

Mastering the TI-99

Mastering the
TI-99

Peter Brooks

^e/ MICRO PRESS

First published in 1984 in the United Kingdom by
Micro Press

Castle House, 27 London Road
Tunbridge Wells, Kent

© Castle House Publications 1984

All rights reserved. No part of
this publication may be reproduced,
stored in a retrieval system, or
transmitted, in any form or by any
means, electronic, mechanical, recording
or otherwise, without the prior
permission of the publishers.

British Library Cataloguing in Publication Data

Brooks, Peter

Mastering the TI-99.
1. Texas TI-99 (Computer)
I. Title

001.64'04 QA76.8.T/

ISBN 0-7447-0008-6

Typeset by Keyset Composition, Colchester
Printed and bound by Mackays of Chatham Ltd

Contents

Acknowledgements vi

Chapter 1 Introduction 1

Chapter 2 Translation 3

Chapter 3 Jargon 26

Chapter 4 FileHandling 40

Chapter5 Graphics and Plotting 51

Chapter 6 Printing Errors 82

Chapter 7 Hints and Tips 90

Index HI

Acknowledgements

I owe thanks to more people than I could mention, but I would
like gratefully to acknowledge the assistance of the following
people during the period leading up to the preparation of this
book:

Elizabeth, for putting up with the incessant chatter about
computers; my parents, who aided me in the purchase of my
equipment; Paul Dicks, for having patiently endured endless
telephone calls over the lastthree years, forhaving allowed me to
shoot my mouth off in public through the now-defunctTidings,
and for having placedme in a position to write this book; Trevor
Hood, of Castle House, for comments and invaluablehelp in the
production of the manuscript; Matthew Childs, for having
checked some of the routines for me; George Moore, for
constructive criticism during editing and proofing; and anyone
who ever had asoftware problem andbrought it to me—I always
found the experience beneficial.

Peter Brooks

Oxford

October 1983

Introduction

For the newcomer, home computing can be a veritable quicksand
of jargon and strange concepts. Confusion and frustration are the
two most common conditions suffered by those who have 'taken
the plunge', bought a home computer, and are engaged in a
desperate struggle to understand their machine and its manual,
and perhaps even to find a practical use for it. (These conditions
seem to be experienced more severely in the U.K. by TI-99/4 and
99/4A owners, because the machine appears to be marketed in
Europe with the American consumer in mind.)

Their efforts are hampered by comparatively minor problems
— printing errors or omissions in manuals, books, or magazines,
for example — and often the solutions, when uncovered, are so
simple as to cause much smacking of foreheads and utterances of
self-deprecation.

Even after struggling through the early stages, however, the
difficulties are not reduced, as attempts are made to translate a
program written for one machine, in a supposedly 'common'
language, into TI BASIC.

You have become the owner, possibly proud, of a Texas
Instruments Home Computer. If you bought your machine some
time ago, you will already be aware that it has a number of
annoying deficiencies when compared with its competitors. In
the majority of cases, these can be overcome through careful
programming, some examples of which are presented in this
book. In others, sadly, the only alternative is to keep throwing
money at the problem(s) by buying more and more equipment,
which can often result in your being able to do less than before.

There are two things to bear in mind when close to capitu
lation: firstly, that there is NOTHING which cannot be under
stood by you eventually; if an explanation doesn't 'click', that is
not your fault. Either ask, if you can, for it to be re-expressed, or
look elsewhere for enlightenment. Secondly, perseverance is the

2 Mastering the TI-99

name of the game. No matter how intractable the problem may
appear to be, someone, somewhere either has the solution, or can
point you in the right direction toward one.

Become a member of a local computer club if there is one, and
join one (or more) of the specialist groups which cater specifically
for the TI-99/4 and 99/4A. Read computer magazine articles, even
if you don't entirely follow them, and don't restrict your subject
matter to the TI computer alone. Tricks on other machines may
not be directly applicable to the Texas computers, but they can
trigger ideas which end up as useful routines or techniques.

Keep on coming back to programs or ideas which you have
worked on in the past: you'll find that the experience gained in
just a few weeks can help you to improve on what went before,
even highlighting errors which you may have missed.

Above all, if you think that you have found something useful,
interesting, or even staggeringly amazing, don't keep it to
yourself. Discuss it with fellow owners, write to magazines about
it, but never think that it is unimportant. Even if it does turn out
to be so, you will still have learned something, and that is most
important.

This book lies somewhere between a vast tome of totally
understandable explanations, and a packed, incomprehensible
reference work, and as such is of necessity something of a
compromise. The one thing it cannot do is to answer every
question that TI owners might pose, so if you have anything
which you would like to discuss, any questions that you would
like help in answering, I am happy to accept any correspondence.
You can contact me via the publisher, CASTLE HOUSE, but
please include a stamped, self-addressed envelope.

And finally, if Darth Vader on the front cover resembles me, it
is purely coincidental!

Translation

The task which many new owners most often undertake is to try
to translate into TI BASIC a program written for another machine
and published in a book or magazine.

Although BASIC is a common language, you may already have
realised that there is BASIC, and then there is BASIC. There are
almost as many dialects of BASIC as there are machines, and
although each dialect has its origins in the early American
'Dartmouth' BASIC, each has been added to and 'improved' in
order to enhance the facilities available. Translation from one

dialect into another can be fraught with difficulties, because of
subtle language differences and printing errors or omissions in
the published material. Sometimes the only alternative to giving
up is to buy the owners' manual for the machine concerned, and
attempt to use that as a source of reference. The problem is that if
you use that approach you could end up with hundreds of
manuals and still no translated program.

This chapter looks at some of the more common BASIC
reserved words which are used on other machines, and, where
possible, gives the alternatives which TI BASIC can employ. It
also gives some suggestions on how to cope with some of the
'constructions' used in other BASICs: for example, 'IF A = B
THENC = D'or'IF A = B THEN PRINT "HIT'".

In addition there are differences between the 99/4 and 99/4A

which need highlighting, especially in respect of the keyboard
and keycodes, and, to a lesser extent, the variable names.

To begin with, we will look at some of the commands which are
likely to be found in published listings of programs written for
other machines. There are certain commands which cannot be

implemented in TI BASICwithout additional equipment—some
uses of PEEK and POKE, for example — and unless you are
particularly adventurous or masochistic it is best to avoid those
programs which make use of many PEEKs or POKEs, especially if

4 Masteringthe TI-99

those commands appear to form a central part of the structure of
the program. You might well be better off in such cases if you
wrote a TI BASIC version from scratch. Some magazines, notably
Personal Computing Today, actually provide general translation
information with every program that they publish; would that all
magazines did so.

The following discussion is by no means exhaustive, and with
the rapidly changing state of the microcomputer market the
subject of translation is one which will gain prominence as time
goes by. Once a year a magazine called Personal Computer World
publishes a large reference sheet of BASIC reserved words for a
number of the most popular machines; despite the recent high
sales of the TI-99/4Ait has never figured in this chart, but it can be
a source of valuable (if occasionallymisleading) information.

The BOOLEAN Operators

These are: AND, OR, XOR, and NOT. Their function is discussed
in the chapter on Jargon, while their TI BASIC equivalents are
explained in more detail here.

Briefly, the operators AND, OR, and XOR may be seen in any
of the followingcontexts,using ANDfor the examples:

1) IFA = BANDC = DTHEN1000
2) IFA = BANDC = DTHENE = F
3) A = B AND C
4) PRINT A AND "ON TARGET"

The equivalents to AND, OR, and XOR are implemented in TI
BASIC using brackets (parentheses) to form 'Relational
Expressions', with the operators '*', '+', and '-' respectively.
Example (1) becomes:

IF (A = B) * (C = D) THEN 1000

The expressions (A = B) and (C = D) are evaluated by the
computer, which returns a value of -1 if the expression is TRUE;
that is, if A does equal B, or if C does equal D; and 0 (zero) if
FALSE. In the above example, then, we have four possible
combinations:

TRUE* TRUE or -1*-1 which is +1

Translation 5

TRUE* FALSE or -1* 0 which is 0

FALSE* TRUE or 0*-1 which is 0

FALSE* FALSE or 0* 0 which is 0

Of these combinations, only the first evaluates to a 'non-zero'
result. (Note that any number multiplied by zero is still zero.)

The'IF. . .THEN. . .'statement inTIBASIC is really'IF. .<>
0 THEN . . .', where the '<> 0' is said to be 'implied'. Of the four
results possible from the pair of expressions above, only TRUE*
TRUE gives a result which '<> 0', or is non-zero.

If example (1) had been:

IFA = BORC = DTHEN1000

it could have been implemented in TI BASIC thus:

IF (A = B) + (C = D)THEN 1000

In this instance, the jump to line 1000 will take place if either
A = BorC = D; we have four possible combinations again:

TRUE + TRUE or -1 + -1 which is --2

TRUE + FALSE or -1 + 0 which is •-1

FALSE + TRUE or 0 + -1 which is •-1

FALSE + FALSE or 0 + 0 which is 0

Remember that we are looking for a non-zero result, so the first
three combinations will cause a jump to line 1000.This imitates
the function of OR, otherwise known as INCLUSIVE OR,
because it means 'if one or the other or both are TRUE'.

XOR, or EXCLUSIVE OR, which has '-' as its TI BASIC equi
valent, operates slightly differently:

IFA = BXORC = DTHEN1000

It means 'if either one or the other BUT NOT BOTH are TRUE', so
in terms of the example which we have been discussing, it
becomes:

IF (A = B) - (C = D) THEN 1000

Again we have four possible combinations ofTRUE and FALSE:

TRUE - TRUE or -1 1 which is 0
TRUE - FALSE or -1 - 0 which is-1

FALSE - TRUE or 0 1 which is+1

FALSE - FALSE or 0-0 which is 0

6 Mastering the TI-99

This time note that the only two results which are non-zero are
those given by TRUE - FALSE and FALSE - TRUE, which is
exactly as we stipulated above.

These TI BASIC versionsof AND, OR, and XOR are generally
best used with only two expressions at a time, although it is
entirely feasible, for AND and OR at least, to use them with more
than two:

IFA = BANDC = DANDE$ = "FIRE" THEN 1000

which becomes

IF (A = B)* (C = D)* (E$ = "FIRE") THEN 1000

With care they can be mixed:

IF A = B AND C = D OR E$ = "FIRE" THEN 1000

which becomes:

IF (A = B)* (C = D) + (E$ = "FIRE") THEN 1000

BUT . . . you must be very careful to make sure that you have
understood exactly what conditions must be fulfilled before the
jump to line 1000 can be made.

XOR cannot really be used with more than two expressions,
partlybecause ofthefact thatitspurposeis tooperateononlytwo
values, and partly because its TI BASIC equivalent ceases to be
accurate.

The mixing of expressionscan becomequite complicated,and
when it reaches this sort of level:

IF (A = BORC = D)AND(E = FORG = H)OR(I = JAND
K = L) THEN 1000

it is time to stop and decide whether to continue using the TI
BASIC equivalents or to translate in terms of multiple 'IF . . .
THEN . . .' statements.

Continuing with the discussion, this time of example (2), it is
not possible in TIBASIC foranything other than a line number to
follow 'THEN' (or'ELSE'), so the statementhas to be split up:

First line: IF A = B AND C = D THEN Second line ELSE
Third line

Second line: E = F

Third line: continuation of program

Translation 7

We can now apply our TI BASIC equivalents (for AND, OR, and
XOR) as previously discussed:

First line: IF (A = B) * (C = D) THEN Second line ELSE
Third line

Second line: E = F

Third line: continuation of program

and so on. As you become more adept both at translating and at
finding methods of shortening programs, you will be able to
reduce the statement to a simple 'IF . . . THEN' without the need
for an'ELSE'.

It is feasible to translate the above example as one line even in
TI BASIC:

Firstline: E = E * (1 - (A = B) * (C = D)) + F *
((A = B)*(C = D))

but as you can see, it can be horrendously difficult.Just to go over
the operation of that line: ifboth expressionsareTRUE, both will
be evaluated as —1 by the computer. We can rewrite the line thus:

Firstline: E = E* (1 - (-1)* (-1)) + F* ((-1)* (-1))

This simplifies to:

Firstline: E = E* (1 - (-1* -1)) + F* (-1* -1)

Simplifying again:

Firstline: E = E* (1 - (+1)) + F* (+1)

And again:

Firstline: E = E*0 + F

which means that the variable E is assigned the number repre
sented by the variable F. Ifyou have the stamina: if either or both
of the expressions is FALSE, the equation will evaluate
eventually to this:

First line: E = E* (1 - 0) + F* 0

which is:

First line: E = E + 0

which results in the variable E retaining its original value.

8 Mastering the TI-99

It is complex, and it works, but I would never recommend it for
practical use.

Example (3) is difficult to follow, and it does depend upon the
dialectofBASIC whichusesit. Generally, thecomputerwillwork
on the BINARY equivalent of the numbers represented by
variables B and C. The two values will be ANDed (or ORed, or
XORed) bit by bit (see the Jargon chapter), and the" resulting
binary number is translated back into decimal and assigned to
variable A. The reasons for wanting to do this can be quite
complex and arebeyond thescope ofthisbook todiscuss, as they
usuallyapply to Machine Language programming.

Having said that, example (3) canactually be translated into TI
BASIC, but the procedure is long and involved as well as being
slow, and would require a chapter all to itself. It is best to avoid
translating a program whichhas statementsof the type shown in
example (3). If you have the patience (and the funds) a second,
more comprehensive book is planned which will indeed spend a
chapter on explaining how to translate this statement.

Example (4) is a rareform, found almost exclusively in Sinclair
BASIC, and can be broken down firstly into:

First line: IF A = a value THEN Second line ELSE Third
line

Second line: PRINT "ON TARGET"
Third line: continuation of program

and then subsequently asdiscussed previously. Thevaluewhich
the variable A must represent is dependent upon the type of
BASIC used by the respective computer: some might use 0,
others1or -1. The translation is similar to thatforexample (2).

TheBoolean operator NOT is seen in Sinclair BASIC programs
and occasionally in others (e.g. TI Extended BASIC). Generally it
is equivalent to '<>' or 'is not equal to'. Forexample:

IF NOT A = 10 THEN 1000

which is equivalent to:

IF A <> 10 THEN 1000

NOT also has another use:

A = NOTB

NOT is calledan 'inverter', and operateson the binary equivalent

Translation 9

of the decimal number represented by the variable B. Its use
makes all the binary ones into zeros and vice versa, and the
resulting number is translated back into decimal and assigned to
the variable 'A'. The effect is known as ONES COMPLEMENT in

machine language programming, and although a detailed dis
cussion is beyond the scope of this book, it can be implemented
in TI BASIC. ONES COMPLEMENT is a step towards producing
a negative number in binary notation. The actual procedure
is called TWOS COMPLEMENT, and consists of ONES
COMPLEMENT followed by the addition of binary 1. ONES
COMPLEMENT is therefore the negative number minus 1. In TI
BASIC this is simply:

A = -B - 1

You are unlikely to encounter this very often if at all, mainly
because it serves little purpose. What you are likely to encounter,
in Sinclair BASIC, primarily for the ZX81, is:

LETA = NOT PI

This peculiar statement is in fact one of a number of memory-
saving tricks on the ZX81. In Sinclair BASIC, PI is the constant
3.14159. . . and an evaluation of NOT PI gives zero as its result. It
is, in terms of memory saved, far more economical on the ZX81
than:

LETA = 0

You will also see its counterpart:

LETA = SGN PI

which is the same as:

LETA = 1

A discussion of the reasons why the seemingly longer NOT PI
and SGN PI are actually shorter than 0 or 1 in Sinclair BASIC is, as
usual, beyond the scope of this book.

Other BASIC Functions

The command ACCEPT AT is similar in function to INPUT AT;
for further details on INPUT AT see INPUT and PRINT, and for a

10 Masteringthe TI-99

translation of ACCEPT AT using a TI BASIC subroutine see the
Hints and Tips chapter.

The ASC() function in Sinclair BASIC is CODE(), where the
ZX81 uses a non-ASCII code system.

The command CALL, although used to similar purpose on the
99/4 and 99/4A, is in fact invoking an Assembly Language sub
routine; it has other titles: SYS, EXEC, USR, and so on, and
unless you are given specific information with the listing as to
what the subroutine does, it is not worth while trying to
implement in TI BASIC.

Similarly, CHAIN is another command which TI BASIC cannot
imitate — it permits one program to load and run another,
wiping out the 'calling' program as it does so. This is a fairly
powerful facility, often used to make up for small memory
capacity, as it allows you to run a program which would not
normally be able to sit in its entirety in the availablememory.

Although CHR$() is available in TI BASIC, in some BASICs it
is used with PRINT to perform screen or printer functions. A
range of different numbers can be seen with CHR$(), some
clearing the screen, others causing a scroll, while yet others place
the cursor at the top left-hand corner of the screen — called
'HOME'. The numbers and their functions seem to vary and it is
best to try to guess from the contextin which they are used as to
their function.

CLEAR is another function which cannot be implemented
easily in TI BASIC: it sets all numeric variables to zero, and all
string variables to 'null'. The only way to imitate this action is to
have a section of the program set aside to perform the function,
perhaps as a subroutine, for all the variables which you have
used.

Even the command CLOSE, which is present in TI BASIC, can
be used differently on other machines. For the 99/4 and 99/4A, file
#0 accesses the screen for OUTPUT and the keyboard for INPUT,
and it cannot be opened, closed, or altered in any way. (The File
Handling chapter gives a few more details.) However, CLOSE#0
may be used on some machines to close ALL open files, a facility
which can only be imitated in TIBASIC by systematically closing
all files by # number. CLOSE alone may also have a similar
function and be imitated similarly.

For information on DEEK and DOKE see PEEK and POKE later.

DEF exists in many different forms with different capabilities:

Translation 11

some BASICs use DEF FN, permitting the use of FNA to FNZ,
while others may allow the use of several 'parameters'—e.g. DEF
A$(B, N, M) — against TI BASIC'S one. You may end up using the
function as a subroutine instead as the only practical way of
implementing it. For example, you could implement a function
like:

DEF A$(B, N, M) = SEG$(STR$(B), N, M)

which might perform the 'slicing up' of a number, simply thus:

A$ = SEG$(STR$(B), N, M)

We will examine the string functions more fully later.
DIM is not always as straightforward as it looks, either. In some

BASICs you need to DIMension string space just for ordinary
strings. Sinclair BASICs DIM A$(50) can be either a single string
with just 50 characters (compared with our 255), or it can also be
manipulated as if it was a string array of 50elements, each having
a maximum of one character. Some BASICs, like that used by
Tandy's TRS80, may not require you to DIMension arrays of over
11 elements (0 to 10, remember), as TI BASICdoes, and to compli
cate matters, it may not be possible in the other dialects of BASIC
to have array subscripts of zero (we can choose with OPTION
BASE). What is more, it may also be possible to DIMension the
arrays using variables:

DIM ST4$(A, B)

where A and B have been assigned values either by the program
or by INPUTting from the keyboard or files. This is not possible
in TI BASIC without additional equipment (e.g. MiniMemory
module). A TI BASIC DIM needs actual numbers within the
brackets.

