER FACTS - PAGE 24

100 DEF A(B)=B-65536%(B<0)::
DEP A$(B)=CHRS(INT(A(B)/256
))&CHRS (B AND 255):: OPTION
BASE 1
110 ON BRROR 120 :: CALL LIN
K("WRTGRM"):: ON ERROR STOP
:: GOTO 130
120 CALL INIT :: CALL LOAD("
DSK1.WRTGRM/O")
130 DISPLAY AT(1,1)ERASE ALL
:"XBasic programs direct fro
m the main menu”: :"require
s GRAM Kracker (tm)"
140 DISPLAY AT(S,1l):"Program
by Mike Dodd"™: :“Technical
information by Tom Freeman,
LA 99exs"
150 DISPLAY AT(10,1):"sStart
GROM address?®™ :: ACCEPT AT(
10,21):C$:: CALL HD(C$,BG)
160 CALL LINK("WRTGRM", 25554
,CHR$(149),25403,A3(BG+10)sA

$(BG),BG,"1"&CHRS$(0) &CHRS (11
)&CHRS(168)&" cQ"sCHR3$(5)&"c

100 DATA RD.PRO1l,RD.PROZ,™"
110 CALL CLEAR

120 X=X+l :: RBAD A$(X):: IF
AS(X)<O>O™" THEN 120

130 DISPLAY AT(1,1)BEEP:"PRE
88 FOR" :: FOR Y=1 TO X-1 ::

") - -@

170 DIM B$(15):: B=0 ::
KEY(3,F,G):: H=BG+10
180 CALL DH(H,C$):: PRINT "(
now at ";C$;")}" :: INPUT "Me
nu name? (**%* tp end) - -~ ":
C$:: IP C$="222® THEN 230-B

LSE INPUT "Fllename? ":D$
190 B=LEN{(C$):: C=LEN{D$)::
IF B>18 OR C>15 THEN PRINT "
BRROR - MAX LENGTH FOR MENU
NAME IS 18, MAX FOR FILENAME
I8 15" :: GOTO -180

200 B=B+1l :: B$(B)=A$(0)&AS(
H+7+B+C) &CHRS(B) &CS&CHRS$(C) &
D$SCHRS(0)&"1"sCHRS(0)SCHRS(
C+2)&CHR$(168)5" "&AS(H+5+B)

CALL

- §CHR$(5)&"czr"

210 IP B>1 THEN B$(B-1)=A$(H
) §SEG$ (B$(BE-1),3,255)

220 H=H+LEN(B$(R)):: IP B<15
THEN 180

230 CALL SOUND(200,1200,0)::
DISPLAY ERASE ALL

MENULOAD

DISPLAY AT(2%Y+1,2):Y;" *;A
$(Y):: NBXT Y
140 CALL KBY(0,K,8):: IF 8=0
THEN 140 ELSE K=K-48
150 CALL INIT :: B$=A3%(K)::
L=LEN{B$):: CALL LOAD(-45,L+

240 D=1 :: DIM B$(2):: BS$(1)
,B$(2)="" :: FPOR B=1 TO B ::
IP LEN(BS(D))+LEN(B$(B))>25
S THEN D=D+l1 :: BaB-1 ELSE B
$(D)=B$(D)&BS$(B)
250 NEXT B :: IP D=1 THEN CA
LL LINK("WRTGRM",BG+10,B$(1)
}:: BND
260 CALL LINK(“WRTGRM",BG+10
,E$(1),BG+10+LEN(B$(1)),B$(2
-)):: END-
270 SUB HD(A$,A):: A=Q :: FO
R X=3 TO 0 STEP -1 :: A=A+16
*X2(POS("0123456789ABCDBF",S
BG$(A$,4-X,1),1)-1):: NEXT X
271 A=A+65536%(A>32767):: SU
BEND
280 SUB DH(B,A$):: T=B-65536
*(B<0):: Ag=""
290 Q=INT(T/16):: R=T-162Q :
: A$=SEG$("0123456789ABCEF",
R+1,1)8A3 :: IP Q THEN T=Q :
: GOTO 290
300 SUBEND

4):: CALL LOAD(-42,L)

160 FOR X=1 TO L :: CALL LOA
D(X-42,ASC(SBG$(BS,X,1)))::
NEXT X :: CALL LOAD(X-42,0)
170 RUN "0123456739ABCDEP"

A ROUTINE TO WRITE TO GRAM FROM XB

by Mike Dodd

Although the GK Util I version-of Extended Basic includes a POKEG routine, it 1is
not useful for programs to modify Bxtended Basic because of the fact that if you

disable the write protection, XB will lock up.