EVAL() is a function which is very powerful, existing in the
form VAL() on the Sinclair computers, and lacking on the 99/4
and 99/4A. Although TI BASIC has VAL(), it is a very limited
form, and does not compare with EVAL(), which functions with
strings and string variables, allowing you to enter an expression
which will be EVALuated, using current values for any variables:

A = EVAL("SIN(C / 9)* 40")

or:

A = EVAL(G$)

12 Masteringthe TI-99

where G$ holds an equation or expression. It can only be imple
mented on our computer by directly entering the equation or
expression as a statement with a line number — not nearly as
flexible, as any editing causes not only all program variables to be
reset to zero or null, but also prevents a program from being
CONTinued.

The function FRE is not one usually seen in programs — it can
also appear as SIZE, MEM, etc., and refers usually to the amount
of memory available. More often than not it is a way of checking
to see whether the data being generated during the running of a
program is coming close to filling the available memory. It
doesn't have a programmable equivalent in TIBASIC, although it
is possible, after a fashion, to discover the memory usage of a
program: see the chapter on Hints and Tips.

GET is a function which is similar to INPUT when used with

either disk or tape files, but on occasion can seem more like CALL
KEY(). It is best to try to discover from the context in which it is
used what the most suitable way to translate it might be.

Even GOSUB is not immune to variation. On some machines

you can use numeric variables and even expressions:

GOSUB A + 7*C

In one form of BASIC, line numbers can also have letters
associated with them, and it is possible to GOSUB to these
letters:

300 GOSUB t

400t PRINT "READY TO FIRE!"

410 RETURN

GOTO is similarly treated. In fact, the use of equations with
GOTO and GOSUB is very similar to our ON . . . GOTO and ON
. . . GOSUB, and you will need to calculate carefully, using the
possible values for any variables involved, all the line numbers
which result. These can then be put in the list which goes with the
ON . . . command. One warning, though. The use of equations
could conceivably produce such a long list of line numbers that
you would not be able to fit them all in the single ON . . .
statement, and you would then need to look at reducing the

Translation 13

equation into two parts (or more), a technique which requires the
use of IF . . . THEN . . ., and is beyond the scope of this book.

IF . . THEN . . . ELSE is usually more complex and flexible in
other BASICs, allowing the 'nesting' of tests:

IF A = B THEN IF C = D THEN IF A$ = "E" THEN PRINT

"HIT!" ELSE 400 ELSE 800 ELSE PRINT "MISSED!"

This needs some explaining as far as translation is concerned, so
let us begin by isolating the different levels of IF . . . THEN:

IFA = BTHEN

IFC = DTHEN

IFA$ = "E" THEN PRINT "HIT!" ELSE 400

ELSE 800

ELSE PRINT "MISSED!"

The technique is to place every separate 'IF' on a new line,
'indenting' each one a little further in, until you begin to
encounter 'ELSE's, whereupon you begin working back out
again.

Let us take a step away from BASIC and towards English:

1) IF A = B THEN (4) ELSE (2)
2) PRINT "MISSED!"
3) GOTO (7)
4) IFC = DTHEN(5)ELSE800
5) IF A$ = "E" THEN (6) ELSE 400
6) PRINT "HIT!"
7) continuation of program

If you examine the flow of the routine above you will find that it
is the same as for the earlier indented version, except that actual
line numbers are not in brackets. The numbers in brackets will be

turned into line numbers by you to fit your translated program.
Furthermore, it can be possible, in other BASICs, to use

GOSUB after THEN or ELSE, and the translation is similar to that

for IF . . . THEN E = F discussed earlier:

1000 IFA = BTHEN GOSUB 750

becomes:

1000 IF A = BTHEN 1001ELSEcontinuation of program
1001 GOSUB 750

14 Masteringthe TI-99

or perhaps better:

1000 IF A < > B THEN continuation of program
1001 GOSUB 750

It is not unusual for 'multiple statements' to be involved with IF
. . . THEN and this can often require very careful translation. You
may only be aware of multiple statements by their separation
from each other by single or double colons for example:

1000 A = 17: :T = 21::GOSUB 750::GOTO 250

In these cases you must simply separate out each individual
statement and assign a line number to it, taking care that you
don't overwrite any existing lines:

1000 A = 17

1001 T = 21

1002 GOSUB 750

1003 GOTO 250

The command IN is a difficult one to attempt to translate, as by
and large it is used with 'ports', or communication with equip
ment outside the computer (peripherals). It could be used to scan
joysticks or paddles, in which case translation can be effected
with CALL JOYST(), although you might have some difficulty
when it comes to deciding what values any subsequent equations
might be working on.

INKEY and INKEY$are often seen, and they are counterparts to
CALL KEY(). INKEY$ simply returns the actual character of the
key pressed rather than its ASCII code, and is usually simple to
translate. For example:

100 IF INKEY = 0 THEN 100

or:

100 IFINKEY$ = ""THEN 100

are the same as:

100 CALLKEY(0,K,S)
101 IFS = 0 THEN 100

Some BASICs have a time limit for INKEY and INKEY$, using
instead GET as the equivalent to CALL KEY.

Translation 15

INPUT can appear in a slightly different form. In one BASIC it
is possible to use:

900 INPUT "NAME :": N$; "ADDRESS :": A$; "AGE (yr):":
A

which has to have either separate INPUTS, or a single INPUT of
the type:

900 INPUT "NAME, ADDRESS, and AGE (yr):": N$, A$, A

Take note of the separators used too; in some forms of INPUT a
semi-colon or a comma is used where we would use a colon, and
you could find yourself typing the wrong separator. INPUT can
sometimes be seen with AT or USING; for further details see
PRINT.

A string function you will see on many other computers is
LEFT$(), which is one of three concerned with string 'slicing',
but which are not all exactly the same as SEG$(), and which are
presented here in alphabetical order. LEFT$(string, length)
extracts the string segment which starts at character position 1,
and of a specified length. It is directly translated as:

SEG$(string, 1, length)

In Sinclair BASIC this appears as:

A$(l TO length)

or:

A$(TO length)

where you would substitute the required variable for A$.
LIST with a specified line number, or range, might possibly be

found within a program, as in other BASICs it is permitted.
LLIST is likely to be used to produce a listing on a printer.

The logarithmic function LOG() can be a little confusing.
There are two kinds of logarithm, one called Briggsian, the other
Napierian. The first is based on 10, while the second is based on
2.7182818285, and the confusion can arise because the standard
notation for Briggsian logarithms is 'log', while for
Napierian it is in' or ioge'; on most computers although the
notation is LOG, the function is in fact Napierian. To the best of
my knowledge only the BBCcomputer uses the correct notation.

16 Mastering the TI-99

Should you wish to obtain the Briggsian logarithm of a number,
the following expression will convert from Napierian:

DEFBLOG(X) = LOG(X) / LOG(IO)

The antilogarithm for this defined function is simply:

10* X

MEM is an available-memory function; see also FRE and the
Hints and Tips chapter.

The second of the three string functions mentioned earlier is
MID$(), and on most machines it appears to equate directly with
SEG$(); the format is the same:

MID$(string, start, length)

although the form:

MID$(string, start, end)

has been known.

NEXT (of FOR. . . TO . . . STEP. . . NEXT fame) in some cases
uses a form which is less demanding than that in TI BASIC; you
may find this:

FORI = 1TO10

NEXT

which doesn't require the variable to be specified. Translation is
straightforward. Some argue that this leads to sloppy program
ming and difficult debugging. Another form, less criticised
apparently, is:

FORI = 1TO10

FORJ = 1TO20

NEXT J, I

ON ERROR, or ON ERR, are not present in TI BASIC, and are a
way of preventing the computer from calling a halt every time an
error occurs. It can also appear as TRAP, apparently, although I
have never seen that form. It is not possible to emulate, and only
by careful programming (i.e., attempting to cater for every
eventuality) can you get round its use.

Translation 17

OUT, the counterpart of IN (see earlier) is another which,
under exceptional circumstances, can be implemented in TI
BASIC, but as usual it depends very much on the circumstances
in which it is used. One function might be to transfer a character
to a peripheral, so if you know that the peripheral is a printer,
then you may be able to make a reasonable translation through
the use of OPEN, PRINT, and CLOSE. If you have a printer, that
is. It might also be used to operate a sound generator, in which
case if you can obtain details about the type of sound produced
then you might be able to use CALL SOUND(). In some
instances, OUT might also clear the screen.

PAUSE is similar to WATT (see explanation later), and under
certain circumstances it can be used to halt execution until a key is
pressed. That function can be imitated by:

300 CALLKEY(0,K,S)
310 IFS<1THEN300

320 continuation of program

PEEK and POKE, and their companions DEEK and DOKE, are
not available in TI BASIC, and generally cannot be imitated.
However, under certain circumstances they do have counter
parts. The distinction between PEEK and POKE and DEEK and
DOKE is minimal — on one or two machines PEEK and POKE are

used with hexadecimal values instead of the usual decimal, and
DEEK and DOKE were created to cope with decimal values, and
occasionally DEEK and DOKE represent double PEEKs and
POKEs — but for the most part you will see only the standard use
of PEEK and POKE. PEEK allows you to copy the decimal equi
valent of the contents (usually 1 byte) of a single address
(location) in memory ('peeking' at it), while POKE is used to
place a number in a particular location, replacing the number
which was previously stored there. Their forms are:

1) A = PEEK(B)
2) POKE(C,A)

which are: (1) copy into A the contents of an address in memory
specified by B, and (2) put the value given by A into the address
given by C.

Now, 99% of the time PEEK and POKE cannot be imitated in TI
BASIC. They can be used on other machines to clear the screen,
find the current position of the last PRINT, discover whether a
key is being pressed, operate a sound generator, specify a colour,

18 Musteringthe TI-99

placea machine codeprograminto a specified area ofmemory, or
re-write part of the BASIC program while it is running.

But 1% of the time PEEKand POKE are used to 'manipulate the
display file', whichtoyouandImeansusingCALL GCHAR(), or
CALL HCHAR() and CALL VCHAR() with single characters.
For example:

POKE(17716,65)

which might put the letter 'A' (ASCII code 65) into the top left-
hand corner of the screen (perhaps memory location 17716, which
is used purely as an example), would be translated into TIBASIC
like this:

CALL HCHAR(1,1,65)

Similarly,

H = PEEK(17716)

which would copy the value it found in location 17716 into the
variable H, would be:

CALLGCHAR(1,1,H)

To confuse matters further, on at least one machine the
symbols'!' and'?' may be used instead, the former being equiva
lent to POKE. You must be careful, though, since there are older
machines which permit the use of '!' for PRINT, and '?' for
INPUT.

PRINT can sometimes appear with other 'reserved words':

PRINT AT()
PRINT USING

PRINT AT can be emulated using a short routine which can be
found in the Hints and Tips chapter; PRINT USING is a way of
'formatting' the items being printed — for example, lining up all
the decimal points of a series of numbers being printed in a list.
TI Extended BASIC also uses IMAGE, which allows further
formatting. The exact format should be specified with the
program using it; if it isn't, trying to answer the question 'how
should I attempt to translate it?' is a little like trying to answer
'how long is a piece of string?'

RANDOMIZE (see also RND) may appear as RAND in other
BASICs, but may not always be flexible enough to allow you to

Translation 19

specify a 'seed' (e.g. RANDOMIZE 2) in order to have separate,
but reproducible, series of 'pseudo-random' numbers, as in TI
BASIC. (In Sinclair BASIC, you may see RANDOMIZE with USR
— see USR.)

REM can appear as '!' (a much over-worked symbol, I think
you'll agree), for example in TI Extended BASIC, and in other
BASICs REM doesn't require a space between it and the remark.
Thus you may find:

1200 REMARKABLE SUBROUTINE

which, should you be desperate to translate it, is:

1200 REMARKABLE SUBROUTINE

It seems to lose something in translation, though, and anyway, as
a general rule, I would not recommend the inclusion of REMsin a
program unless they were absolutely necessary. REMarks are a
hang-over from the days when ASSEMBLERS were the only
'translation' programs available, and they were designed to
ignore REMs (often implemented as colons':') — thus you could
REMyour original listing to your heart's content as none of them
was incorporated in the final, assembled, program. Today's
INTERPRETERS however do incorporate REMs, and they can
occupy valuable memory in TI BASIC listings.

REPEAT. . .UNTIL is similar to WHILE. . .WEND (see later).
RESUME, which is not one I have seen myself, apparently

continues execution of a program when completing the ON ERR
(see earlier) instruction. Again, there is no equivalent in TI
BASIC.

RIGHT$(), the third of the three string functions mentioned
earlier, is usually of the form:

A$ = RIGHT$(B$, length)

and instead of 'slicing' the string beginning at the first (or
leftmost) character, it begins from the end (or rightmost).
Therefore:

RIGHT$("HELLO", 2)

is "LO". In TI BASIC, SEG$() provides the equivalent:

A$ = SEG$(B$, LEN(B$) - length + 1, length)

Using our "HELLO" string again, which has a length of 5

20 Mastering the TI-99

characters, the TI BASIC equivalent results in:

SEG$("HELLO", 5 - 2 + 1,2)

which is:

SEG$("HELLO", 4,2)

or "LO". Notice that'5 -2 + 1'is evaluated as'(5 - 2) + l',and
not'5 - (2 + 1)'.

RND, which may also appear as RND(), does vary a little.
Some forms, like RND(n), give a whole number (integer)
between 1 and 'n', so in TI BASIC this is:

INT(RND*n) + 1

Others use RND() in certain ways to give either negative
numbers, or to repeat a series of fractional numbers. A discussion
of the generation of such 'pseudo-random' numbers would
require a book all to itself.

RPT$(), which appears in TI Extended BASIC, is similar to
STRING$() —see later.

RUN, or RUN with a line number, cannot appear within a
program in TI BASIC, but can be used by some forms of BASIC.
Its use usually resets all the variables (see CLEAR) before running
the program again, so it can only be implemented with (i) a
subroutine to emulate CLEAR, and (ii) a simple GOTO to the
start of the program, or wherever specified. For example:

3000 RUN

becomes:

3000 GOSUB 400

3010 GOTO start of program (which need not be the very first
line)

where the subroutine referred to might be like this:

400 A$ = ""
410 A = 0

420 B = 0

430 ST4 = 0

440 FORI = 1TO20

450 C$(I) = ""
460 NEXT I

470 RETURN

Translation 21

With a large number of variables you might have a problem,
especially if the program is a large one.

SAVE is another command which cannot be used in a TI BASIC

program but does occur in programs for other machines. In at
least one case, where it is possible to save a program with a
'name', the use of SAVE in a program causes that program to be
saved in a special way. When you subsequently re-load that
program it RUNs automatically once it has loaded successfully. In
Sinclair BASIC, this causes the first character of the 'name' to be
inverted — making it white on black.

SIZE, like FREand MEM, amongst others, gives the amount of
memory available. To imitate it in TI BASIC requires a short
routine which is explained in the Hints and Tips chapter.

STRING$(), like RPT$(), is a useful command which does not
occur in TI BASIC, and can really only be emulated through the
use of a loop and string concatenation (tacking one string onto the
end of another). The format is STRING$(string, number), which
produces a string containing repetitions of the specified string a
specified number of times. Thus STRING$("HELLO", 2)
produces "HELLO HELLO". To make a string of 16 zeros, for
example, it would require STRING$("0", 16).

TRON and TROFF equate to TRACE and UNTRACE in TI
BASIC. It is highly unlikely that you will see them in programs,
but just in case you do, you now know how to cope with them.

USR, with the format USR number, or sometimes USR "letter",
has no direct equivalent in TIBASIC. It generally transfers control
from a BASICprogram to a machine code routine, but can also be
associated with graphics commands in, for example, Sinclair
BASIC. Additionally, you may see various words associated with
USR, for example RAND USRnumber, PRINTUSR number, LET
A = USR number, and so on. These are most likely again in
Sinclair BASIC, and are simply mechanisms whereby the
computer can accept the command USR. The reasons for this are
fairly complex and involve a discussion of machine code pro
gramming, which is beyond the scope of this book. As a rule,
programs which contain this command cannot be translated
successfully into TI BASIC, primarily because we cannot provide
equivalents to USR, which is usually a critical factor in the
program.

VAL(), also mentioned earlier under EVAL(), does operate in
many cases like EVAL(), and the explanation of that function's

22 Mastering theTI-99

operation applies to VAL() also; TI's VAL() is not as powerful as
that found in other BASICs.

WAIT is a pause command, and can be imitated through the
use of a simple loop:

1000 FORI = 1 TO value

1010 NEXT I

where the value dictates the length of the pause.
WHILE . . . WEND, similar to REPEAT . . . UNTIL, has the

format:

250 WHILE X = 10

260 PRINT X

270 X = X + 1

280 WEND

Producing an equivalent involves IF . . . THEN:

250 IFX<> 10THEN290

260 PRINT X

270 X = X + 1

280 GOTO 250

290 continuation of program

WIDTH is another function which might be difficult to repro
duce in TI BASIC. It sets the width in characters for the screen, or
perhaps a printer. As far as the printer is concerned, because the
OPEN command in TI BASIC can specify a 'record length' it
might be feasible tomimicWIDTH by setting the record length to
whatever is specified by WIDTH, bearing in mind that a limit will
be imposed by the physical characteristics of the printer you are
using. For the Thermal Printer, for example, the maximum width
would be 32 characters, although it must be said that with some
very complex programming it is possible to produce a virtually
infinite-length line on the thermal printer, but the task is so
complicated it requires a book all to itself.

Closing Notes

In Sinclair BASIC, if the variable A$ contains "HIS LITTLE
FRIEND", then:

A$(1T03) = "HER"

Translation 23

turns the string into "HER LITTLE FRIEND" by replacing HIS
with HER. In TI BASIC this has to be produced using SEG$():

A$ = "HER" & SEG$(A$, 4, LEN(A$) - 3)

Similarly, if B$contains "GIVE ME A KICK", then:

B$(6T0 7) = "IT"

turns the string into "GIVE IT A KICK", and is imitated thus:

B$ = SEG$(B$, 1,5) & "IT" & SEG$(B$, 8,255)

Take careful note of the 255 in the second use of SEG$(); it is
usually a mark of sloppy programming, but in this case it is the
only practical way to perform the implementation. If you use 255,
the computer will include the remaining segment of the string,
however long it may be, without causing any errors.

The IF. . .THEN form:

IF A = B THEN PRINT "YES" ELSE PRINT "NO"

may be translated in one line (although, as noted earlier, it is
generally impractical):

PRINT SEG$(" YES NO ", 5 + 4 * (A = B), 5)

(Note that there is a space before the 'YES', one between the 'YES'
and 'NO', and two after the 'NO'.) If A does equal B, then (A = B)
evaluates to -1, which is multiplied by 4 to give -4, then added
to 5 to give 1, thus beginning the string segment at position 1,
with length 5 characters. This extracts " YES ". If, however, A
does not equal B, then (A = B) will evaluate to 0, which, when
multiplied by 4 and added to 5, will give 5, thus beginning the
segment at position 5, with length 5. This extracts " NO ".

All The Fours

There are at least four identifiably different TI-99s in existence,
and they are sufficiently different for there to be translation
problems if an attempt is made to copy or run a program intended
for one specific machine.

The four known machines are: NTSC 99/4, NTSC 99/4A, PAL

99/4 and PAL 99/4A.

The NTSC 99/4A has not been sold in this country, but the
other three versions have, beginning with the NTSC 99/4,

24 Mastering the TI-99

followed by the PAL 99/4. These two have identical keyboards,
using keys which are similar to giant calculator buttons. The
functions which are obtained on the later 99/4A via the FCTN key
are obtained on the 99/4s through the Shift key. The 99/4A
manuals give details concerning the 99/4 keyboard, but 99/4
owners might have a little trouble deciding exactly what the
function keys are.