I have written an assembly subroutine

for Extended Basic that prompts the user to enable and disable the write protection.
To use the WRTGRM subroutine, use the format:
CALL LINK("WRTGTM"(,address,str-var...])

In other words,
data to write.

A$=CHR$(0)&CHRS$ (1) &CHRS(2)

The address must be from -32768 to +32767.

equal to 32768
ADDR=ADDR-65536) .

(hex >8000)"

You may pass multiple data sets to the WRTGRM routine.
the data In A$ to GROM >2000 (decimal 8192) and the data in B$ to GROM >A000 (decimal
40960 - 65536 = -24576), you would use:

KRACKER FACTS - PAGE 25

If the address
you must subrtract 65536 frem -k&- (IF ADDR>=32768 THEN

you must specify a decimal address ard a string containing the
[f you wanted to write:a hex 00 01 02, you conld use:

is greater than or

If you wanted to write

CALL LINK("WRTGRM",8192,A$,-24576,B%)

You can pass up to seven data sets in one CALL LINK this way.

You also have the optiom of not specifying any data - Jjust a simple CALL
LINK("VRTGRM"). This will not do anything, other than let your program verify that
WRTGRM is present in memory. For instance:

100 ON BRROR 110 :: CALL LINK("WRTGRM"):: GOTO 120

110 CALL INIT :: CALL LOAD("DSX1.WRTGRM/O")

120 program continues...

When WRTGRM is executed, it first checks to see if any parameters were passed to
it. If not, it returns to XB. If so, it displays on the screen (at zow 13, column S)
a message prompting you to enable bank 1 and press FCTN. After you enable bank 1 (or
two, 1t really doesn't matter), press the FCTN key. Wwhen it is done wziting all the
data passed to it (almost instantly), it will prompt the user to restore write protect
and press PCTN. Move switch 4 back the the center (write-protect) position and press
the PCTN key.

Por an example of the use of WRTGRM, examine the listing of my GKXBLOAD program
(article elsewhere in Kracker Pacts).

Here is the source code to WRTGRM:

0001 * WRITE TO GRAM FROM EXTENDED BASIC 0040 * PRINT "ENABLE BANK 1..."

0002 * COPYRIGHT 1987 BY MIKE DODD 0041 LI RO,>184

0003 * 116 RICHARDS DRIVE 0042 LI R1,BANK1

0004 * OLIVER SPRINGS, TN 37840 USA 0043 LI R2,24

0005 * 615/435-1667 0044 BLWP @PBASIC

0006 DEF WRTGRM 0045 CLR R12

0007 IDT 'MIKEDODD' 0046 * WAIT POR FUNCTION KEY TO BE PRESSED
0008 vwa EQU >8cC02 0047 FCTN1 TB 7

0009 VWD BQU >8C00 0048 JEQ PCIN1

0010 GWA EQU >9C02 0049 CLR RS

0011 GRA EQU >3802 0050 A CLR RO NOT AN ARRAY
0012 GWD BQU >9C00 0051 INC RS

0013 NUMREF EQU >200C 0052 - MOV RS,R1 PARAM. NUMBER
0014 STRREF BQU >2014 0053 BLWP @NUMREF GET NUMBER
0015 PAC EQU >834A 0054 LWPI >83E0 GPLWS

0016 HFF BYTE >FP . - 0055 BL @>12B8 FLOATING->INT
0017 BANK1 TBXT 'Enable bank lé&press FCTN' 0056 LWPI MYWS MAIN WS

0018 BANKO TEXT 'Restore W/P & press FCTN' 0057 MOV @FAC,R9 GET ADDR :
0019 - -EVEN = -0058 CLR RO NOT AN ARRAY
0020 * PRINT WITH BASIC OFFSET. IN: RO=VDP 0059 INC RS STRING

0021 * ADDR,R1=CPU ADDR OF TEXT,R2=LENGTH 0060 MOV RS8,R1

0022 PBASIC DATA SUBWS1,PBAS1 0061 LI R2,BYTBSL SPOT FOR DATA
0023 PBAS1 MOVB *R13,R0 0062 MOVB QHFF, *R2 255 CHaRs
0024 MOVB @1(R13),8VwA 0063 BLWP @STRREF GBT IT

0025 ORI RO,>4000 0064 * SAVE CURRENT GROM/GRAM ADDRESS

0026 MOVB RO,QVWA 0065 MOVB QGRA,R7

0027 MOV @2(R13),RO 0066 SWPB R7

0028 MOV Q4(R13),R1 0067 MOVB @GRA,R7

0029 PBAS2 MOVB *R0+,R2 0068 SWPB R7

0030 Al R2,>6000 0069 DEC R?7 CORRECT

0031 MOVB R2,8VWA 0070 * SET GRAM ADDRESS

0032 DEC R1 0071 MOVB R9,8GWA

0033 JNE PBAS2- 0072 SWPB RS9

0034 RTWP - 0073 MOVB R9,QGWA

0035 WRTGRM LWPI MYWS 0074 MOVB @QBYTBSL,R9 GET LENGTH
0036 * GET § PARAMETERS. IF 0, RETURN 0075 SRL R9,8 TO LSBY

0037 MOVB @>8312,R6 0076 LI RO,BYTES START OF DATA
0038 JEQ RETURN 0077 B MOVB *RO+,8GWD WRITE TO GRAM
0039 SRL R6,9 TO LSBY & /2 0078 DEC R9 DONE?

KRACKER FACTS - PAGE 26

JNE B NO

0079

0080 * RESTORE OLD GROM/GRAM ADDRESS
0081 MOVB R7,QGWA

0082 SWPB R7?

0083 MOVB R7,QGWA

0084 DEC R6 ALL OF 'EM?
0085 JNE A NO, MORE

0086 * WAIT TILL USER LETS GO OF FCTM
0087 PCTN2 T8 7

0088 JNE- FCTN2 STILL PRESSING
0089 * PRINT "RESTORB W/P..."

0090 LI RO,>184

0091 LI R1,BANKO

E/A-GRAMDSK INFORMATION
by Craig Miller (MB)

If you are using the E/AGRAMDSK
version for your Bditor/Assembler module
in the Gram Kracker you can enhance the
cursor reaction time with the following
changes. Plrst 1load your B/AGRAMDSK
version of the E/A into the Gram Kracker
and then use the Bdit Memory selection to
change the following two ltems, in hex:

1. Bdit g7AA6, it currently contains 06
FF change it to 03 FP. This is part
of the delay before a key goes lnto
auto repeat.

2. Edit g7BBB, it currently contains 0A
00 change it to 00 01. This is a
delay loop between keys.

¥ith these two changes in place you
will notice that the cursor now moves a
1ittle faster around the screen and that
it goes into auto repeat a little faster.
The cursor blink speed is determined by
the byte value at g7aA3. It is currently
03, changing it to 01 blinks faster and
OF blinks real slow.

These {tems were found by using
DISKASSEMBLER to disassemble the EDIT1
file. Once the file is disassembled you
can £ind items in the E/AGRAMDSK version
"loaded into the Gram Kracker by adding
>5804 to the address shown in the right
hand column of DISkASSEMBLER's output.
This will then be the gxxxx address for
editing.

If you want to change the default
Tabs for the B/A Bditor they are located
at g7BD6é and they are offset by minus
one. The EBOF marker that appears on the
editor screen {s located at 98018 through

0092 LI R2,24

0093 BLWP @PBASIC

0094 * WAIT FOR FCTN TO BE PRESSED

0095 FCTN3 TB 7

0096 JEQ FCTN3

0097 * RETURN TO XB

0098 RETURN LWPI >83E0 GPLWS

0099 B @>6a GPL

0100 SUBWS1 BSS >20 WS FOR PBASIC
0101 Myws BSS >20 MAIN WS

0102 BYTESL BYTE 0 LBNGTH

0103 BYTBS BSS 255 PLACE FOR DATA
0104 END

g803F. The -text that -appears:- en--the

Command Line, when you press FCTN 9, is
located at g8614 through g8757. Have
Fun! '