Function 99/4 99/4A

AID SHIFT A FCTN 7

CLEAR SHIFT C FCTN 4

DELete SHIFT F FCTN1

INSert SHIFT G FCTN 2

QUIT SHIFT Q FCTN =

REDO SHIFT R FCTN 8

ERASE SHIFT T FCTN 3

LEFT ARROW SHIFTS FCTNS

RIGHT ARROW SHIFT D FCTND

DOWN ARROW SHIFT X FCTNX

UP ARROW SHIFT E FCTNE

PROC'D SHIFT V FCTN 6

BEGIN SHIFT W FCTN 5

BACK SHIFT Z FCTN 9

ENTER ENTER ENTER

In addition, the 99/4A has a CONTROL (CTRL) key, which is
intended primarily for use either with communications devices
like MODEMs or ACOUSTIC COUPLERS, or for transmitting
special instructions to peripherals like the impact dot-matrix
printer. It is also possible to use both FCTN and CTRL keys to
obtain some of the User-definable characters directly, instead of
having to use CHR$() as on the 99/4s. These differences,
although important as far as programming goes, are over
shadowed by the different character set possessed by the 99/4A.

On the 99/4, the standard character set is only part of the full
ASCII; the lower case (small letters) were omitted, but on the
99/4A they have been included, albeit as small upper case
(capitals). The problem is that a program written on the 99/4A,
which uses informative sections of text written in this small

upper case, will produce totally incomprehensible garbage on
the 99/4s. It is important for 99/4 owners to be aware that this
might happen, and to be on the look-out for such programs. It is

Translation 25

possible, through the inclusion of large amounts of extra data, to
redefine the 99/4 User-definable set to give the small upper case of
the 99/4A, but few if any 99/4A programs recognise this problem
so no attempt is made to compensate. The small upper case is in
fact the standard set for the 99/4, while the standard set on the
99/4A is a larger version — if you have seen the two character sets
available on the Thermal printer, then the resident TP set is
equivalent to the standard 99/4A set.

On top of this the 99/4A has three additional characters which
can be used as variable names. These are the 'back slash' (\), the
left square bracket ([) and the right square bracket (]). None of
these is directly accessible from the 99/4 keyboard, but they are
nevertheless active when a 99/4 is running a 99/4A program
which utilises them.

There are slight differences in the COS or Cassette Operating
System. The early NTSC 99/4s can use CS2 for both SAVE and
OLD, although the cassette cable may not have the necessary
connections fitted. There are programs around which process
data files using CS2, and of course later models will be unable to
run such programs unless all CS2 file commands are altered to
address CS1.

There are also, alas, bugs in all models, some of which are
specific to a particular model. Some of these are detailed in the
Hints and Tips chapter, with suggestions as to how they may be
overcome.

This chapter has been able to do little more than scratch at the
surface of the subject of translation — for example, no specific
details have been given about the makes of computer whose
dialects of BASIC sport the non-TI BASIC commands and
functions examined, and certain areas are virtually impossible to
explain in sufficient detail so as to allow trouble-free translation.
The most efficient tutor is perhaps experience, and if you spend
some time attempting to translate programs into TI BASIC that is
one attribute you will acquire rapidly.

Jargon

What is Jargon?

It is hard when discussing any subject, be it preparing Sunday
dinner or piloting the Shuttle, to avoid the use of jargon. Its
purpose is usually poorly understood, and its use is sometimes
criticised unreasonably. There are, naturally, cases where jargon
is used — or abused — unnecessarily, and yet others where a
word may be specially created to describe something which is in
fact already adequately described by an existing word.

Many examples of jargon do not appear on the surface to be so,
but this is because the specialised words are in general use and
are recognised by almost everybody. For example, the words
'grill', 'roast', and 'fry' are all specialised terms yet almost all
readers will recognise not only the field to which they belong, but
also the action which each describes. Some readers may also be
able to apply them to other fields, and will even be able to
distinguish their different meanings according to the context in
which they appear; that is, they can tell, by the way in which the
jargon word is used, exactly which meaning is to be taken.

The field of Computer Science is immense and covers an
enormous number of topics, many of them appearing only in
recent years. When discussing any aspect of any one of these
topics, the wealth of detail involved is so great that the dreaded
jargon has to be used in order to reduce complicated ideas to
single representative words or phrases. Often these words or
phrases are chosen from those in everyday use, not deliberately
to confuse or mislead innocent bystanders, but precisely because
those words or phrases are in common use, as well as being apt
descriptions. Initially these jargon words form an apparently
impenetrable barrier to understanding as far as the newcomer is
concerned, but once they are explained in an understandable
manner, and have been used often enough to become familiar,

Jargon 27

then the novice can find him/herself peppering everyday
conversation with them, and shortly their friends and colleagues
will be shaking their heads in bewilderment as they in turn
struggle to understand what is being said to them.

It is a trap which is all tooeasy to fall into, as manywill find;
once over the initial 'hurdle' it becomes difficult to remember just
what it was like to be one of the 'uninitiated', and I certainly
cannot claim to be able to avoid being incomprehensible even
part of the time.

No matter how hard you try, the useofasmallamount of jargon
is inevitable, primarilybecause anyattemptat discussionwould
become bogged down in explanations in fine detail of complex
concepts, so it is as wellto read up on someof the more common
wordsand expressions. This chapter will provide explanations of
some items in a way which is as freeof jargonas is possible; you
may begin to appreciate why jargon is usedso frequently when
you see the lengths towhich you have togo in order toavoid its
use.

We'll beginby looking at some oftheaspects ofBASIC which
are discussed in the chapters in this book. Because of space
limitationsonlya few oftheenormous numberofconcepts canbe
looked at here, but it should give you an insight into them.

BASIC

The word BASIC is a 'mnemonic' (pronounced 'knee mon ik') —
that is, it is a 'word' made up of the initial letters of a group of
other words, in such a way that it iseasierto rememberor discuss
them. We are familiar with this idea through, for example, our
Trades Unions: NUPE (usuallypronounced 'new pea'), which is
the National Union of Public Employees; CoHSE ('cozy'), the
Confederation of Health Service Employees; and so on.

BASIC stands forBeginners'All-purpose Symbolic Instruction
Code, and was devised in about 1964 in America's Dartmouth
College by Thomas Kurtz and John Kemeny. (The Americans
havea penchantfor producing mnemonics which themselves are
recognisable words.) It was originally intended as an intro
ductory language tohelpnewstudents understand theprinciples
ofprogramming before ploughing onintothemore complex, and
less easily understood, languages then available. Unlike most

28 Masteringthe TI-99

other languages, BASIC is simple and easy to learn — within a
very short time even young children can learn and understand
enough to be able to write programs. It is, in its many and slightly
varied forms, perhaps the most popular and successful language
yet produced, although in many academic eyes it is a 'dangerous'
language because it encourages 'sloppy thinking'.

It is perfectly true that it is possible to produce a BASIC
program which works, but which is virtually impossible to
understand or alter in the event oferror or changed requirements.

Perhaps the best way to view BASIC is as a stepping-stone to
more advanced things. After all, we don't expect a newborn
infant to speak or understand grammatically correct English; in
fact we go out of our way to use very simple words and
expressions (not to mention the 'goo-goo-ga-ga' syndrome), so
why should we treat the learningofa languageon a computer any
differently?

Words, Bytes, Nybbles, and Bits

These are among the most commonly used jargon words, and
annoyingly they are the ones rarely used in TI BASIC, simply
because we don't have ready access to the kind of facilities which
would enable us to discuss them in detail, with useful examples
of their function.

All four are measures of the data-handling function of the
computer. Bit is a contraction of Binary Digit, and is the smallest
piece of information which the computer can hold. Inside the
computer, a 'bit' corresponds to the state of an electrical pulse: it
has one of two (binary) states — relatively low voltage, corres
ponding to a 0, and relativelyhigh voltage, corresponding to a 1.
Agroup of four of these bits is calledaNybble, while 8are a Byte.

The combinations of Is and 0s in a nybble total 16 (0000 to
1111), and in a byte total 256 (00000000 to 11111111). When you
read the section later on numbers this should have a little more
meaning.

All the letters, the numbers 0 to 9, punctuation marks, etc.
(called 'characters'), which appear on the screen display have to
have details about their shape stored somewhere inside the
computer. For the 'User-definable characters', in TI BASIC, the
graphics command CALL CHAR() uses 16 nybbles to specify

Jargon 29

those details, representing each nybble with the 'digits' 0 to 9 and
A to F. These digits form the basis of a numbering system called
Hexadecimal, which we will cover in more detail later. All the
shape details are stored internally in 8 bytes per character.

Using a specialsystemofcodes,onebytecanbe used to refer to
the code of one 'character' (a letter, number, or punctuation
mark), so the 256combinations of Is and Os in a byte can be used
to refer to the codes of 256 characters — again, this is covered in a
little more detail later in the chapter. Using ASCII (see later), the
standard coding system, 7out of the 8bits in a byte can be used to
represent the 128character codes (coded0 to 127).

A Word is slightly more difficult to define. Its size in bits is
determined by the number of bits which can be held at one
instant in an area of the computer called the Accumulator, which
usually resides in a 'micro-chip' called the Central Processing Unit,
or cpu. The accumulator holds the results of processing by the
cpu, and on most of the computers used by enthusiasts has a
capacityof8 bits. On the 99/4 and 99/4A though, the accumulator
can hold 16 bits, so a word on other machines is equivalent to a
byte, whileourwordis twobyteslong. Thishasadvantages as far
as Machine Language programming is concerned, for it permits a
wider variety of instructions, greater mathematical precision,
and the processing of larger quantities of information each time.
Machine language is discussed below. All of these aspects are,
alas, closed to the TI BASIC programmer, for to gain access to
them we must invest in further equipment.

Machine Language

The language which we understand, known as Natural Language,
is not one which the computer is capable of 'understanding'. Our
language is a High Level language, immensely complex, full of
contradictions and 'exceptions to the rule'. A computer is
nothing more than a sophisticated machine, and its 'language'
bears little comparison to ours. So how then, you might ask, does
it 'understand' BASIC, which has words like PRINT, IF, and
NEXT which are all English words? The short answer is that it
doesn't. It 'understands' the words in the same way that a car
'understands' pressure on a brake pedal means 'apply the
brakes'; in other words, there is no 'thought', as we would know

30 Mastering the TI-99

it, behind the computer's actions — the machine responds to a
command in a particular way because it is designed to. The
difference, and a very important one it is too, is that on the car
You cannot redefine the purpose of the brake pedal. You cannot
change the function of the brake pedal into, say, one of steering,
or of windscreen-wiping. On the computer, however, because of
its design, You can make changes to the machine which enable it
to perform an enormous variety of tasks, simply by re-
programming it.

As all matter is composed of atoms, so all computer programs
are composed of Machine Code Instructions. They are the basic
building blocks, so to speak; the 'language' which the computer
can 'understand'. In BASIC, the English-like words are held as a
kind of 'foreign language dictionary' in the computer's memory.
A special program called an Interpreter scans your BASIC
program, looking in the dictionary for the words which go to
make up your 'listing', and as each is found, the interpreter
invokes sequences of machine code instructions which are used
to make the computer perform the tasks specified by the English
words.

The 'vocabulary' of machine code instructions is called the
Instruction Set, and is composed of really quite simple functions.
Using them, the computer's cpu can add two bytes (because our
cpu has a 16 bit capacity, it can work with larger numbers of bits),
subtract them (which in fact involves making one byte 'negative'
and then adding the two), compare them to see if they are equal
(the cpu in the 99scan also multiply and divide them); it can work
on the individual bits themselves, testing them to see if they are
Is or 0s, shunting them around within the byte, making them 1 if
they were 0 and vice versa; it can avoid executing (jump over, like
GOTO, or IF . . . THEN . . .) sequences of instructions; all in all,
it can perform only surprisingly simple tasks, yet these can be
used in combination to produce some startling results: with the
right programming the computer can generate poetry, sing (I
have heard the 99/4A, Terminal Emulator II, and Speech
Synthesiser being used to produce a creditable rendering of
'Daisy, Daisy'), and commands spoken by an individual can be
translated by the computer into physical action — turning lights
on, dialling a telephone number, and so on.

Each machine code instruction is a group of bits, usually a byte
or so, stored in an address in memory. Machine Code is usually

Jargon 31

the decimal or hexadecimal equivalent of the combination of Is
and Os in the instruction, while Assembly Language is the set of
almost-English mnemonics (see BASIC), a sort of 'shorthand' for
the instructions, which makes them easier to remember. A
special program called an Assembler allows you to write your
machine language program in near-English (but not as near as
BASIC) and the computer translates it into machine code. An
example of machine code might be 'CD FE 11 09', while the
assembly languageversion might be 'MPY11,09'. In English this
would be 'Multiply llh by 9h'. (Please note that this example is
totally artificial.)

There are therefore several 'levels' of language which can be
used with a computer, ranging from BASIC ('HIGH') to machine
code ('LOW'). There are many different languages which can be
used on the same computer; some of their names you will doubt
less have come across: Cobol, Forth, Lisp, APL, Algol, Fortran,
LOGO, Pascal, etc. They each have different facilities for
handling data: one willconcentrate on high-precisionarithmetic,
another on processing text. Depending upon your requirements,
so you would choose a language which is the most suitable tool
for handling your information.

Boolean Algebra

The title suggests some weird form of arithmetic, but in fact it
describes a way of making decisions which we all use, probably
every day. George Boole, a 19th century mathematician, after
whom it is named, developed this notation which uses LOGIC,
rather than arithmetic. It is concerned with two attributes: TRUE
and FALSE. Instead of the arithmetic 'operators' (add, subtract,
multiply, divide) it uses 'logical' operators: AND, OR, and NOT
(and there are combinations of these). Examine this statement:

If it is raining AND you have a raincoat then wear it.

There are two statements within it:

a) It is raining
b) You have a raincoat

and, when tested (for 'veracity', if you like) they BOTH must be
TRUE before you can comply with the instruction 'wear it'. If it

32 Mastering the TI-99

isn't raining, or if you don't have a raincoat, then you won't or
can't wear it. The example is contrived, but it should take you a
little way towards understanding the next section.

The operators named above are used in two languages on
computers: BASIC, and Machine Language. Their exact operation
differs in each language, but the principle is the same. In machine
language, AND, OR, and NOT (as well as another called XOR or
EXCLUSIVE OR) perform functions on bytes of data. AND, OR,
and XOR operate on two bytes, while NOT operates on one. In
effect, AND, OR, and XOR placeone byte 'above' the other, thus:

11010110 (top line)
01111111 (bottom line)

(result line)

The operator AND compares the first bit in the top line with the
first bit in the bottom line, and onlywhen both are '1' will it place
a 'V in the 'result' line. It then looks at the second bits in top and
bottom lines, and so on until it has compared all the bits. In the
above example the result line will look like this:

01010110

which, if you look very carefully at the top line, is the first byte
with the first '1' turned to '0'. It is a usefulway of 'isolating' bits or
groups of bits (see later in ASCII the discussion of checking for
errors, when the PARITY BIT is 'stripped off). When however
OR (also known as INCLUSIVE OR) is used, the effect is one of
'mixing' or superimposing one byte on another, for with OR the
operation will place a 1 in the result line when a 1 appears in
either or both of the top and bottom lines. This kind of function
can be useful when making, say, one shape on the screen pass
'through' another. For example, ORing these two bytes gives the
result shown:

10011001 (top line)
00111100 (bottom line)

10111101 (result line)

XOR is slightly different in that a 1 will appear in the result line if

Jargon 33

either of the compared bits is 1, but not if BOTH are 1. Thus:

10011001 (top line)
00111100 (bottom line)

10100101 (result line)

NOT works on a single byte, and is also called an Inverter. Its
function is also referred to as Ones Complement. It simply works
from one end of the byte to the other, making all the Is into 0s,
and vice versa. Thus the effect of NOT on:

10100101

is:

01011010

Although this could be used to invert a shape (make it green on
red instead of red on green for example), it is used in machine
language programming as a step towards producing a Negative
number in binary notation. The actual process is called Twos
Complement, and the second step involves adding a binary
00000001 to the value obtained after Ones Complement. One use
for negative numbers in machine language is as part of the
process of subtraction (see above).

String and Numeric Variables

In BASIC you can store either text (i.e. any quantity of letters,
digits, punctuation marks, known as a String) or numbers (i.e.
combinations of the digits 0 to 9, plus a few others: the decimal
point'.','-','+', and 'E'. 'E' is thesymbol forExponentiation, and
stands for 'multiplied by 10 to the power of, so that 1E4 is '1
times 10 to the power of 4' or 1 x 10000. These are called
Numeric). The distinction on the computer between a String and
Numeric item is that the arithmetic operators ('+','-', '*','/', and
' *') cannot be used with Strings.

A Variable is a method of storing data in such a way that, by
referring to the name of the variable, you refer to the data itself.
The numeric and string data stored in variables are both referred

34 Mastering the TI-99

to and stored differently on the computer, and the distinction
between the names of string variables and numeric variables is
made by adding a '$' to the name. Thus 'A' or 'ZZ' are names of
numeric variables, while 'A$' or 'TIMES' are names of string
variables.

Arrays, Elements, Subscripts

These are descriptions of a method in BASIC for referring to a
stored list of information. The Array is a sort of list; the Elements
are the number of separate 'items' stored in the array; and each
element has a number which refers to it — the Subscript.
Assuming that you already know a little of STRING and Numeric
Variables, here is an array called SHOP$ which has 10 words
stored in 10 elements:

Word Stored in:

Tea SHOP$(l)
Butter SHOP$(2)
Cheese SHOP$(3)
Bread SHOP$(4)

Eggs SHOP$(5)
Milk SHOP$(6)
Cake SHOP$(7)
Sugar SHOP$(8)
Salt SHOP$(9)
Mustard SHOP$(10)

Element 1 of SHOP$ — SHOP$(l) — contains the word 'Tea',
SHOP$(2) contains 'Butter', and so on. This type of array is
known as One Dimensional. The number of dimensions relates to
the number of subscripts necessary to refer to the elements of the
array. A Two Dimensional array might be:

Columns: 12 3

Rows: 1

2

Sandra Blue Sky

Jane Green Wham

Susan Brown Duran Duran

Herethedata,which are spread in two directions, areadescriptive

Jargon 35

table of the girl friends of one G. Whizz, playboy and deckchair
attendant on Cannes' nudist beach, listing them by name and
giving their eye colour and music preference. If the array is called
WOW$, then WOW$(3,3) contains Susan's music preference,
while WOW$(l,2) contains Sandra's eye colour (referring to the
elements by row and column). Here there are 9 elements in all,
arranged as 3 by 3 'pigeon holes'.

A Three Dimensionalarray is perhaps a little too complex to do
anything more than describe; a book could be regarded as a three-
dimensional array, with each letter and punctuation mark being
referred to by page number, and row and column on the page.
The format would be BOOK$(page, row, column). An example of
a FourDimensional array might be a series of volumes, this time
with the letters and punctuation marks on a given page also being
referred to by volume number as well. Thus the format might be:
BOOK$(volume, page, row, column). A Five Dimensional array
could be represented by a library filled with volumes of books, in
which case a single punctuation mark on one page of one volume
of a series on a shelf could be referred to by BOOK$(shelfnumber,
volume, page, row, column).

Arrays are very useful when it comes to storing data which is
related in some way: for example, surname, hours worked, and
wage due. On the 99sin TIBASIC we are limited to a maximum of
three dimensions (and seven in Extended BASIC), but some other
machines allow you to specify as many dimensions as your
available memory will allow.

Numbers: Binary, Decimal, Hexadecimal

The counting system that we are familiar with is called Decimal,
and is based on the number 10. Combinations of the digits 0,1,2,
3,4,5,6,7,8, and 9 are used to represent quantities, and for most
of us it has been so long since we learned about it that it has
become second nature to us.

However, there are numbering systems in use which are based
on numbers other than 10, and two of these surface regularly in
computing. They are called Binary, which is based on 2 and uses
combinations of the digits 0 and 1, and Hexadecimal, which is
based on 16 and uses the digits 0 to 9 and the letters A, B, C, D, E,
and F, where A represents decimal 10, B represents decimal 11,

36 Masteringthe TI-99

and so on up to F, which represents decimal 15. Hexadecimal, or
hex, uses the letters because it enables single 'digits' to represent
all of the numbers in the range 0 to 15.

If you were never exposed to the idea of counting in something
other than tens, or it has been so long that you have forgotten all
you ever knew, then you might well experience some difficulty
initially. It is unfortunate that you need to understand the
functioning of a number of facilities which are absent from TI
BASIC, like the operators AND, OR, XOR, and NOT, and
machine language, all of which are fundamental parts of this area
of computing, in order to build up a reasonably complete picture
of the operation of any computer.

To begin with, let us study the decimal system of notation, in
order to understand the principles involved and thus hopefully
follow their application to binary and hex numbers.

When we write the decimal number 123 we are in fact using
shorthand for:

(1 * 100) + (2 * 10) + (3*1)

You may be familiar with the childhood practice of performing
calculations by writing the numbers under column headings:

Hundreds Tens Units

12 3

which can be rewritten thus:

100 10 1

12 3

In each case the column headings begin at 1 on the right and
increase by factors of 10 (the 'base') as you travel to the left.

In binary, the headings increase by a factor of 2:

4 2 1

10 1

(so this binary number, 101, is (1* 4) + (0* 2) + (1* 1), or decimal
5)

Jargon 37

and in hex, by 16:

256 16 1

F C 7

(so this hex number, FC7, is (15* 256) + (12* 16) + (7 * 1), or
decimal 4039). Remember, zero multiplied by any number is still
zero.

Using the information presented so far, how would you
convert the binary number 1100 to decimal, and to hex? One
method might be to revert to the childhood practice of putting the
number under columns:

8 4 2 1

110 0

This is then 8 + 4 + 0 + 0, or 12 decimal. 12 decimal is C in hex,
for C is the symbol which represents 12.

Note that in each case I have tried to make sure that you knew
which numbering system I was referring to; suppose your task
had simply been to convert 1100 to hex?Without knowing exactly
what 1100 represented, you wouldn't be able to do it. Is it 1100
binary, or 1100decimal? Or even 1100 in some less well-known
base — say 8, which is called OCTAL, incidentally. It is
important to stipulate which numbering system you are using.
There are different ways to notify an observer of the base of the
number being used, but by and large you can use 'd' for decimal
(e.g. 23d), 'b' for binary (e.g. 11011b), and'h' forhex (e.g. A403h).
Some people prefer to write the number with the base as a trailing
subscript, but that can lead to confusion if your penmanship is
none too good, or if your typewriter can't produce subscripts.

ASCII

ASCII — pronounced 'askey' — stands for American Standard
Code for Information Interchange. It is analogous to Morse code in
many respects. It is a commonly agreed, standard way of repre
senting symbols in BASIC, where 'symbol' means letter, number,
punctuation mark, or Control Character. Control characters are
obtained using the Control Key (only available on the 99/4A) and

38 Mastering the TI-99

are used to give special instructions to attached equipment: for
example, to mark the beginning and end of a piece of text which is
being transmitted, perhaps to a printer. There is not space here to
go into ASCII in great detail, for it is far more complex than it
looks. There are 128 ASCII characters, which are listed in your
manual, numbered 0 to 127, and each is stored in memory as a
byte. These 128 codes are represented by only 7 out of the 8 bits in
a byte, and the 8th bit is used in a technique for checking for
errors in transmitting bytes from one location to another. The full
8 bits allow codes 0 to 255, and in TI BASICyou can print all 256
characters to the screen, but of the characters with codes greater
than 127, some are used for graphics purposes, while the others
have no practical use, generally speaking.

The error checking is simple. The 7 bits which are used to
represent ASCII character codes are examined, and if there is an
odd number of Is, the 8th bit is also set to 1 to make it an Even
number (called Even Parity). Alternatively, if using Odd Parity,
the number of Is is counted, and if there is an even number of Is,
the 8th bit is set to 1 in order to make the number Odd. Otherwise,
the 8th bit is always 0.

Then, depending on the type of Parity Checking (odd or even)
chosen in the computer, any received character has its bits
counted up once it has reached its destination, and, if there is an
odd or even number of Is the computer 'knows' that some data
have been lost, and can either try asking for the data to be trans
mitted again or just stop and display an error message.

The effect of the 8th bit can be undone by 'stripping' it off using
the Boolean operator AND (see Machine Language). If any byte is
ANDed with the binary number 01111111, only the 7 rightmost
bits will remain, leaving the 8th (leftmost) bit set to 0. This is a
common use of AND in machine language programming.

ASCII is not the only coding system around, but it is the one
most commonly used and after a time you will, through repeated
use, become more familiar with some of the codes — 65 for the

letter 'A', or 48 for '0' for example.

Conclusion

It has not been possible to explain in anything like sufficient
detail the vast majority of jargon words and expressions which

Jargon 39

you are likely to encounter. Hopefully, though, you will have
experienced a little of the 'flavour' and may not be completely
overawed by some of the conceptswith which you may have to
deal as you delve deeper into any aspect of computing. If you
finish this chapter just as confused (or more so) as when you
started, then don't forget: that's not Your fault, it's Mine.

File

Handling

The subject of File Handling is broad and quite complex. It covers
not only the handling of data files, but also of program files. We
will limit ourselves to a discussion of the handling of cassette data
files in TI BASIC, as the basic system does not permit manipu
lation of other kinds of file(and few owners are likely to be able to
afford the disk system, or the printer).

Cassette file handling on the 99/4 and /4A is made more
difficult by the fact that no two individuals' filing requirements
are exactly the same. Also, like learning to program, once one has
overcome the initial hurdles one quickly forgets what it is like not
to understand, and it can be something of an effort to second-
guess the kind of problem which is likely to face the newcomer.

Generally, the most common problem appears to be an
inability to create a mental picture both of what is required, and
of what is going on inside the machine. Jargon abounds in this
area — I/O BUFFER, DEVICE.FILENAME, FILE TYPE, etc., all
serving to trip the unwary.

TI's own manual does give condensed information on File
Processing, but the average owner needs to be led slowly and
gently through each section. It can require quite some will-power
to ignore the gut feeling of 'I'll never understand this lot!', and to
force yourself to go through, sentence by sentence — even word
by word if necessary — and even then total success is never
guaranteed.

Having apparently overcome the difficulties involved in
understanding the manual, the next problem lies in under
standing why the computer keeps rejecting your carefully
formulated and surely-correct filing instructions. You may be
certain that you have followed everything in the manual to the
letter; you can see absolutely nothing wrong with the statements
in your program; and yet. . . and yet... it insists on crashing.

Now, file handling shouldn't really present any problems at all

File Handling 41

(Ican say this now that I've overcome my own difficulties) and yet
it does so, and frequently. I have spent more time than I care to
admit to, just trying to store and retrieve the simplest items of
data. I couldn't even get the examples in my 99/4manual to work,
and eventually I had to admit defeat.

It wasn't until around 18 months after buying my machine that
I finally discovered why I had not been successful, when a fellow
enthusiast sent me some text filed on cassette, with a program to
retrieve it.

Now that I had something on tape which I knew must be
retrievable, I was determined once and for all to master this one
grey area.

It transpired that the reason for my former lack of success
stemmed primarily from two things:- firstly, my habit of dis
connecting the 'remote' lead frommy cassetterecorder in order to
speed up tape handling for programs, and secondly the omission
from my TI manual of a vital piece of information.

When you open a data file to cassette—a processwhich we will
examine in more detail later—the computer suspends operations
for quite a while before continuing. This is before it begins
storing/retrieving data. The intention (presumably) is to ensure
that the leader tape is not under the tape recorder's record/
playback head, and to pass over the first few seconds of tape,
which is often damaged (due, for example, to 'shedding oxide').
A similar delay occurs when a program is being SAVEd to tape.

However, the manual didn't warn of this delay, and because I
didn't have the 'remote' lead connected I was unaware that the
computer was not yet ready to begin transferring data.
Consequently, when I tried loading in somepreviously recorded
data, I was playing the tape to a deaf machine, and then when I
had reached the end of the data file and no DATA OK message
had appeared — or whatever was due to happen — I was re
winding the tape while the computer listened out for incoming
data. By the time that my data again came under the playback
head, the computer had had enough of waiting, and told me NO
DATA FOUND.

You can avoid this experience by becoming familiar with the
'pause' through this short program:

100 PRINT "BEGIN OPENING THE FILE"

110 OPEN #1: "CS1", INPUT, FIXED

42 Masteringthe TI-99

120 PRINT ::: "FILE OPENED"

130 CLOSE #1

140 PRINT ::: "FILE CLOSED"

The cassette leads do not need to be connected; you won't need
any data on your tape because the routine doesn't attempt to
read any; the specifications in line 110 are not really important;
and the computer thinks that the system is working normally.
(You may find that your tape recorder will not function correctly
with your computer for technical reasons — perhaps the best
policy is to contact one of the TIUser groups and ask them if they
can recommend a tape recorder.)

You may, of course, have had no problems whatsoever in
mastering filing — in which case award yourself a gold star!

From this point the chapter will depart from the standpoint
adopted until now, and instead of carrying on from where the
manual leaves off, it will attempt a more comprehensive
explanation of the facilities offered by TI BASIC for cassette file
handling.

There are two aspects to filing which we shall examine here:
firstly, file handling or data processing and what it involves; and
secondly, what it entails as far as TI BASIC is concerned.

To most people who don't spend their working days handling
files the subject ofFileHandlingcanbe confusing ifnot daunting.
Commonly we expect a file to be a folder or something similar,
used to store sheets of paper containing details of business
transactions, or medical records, or school project notes, and so
forth.

In computer terms, though, a file is simply something outside,
and linked to, the computer, to and from which data are
transferred. The keyboard and the screen are files, as is the
printer, the cassette tape recorder, the disk drive, the speech
synthesiser, and so forth. Depending on the capability of the file,
data can be transferred in either or both directions: from
computer to file, and/or from file to computer.

When the computer needs to transfer information between
itself and a file, it first has to set aside a kind of 'waiting area' in its
memory, called an INPUT/OUTPUT, or I/O, BUFFER. This
waiting area is something like a holding bay, where information
which is 'in transit' sits and waits to be moved to its destination.

Generally the movement operates on the principle of 'we go when

FileHandling 43

the wagon is full' — that is, the data are not moved until a certain
quantity is ready to be transferred. This quantity is dictated
either by the capability of the filewhich is its destination/origin,
or by the requirements of the person doing the filing.

The specification of the size of the waiting area (buffer) is
contained within the BASIC command 'OPEN', giving the name
of the file and some details as to whether the 'traffic' is to be
incoming only, outgoing only, or both. (Some TI peripherals
have a small amount of memory on board which 'identifies' them
by name to the computer and also indicates what minimum
specifications they require; the system is designed so that if you
attempt to use a peripheral which doesn't possess this identifi
cation, the computer will 'refuse' to work with it.)

Each waiting area (buffer) — there can be several on the go at
any one time — is identified by a 'file number', rather like a
'platform number' at a rail station. Platform #1 might have
'outgoing traffic' to the printer, while platform #2 might have
'incoming traffic' from a cassette tape recorder.

On the TI-99s, platform #0 is a special case, having its function
preset by the manufacturers. Outgoing traffic using platform #0
is sent to the TV screen, while incoming traffic arrives, in varying
amounts, from the keyboard. Whereas the programmer can
determine the characteristics and destinations/origins of plat
forms #1 upwards (to #127 or #255, depending on the
capabilities of the peripheral), the characteristics of platform #0
cannot be altered, nor can the waiting area be shut down.

The specification for information being transferred also
involves a description of its file's capabilities: some files simply
allow you either to add information onto the tail-end of the last
'train-load' sent, or to take the information out in exactly the same
sequence in which it was originally stored (Sequential Access),
while others allow you to be more selective and to store or
withdraw any item from any position (Random Access) — rather
like taking library books from, or replacing them on, shelves: you
don't have to start by the library entrance and work through every
book, cover to cover, until you reach the one you were interested
in. You can walk directly (after consulting the library index) to the
book you want, take it out, read it, and put it back again (not
necessarily in the same place).

Unfortunately, due to the physical characteristics of the
cassette tape filing system you have to do the equivalent of

44 Mastering the TI-99

working through every book, cover to cover, until you reach the
one you want; the other, more direct, and therefore faster, system
requires a disk controller and drive(s).

To complicate matters further, there are certain specifications
which do not have to be 'declared' to the computer; these are said
to be 'defaults', which means that unless you tell the computer
otherwise, it will assume certain things about your filing
requirements.

If the explanation so farconjures up a mental image of a railway
goods yard bustling with activity then that is not too far removed
from the actual state of affairs; the only difference is that here the
trains tend to leave only when they are full or when the station is
closing its platforms down.

To recap: a file as far as we are concerned is really a peripheral
— the screen, the keyboard, a cassette tape recorder, the printer, a
disk system (disk controllerplus disk drive or drives), the speech
synthesiser, etc. In some cases the name of the peripheral is also
the name of the file (e.g. CS1, CS2), while in others the peripheral
name and the file name combine to give 'device-name.file-name'
(e.g. DSK1.INVADERS). All data which are being moved, either
from a peripheral into the computer, or from the computer out to
a peripheral, have to stop temporarily in a buffer (waiting area in
memory for data in transit, specifically set aside for certain
peripherals), before proceeding to their destination.

We have covered in broad outline what a 'file' is as far as TI

BASIC is concerned. TI BASIC is based on what is known as a

COS, or Cassette Operating System, which means that, as
standard, it is designed to operate with a cassette-based or tape-
based filing system. A 'file' created using TI BASIC is rather
clumsy to manipulate, and is thus not a suitable medium for
storing large amounts of data. There is the added difficulty that
there is no inbuilt checking mechanism as there is for programs,
so that you either have to have a very trusting nature or time-
consuming and repetitive checks of your own — and these could
all come nastily unstuck because of a piece of iron oxide which
chooses to go missing from the section of tape which the
computer is trying to read.

Having opened your file and perhaps generated some data and
put it into (onto?) the file, you can then proceed to 'process' it.
This processing can take many forms: reading in old information,
updating it, or performing calculations upon it (providing it is in

File Handling 45

a form suitable for this) and writing it back out again; searching
for a particular item or items in a file; sorting (arranging) the data
in a file in a particular way (alphabetically, numerically,
ascending or descending order, etc.); printing it out, either on the
screen or to the printer; and so on.

Let us now examine cassette filing using the commands
available in TI BASIC. The commands are OPEN #, INPUT #,
PRINT #, and CLOSE #, and in fact the TI manual makes some
thing of a meal of the whole thing by not restricting its discussion
to those details which are specific to cassette files alone. In
addition there are certain items of information which have no real

function whatsoever, whether in TI BASIC or Extended BASIC.
The OPEN command is the logical command with which to

begin. It is this which specifies the format which the transferred
data will take, and it has several components:

File-number: all files are addressed through a unique number
between 0 and 255(or less, depending upon the capabilities of the
file). File #0 is the screen and keyboard and cannot be OPENed or
CLOSEd. In fact PRINT #0 and INPUT #0 are exactly the same
as plain PRINT and INPUT, but when using file numbers it canbe
convenient to refer to them through variables; thus PRINT #F
could be used to print data onto the screen when F = 0, and to
another peripheral (a printer perhaps) when F =1 (or whatever is
chosen). Likewise INPUT #F can be used to obtain data from the
keyboard when F = 0, and from a peripheral when F = 1 (or
whatever). However, you cannot include an 'input prompt' (i.e.
the material in quotes in 'INPUT "ENTER YOUR INSIDE LEG
LENGTH:" : 1$') with INPUT #F, and anyway, none would
usually be necessary — what purpose would it serve to 'talk' to
the tape recorder? A file number is always entered as the hash
sign (#) followed by the number (e.g. #1, #22; you can even
have an expression: #12 * 12 or #7 4- A * B). A file number must
be used with OPEN.

File-name: the file name in this case refers to either CS1 or CS2.

You can use either of these in quotes (OPEN #1:"CS1"), or as
string variables (OPEN #1: Z$ — where Z$ contains "CS2"), or
even a mixture: OPEN #1: "CS" & STR$(N)—where N is either 1
or 2. A file name must be used with OPEN.

File-organisation: the only organisation permitted with
cassette files is Sequential, and it is a default option, which means
that you don't have to use it with OPEN. Sequential files have to

46 Mastering the TI-99

be read/written one after the other. The tape/LP contrast is very
apt: think of being able to put the stylus straight onto the fifth
track of an LP, while with a tape the previous four tracks have to
pass the playback head first—much slower.

File-type: again this is rather a daft inclusion, as for all practical
purposes the only realistic specification is Internal (which means
that the data are stored in a manner which the computer can
process quickly). However, the default option is DISPLAY (a
much more involved, inefficient, time-consuming and limited
format) which seems illogical. You must therefore specify
INTERNAL as the file type.

Open-mode: this tells the computer whether the data are to be
transferred from peripheral to computer, or vice versa. The two
specifications are INPUT and OUTPUT. INPUT refers to data
coming into the computer, OUTPUT to data going out to a
peripheral. The default option is one called UPDATE which
apparently cannot be used by cassette files. You must therefore
specify either INPUT or OUTPUT, not forgetting that only CS1
can be used for OUTPUT; CS2 can't (except on some machines:
see Hints and Tips).

Record-type: a record is an item of data (a name, an address, a
number, etc.), a group of which go to make up a file. The two
record-types which can be specified are Variable or Fixed,
followed by a number (of which more later). Because of the fact
that cassette files can only be Sequential, the default type is
Variable, which is confusing because although that is efficient in
terms of storage, the manual gives FIXED as the appropriate
record type with cassette files. The reason for this is not totally
clear. However, the confusion is further increased because
although you can specify the number of characters in each record,
if you do specify FIXED with a number of characters (e.g. FIXED
100, which makes the buffer size 100 characters in length) the
computer will to an extent ignore what you've told it, because
with cassette tape records there are only three lengths allowed:
64,128, and 192. A specification like FIXED100 is actually set up
by the computer to be FIXED 128, as 128 is the nearest higher
value to 100. The difference in length between 100 characters and
128 is made up by the computer through 'padding' — i.e.,
wasting space. On top of all that, certain peripherals have their
own restrictions as to the number of characters which they can
handle in any one record (e.g., the Thermal Printer— one from

FileHandling 47

the distant past and not now available — which can only take 32
characters per line), which the computer will compare with what
you have told it, and woe betide you if you got it wrong. You
must therefore specify FIXED, and if you don't specify a length in
characters, the default is 64.