CHANGING THE CURSOR OF THE
E/A-GRAMDSK UTILITY
by Tom Freeman, LA F9ers

If you have used the E/AGRMDISK
utility that came with the GK and
installed the CHARAl file, you may have
noticed that instead of a true cursor on
the editor and assemblexr option screens
you get a little 1£. This is because the
B/A uses character »>1F for its cursor
here, and CHARAL hasn't defined it as a
block. As TI-WRITER never actually uses
it as far as I can tell, you can redefine
it to whatever shape you wish. I put in
a solid block cursor, although the B/A
module uses a hollow block. The eight
bytes in question are located as the last
two of the first sector of CHARAL and the
first six of the 2nd sector (if you have
already created the B/A GRAM disk files,
these wind up being on the 25th and 26th
sectors of the fourth file created. You
should see (00 40) (4C 50 10 1C 10 10) in
these two sectors. Change these all to
7E for a medium size block, or 3C for a
narrow block, or (00 7B) (42 42 42 42 7B
00) for a hollow block.

while you're at 1it, 1f you don't
like the arrow instead of a circumflex
(caret), then go to the next sector and
look at the 10th to 3rd bytes from the
end., If these are 10 28 44 10 10 10 10

KRACKER FACTS - PAGE 27

00, you can change the 10 's to 00 's and
get a reqular caret back.

CHANGING THE DEFAULT DRIVE
by Tom Freeman, LA 99ers

Many of you Kracker Hackers may
still be working with - a TI disk
controller, but have a MYARC or New
Horizons RAMdisk. Up until now you have
had to put the EDIT1, EDITAl, EDITA2,
ASSKM1, ASSM2, FORMAl, FORMA2 in Drive 1l
because the B/A and TI-WRITER modules
insisted on it. Therefore, if you wanted
fast loading from the RAMDISK, it had to
be- Drive 1, thus disabling your true
floppy drive 1. The following sections
will show you how to change these modules
to make the defaults for drives 2-9, and
allow you to keep using all your disk
drives as usual.

To keep repetitions to a minimum, I
will review the process of using the GX
Bditor here. Pirst save your -module to
disk (if you haven't already) using
option 2 on the GK main screen. Then
remove the module and reload the file off
the disk using option 1. Now choose 5,
the Editor. The cursor will be in the
upper left hand corner, over a small ¢
tindicating CPU memory). FCTN 1 will
switch you to a small g (for GRAM).
Press enter and
appropriate addresses that will be
described. FCTN 9 will put the cursor on
the memory window, and you can now make
changes (be sure that the W/P switch is
up, to Bank 1, or changes will not be
accepted). After the change is made,
exit the Bditor with CTRL =, exit the GK
with PCTN = or FCIN 9 and test your
changes. If they are OK, go back to the
GK and re-save the module.

I am not sure if there are different
versions of these modules out there,
which might make the addresses slightly
different. If so you can use the Search
feature of the GK. After getting the
GRAM window with PFCTN 1, press enter
twice to get to S3tart addzress, enter
6000, then A000 for the Pinish address,
press PFCTM S to activate the Search,
press FCTN = if you need to change f£from

you can now kype the:

ASCI1 to hex or vice versa, press FCTIN 9

to get the cursor into the search entry
field, then type the string you want,

MOVE THE CURSOR BACK TO THE LAST TYPED
ENTRY, and press enter. The GK will find
the first occurence for you and put the
address in the upper 1left corner. To
edit what you have found press FTCN 5
again, then FCTN 9 and you will have the
cursor in the memory field.

EDITOR/ASSEMBLER
The default disk drive for loading

the Bditor, Assembler, and UTIL1 files is
at g662l. [search for RDITI 1f this
isn't exactly right and you don't see it
on the screen] The default name UTIL1l is
at g662D. The name length of these files
(all the same) is at g661D (in hex of
course), and equals OA (i.e. DSK1.EDIT1
etc.) If you wish to have a different
program name as your default for the
Utility option it must still have S
characters.

If you have installed the EDIT1 and
ASSM1-2 programs in high GRAM using the
B/AGRMDISK utility that came with the GX,
then these names are not needed and you
can change even the length of the Utillity
program, provided you change the length
byte at g661D (be suze to add the 5 for
DSK1.) Alternatively you can change the
NAMES of the EDIT1 and ASSM1-2 files with
a Disk Manager to make them correspond in
length to the name of the UTIL1 type
program. Then just type in the new names
in GRAM, as well as the new length byte.
There is no room for names longer than 5,
but they can be shorter. They must BEGIN
-at the same location - the unused
characters will be ignored. If you have
chained a UTIL1 type program together
with the module for automatic loading on
powerup (uses FCTN X when -saving the
module, see your GK manual for
instructions) then use a 4 character name
for the wmodule - -this makes the
additional - files 5 characters. E.g. if
the module name is UTIL then the utility
programs can remain UTIL1 (and 2 if
used). If you installed the Editor and
Assembler programs in high GRAM then the
numbers would have to be higher than 1-2.
I named the module F, and used the high
GRAM option, so my utility program had to
be named P4 and FS5, and I therefore used
P4 for the default at g661D as above.