File-life: finally, in an act of sheer lunacy, a specification is
included which refers to the 'life' of the files you create. It is
lunatic because there are two possibilities: Permanent and
something which we must assume is called 'Temporary'; the
default is Permanent; and you can only have Permanent files on the
99s so it doesn't matter anyway!

There is an awful lot of information here; even when the trees
have been pruned it is still difficult to see the wood. As a general
recap and guide to cassette file information, note the following:

File number: 1 to 255

File name: CS1 or CS2 subject to restrictions
File organisation: don't bother
File type: INTERNAL
Open mode: INPUT or OUTPUT accordingly
Record type: FIXED according to the manual, and you

may want to add a number: 64,128, or 192,
whatever is equal to or greater than your
requirements

File life: don't bother

So far we have only examined the format for the OPEN state
ment; once we've opened a file and done something with it we
will then want to close it. Don't argue; because of the way that the
buffers work some of your data could still be languishing some
where, waiting to be added to, so that the computer will send
them on their way. The only way to get round that once you've
finished is to use the CLOSE command, which empties the
relevant buffer by sending any remaining data packing, and then
closing down the buffer. That's why the manual recommends
that you should always use BYE to exit from BASIC, because BYE
empties all buffers and then closes down. QUIT (FCTN =, or Shift
Q, depending upon your machine) doesn't empty the buffers
first, it just shuts up shop, thus losing any data which might still
have been around. Under what circumstances would you want to
use BYE?Well, if the program has just crashed with an error you

48 Masteringthe TI-99

might not be pleased to lose any information currently still on
board.

The CLOSE format is just CLOSE with '#' and the relevant file
number (e.g. CLOSE #1, CLOSE #F, etc.).

At last we come to the more informative section: just how DO
you decide on your file structure?

A file is very much like a form (and if you hate filling in other
people's formsyou're in fora treat,becausehereyou get to design
your own form, for you to fill in) where all the little boxes in which
information is normally put have been placed end to end — a
weird sort of form, but that's the way things work with cassette
files (and with most others).

Taking an example and working it through, let us cater for Mr
X's need to store details on his friends (1984 where are you?).
Suppose he wants to store these details:

1) Forename
2) Other names
3) Surname
4) Address
5) Sex
6) Age
7) Birthday
8) Hobbies, Likes, Dislikes(so that he can buy them the most

pleasing presents at various times of the year)

To begin with, they will have to be entered into the computer
so that it can then store them on tape. All the items listed above
can be entered as strings (and assigned to string variables): for
example, the age given can be processed to yield an integer
number ofyears, and then CHR$()used togivea singlecharacter
which will cover all ages from 0 to 255(which, of course, is more
than adequate); the sex can be simply M or F (unless some
clever-clogswants to put something else); and the birthday can
be encoded as two characters whose ASCII codes refer to the
month and the day. The aim is to compress the data as much as
possible. The following variables might be used to hold the data:

1) F$ (for Forename)
2) M$ (for Middle names)
3) S$ (for Surname)
4) L$ (for Location)
5) G$ (for Gender)

FileHandling 49

6) A$ (for Age)
7) B$ (for Birthday)
8) T$ (for Tastes)

We won't go into exactlyhow the data are validated after input (to
make sure that an impossible birthday date has not been entered,
for example), but here is a sample input:

1) Ian
2) Petrovicz
3) Knightly
4) 2, The Cottage, Milton, Beds
5) M
6) CHR$(27)
7) CHR$(25)&CHR$(12) :i.e., day & month
8) Hobbies: Mugging little old ladies; Likes: Football;

Dislikes: Televised Sport

So far, so good. We have our information format sorted out; now
we need to work out how to open the file to CSl. Certain items of
information could prove to be rather lengthy — the address, for
example, or the list of hobbies etc. — so being wary we might
settle on the maximum 192 characters per record (what you see
above constitutes one record), so FIXED 192 is the appropriate
specification. We're transferring the data from computer to tape,
so the specification will be OUTPUT. The remaining specifica
tions will be INTERNAL (see the list of cassette file specifications
above), and a filenumber—say 1.The finalOPEN statement will
be:

OPEN #1: "CSl", OUTPUT, INTERNAL, FIXED 192

We now have the vital data to begin writing the program to place
the data on tape—the instructionsforsetting up the file. Theonly
problemremainingis howactually toget themonto tape.That is
solved by the use of PRINT #. We simply PRINT out all our
strings (see above) thus:

PRINT #1: F$:M$:S$:L$:G$:A$:B$:T$

What happens when the statement above is executed by the
computer is this:

Pause

Steady tone (called the Header tone)
Data are transferred

50 Mastering the TI-99

This happens every time the computer encounters a PRINT #, so
that doing separate PRINT # for each one of the string variables
individually would have taken ages. It is always best to put out as
much data as possible each time when using PRINT #.

That's all there is to it (!).When you wish to read the data from
tape, you simply specify almost the same OPEN statement—this
time specifying INPUT and not OUTPUT — and you use INPUT
with a list of string variables (or whatever you used) which
match up exactlyin number to those in the corresponding PRINT
statement earlier (note that they don't have to have the same
variable names — as long as you know which item is assigned to
which string variable).

As to exact space considerations, the manual does give some
help. A number always occupies 9 'positions' (bytes, characters,
spaces in the record, etc.), while a string always occupies its
length plus 1 ("HELLO" occupies 6 positions, for example). In
our odd example file above, there are 8 strings with a maximum
total record size of 192positions. This means that the actual data
must be contained within 192 - 8 = 184characters. If it is longer
than this then problems will arise as the first 192 characters are
transferred to tape, and the remainderwill wait in the buffer until
either more data are added to it to take it to the 192 character
threshold, or until a CLOSE # command (or other closing of the
file) causes it to be transferred. Subsequent reading of the file will
result in virtually uselessdata being transferred, so it is a point to
watch very carefully.

The other items in the manual (EOF, DELETE, REC, RESTORE,
RELATIVE, APPEND, UPDATE) do not apply to cassette files and
will only concern you if you purchase either a disk system or
certain other items of equipment.

Graphics and
Plotting

There is something inherently satisfying in being able to point
proudly to a sketch or drawing and claim responsibility for it.
Those of us not blessed with skills in reproducing life with pencil
and paper must often have wished that we could draw. Well, now
perhaps we can —with a little help froma friend.

Most of the computers now available allow you to define
shapes and put them together on the screen to make reasonably
satisfying images. Someofferfacilities which enable you to plot a
series of dots on the screen, and to produce straight lines, curves,
even circles, with simple commands. Unfortunately the PLOT
and DRAW commands have not been included in TI BASIC, but
with a little skill and a lot of patience the diligent programmer can
mimic those two commands by making use of the facility for
defining 'characters'.

Indeed, some highly pleasing displays can be produced using
both the redefinable and user-definable characters, as I hope you
will see.

This chapter deals in outline with the general subject of
Graphics and in particular with Plotting.Manycomputers which
plot graphs or draw pictures do so at a very rapid rate, but
because PLOT and DRAW have to be imitated in TI BASIC
through the use of subroutines and character redefinition, the
speed ofplotting does not bear comparisonwith other machines.

Likewise, without access to the Sprites that Extended BASIC
and certain other modules offer, the movement of shapes over the
screen is also slow, but there are programming techniques which
can help to improve matters.

We will look at two main areas:

1) PLOT and DRAW
2) Moving shapes about

In some cases there will be short routines as examples.

52 Masteringthe TI-99

Plot and Draw

Because of the facility for defining characters, we can produce
subroutines which give several degrees of resolution. The degree
of resolution is a measure of the size of the smallest point which
can be plotted on the screen. The degrees are:

a) High resolution: 192rows by 256 columns
b) Medium resolution: 96 rows by 128 columns
c) Low resolution: 48 rows by 64 columns

Although it is well beyond the scope of this book, it is worth
noting that it is possible — with the aid of further equipment —
to plot to ALL 192 by 256dots on screen on the 99/4A, but not on
the 99/4. The two models differ in the chip used to produce the
display.

The principles of operation of the subroutines which give
different degrees of resolution are different from each other, but
the general principle of redefining characters applies throughout.
To save space only the high resolution plot will be discussed as an
example (see Listing GP.l.), although listings (each with its own
initialisation) are given for all degrees, as well as for DRAW. In
each case the listings begin at line 100 for simplicity's sake; they
may need to be renumbered to fit in with your own routines.
Note the location of the subroutines — they are all placed
BEFORE the main routine for reasons which are given in the
Hints and Tips chapter.

The explanation of the High Resolution subroutine is pre
sented here as a 'scenario'. There is a tendency when dealing with
complex mathematics to explain a particularly difficult procedure
through the use of anecdotes—parables, if you like. This method
might help the reader to gain an insight into the workings of the
subroutine in the least painful manner possible. Either way, it
should give you something to think about.

Imagine a room in which the floor is covered with square tiles.
There are (surprise, surprise) 24 rows of 32 tiles, each tile being
subdivided into 8 by 8 smaller squares. There are 256 types of tile,
some with differing patterns or shapes drawn on the upper
surface, and there are 768 of each type of tile.

Each tile has its type marked as code number on the back,
ranging from 0 to 255. On some of the tiles the pattern has been

Graphics andPlotting 53

GRAPHICS k PLOTTING

LISTING GP.l. : HIGH RESOLUTION SUBROUTINE AND INITIALISATION

100 CALL CLEAR

110 DIM CSC 128)

120 GOTO 340

130 Y = INT(R / 8 + .875)

140 X = INTJC / 8 + .875)

130 CALL GCHARCY, X, H)

160 IF H > 31 THEN 230

170 IF S = 159 THEN 330

180 S = S + 1

190 CS(S - 31) = ZS

200 CALL CHARtS, "")

210 CALL HCHAR<Y, X, S)

220 H = S

230 H = H - 31

240 B = C-X*8 + 8

250 P=2*R-16*Y+16+ (B<5)

260 IF B < 5 THEN 280

270 B = B - 4

280 I* = SEGStBS, POS<HS, SEGS(CSCH), P, 1), 1), 4)

290 IS = SEGSdS, 1, B-l)tV"l"fc SEGSdS, B + 1, 4 - B)

300 IS = SEGSCHS, POS(B«, IS, 1), 1)

310 CS(H) = SEGS(CS(H), 1, P - 1) 6c IS 8c

SEGS(CS(H), P + 1, 16 - P)

320 CALL CHAR(H ♦ 31, CS(H))

330 RETURN

340 S »= 31

350 CALL HCHARO, 1, S, 768)

54 Masteringthe TI-99

360 BS = "OOOO.OOOl.OOlO.OOll.0100.0101.OHO.0111. 1000. 1001

.1010.lOll.1100.1101.1110.1111"

370 HS = "O 1 2 3 4 5 6 7. ...8 9

.A B C D....E....F"

380 ZS = "0000000000000000"

RESERVED VARIABLES

The -following variables should NOT be altered by any routine

other than the subroutine:-

S, CSl), BS, HS, ZS

The -following variables may be altered, but will be

overwritten by the subroutine:-

B, H, IS, P, X, Y

CO - ORDINATES

ROWS : 1 TO 192

COLUMNS : 1 TO 256

LISTING GP.2. : MEDIUM RESOLUTION SUBROUTINE AND INITIALISATION

100 CALL CLEAR

110 DIM CSU28), HS<2)

120 GOTO 330

130 Y = INT(R / 4 + .75)

140 X = INTCC / 4 + .75)

Graphics andPlotting 55

ISO CALL GCHARIY, X, H)

160 IF H > 31 THEN 230

170 IF S = 159 THEN 320

180 S = S + 1

190 CS(S - 31) = ZS

200 CALL CHARCS, "")

210 CALL HCHARIY, X, S)

220 H = S

230 H = H - 31

240 WS = CS(H)

250 B=C-X*4*4

260 P=4*R- 16 * Y + 14 + (B<3)

270 IF B < 3 THEN 290

280 B = B - 2

290 IS = SEGS(HS<B), POS<BS, SEGSCWS, P, 1), 1), 1)

300 CSCH) = SEGSIWS, 1, P - 1) 6c IS 6c SEGSCWS, P + 1, 1)

6c IS 8c SEGS(WS, P + 3, 14 - P)

310 CALL CHAR1H ♦ 31, CS(H))

320 RETURN

330 S = 31

340 CALL HCHARd, 1, S, 768)

350 BS = "03CF"

360 HS(1) = "CFCF*

370 HS<2) = "33FF"

380 ZS = "0000000000000000"

RESERVED VARIABLES

The -following variables should NOT be altered by any routine

other than the subroutine:-

BS, CSO, HSO, S, ZS

56 Mastering the TI-99

The following variables may be altered, but will be

overwritten by the subroutine:-

B, H, IS, P, WS, X, Y

CO - ORDINATES

ROWS : 1 TO 96

COLUMNS : 1 TO 128

LISTING GP.3. : LOW RESOLUTION SUBROUTINE AND INITIALISATION

100 CALL CLEAR

110 GOTO 210

120 Y = INT(R / 2 + .5)

130 X = INT<C / 2 + .5)

140 CALL GCHAR<Y, X, H)

ISO HS = SEGS(BS, POS(CS, STRS(H), 1), 4)

160 P = C + 2*R-2*X-4#Y + 4

170 HS = SEGS(HS, 1, P-l)8c"l"8c SEGS<HS, P + 1, 4 - P:

180 H = VAL(SEGS(CS, POStBS, HS, 1), 2))

190 CALL HCHARtY, X, H)

200 RETURN

210 DATA OOOOOOOOOFOFOFOF, OOOOOOOOFOFOFOF,

OOOOOOOOFFFFFFFF, OFOFOFOF, OFOFOFOFOFOFOFOF,

OFOFOFOFFOFOFOF

Graphics andPlotting 57

220 DATA 0FOF0F0FFFFFFFFF,FOF0F0F,F0F0FOF0OF0F0FOF,

FOFOFOFOFOFOFOF.FOFOFOFOFFFFFFFF, FFFFFFFF,

FFFFFFFFOFOFOFOF

230 DATA FFFFFFFFFOFOFOF.FFFFFFFFFFFFFFFF

240 FOR I = 33 TO 47

250 READ DS

260 CALL CHARd, DS)

270 NEXT I

280 BS = "OOOO.0001.0010.0011.0100.0101.0110. 0111. 1000.

1001.1010.1011.1100.1101.1110.ini"

290 CS = "32...33...34...35...36...37...38...39...40...

41...42...43...44...45...46...47"

RESERVED VARIABLES

The following variables should NOT be altered by any routine

other than the subroutine:-

BS, CS

The following variables may be altered but will be

overwritten by the subroutine:-

H, HS, P, X, Y

CO - ORDINATES

ROWS : 1 TO 48

COLUMNS : 1 TO 64

58 Mastering the TI-99

LISTING GP.4. : DRAW SUBROUTINE

100 DX = X2 - XI

110 DY = Y2 - Yl

120 IF (DX = O) * <DY = O) THEN 200

130 IF (DX = O) + (DY = 0) THEN 270

140 IF ABS(DX) > ABS(DY) THEN 210

150 FOR L = Yl TO Y2 STEP SGN(DY)

160 R = INT(.5 + L)

170 C = INT(.5 + XI + DX / DY # (L - YD)

180 GOSUB plotting subroutine entry point

190 NEXT L

200 RETURN

210 FOR L = XI TO X2 STEP SGN(DX)

220 C = INT(.5 + L)

230 R = INT(.5 + Yl + DY / DX * (L - XI))

240 GOSUB plotting subroutine entry point

250 NEXT L

260 RETURN

270 IF DY = O THEN 340

280 C = INT(.5 + XI)

290 FOR L = Yl TO Y2 STEP SGN(DY)

300 R = INT(.5 + L)

310 GOSUB plotting subroutine entry point

320 NEXT L

330 RETURN

340 R = INT(.5 + Yl)

350 FOR L = XI TO X2 STEP SGN(DX)

360 C = INT(.5 + L)

370 GOSUB plotting subroutine entry point

380 NEXT L

390 RETURN

Graphics andPlotting 59

RESERVED VARIABLES

The variables which should NOT be altered by any calling

routine are as directed by the relevant plot subroutine.

The following variables may be altered, but will be

overwritten by the DRAW subroutine:-

L, DX, DY, R, C

glazed over, and you cannot change it, while others have not
been glazed, and youcanchangethepatternat willby filling in or
rubbing out the smaller squares. When you do this to any tile,
however, the new pattern is automatically copied onto the 767
other tiles of that type.

The rules are simple. The floor is always covered in tiles. Tiles
numbered 32 to 159 inclusive can have their patterns changed by
you, while 0 to 31,and 160 to 255, have fixed patterns. Tiles32to
127 (or 32 to 95 if you have a 99/4) are supplied with a pattern
already printed on them, but you can rub this out and replace it
with your own shape if you want to. The restriction is that you
cannot add to those patterns; you must always wipe them clean
and start afresh with your own, which of course you can add to.

Tile 32 is blank to begin with, as are a number of others (e.g. tile
31), which is very important.

The story begins with tile31(which is blank, remember) being
placed in all 768 locations on the floor, leaving tiles 32 to 159
inclusive to be used to produce the image.

Your part is fairly straightforward. An instructor will give you
a tile location on the floor (rows 1 to 24, columns 1 to 32) and you
have to find out what the code number of that tile is, which you
can accomplish by simply looking at the back.

Depending upon the code, you will do one of two things.

Either: you will have found that the tile code is 31, in which
case you will select a tile code which has not so far been drawn
upon, wipe one clean (thus automaticallywiping all 767others

60 Mastering the TI-99

of that type), and replace the code 31 tile on the floor with it.
This you can do until the tile code reaches 159, after which no
further tiles are free to be redrawn.

Or: you will find that the tile code is greater than 31, in which
case the tile will already have a pattern on it (you will have
drawn it previously), and having found the code number you
will then obtain from the instructor information as to which of

the smaller squares have already been filled in.

You will then be given the location of a smaller square on that
tile's surface which is to be filled in, and having done so—even if
the square was already filled in — you will replace the tile on the
floor, noting which of the smaller squares are now filled in, and
informing the instructor of this.

You do this until either an image has been produced, or
perhaps until you have run out of fresh tiles on which to draw.

Not much of a scenario, admittedly, but it should serve to give
an outline description of the way in which the high resolution
subroutine works.

The 'floor' is the television screen, while the 'tiles' are the
characters which appear on that screen. The 'code' of each tile
type is in fact the ASCII code — an explanation of which can be
found in the Jargon chapter. Finding out the code of a tile at a
given floor/screen location is performed by CALL GCHAR(),
while replacing a tile at a location involves either CALL
HCHAR() or CALL VCHAR(). The information 'as to which of
the smaller squares have been filled in' is the hexadecimal
definition string used by CALL CHAR(), and which, for the
purposes of the subroutine, has to be stored in a string array,
because there is no counterpart to CALL CHAR() in TI BASIC as
there is in Extended BASIC and with other modules (i.e. CALL
CHARPAT()).

There is a link between the element number of the array and the
ASCII code of the character whose definition string is held in that
element. That is, element 1 holds the definition string for
character 32 (the 'space'), element 2 holds the string for character
33 (which is supplied pre-drawn with the shape of "!" — the
shriek, shout, or exclamation mark), and so on. The link is that
the element number is always the ASCII code of the relevant
character minus 31. (32 - 31 = 1; 33 - 31 = 2; etc.) If you have
difficulty understanding what an array is, or what an element is,

Graphics andPlotting 61

then you will find an explanation in the Jargon chapter, and
similarly for the hexadecimal definition strings.

Youmay have been surprised to learn that the screen is always
filled with characters ('the floor is always covered in tiles'), for it
may not at firstbe apparent when the screenis clearedwith CALL
CLEAR.

However, CALL CLEAR functions by swiftly placing the
'space' character (code 32) all over the screen. Try this on your
machine:

Switch on and select TI BASIC. We will use what is known as
the Immediate Mode, in which the computer will immediately
execute whatever instructions are entered instead of storing
them away for later execution — i.e., accepting them as a
Program Listing. When READY and the cursor re-appear, type:

CALL HCHAR(1,1,31, 768)

and press ENTER when you are certain that you have typed a
correct instruction. You have now filled the screen with
character 31, although the scrolling of the screen display once
the instruction has been carried out will have placed different
characters on the bottom (24th) line.

When the cursor re-appears, type:

CALLGCHAR(12,16,H)

and press ENTER, checking as before. What you are doing now
is the equivalent of looking at the backof the tileat location row
12, column 16, for its code, and storing that code in a variable
called H. Now type:

PRINT H

and the magic number 31 should appear (unless anything has
gone drastically wrong), showing that although the screen
appears empty, there is in fact something there. You could try
using CALL CLEAR instead of CALL HCHAR(1, 1, 31, 768),
and checking further for yourself.

Now we come to a direct discussion of the subroutine. It

actually comes in two sections: a few lines which set up the basic
items which will be used by the subroutine (the string array, for
example, which will be used to hold the definition strings of the
ASCII characters used in the plotted image), and then the sub-

62 Mastering the TI-99

routine itself. For reasons which are given in more detail in the
Hints and Tips chapter, the subroutine is placed close to the
beginning of the program listing; this enables it to be found
much more quickly when required to be executed.

Listing GP.l. gives the subroutine and its 'initialisation'
section. The initialisation is itself divided into two parts: the
major part is placed after the subroutine so that the start of the
subroutine is only three statements away from the first program
line.

The routines which will make use of the subroutine begin at
line 390, but before we delve that deeply into things, some of the
statements will probably look rather daunting to the newcomer to
computing, so a line-by-line explanation is in order. There are
also concepts involved (for example INCLUSIVE OR) which are
explained in more detail in the Jargon chapter.

There are a few points to note before we commence the
explanation: firstly, there are some variables used by the sub
routine which must not be used by the main routine (the 'calling'
routine), as their alteration will almost certainly result in either
unpredictable plotting, or even a crash.

Secondly, the usual format for the PLOT command is PLOT x,y
where 'x' and 'y' refer to screen column- and row-coordinates.
Because we are using a subroutine, and because those values
cannot be included in the GOSUB statement, two variables, R for
rows, and C for columns, will have the coordinates assigned to
them BEFORE the GOSUB statement is executed.

Thirdly, in the interests of speed there are no 'validation'
checks; that is, there are no checks within the subroutine to see if
the calling routine has specified a coordinate which is outside the
1-192,1-256 range allowed, or if the coordinate is anything other
than a positive whole number (positive integer).

Let us now look in detail at the subroutine:

100: Although the intention is to cover the screen with
character 31s, the fastest way initially to clear the screen
(and therefore tidy things up) is by using CALL CLEAR,
which puts 768 spaces on the screen.

110: This statement has to appear in the program listing
BEFORE any references to the array; the reason for this is
given in some detail in the Hints and Tips chapter. An
array, C$(), with 129 elements (0 to 128, remember), is set

Graphics andPlotting 63

up. I have chosen to use elements 1 to 128 to hold the
hexadecimal definition strings which will be created by the
subroutine, leaving element 0 free for future use (for
example, to hold extra information). Each definition string
will be exactly 16 hex digits long. It would be possible to
add an extra two characters whose ASCII codes would give
the screen row and column location of the redefined

character concerned. These could be tacked on to the end of

the definition string, and as CALL CHAR() uses only the
first 16digits in the string and ignores anything extra, there
would be no interference with the program's execution.
(This facility can be of use when needing to hold several
definition strings for the same character, as you will see
later.)

120: This causes the execution of the program to be transferred
to line 340, where the second part of the initialisation
resides. It ensures that the subroutine is not executed until

required.
130: This is the 'entry point' of the subroutine; it is the

'destination line number' that goes with the GOSUB, so
that once R and C have been assigned their respective
values, all that is needed to perform the equivalent of PLOT
x,y is GOSUB 130.

The equation in this statement has been reduced from
((R - l)/8 + 1) in order to keep the number of brackets to a
minimum (another trick to help improve execution speed,
which is given in the Hints and Tips chapter), and also to
keep the numbers to a minimum. This equation calculates
the row location on screen of the character whose 8 by 8
dots are covering the area in which the point to be plotted
is located. If the value for R is between 1 and 8, the plotted
point lies under the character which is located on screen
row 1; between 9 and 16, and it lies on screen row 2; and so
on. The resulting screen location (minimum 1, maximum
24) is assigned to the variable Y.

140: A similar function is performed by this statement for the
column coordinate. The value represented by C is
processed to obtain the location of the screen column
(minimum 1, maximum 32) under which the point to be
plotted lies. This value is then assigned to the variable X.
Diagram GP.5. illustrates how the 'dot' and screen co-

64 Mastering the Tl-99

a

E
ZJ

o
CN rn

row

1

<- (Nl m -J- in no r~ oo o
o

"-
Nmsj-invot^ooo^

CNJCM CM CM

1
2
3
4
5
6

7
b
9

10
11
12
13
14
15
16
17

GP.5. 'Dot' and screen co-ordinate relationship

ordinates are related to each other. The large numbers are
the screen locations, while the smaller ones refer to the
actual plot locations.

150: This is the statement which performs the equivalent to
looking at the back of the tile to find out what its code is.
The command uses the values represented by Y and X to
locate the character position on the screen, and then
assigns the ASCII code of that character it finds there to the
variable H. Remember that if there has been no previous
plot to this general (8by 8 dot) area the code of the character
will be 31. Although the first part of the initialisation
cleared the screen with CALL CLEAR, the second part of
the initialisation replacing this by filling the screen with
character 31s, thus releasing character 32 for redefinition.

160: This is the point at which the computer must make what
we would call a 'decision'. If the code of the character found

at the chosen location is not 31, then a different course of

Graphics andPlotting 65

action needs to be followed compared with that to be
followed if the code is 31. Ifa point has already been plotted
in the general area (8by 8dots) then the code will not be 31,
and the program will continue execution from line 230.
Otherwise execution continues from the next line.

170: Another decision must now be taken. Because the computer
has reached this line, it means that a point has been
specified which requires a fresh 'tile' to be selected, and
wiped clean. If, however, there are no more fresh tiles
available, the computer must return from the subroutine
without making a plot. The variable S is used to keep track
of the availability of fresh tiles by storing the code of the
last tile which was wiped clean. If that code reaches 159,
then there are no further tiles available. Line 330 is the end
of the subroutine, and it is to this line that execution is
transferred if S is 159. If S is less than 159, then there are still
tiles free for redrawing, and execution will continue from
the next line.

180: We are now selecting the code of the next tile to be
redrawn, so S needs to be incremented by 1.

190: The array which willhold the informationon the pattern of
each of the tiles needs to have an initial 'blank' hexa
decimal string stored each time a fresh tile is selected. This
so-called blank string is in fact16zeros, and all of the zeros
are required so that subsequent processing can produce
exactly the right definition string to describe the current
pattern on the tile. Remember that the link between the
code of the tile (its ASCII code) and the relevent element of
the array is 'code minus 31', hence the S —31.

200: Here we need to wipe the tile clean, and the simplest
method is to use a null string ("") with CALLCHAR(). The
variable S holds the code of the tile which is to be wiped.

210: The newly-wiped tile is placed on the screen using CALL
HCHAR() at row Y, column X.

220: The statements from line 230 onwards are those actually
concerned with redefining the character (redrawing the
tile); either the one just placed on the screen, or the
character placed previously. The processing uses the
variable H to refer to the ASCII code of the character (see
line 150), but because the current screen location was
previously not plotted to, and therefore will have caused

66 Masteringthe Tl-99

31 to be assigned to H, we need to copy the code of the new
character into H. This code is held in S, so we simply use
H = S.

230: To try to reduce the wastage of space and time during the
processing, which will involve addressing the array C$()
using (H —31)— remember, the relationship between the
ASCII code and the definition string element number —
this line subtracts 31 from H so that it now corresponds
directly to the relevant element of the array.

240: This line calculates the column location (1 - 8, within the
8x8 dot character matrix) of the point to be plotted.

250: This rather imposing expression calculates the position, in
the 16 digit hexadecimal definition string, of the relevant
single hex digit which defines the four-bit line on which
the point to be plotted lies. Trying to explain how the
equation was arrived at is a major undertaking, and
outside the scope of this book, alas.

260: J A detailed explanation of the purpose of theselines is too
270:1 complex to go into here; they simply reduce the value by4

if the current value is greater than 4. The effect could have
been achieved with just one line:

B = B + 4*(B>4)

but it executes more slowly in this form.
280: A series of complicated string manipulations begins at this

point. This complex BASIC statement is intended to trans
late the relevant hex digit 'pointed to' by the variable P into
its binary equivalent, ready to perform an INCLUSIVE OR.
It functions thus:

1) The relevant element of the C$() array is addressed
using H.

2) The relevant hex digit is extracted using SEG$() and P.
3) The position of this digit within the reference string H$

is obtained.

4) That position is then used to obtain the corresponding 4
digit binary equivalent from the reference string B$,
and which is then assigned to 1$.

In 1$we now have a four digit binary number between 0000
and 1111 which is the exact binary equivalent of the hex
digit which defines the point we wish to plot.

Graphics and Plotting 67

290: The OR is performed by simply replacing the binary digit
(which corresponds to the point that we wish to plot) with
a "1", even if it is already a "1" (because it would be slower
to check).

300: We now reverse the procedure which was followed in line
280. The statement in 300 translates the modified 4 digit
binary number back into hex, assigning the resulting hex
digit back into 1$.

310: The new hex digit now replaces the old digit in the correct
position in the definition string.

320: The new definition string (which may in fact have not been
altered at all if the plot was to a point previously plotted
anyway) is used to redefine the relevant character.
Remember that in line 230 we subtracted 31 from H to make
subsequent processing faster. Now we have to compensate
for that difference of 31 when using H to address the ASCII
code of the character we are redefining.

330: End of the subroutine, with an instruction to return to the
calling routine.

Lines 340 to 380 contain the second part of the initialisation
section, in which the variable S is set to a starting value of 31 and
the screen is re-cleared, this time using CALL HCHAR() and
character 31s. S is used in line 350 to speed up execution (see the
chapter on Hints and Tips on why this is so). Line 360 contains
the reference string of binary equivalents to the hex digits 0 to F;
each equivalent is separated by a full stop to distinguish it from
its neighbours. Line 370contains the counterpart reference string
which holds those 0 to Fhex digits, which are spaced out with full
stops so that the position of each hex digit corresponds exactly
with the position of the first binary digit in the corresponding
equivalents in the B$ reference string. Finally, line 380 holds the
'blank' definition string which is used to initialise each element
of the C$() array as it is called up by the subroutine. Again, these
16 zeros are used within a string variable to speed up execution of
the subroutine.

Well, there you have the plotting subroutine. Note that the
explanation has had to be greatly shortened, or this chapter
would never end. Now for some examples, which will show you
not only how to use the subroutine, but also what this computer
can do if you give it enough time.

68 Mastering the TI-99

Diagrams GP.6. to GP.9. show, in a very brief and simple
sequence, what happens when the first point (perhaps of a series)
is plotted on screen. GP.6. reminds us that after the second part of
the initialisation the screen is covered with characters 31s. If our

plotted point lies on R = 14, C = 11 (see GP.7.), it will occur
within the 8 by 8 dot matrix of the character at screen location
Y = 2, X = 2 (cf. GP.5.). Selecting the next available character for
redefinition gives us code 32, and after due calculation a
definition string is produced (see GP.8.). This character now
replaces the character 31 which previously occupied screen
location Y = 2, X = 2; see GP.9., where the plotted point has
been shown together with the codes of the characters now on the
screen. (Note that if the point had been plotted using the medium
Resolution subroutine, because of the larger point size — and
hence reduced resolution — the actual plotted 'point' would have
been a group of four of the high resolution points; if by the low
Resolution subroutine, using a slightly different approach, it
would have consisted of a 'point' produced by no less than 16 (4
by 4) of the high resolution points.)

Let us continue with a simple sine wave. It is, unfortunately,
outside the scope of this book to discuss in detail the operation of
some of the equations which will be presented here. The sine
wave plot can be produced by adding these lines to the listing
GP.l. and running the program.

390 FORC = 1 TO 256

400 R = 96 + INT(.5 + SIN(C/9)* 40)
410 GOSUB 130

420 NEXTC

430 GOTO 430

(Note that the same block of lines — with different line
numbers, due to the different size of the respective subroutines
— can be used with all three of the resolutions given; however,
the maximum value for C in line 390 will have to be reduced to fit

within the restrictions for each degree of resolution: viz., 128,
and 64. Likewise, the value 96 in line 400 here will also need to be
reduced: 48, and 24.)

The screen colour will be green — you may change this to a
more agreeable hue by inserting the necessary line somewhere in
the second initialisation section — and the plotted points will be
black. The routine will take a few minutes to draw the sine wave

Graphics andPlotting 69

31 31 31

31 31 31

GP.6. State of the screen after the second part of the initialisation

14'

T

Tl

GP.7. 'Dot' location of example point

70 Mastering the TI-99

ASCII

32

0000000000200000h

GP.8. Re-defined 'space' character containing a single point

31 31 31

31 32
•

31

GP.9. State of the screen after plotting the example point

across your screen; you can speed up the execution, and degrade
the quality of the wave, by making the loop in line 390 step in 2s
or 4s, or a value of your choice. Byvarying the factor of 40you can
affect the height (amplitude) of the wave, and by altering the
division factor of 9 you can affect the frequency of waves on the
screen. Experiment with the function in line 400, trying COSINE
or even SINE + SINE. Some will crash, some will produce quite
pleasant effects. The .5 in the equation is a simple trick to 'round'

Graphics andPlotting 71

the value obtained — see the Hints and Tips chapter for further
details.

Byway of an example of just what the system is capable, here is
a routine which will produce a three-dimensional image on the
screen. A discussion of the principles involved would take the
rest of this book, so you may have to content yourselves with
simply looking at the end result. It is likely that printing errors
will have crept into the listings, but do not despair. First read the
chapter on Printing Errors, which won't solve your problems
outright but should point you in a more successful direction. If
you still find no enlightenment, write to me at the publishers'
address, which is given elsewhere. Now, here is the routine:

390 CALL SCREEN(8)
400 V = 104

410 XI = 96

420 X2 = XI* XI

430 Yl = V/2

440 Y2 = V/4

450 FORX5 = 0TOX1

460 X4 = X5*X5

470 M = -Yl

480 A = SQR(X2 - X4)
490 FORI1 = -ATOASTEPV/10

500 Rl = SQR(X4 + 11* II) / XI
510 F = (Rl - 1)* SIN(R1* 12)
520 R = INT(Il/5 + F* Y2)
530 IFR<= MTHEN 600

540 M = R

550 R = Yl - R

560 C = XI - X5 + 32

570 GOSUB 130

580 C = XI + X5 + 32

590 GOSUB 130

600 NEXT II

610 NEXTX5

620 GOTO 620

Be warned that this routine will take about half an hour to

produce its image. You could spend the time biting your nails in
front of the TV, or you could go shopping. The function which is
plotted occurs in line 510, and its degree of tilt is given by line 520,

72 Mastering the Tl-99

should you wish to tinker around with either of them. Ifyou have
difficulty visualising exactly what the final image is, imagine part
of a series of ripples in a pond viewed in close-up.

So far we have looked at the High Resolution plotting sub
routine; there are two others, both used in a similar manner to the
'hi-res' subroutine, but giving a lower resolution. The difference
between them is a comparison between writing with a fine ball
point and a thick felt-tip. This time, because the explanations
would be so space-consuming, the routines are simply presented
as listings, with details regarding the reserved variables, etc. You
can use them in exactly the same way that the 'hi-res' routine is
used, except of course that you would use smaller values to
correspond to their smaller ranges.

Drawing Continuous Lines

One routine which can be of use when creating simple technical
drawings is an equivalent to DRAW. This function on other
machines usually allows you to draw a continuous straight line
between two specified points. Because of the limitations of TI
BASICthis effect has to be obtained through a further subroutine
which itself makes use (slowly) of the plotting subroutine. The
variables XI, Yl mark the starting column and row of the line,
while X2, Y2 mark the end columnand row. Todraw a square you
would need to specify the start and finish locations of four lines,
which could be contained within a DATA statement. The values
for XI, Yl, X2 and Y2 would need to be assigned before using
GOSUB to transfer control to the DRAW subroutine. For
example:

Line 1: XI = 1

Line 2: Yl = 1

Line 3: X2 = 64

Line 4: Y2 = 48

Line 5: GOSUB draw subroutine entry point

The values have been chosen so that they can be used with any of
the degrees of resolution without crashing and without needing
any re-scaling of coordinates.

Because of a lack of space, the DRAW subroutine cannot be
dealt with in detail as was the High Resolution subroutine, but it

Graphics and Plotting 73

should be possible to discern its operation from the listing. It is
given as a block of lines beginning at line 100; this is for con
venience only, and for practical purposes the routine would, be
placed in a listing AFTER theplotting subroutinewhich it would
use, but BEFORE the second initialisation section for that
subroutine.

Aspects of Plotting and Drawingwhich have had to be omitted
because of space considerations include: Mixing text and plots —
how to 'protect' specific characters from being (a) selected for
redefinition, and (b) displaced by plotted points; a technique for
storing the screen locations with the respective definition
strings, restoring the standard charactershapes for printing text
on screen (menus, etc.) and then re-creating the screen display
quickly; the possibility of producing a cassette or disk file
containing all the necessary data; the possibility of producing a
series of images and swapping between them at will; the list is
endless (almost).

Moving Graphics

The TI manual deals adequately with the definition of shapes
using strings of hexadecimal digits, but gives little or no
information on the two most important aspects of graphics:
animation of a shape where it stands on the screen, and
movement of a shape across the screen. Few owners appear to
experience difficulty with the first aspect, although they may not
always have found the easiest approach. The greatest problems
seem to arise when attempts are made to move a character (or
group of characters)over the screen,copingwith interaction with
other characters and also keeping within boundaries — either
those imposed by the screen, or those imposed by design.

Changing Shape

There are two routes to changing or animating a shape on the
screen: either by using CALL CHAR() with different definition
strings on the same ASCII character, or by using different
characters which have been already defined with those strings —
the brute force approach. The slow speed of TI BASICmeans that

74 Mastering the TI-99

the processing of definition strings while a program is running
will not improve the quality of animation, so any strings which
are used may well have to be processed outside the program —
meaning that all eventualities have to be catered for and
definition strings produced, which can severelylimit the variety
of response possible.