As you can see there are myriad
possibllities - do it the way YOU like.

When you have done all this you are

KRACKER FACTS - PAGE 28

ready to go. First save the new module
of course!! Now set up your RAMDISK to
whatever drive you have chosen as your
default. Use some copy program to copy
the module files plus the utility
programs (and the BDIT1 etc if they are
not in high GRAM) to the RAMDISK. Now
vhen you enter the Bditor or Assembler,
you'll get them in a flash! Disk Manager
1000 v3.5 and the MYARC Disk Manger
Supreme both support more than three
drives. If you are using Disk Manager
II, see my article on changing that

cartridge to allow more than three
drives.

TI-WRITER

This one s a bit easier, because

the default utility program name is not
picked out of GRAM as such, but is put up
on the screen. Hence there is no need to
worry about the length byte, as the
program measures it once you press enter.

Pirst, the default drive number |is
at g6763 (actually DSK1l. 1is at g6760).
If this address is not correct you can
search for DSKl. but there seems to be
one at 65A7 as well. I am not sure of
what the function of this one is, but not
changing it seemed to make no difference.

The name of the Utility program is
at g6B27 in Bnglish. Change it ¢to
whatever you wish (probably the same as
the one in the Bditor/Assembler, if you
have them on the same disk). The other 7
lanquages (1) are located at 6CD0, 6EBA,
70A1, 725B, 7469, 763B, and 6EBA. You
can change them If you wish - I didn't
bother since I don't wuse them. As a
matter of fact, elsewhere In Kracker
FPacts are instructions by Mike Dodd on
how to get rid of these altogether, which
will be useful in the future, because
I've heard a rumor that eventually we
will be able to get TI-WRITER and E/A in
one GRAM! . .-

CHANGING DM2 TO ACCEPT NINE DRIVES
by Tom Freeman, LA 9F9ers
When TI originally wrote Dlisk
Manager 1I1I, the only disk controllex
available was TIi's, which would not
accept more than three drives. So, TI

didn't allow DM2 to accept a drive number
of three or higher. But today, with
MYARC's disk controller and RAM-disks,
many people have systems with drives
numbered higher than 3. This patch will
allow you to change DM2 to allow 4, 5, or
even 9 drives!

One would think that there 1is a
single routine that checks for this. I
worked through this one with Explorer and
found a routine and changed it. But when
I went back to the module, the higher
numbers were only accepted in some
places. 1 wound up doing a little bit of
educated guessing. [am pretty sure that
what 1is 1listed below will make it all
work without messing up any routines.

First the changes to the routines.
A hex 33 is picked out of GRAM each time;
you can see this as an ASCII 3 as well.
1 found the following locations necessary
to change (all in GRAM): 724D, 72C0,
63P4, 6426, 650C, 675D, 685D. All but
the 2nd and 4th also have a small r
before the 3, so you can use r3 for the
search, 1f the addresses aren't right.
Change all of these to 4, 5 or whatever
number youw wish.

Next use the search feature to 1look
for (1-3). There are 2 locations for
each language. Change these to the
number you chose above. This doesn't
affect the running of the module but
looks neater.

- - "5 W W S P WD S D D €D A) D D R D P S W S WP S =D WD W - -

EARLY LOGO LEARNING FUN FIX
by Craig Miller (MG)

The problem with the Barly Logo
Learning Fun cartridge is that it won't
work with the CorComp disk controller
card. The exact problem {is that this
module has an APPLICATION PROGRAM name
length of 00. When the Corcomp DSR goes
thru the modules looking for Application
names for the menu it starts moving them
out and then it decrements the name
length counter. >00 decremented 1is DOFF
or 255 bytes. This is what causes the
mess on the title screen,

To correct this simply SAVE the
module out to disk using a TI or MYARC
disk controllexr and then LOAD it back

KRACKER FACTS - PAGE 29

into the Gram Kracker. Then select the
Gram Kracker's MEMORY EDITOR and change

the byte at g6047 to 01 and resave the
module.

It will not appear on the Corcomp
menu but you can press 3 to start the
module or you can press the space bar
‘twice and it will appear on the TI Menu.

- We tried putting a standard header
in it for the Corcomp menu but it messed
up the TI and MYARC menus, so it wasan't a
good universal f£ix.

VIDEO CHESS FILENAME ENTRY
by Mike Dodd, LA 99ers

The Video Chess cartridge's lack of
ability to save to disk can often be
frustrating. The following modification
will allow you to specify any filename;
disk, RAM-disk, cassette, and probably
even hard disk.

Load the Video Chess module into the
GK. Now enter the memory editor. Select
CRAM/GROM with FCTN 1 and hex mode with
FCTN =. Enter search mode with FCTN 5.
Search between 6000 and 7800 for 31 00 OF
AB B8 60 60. When you find it, exit the
search with PCTN 5, get into the memory
window with PCTN 9, and type 06 78 00 05
72 65 (be sure to enable bank 1). Now
press FCTN 5 to search. Leave the
addresses alone, and search for the same
string, by putting the cursor on the last
0 in the last "60", and pressing ENTER.
Press FCTN 5 to leave the search, FCTN 9
and ENTER to home the cursor Iin the
memory window, and type 06 78 00 05 72
FC. Press FCTN 9 and change the address
field (upper left corner) to 7800. Press
FCTN 9 and ENTER. Now type the following
data (don't type the addresses - they're
just a quide).

31 00 OF AB E8 60 60 08 FC 20 FE 00
FP 02 08 46 49 4C 45 4B 41 4D 45 3F
A0 FFP 02 SP 20 FB BF 00 00 22 BE BO
00 4A 03 58 22 D6 75 OD 78 3B D6 75
07 78 00 A2 75 20 BC BG 00 75 91 00
58 22 BD 02 00 A7 02 00 22 78 00 34
02 AB F2 A0 22 BC AB F1 03 BF 00 0B

F2 A6 BO 00 20 91 00 93 02 S8 55 00

Now enable the write protect, press
CTRL = to leave the memory editor, and
save your modified Video Chess cartridge
to disk.

Now, whenever you tell Video Chess
to save or load a file, it will ask for a
filename. Press FCTN 3 to erase the
filename Lf you make a mistake. None of
the other FCTN keys (i.e. PFCIN 8, D, 2,
1) will work.

TIW-MOVER FIX
by Craig Miller (MG)

IP you use the TIW-MOVER utility to
move TI-Writer to another Gram chip you
will need to patch the FORMALl disk flle.
This file currently contains a simple
module check that won't allow it to run
with the "5 RUN PROGRAM" option of B/A or
ANY OTHER module 1loaded into Gram 3
(>6000->7FFF) that contains Basic
Subprograms (CALLs), such as BExtended
Basic. To correct this you need to use a
sector editor such as Advanced
Diagnostics.

Once Advanced Diags is loaded place

~your TI-Writer disk in drive 1 with the

write protect tab removed. Bxecute the
AD command "FF FORMA1" to get the file
information and the Start Sector. Once
you have the Start Sector ¥ (ss#) execute
the AD command "BS ss#". At the 34th and
35th byte in the first data sector (start
sector) of the file you will f£ind the Hex
value of 1000, change this to 1011. The
1000 is a NOP (no operation) the 1011 is
a JUMP to >2040 which bypasses the module
check and wipe out routine. After you
have patched this word press FCTN 9 and
then execute "WS 3si#" to rewrite the
sector. We hope this clears up any
problems you may have encountered with
the new utilities.

KRACKER FACTS - PAGE 30

REMOVING FOREIGN LANGUAGE OPTIONS FROM

TI-WRITER & DM2
by Mike Dodd

To remove the extra lanquages from
the TI-Writer cartridge, load TI-Writer
into the GRAM Kracker and select 5 Edit

Memory. Type G6006 to select GRAM
address >6006, and FCTN = to select hex
mode. Press FCTN 9 to enter the memory

window, enable bank 1 and type 60CB.
Enable write protect, press CTRL = to
leave the memory editor, and re-save your

PI-Writer cartridge back to disk. That's
all there is to it!
To eliminate the three extra

languages from TI Disk Manager II, enter
the memory editor. Type G8007 FCTN =
PCTN 9. Bnable bank 1 and type 5B.
Bnable write protect, press CTRL = to
leave the memory editor, and re-save your
DM2 cartridge back to disk. That's all
there is to it!