It is very useful to prepare a series of 'utility' routines for
graphics work, freeing you from hours spent over graph paper
laboriously creating consecutive image sequences. The kind of
utilities from which you are likely to experience greatest benefit
are these:

1) Movement of a shape upward
2) Movement of a shape downward
3) Movement of a shape left
4) Movement of a shape right
5) 'Mirror' imaging of a shape
6) Inversion of a shape

The first two are simplicity itself: If you take an example
definition string thus: "1122448888442211" (it produces a
'chevron' shape), then to make it appear to move upward within
the 8 by 8 dot matrix of a character all you need to do is success
ively to remove the first two hex digits. This will give you a
series of definition strings (note that CALL CHAR() assumes
trailing zeros if the length of the string is less than 16hexadecimal
digits):

a) 1122448888442211
b) 22448888442211
c) 448888442211
d) 8888442211

e) 88442211
f) 442211
g) 2211
h) 11

i) null string

which can be used with either 9 CALL CHAR() statements, 9
DATA statements and a loop to read them plus one CALL
CHAR(), a string array with the definitions stored in 9 elements
plus a loop to assign them via the CALLCHAR(), or even a single
string containing all 9 strings (plus trailing zeros, which you

Graphics andPlotting 75

must include — very important, as you will find) which is
accessed 16 digits at a time using a loop, SEG$(), and CALL
CHAR().

Similarly, movement downward is achieved by adding leading
zeros (you may not have to remove the last pair of digits each
time, as CALL CHAR() only examines the first 16 digits in any
string), giving the following strings:

a) 1122448888442211
b) 0011224488884422
c) 0000112244888844
d) 0000001122448888
e) 0000000011224488
f) 0000000000112244
g) 0000000000001122
h) 0000000000000011
i) 0000000000000000

You may now have begun to see possibilities for graphics
manipulation: what about animating only a part of the 8 by 8 dot
matrix — either vertically, horizontally, or diagonally — leaving
the remainder intact; this might give the impression of one image
disappearing behind another? Or perhaps moving the shape at a
faster rate — the examples show movement one dot at a time, but
you could slice the string up in fours instead of pairs of digits.

Moving a shape left and right is not so straightforward. Take
the top row of dots in our chevron shape and move them left one
dot at a time until the shape has moved out of the matrix
completely:

a) 11
b) 22
c) 44
d) 88
e) 10
f) 20
g)40
h) 80
i) 00

Do it to the entire string, and you obtain:

a) 1122448888442211

b) 2244881010884422

76 Mastering the Tl-99

c) 4488102020108844

d) 8810204040201088

e) 1020408080402010
f) 2040800000804020
g) 4080000000008040
h) 8000000000000080
i) 0000000000000000

The example is a symmetrical shape, so it is possible to make the
false assumption that there are simple, repeating patterns which
can be made use of to shorten the calculation.

There are really only two practical routes to obtaining the
'transformed' definition strings: the first is perhaps clumsy and
consumes proportionally more space than the second. The
straightforward (or so it seems on the surface) method is to trans
late the entire definition string into its binary equivalent (as a two
dimensional array of 8 by 8 elements), perform a shift right or left
by as many elements as are required, and then translate back into
hexadecimal. The alternative is to make use of the fact that move

ment left is equivalent to 'doubling' the value represented by the
hex digit pair defining each line, and movement right is equivalent
to 'halving' that value. To give you some idea of how this works,
let us examine 'doubling' on the first row of dots (first hex pair),
using decimal as an intermediate to show the working of the
calculation:

The first hex pair is llh. This is 1 * 16 + 1 in decimal, which is
17d. Doubling gives 34d, which in hexadecimal is 22h.

There is one problem with this approach, apart from the slow
execution: what happens if doubling produces a value in excess
of 254d (11111110bor FEh), or if halving produces a value which
is a fraction (i.e., ends in .5d)? For these two cases you would
need checks and extra processing, reducing the speed of exe
cution still further, and for those reasons I tend to prefer either the
manipulation of an array of binary equivalents, or 'pair by pair'
processing of a hexstring. There is also the additional factor that if
you need to rotate your character in steps through 360 degrees
then the method based on the array is suited to that processing.

The last two utilities, mirror-imaging and inversion, may be
of only limited use to you, but they are well worth looking at if
only for the experience of string manipulation.

Graphics andPlotting 77

So far I have not given any specific example routines, primarily
because there are aspects of input validation involved which
themselves would take a chapter to explain. However, for these
last utilities I will give example routines, and leave the readers
either to provide their own input validation or to be very careful
when entering data.

Mirror-imaging simply involves 'flipping' a shape over, either
vertically (left to right) or horizontally (top to bottom). The hori
zontal mirror image is very easily produced: all you have to do is
to reverse the definition string, pair by pair. Thus the string
"0123456789ABCDEFh" becomes "EFCDAB8967452301h",
achieved by this short routine:

100 CALL CLEAR

110 CALL SCREEN(8)
120 P$ = ""

130 INPUT "STRING" :S$

140 FOR L = 1 TO 15 STEP 2

150 P$ = SEG$(S$, L, 2) & P$
160 NEXTL

170 PRINT "HORIZONTAL MIRROR IMAGE IS:" : P$

180 GOTO 120

Note that the string entered in line 130 ought to be the full 16
hexadecimal digits in length (I leave you to add your own vali
dation routines).

The vertical mirror image is a little more complex. The 'left to
right' mirror image of "Olh" is "80h"; examine the binary
equivalents to see that this is so:

00000001b becomes 10000000b

Each of the hexadecimal digits (0-9, A-F) has its mirror image
counterpart:

[EX BINARY becomes: HEX

0

BINARY

0 0000 0000

1 0001 8 1000

2 0010 4 0100

3 0011 C 1100

4 0100 2 0010

5 0101 A 1010

78 Mastering the TI-99

HEX BINARY becomes:

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

IEX BINARY

6 0110

E 1110

1 0001

9 1001

5 0101

D 1101

3 0011

B 1011

7 0111

F 1111

Again the hexadecimal definition string is processed by pairs
of digits, only this time each pair is 'swapped' — thus the mirror
image of "32h" is not merely "C4h" but is "4Ch".

Everyone has their own particular way of doing things, and my
favourite method fortranslatingdigits in a caselike this is to use
'reference' strings coupled with POS() and SEG$(). This routine
is an example of that approach:

100 CALL CLEAR

110 CALLSCREEN(8)
120 H$ = "0123456789ABCDEF"

130 R$ = "084C2A6E195D3B7F"
140 P$ = " "

150 INPUT "STRING" : S$

160 FORL = 2T016STEP2

170 1$ = SEG$(S$, L, 1)
180 J$ = SEG$(S$, L - 1,1)
190 I = POS(H$, 1$, 1)
200 J = POS(H$,J$,l)
210 1$ = SEG$(R$, 1,1)
220 J$ = SEG$(R$, J, 1)
230 P$ = P$&I$&J$
240 NEXTL

250 PRINT "VERTICAL MIRROR IMAGE IS:" : P$
260 GOTO 140

Again, there is no input validation, but the full complement of
16 digits is expected. This particular routine has been simplified
in order to make its working more obvious; it is usually more

Graphics andPlotting 79

complex than this because I tend to make each statement do as
much work as possible. Thus lines 170 to 230 would normally
appear as the single statement:

P$ = P$ & SEG$(R$, POS(H$, SEG$(S$, L, 1), 1), 1) & SEG$(R$,
POS(H$, SEG$(S$, L - 1,1), 1), 1)

which taxes the eyes a little.
Finally, image inversion. This can be achieved in two ways:

either you can alter the contrast by swapping fore- and back
ground colours using CALL COLOR(), but which will affect sets
of characters rather than just one individual character, or you can
again manipulate the definition string. This time the manipu
lation is digit by digit (whereas previously it has been by pairs of
digits), and again I have used a reference string. The table of
inversions is as follows:

IEX BINARY becomes: HEX

F

BINARY

0 0000 1111

1 0001 E 1110

2 0010 D 1101

3 0011 C 1100

4 0100 B 1011

5 0101 A 1010

6 0110 9 1001

7 0111 8 1000

8 1000 7 0111

9 1001 6 0110

A 1010 5 0101

B 1011 4 0100

C 1100 3 0011

D 1101 2 0010

E 1110 1 0001

F mi 0 0000

The pattern here is simple, but actually making use of it is not,
and there may be some argument as to which is the best
approach. Here is one suggestion:

100 CALL CLEAR

110 CALLSCREEN(8)
120 H$ = "0123456789ABCDEF"

80 Mastering the Tl-99

130 P$ = " "

140 INPUT "STRING" : S$

150 FORL = 1T016

160 P = POS(H$, SEG$, L, 1), 1)
170 P$ = P$ & SEG$(H$, 17 - P, 1)
180 NEXTL

190 PRINT "INVERTED IMAGE IS:" : P$

200 GOTO 130

As before, there is no input validation.
In each of the routines above you can 'visualise' the effect of the

new definition string by inserting a couple of CALL CHAR()
statements and redefining the characters on-screen.

Returning to the subject of animation, the second method
involves movement of an entire character over the screen,
keeping within certain boundaries and coping with interaction
with other characters on-screen. What helps most here is not a
huge series of standard routines which must be either adhered to
(thus forcing your program to follow the dictates of someone
else's programming) or modified to suit your purpose (and there
fore may as well be written from scratch), but a careful, detailed
examination of the processes involved. In other words, long
before you reach the keyboard you would do well to have evolved
an algorithm to which you can refer. Let us examine a possible
algorithm with such specifications.

Firstly, we must define exactly the composition of the screen,
the location of static objects, the existence and location of any
boundaries, independent of the boundaries set by the
computer's own limitations (here I am thinking of the limitations
of CALL HCHAR() and its two companions). We must also
decide which effects are to be used when exceeding those
boundaries: should any mobile shape be prevented from
crossing the boundaries; should it be allowed to 'wrap-around'
from one boundary to another; should it be permitted to cross the
boundary, but not be shown on-screen (thus avoiding
complications with CALL HCHAR() etc.); or should it disappear
in a glorious technicolor explosion? Likewise if its location after a
move coincides with that of another static or mobile object,
should it bounce off at the appropriate angle, should it be
prevented from making the move, or should it explode as above?

In addition, we must also decide on both the degree of

Graphicsand Plotting 81

movement allowed, and on the total complexity of the movement
on-screen; that is, we must decide whether the shape is to move
one square at a time, and whether the program can support the
movement of several shapes simultaneously (or nearly simul
taneously).

Here is a suggested algorithm, not finely detailed, for that will
depend solely upon your own requirements:

1) Locate all objects on screen
2) Accept instructions for movement
3) Calculate new co-ordinates
4) Check new location for:

being within boundaries
coincidence with other objects

5) Depending upon the results of the checks, respond appro
priately

6) Calculate and validate the movements of other objects on
screen

7) Perform other processes (e.g., time elapsed, fuel
consumed, etc.)

8) Check other processes
9) Depending upon the results of those checks, respond

accordingly
10) Go to (2)

Note that the use of the 'look before you leap' principle is
perhaps the best approach to movement.

This chapter, despite its length, has only been able to scratch at
the surface of the subject, and an enormous amount of material
has been left undiscussed; hopefully later publications will
redress the balance.

Printing
Errors

One of the most exasperating problems which can face the
newcomer to computing is that of printing errors and omissions
in programs published in popular magazines and books. On the
surface it seems straightforward enough: all the novice has to do
is to type published listings into his machine (assuming that the
programs are intended for his model) and soon he will have a
thriving library of challenging and absorbing material with
which he can delight and impress his friends and colleagues, all
for the cost of a few pence each week/month.

Unfortunately, it rarely works that way. Apart from the fact
that quality programs are not cheap, and TI-99 commercial
programs still less so, the library tends to be filled with material
which either would take the average school child an afternoon to
write, or which has never run properly because there are errors in
the algorithm (the 'rules of thumb' by which the program
operates) or the listing is 'bugged', or the typist didn't quite copy
the listing exactly — all the statements appear to be correctly
entered, but somewhere something is not right. The latter are
called transcription errors.

This chapter examines both those and typographical errors —
misprints — often the reason why such programs won't run
properly (or sometimes won't run at all). It is not really intended
to be a professional aid to debugging, although it does go some
way towards that. What it is intended to do is to give the new
owner as much help as possible in uncovering and resolving
errors caused by omissions and mis-spellings in published
listings. It cannot possibly be exhaustive — the permutations are
too numerous for that — and, as has been said elsewhere in this
book, if you have anything to contribute or if you have insur
mountable problems, then write to me, care of the publishers,
enclosing a stamped, self-addressed envelope. I can't promise to
hold the answer to Life, The Universe, and Everything, but if I
can help I will.

Printing Errors 83

Usually the listings are taken direct from the computer—many
magazines insist on this precisely to avoid as many errors as
possible — but even then careless programmers who contributed
the programs often added program sections (patches) without
first checking that they worked properly.

Common errors to be found involve one or more of the

following:
1) Mis-spelling Reserved Words (these are the TI BASIC words

which you cannot use as variable names—they are reserved
for the computer: LET, IF, PRINT, etc.).

2) Mis-spelling of variable names. The biggest culprit here is
the letter 'O' — often confused with the digit '0'.

3) Other mistaken entries — I for 1, etc.
4) Omission of spaces. Often the computer needs spaces

between certain Reserved Words and other data.

5) Omission of punctuation marks. Many of these become
evident only after someone else has pointed them out to
you.

6) Omission of an entire line or lines. These can be among the
most difficult to spot.

7) Omission of symbols: #,$, A,&,*, -, + , =, <, >,/, which
are easy to spot, but unless the context gives some clue it can
be difficult to decide exactly which symbol is missing.

8) Omission of sections of parameters for CALLs (the
Subprograms).

To enlarge on those categories:
1) It is not usual to find reserved words being mis-spelled in

computer-generated listings, but it can happen if the listing is
typed. By and large these errors are very easy to spot, and even if
you are an 'abject beginner' you can quickly work out what the
word should be, if only by examining the list of reserved words
given in the TI manual. Rarely you might find that the reserved
word has been omitted (the exception is LETin TI BASIC, the use
of which is optional), although the context will usually tell you
which word is missing:

IFA = 71200

is straightforward — the missing word is THEN, which needs to
go between the 7 and the 1200. You might think that this is a
laughable example, but somebody (who shall remain nameless)
got stuck on it. Occasionally you may find what appears to be a

84 Masteringthe TI-99

mis-spelling, but which is not. TI BASIC allows both GOTO and
GO TO (and GOSUB and GO SUB); check the manual. It appears
however that GOTO is stored differently in memory from GO
TO, although the function it performs is identical. A discussion
of the internal storage of a listing is beyond the scope of this
book.

2) Another opportunity for mis-spelling — in some instances
it can come down to a transcription error—arises with the names
of Variables. As has been said, the confusion which can occur
over the letter 'O' and the digit '0' results in that being the most
common reason for a program either stopping with a BAD NAME
or BAD ARGUMENT error, or failing to run as designed.
Whoever decided not to follow the convention that either zero or

the letter 'O' have an 'oblique' — a diagonal stroke — through
them, has a lot to answer for. It can be all too easy when reading
from a poorly reproduced listing to mistake an 'O' for a '0', and
one program which I examined for an owner was filled with this
type of transcription error. For example:

a) O = 0 + 1
b) A = B*0*C
c) FO = F0 - 2
d) 0 = O - Z

Here the errors are quite numerous; the correct lines, as far as can
be discerned, are:

a') 0 = 0 + 1
b') A = B*0*C
c') FO = FO + 2
d') 0 = 0-Z

In (a), the value assigned to variable O will never exceed 1, and it
can be obvious from the context alone that O is being used as a
'counter', incrementing by 1.

In (b), multiplying any number by zero produces zero, which
makes nonsense of B * 0 * C — there is no purpose to having a
zero in the equation unless it is one of the values represented by a
variable — so again it is obvious from the context that the '0'
should in fact be the variable 'O'.

In (c), there are two variables: FO and FO, both of which are valid
variable names, but in the listing FO cropped up in several

Printing Errors 85

places, while FO appeared only in the faulty line. In this case it is
best to tread warily, as the statement could in fact have been
entirely correct. Additional information was necessary (obtained
by examining the whole listing) before FO could be isolated as an
error.

In (d), the faulty statement caused the program to stop with an
INCORRECT STATEMENT error before it would run, because

the computer could not accept the number zero as a valid variable
name — the manual tells you exactly what constitutes a valid
variable name.

It is well worth while, before beginning to type in a listing, to
compile a list of all the variable names in the listing, to which you
can refer. It is likely that, as your concentration can be elsewhere
while typing, you will not notice any errors in respect of variable
names; the act of compiling the list of variables will go some way
to preventing this.

3) Here again the compilation of a variable list can help to
reduce the incidence of transcription errors; the most likely are T
for '1', 'S' for '5', 'Z' for '2', 'B' for '8', and 'G' for '6'; occasionally
you may come across'?' for '7'. The general rule is to examine the
program before you attempt to key it in, and to check it as you
type, being as aware as possible of the sense of what you are
typing. The kind of thing to watch for is:

FORL = ITOB

and if you check the listing and find that the variables I and Bdo
not occur anywhere else (and are not assigned values anywhere),
then it is a safe bet that T and '8' have been misprinted or
wrongly copied.

4) Problems due to omission of spaces can sometimes cause
extreme frustration. Many of the reserved words will, when
entered, automatically add spaces where they are necessary when
listed, but, for some reason, one or two words need the spaces to
be entered for them. The reserved word DATA is one of that type,
and if no space is entered between DATAand the first item in the
data-list the computer may not reject the statement even when it
attempts to run the program. For example:

DATAO, NAME, 1, NUMBER, 22

may eventually be rejected by the computer with either

86 Mastering theTI-99

INCORRECT STATEMENT, or DATA ERROR, but under
differing circumstances. If the computer encounters the erring
DATA statement while running a program (i.e., if it has to 'pass
over' as it would do with a REM statement) then the error is
INCORRECT STATEMENT IN . . .; if however the computer has
not encountered it, but instead elsewhere executes a READ
instruction which attempts to read data from that data list, the
error will be DATA ERROR IN. . . .

Similarly, FOR. . . TO . . . STEP. . . NEXT needs a space to be
inserted between the FOR and the 'loop control variable':

F0RL = 1T015

will not run until you put a space between the FOR and the L.
One other instance involving 'spaces' is actually an error of

'inclusion'. It is possible (on the 99/4A alone) accidentally to press
either the Control key (CTRL) or the Function key (FCTN)
coupled with another key and insert what looks like a space on
the screen. If your haste is such that you are rarely watching the
screen to check on what you are typing, it is likely that if you
notice the extra 'space' (and the omission of whatever character
you intended to type) you will assume that it IS a space. Some
times these 'pseudo-spaces' will be accepted by the computer
(and you could be in for some surprises when you list the
program — see the chapter on Hints and Tips) but will not allow
the program to run.

5) One thing that the 99s are quite strict about is punctuation,
and on occasion it can be difficult trying to decide what is missing
from a statement which TI BASIC won't accept. The most
common omissions are: one or both quotation marks which
enclose a string constant ("HELLO MOTHER" is a string
constant); print separators in a PRINT statement (i.e., ",", ";",
and ":", missing from a 'print list' — e.g. PRINT A BZ$); and too
many or too few brackets. Generally the omitted quotation marks
are easily noticed in a listing (and there can even be too many,
although that rarely happens), but the intended effect of the
missing print separators can often only be guessed, sometimes
by trial and error.

The omitted brackets can usually be checked on by adding up
the number of left-hand brackets and comparing the total with
the right-hand number. That isn't the end of the story, however;
you need to break the statement down into its components as far

PrintingErrors 87

as bracketed expressions are concerned, and examine each in
turn, to ensure that the correct number of brackets have been
used for each expression/function.