GRAM PACKER HINTS
by Tom Freeman, LA 9%9ers

Several modifications have to be
made to your operating system in GRAM 0
in order to make full use of the GRAM
PACKBR (written by J. Peter Hoddile,
available from Genial Computerware). You
will be using your Gram Kracker Editor to
accomplish--these. (option #5 from the GK
- main menu). Rather than describe all the
keystrokes each time, I will remind you
of the general method here. First of
all, when you get to the editor -screen,
press FCTN 1 once to get to GRAM memory.
Now when you are instructred to search
for a string, press FCTN § for search.
The cursor will be on the "start”
address. Accept the default of 0000 if
it is there, or type it in, then press
enter to get to "fin*sh"™ and type 2000.
Now press PCTN 9 and type in your search
string, remembering FCTN = to get to hex
if that is what you are searching for (in
general it will be). Back up the cursor
one space to get it over the last
character in the search string then press
enter. If the string is not found, the
edit fleld will not change - Lf it is

found, the address in the upper left hand
corner will reflect the location of the
first byte of the string found. Now
press FPFCTN 5 again to get out of SEARCH,
then PCTN 9 to edit, and type 1in the
appropriate changes. You will need WP
off in order to type in the changes -
remember to turn it back on when you are
finished typling.

The following set of changes need to
be made only if you will wind up with
more than 9 items on your main menu.
There would be - two problems if the
changes were not made: 1) you wouldn't
see any after 9 because of the double
spacing! and 2) even If you could the key
presses would be : ; < = > etc. some of
which would actually be two keys (SHIFT
and key). We will therefore enable
single spacing on the main menu (thanks
to Craig Miller in The Smart Programmer
for - this information) and change the
sequence of key presses from numbers
beginning with 1 to letters beginning
with A.

First, to change to double spacing:
Search for (hex) A3 52 00 3A. In many
consoles this will be at 02B0. Change
the 3A to 1A. Next comes a problem of
another routine using temporary storage
wvhere we will need it (not actually
involved with the double spacing, but
needed Lf there ARE more than 9 items for
the menu). Leaving the start and finish
addresses the same, get back to SEARCH by
pressing FCTN 5, PCTN 9 and type in 00 02
28 60 for the search string. You should
£ind it at about 0380. FCTN 5 to get

. back to the memory window. The top line

should read:
00 02 28 60 00 D6 28 AA 43 95 D2 29
. change the 3rd, 7th, and 12th bytes:
00 02 40 60 00 D6 40 AA 43 95 D2 41
You should also insert the small
capital character set into the TITLE
SCREEN Characters using the NEWCHARS
program on the original GK utility disk,
otherwise tne characters will touch each
other top %to bottom and be almost
impossible to read. Note that you can
only have 16 items on the menu because
the start address for the first item is
destroyed by the 17th item.

Now to change the key presses to
letters - this is simpler. wirst change
your start address back to 0000, then

KRACKER FACTS - PAGE 31

search for BB 58 30. You should find it
at about 0275. Change- the 30 to 40.
Next search for A6 75 31 (should be at
02FC) and change the 31 to 41. You will
now see letters instead of numbers on the
main menu.

I found another problem with many
programs: they do not bother to change
the keyboard unit to be scanned, assuming
it to be 5, since that is where the E/A
module is when option #5 Is chosen. The
problem 1is that the operating system is
using keyboard unit 3 at the time the
menu s set up (for this reason you can
use lower case letters for the key press
on the menu - they will be converted to
upper case). Here is a simple fix: 12
bytes past the 41 you just typed in you
should see 06 03 Cx A4, where the x |is
probably a B. Change the first three to
05 19 00. Now FCTN 9 to get out of
memory window, move the cursor to the
address after the g in the upper left
hand corner, and type in 1900. Now FCTN
—9 again, press enter to "home" the
cursor, and type in the following: 06 03
Cx BE 80 C6 02 05 03 Oy where x 1s the
same as you just found above, and y is 3
higher (in hex) than the address where
you found the 06 03 (1f that was 030A as
it was in my console, then y would be D).
This changes the keyboard unit to 5.

For those of you using SBUGE, as I
do often, and who wish to use it from the
main menu, you may have found that the
small character set is not loaded, which
is a PAIN! It's OK if you have loaded it
from B/A 35. Here is a fix: (it
incorporates MG's GPLLNK inserted
directly into memory and then a simple
BLWP QGPLLNK DATA >004A and then return
to the beginning of the actual program.
You will need a sector editor for this.
Pirst find the FDR of the file (catalog
sector). Change byte 16(>10) from 92 to

EA. Second f£ind the f£first actuval data
sector of the file. Change byte 3 from
92 to EA and bytes 24-25(>18-19) from 62
84 to 7D D2. Finally ge to the LAST
sector of the f£ile (there are 30 data
sectors) and starting at byte 146(>92)
carefully type in the following over
whatever is there:
7D 7€ 7D 9E 7D C2 17 6C 00 50 00 00
00- 00 00 00 00 00 C8 1B 83 E8 C8 3E
83 EC C3 20 20 OE C8 09 20 OE 02 EO
83 BO 06 94 C9 20 7D 92 83 02 05 BO
83 73 04 60 00 60 C1 20 16 6C 06 94
02 EO 7D 7B C8 0C 20 OB 03 80 02 00
OB 00 C8 00 83 4A 04 20 7D 8C 00 4aA
04 60 62 84

GRAM PACKER AID
by Mike Dodd, LA 99ers

One of the problems with GRAM Packer
was that it has to know whether or not it
the program uses TI Save format. Now you
can use an XB program I wrote to analyze
a file and tell you what format it uses,
vhereas before, the only way to tell was
trial and error. Since my program must
read sectors off the disk, you must 1load
Barry Traver's RAW program before running
the XB program. RAW - was on Genial
TRAVelER V1}4, and 1is present In all
versions of the TRAVelER's XXB program.

vhen the program runs, it will ask
for a filename. It will then analyze the
file and tell you If it wuses TI Save,
doesn't use TI Save, or if it isn't an
BAS file. It may take a while, depending
on the number of files on the disk, since
it is written in XB.

100 2R RRRBRRRT2TRRINAWYY
110 !*GRAM Packer utility?*
120 !*Determines if flle?
130 1*is TI-Save type or*
140 !*non - TI-Save type?*
150 I*By Mike Dodd. Usest
160 !*Barry Traver's RAW®
170 !*progranm. *
180 122X2TRRTXRTRIRLLTRIRLS
190 GOTO 200 :: A$,B$§,C$,D$,
B$:: A,B,C,D,B,F,G :: CALL
LINK :: l@pP-

200 DISPLAY ERASE ALL:"MAKE
"SURE BARRY TRAVER'S RAW P
ROGRAM 1S LOADED. IF - NOT,

‘PRESS FCTN 4 AND LOAD ~ IT*

210 G=256 :: INPUT "FILENAMB

? DSK™:A$:: A=VAL(SBG$(AS$,1
+1)):: A8=SBEGS(AS$,3,10):: AS
=A$SRPTS (" ",10-LEN(AS))

220 CALL LINK("READ",A,1,BS,

C$):: B$=BS&SBGS$(CS,1,127)::
FOR B=0 T0 126 :: FP=ASC(SEG
$(B$,B*2+1,1)) *G+ASC(SEGS (B$
,B%242,1)) '

230 CALL LINK("READ",A,F,C$,
D§):: IP SEG$(C$,1,10)=A$ TH

BN 250

240 NBXT B :: PRINT "ERROR -
NOT FOUND" :: END

KRACKER FACTS - PAGE 32

250 D=(15 AND ASC(SEGS$(C$,30
,1)))*G+ASC(SBG$(C$,29,1))::
CALL LINK("READ",A,D,D$,E$)
260 B=ASC(SEG$(D$,1,1))2G+AS
C(SBG$(D$,2,1)):: IF E<>6553
S AND E<>0)ND E<>887 THEN P
RINT "ERROR - NOT E/A 5 TYPE
FILE" :: END

270 B=G*ASC(SEG$(D$,3,1))+as
C(SEG$(D$,4,1))

280 B=ASC(SBG$(C$,17,1)):: F
=ASC(SEG$(C$,16,1)):: IF B=0
THEN C=FP*G BELSE C=F*G+E-G
290 IF B=C THEN PRINT "TI SA
VBE" ELSE PRINT "NON TI SAVE"

	content001
	Binder1
	content001
	content002
	content003

	content002