In one case I know, a DEF statement contained one too few
left-hand brackets. On running the program, no error message
was generated concerning the DEF statement itself, but when
another statement which appeared later in the program
attempted to make use of the DEFined function, an INCORRECT
STATEMENT error was produced referring to the statement being
executed. It took half an hour before the true origin of the error was
uncovered.

6) It is not unusual for published listings to lack a line or even
a block of lines, and the first indication may be either an error
elsewhere as variables which have been undefined (due to the
omission) are involved in 'division by zero' errors or similar
situations, or a failure of the program to perform stated functions.
A little detective work may be necessary to determine whether
lines are missing and, if so, exactly what form they should take.
For example, if these statements appeared in a program which
controlled a shape on screen:

R = R + 1

C = C + 1

C = C-1

you would be justified in thinking that there ought to be one
more, to complete the pattern:

R = R-1

This kind of omission underlines the necessity of providing full
documentation with all programs, for it can often be the only
practical source of information to which you can refer when in
difficulty.

7) Missing symbols are among the more difficult to cope
with, especially if there are no clues as to the likely function of the
statements concerned. For example:

C = R A* B

seems to have an omission between the variable R and A. It

might, of course, be the case that there is a variable named, say,
RTA in the program, which tends to point strongly to the
omission being a letter T' (once again highlighting the useful-

88 Mastering the TI-99

ness of having produced a list of variables). Often, by scanning
the rest of the listing, you may be able to see other, similar,
omissions and thus be able to build up a picture about the nature
of the omission. Some magazines have to insert certain symbols
after typesetting the rest of the listing, and that step has, on
occasion, been forgotten in the past. You may notice, therefore,
that all the symbols are present bar one or two, thus reducing the
number of possibilities which have to be considered. In the
above example, the asterisk (*) has been printed, so the missing
symbol is unlikely to be that. You might have found from
examining other statements that the addition and subtraction
symbols were present elsewhere, as was the division (/) sign. Out
of the remaining symbols, the 'Relational Operators' usually are
to be found within brackets, which leaves the ampersand (&)
which is the string concatenation operator (and as there are no
strings involved here, it is not a likely candidate) and the symbol
for exponentiation, the caret (A). For the most part, you will be
very fortunate indeed if you can similarly isolate the most likely
symbol so easily.

Sometimes the string symbol ($) which identifies a string
variable can be missing (there is a strange form of BASIC which
allows you to DEFine the name of a numeric variable to be that of
a string variable: DEF R = R$, and, if you are translating a non-99
program, that might explain the apparent omission) but the
context usually clearly indicates exactly what the omission is:

T$ = STR(J)

In this case, there are two possibilities: either T$ is in error and
the '$' is an unwanted inclusion, or the apparent numeric array
STR() is in reality the string operator STR$(). It is worth bearing
in mind the possibility that there could be another operator
missing:

T$ = CHR$(STR(J))

and the context and the variable list should give valuable pointers
to the solution of the problem.

8) Rarely you may find that parameters are missing from the
Subprograms (CALLs), (a 'parameter' is one of the items of
information within the brackets, separated by commas) and
either the lack of certain effects on screen will indicate the

problem statement (for example if only one graphics character

Printing Errors 89

instead of several is placed on the screen, indicating that the
fourth parameter in HCHAR/VCHAR has been omitted), or an
examination of the erring CALLafter an error message will reveal
the answer. For example:

CALL GCHAR(Y, X, H, Q)

Knowing that GCHAR requires a screen row, screen column, and
'return variable' to be specified and no more, the Q indicates one
of two things. Either there has been an error in the name of the
subprogram (perhaps it should have been HCHAR or VCHAR),
or part of another statement elsewhere has replaced what should
have been within the brackets of GCHAR. You may find another
statement a few lines earlier which uses:

CALL HCHAR(Y, X, H, Q)

which, while it doesn't tell you what is missing from the GCHAR
subprogram parameter list, does at least tell you that there is a
very strong possibility of a typographical error.

As has been the case with most of the chapters in this book,
lack of space has prevented a detailed discussion with analysis of
actual programs — we just couldn't have fitted all the examples
in. Further publications planned will deal with all of the subjects
covered in outline in this book, and will go on to uncover further
areas of interest.

Hints and

Tips

This chapter is intended to give you as much help as possible in
getting the most from your computer. Because of internal
differences, there is a small chance that your machine may not be
able to make use of all of the hints and tips given here, in which
case I would be very glad to hear from you, both to make a note of
the problem(s) and to help you towards a solution. Please write to
me care of the publishers, enclosing a stamped, self-addressed
envelope.

Let's start with a couple of very useful items.
The 99s don't have a command in TI BASICwhich gives you the

amount of memory 'used' by a program. (I say 'used', because a
program uses not only the amount of memory occupied by its
listing — and the listing is not all it appears to be — but also uses
memory when you RUN it: an amount is used to hold a table of
the names of the variables involved together with their contents,
and SUBPROGRAMSor CALLs also require memory).

However, there is a very simple two-line program which can
give a reasonable approximation.

Why would you want to find the amount of memory used? Well
for one thing, if you decide to publish your latest version of Alien
Mothers-in-Law, the editor will want to know how much memory
is needed to run the program so that he can publish the details for
the benefit of those wishing to translate your masterpiece into
their own dialect of BASIC. The owner of an 8K machine is not

going to be happy if he keys in your program (taking four hours
to do so) only to find that it needs 9Kin order to run successfully.

On the other hand, you might need to know just how much
room for expansion the program has, especially if it is the type
which generates and/or stores large quantities of information.
You will curse pretty loudly if, after two hours' running, your
program stops with a MEMORY FULL error.

To begin with, let's see what the two-line program mentioned

Hints and Tips 91

earlier looks like, and how it works when there is no other
program in memory.

Switch your machine on and select TI BASIC. Enter the
following two lines:

100 A = A + 8

110GOSUB100

Now RUN the program. After a few moments, the program stops
with a MEMORY FULL error. Now comes the clever bit. Type:

PRINT A

and press the ENTER key. Depending upon the variant of 11-99
that you have, a number around the 14600 mark should appear
(14792 on the NTSC 99/4, 14536 on the PAL 99/4A; others not
currently known). This is the number of bytes, roughly, that are
available for you to play around with.

By now you may be thoroughly confused, because you may not
be able to see how on earth the routine manages to do what it
does. On top of that, you may wonder why the number of bytes
available is not 16384, or 16K.

Things are reasonably straightforward, however. Whenever
the Texas computer performs a GOSUB, it uses up about 8 bytes
of memory to store details about the point from where it is to
continue once it RETURNS from the subroutine. So, every time
the computer encounters GOSUB 100 it uses up 8 bytes. It is
possible to 'nest' the GOSUBs so that one subroutine causes a
GOSUB to another. In this case the computer is continually told
by the subroutine to GOSUB to the same subroutine, without
ever encountering a RETURN. It therefore uses up blocks of 8
bytes until there is no more memory available, whereupon it
halts with the MEMORY FULL error. Each time that it encounters

the beginning of the subroutine (line 100), 8 is added to a
'counter' — the variable A — so that when the program halts, that
variable will hold the number which corresponds to the number
of bytes of available memory which the computerwas able to use.

So why does the computer only find around 14K instead of 16K
of available memory, when the machine is described as 16K?
Well, the computer uses some of the 16K to produce the screen
display — 768 bytes, which refer to the ASCII codes of the
characters on the screen. The definitions for the shapes of all the
predefined characters (codes 30 to 95 on the 99/4,30 to 127 on the

92 Masteringthe Tl-99

99/4A) also occupy some memory (8 bytes per character), and the
remainder is taken up with storing what are known as System
Variables, or variables which are generated and used by the
computer during the execution of your program.

How can you use the routine to discover the size of your own
programs? All you need to do is to add the two-line routine to
your program, subject to a few restrictions, and then RUN. Place
the two lines at the very beginning of your own program, and it
will measure the initial use of memory. Place it somewhere in the
middle, and it will measure the amount in use by that point in the
program.

One restriction is that in the first line of the two-line routine

you should use a variable which is not used by your own
program.

To see exactly how you should go about using this tool, here is
an example routine:

100 CALL CLEAR

110 PRINT "EXAMPLE PROGRAM"

120 END

Add the routine as:

1 A=A+8

2 GOSUB 1

and RUN. When the program halts (note that it never gets any
further than line 2) type in the following, and then press ENTER:

PRINT A, 14792-A

where the number (here 14792 as an example) is the one you got
from running the routine with no other program in memory.

The values which are printed out are the number of bytes
remaining, and the number of bytes used. Note that you should
never edit any lines before printing out those values, because this
will reset all numeric variables to zero, and therefore prevent you
from proceeding further.

If you have the disk system switched in (i.e., so that the
computer 'knows' that it is there) you will find that the numbers
you obtain are smaller, because the presence of the system causes
an amount of memory to be set aside for transferral of data
between computer and disk. This amount will depend upon the
number of files permitted by CALL FILES(), so to free as much

Hints and Tips 93

memory as possible for your program you should specify the
smallest number of files necessary before loading any programs.

The second useful item is a trick which enables you to monitor
the initial stages of the loading of a program from tape. Get your
cassette system ready to load a short program of your own which
you are sure of being able to OLD successfully. Select the 'title
page' (either switch on or, if already in BASIC, use the QUIT
function — shift Q or FCTN =, depending upon machine). Select
TI BASIC. This is necessary to redefine the User-definable
characters as 'blanks' — you'll see why later.

If you have a 99/4 (PAL or NTSC), enter this:

100 FOR I = 96 TO 159

If you have a 99/4A, enter this:

100 FOR I = 128 TO 159

Then add:

110 PRINT CHR$(I);
120 NEXT I

The semi-colon after the CHR$(I) in line 110 is important.
Now RUN the program. When it has finished, type OLD CS1

and load your program in your usual manner, but watch the
screen carefully.

If everything goes smoothly, as the 'header tone' is succeeded
by the 'angry bee' sound, you should see a small army of 'insects'
begin marching across your screen at the bottom, in short bursts.
It will last for only a couple of lines (less if you have a 4A) but it is a
visible sign that the program is being loaded successfully. The
chances are that if the program initially loads without difficulty,
the rest of the program will also load successfully. With some
programs, getting the volume just right can be difficult, and with
this trick if the volume is way off the mark, the insects will not
march; however, you do have some time to rewind the tape to the
point just before the angry bee starts buzzing, enabling you to
alter the volume, and press PLAYto try loading again. You can do
this several times until either you take a little too long and the
computer says 'NO DATA FOUND', which tends to suggest that
the volume was far too low, or 'ERROR DETECTED IN DATA'
which can mean either that the volume was far too high (causing
distortion of the signal), or that it was fractionally below

94 Masteringthe TI-99

optimum (when slight changes in sound level could mean that
data were lost during transfer). In either event, the resulting error
messages and options cause your insect army to be shunted off
the top of the screen, so ideally you really need to start from
scratch (i.e., the title page), having used 'E' to exit from the
OLDing instructions.

How does the three-line program help? It makes use of the fact
that the area of memory which stores the definitions for the
User-definable (NOT Redefinable) characters is also the area of
memory into which your program is placed when OLDed from
tape. What the short routine does is to place the User-definable
characters on screen so that when the incoming program is trans
ferred into that area of memory, you can 'see' it arriving via the
'window' on that area afforded by the characters. Incidentally,
when you define one of the User-definable characters, your
BASIC program is not interfered with. The computer simply
moves everything 8 bytes further along inside to make room for
the definition. You may notice that redefining characters with
CALL CHAR() is slightly faster when using the predefined
characters; this is because memory has already been set aside for
their definitions, and so the computer doesn't need to shunt data
around in order to make space for them.

The reason why you need to go back to the title page to wipe the
User-definable characters clean instead of simply typing NEW is
that on most computers the use of NEW does not in fact remove
the BASIC program from memory. Generally a computer will use
some system variables (see the beginning of the chapter) which
will record where in memory the BASIC program listing begins
and ends. NEW simply resets those variables so that the com
puter 'thinks' that there is no program resident. No one knows for
certain with the 99s, because Texas Instruments play their cards
pretty close to their corporate chest, but the fact that, after NEW,
the undefined User-definable characters maintain the shapes
produced by the incoming program seems to suggest that the 99s
are no different from most of the others in this respect.

While on the subject of OLDing programs, it is worth noting
that certain keys are 'active' — that is, if you press them the
computer will respond — during the OLDing and SAVEing
instructions. If you have a program in memory, for example, and
a program on tape which you suspect may be identical, you can
invoke the CHECK facility by moving the tape to the start of the

Hints and Tips 95

header tone, and typing SAVECS1, as if you were going to make
a copy of the program. Instead, however, once the REWIND
instructions appear, you can press C to check, even though the
computer doesn't tell you that you can, and proceed as if you had
already SAVEd the program. By playing the program on tape to
the computer, you will cause it to be compared with the one
currently resident in memory. The two must be identical (which
may involve far more than simply having identical listings on
screen, but which is beyond the scope of this book to discuss) or
you will receive the ERROR DETECTED IN DATA message,
whereupon you can exit with E. The program in memory will not
be affected. Almost all the options are active during SAVEing and
OLDing, so that you can exit from a command immediately by
typing E without having to wait until the computer tells you that
you can. Note that early NTSC 99/4s can receive instructions
concerning the OLDing of programs from CS2, even though the
cassette cable may not support the necessary hardware
connections.

Still on the subject of SAVEing programs, it can be helpful to
you, more so if you are using C60 tapes or something similar, if
you preface each SAVEd program with a short spoken resume of
what the program's title is, the version, etc. It will save you time
when you are looking for a specific program later.

Many other BASIC dialects (and indeed TI's own Extended
BASIC) permit the use of the Boolean Operators AND, OR, XOR,
and NOT. The subject of Boolean Algebra is covered broadly in
the Jargon chapter, and specific details on implementing the TI
BASIC equivalents of the operators are given in the Translation
chapter.

There are a few bugs which are known to exist in TI BASIC.
Some which were evident on the NTSC and PAL 99/4 have been

removed, only to be replaced by others on the 99/4A. Two which
could cause problems for the 99/4 occur in the use of POS() and in
the use of relational expressions with the ASCII codes of certain
characters.

The POS() bug is fairly straightforward. If you instructed the
computer to search a string for the occurrence of another string,
beginning at the first character, you had no problems unless the
string to be searched was greater than 127 characters in length
AND the string to be looked for occurred for the first time in a
position which was greater than 127th. The value returned by

96 Masteringthe TI-99

POS() would be zero (i.e., string not found) unless you altered
the instruction so that the computer began the search from the
128th character of the major string. This has been resolved on the
99/4A, but 99/4 owners ought to be aware that a 99/4A program
might fall foul of it if run on a 99/4.

The second bug occurred when comparing the ASCII codes of
two characters. If one of these codes was less than 127, and the
other greater, then the evaluation of:

CHR$(code less than 127)< CHR$(code greater than 127)

would give a FALSE result (i.e., that the lower-coded character
was not 'less than' the higher-coded one). This is not likely to
make many programs collapse in ruins, but it exists and you
should be aware of it.

On the 99/4A the bugged command is CALL KEY() when
using key units 1 and 2. When pressing X or M, which return
values of zero while being scanned with CALLKEY(1, K, S) or (2,
K, S) respectively, a small problem arises in that although if X (or
M) is pressed and the contents of variable K is printed it will
produce a zero on screen, that value is not really zero, and it fails
the test for being zero:

CALL KEY(1, K, S)
IFK = 0THEN. . .

The only way really to decide what value you have there is to
execute this:

PRINT EXP(LOG(K))

whereupon if X (or M) is pressed the magic number 400 appears.
Something is interfering with the correct function of CALL
KEY(); I understand that the use of key unit 3 as a 'dummy' (i.e.,
not used for any purpose) before using CALL KEY() with key
units 1 or 2 will avert disaster, but I have been unable to confirm

this. The known solution is to test for (K +1) = 1, rather than K =
0, which looks daft but it works.

CALLKEY(1,K,S)
IF(K + 1) = 1THEN. . .

Moving on to memory-saving techniques, and general hints,
there are a number of simple points which can be easily over
looked:

Hints and Tips 97

1) If DIMensioning arrays, do them all in the same program
statement if at all possible.

2) Use PRINT :::::::::: rather than simply lines of PRINT, or
loops of PRINTS.

3) If you want to redefine a character as a 'blank', then use a
null string with CALL CHAR(); i.e., CALL CHAR(code,
""), rather than "0" or "00".

4) If an IF. . . THEN ... is testing for '<> 0', then save space
by replacing:

IF variable <> 0 THEN . . .

with:

IF variable THEN. . .

for the '<> 0' is 'implied'.
5) If the same number or string is going to be used in several

places throughout the program, assign it to a variable,
which will usually save time and space.

6) Use string variables and string arrays instead of their
numeric counterparts wherever possible in a program;
they may slow things down, but they can reduce the
memory requirements markedly.

7) Reduce unnecessary calculation whenever possible, and
reduce the numbers of brackets involved as well — these
can slow a program down considerably.

8) Use DIM on any arrays whose maximum subscript is going
to be less than 10, rather than waste valuable space.

9) If there are sections of the program which are repeated in
several places, turn each section into a subroutine, and place
it as close to the beginning of the listing as is possible. All
GOSUBs appear to cause a search for the line number to
begin at the first line in the listing, so it makes sense to
place subroutines as closeto the first line as is possible.

10) Don't use REMs unless you really can't avoid it. There are
really only two practical uses of REM: to 'inactivate' a pro
gram line so as to provide optional additional lines in a
program, or to give copyright and other information. The
only other use for REMs is in your early versions of a
program — the ones which are not forpublic consumption.
Too often memory is wasted with pointless REMs, and far
too often they are made the destination of a jump (i.e.,

98 Mastering the TI-99

GOTO/GOSUB/ON GOTO/ON GOSUB/IF . . . THEN

where the line number, or one of the line numbers, which is
given as the destination, contains a REM statement), which
means that if you decide to make room by deleting the REMs,
you'll also end up with a crop of BAD LINE NUMBER error
messages.

11) Always resequence your finished program, especially if it is
for publication, and any explanatory REMs should ideally be
added afterwards on line numbers ending in the digits 1 to 9.
Then LIST the program, and any destination line numbers
which are 32767 will stick out like sore thumbs — which

means that somewhere you have made a bit of a boo-boo.
12) Use CALL KEY() when only a single key selection is to be

made, rather than using INPUT, which requires the user to
press ENTER in order to get the program to continue.

13) Don't touch the ADVANCE button on the Thermal Printer
while it is listing a program; the system will 'lock', forcing
you to switch the console off and then on in order to regain
control — by which time you'll have lost the program you
were listing.

14) Beware of typing errors in the DEF statement. These may
cause problems only when the defined function is used and
the error message may not give any indication that it is the
DEF statement itself which is at fault.

15) If you exit a FOR . . . NEXT loop before it has 'finished' you
may run into problems when the program attempts to begin a
fresh loop. The message 'FOR—NEXT ERROR' will indicate
the problem.

16) Make sure that if a subroutine has been placed early in the
listing, and it has any references to arrays, that those arrays
are DIMensioned in a statement whose line number lies

before that of the subroutine.

17) You can round a number up or down to the nearest integer
according to the standard convention by using INT(.5 +
number), where 'number7 is a numeric variable or expression.

18) You can round a number up or down to a specified number of
decimal places thus:

a) Call the number of places required: 'D'.
b) Let D become 10 ^ D.
c) Let the value to be rounded be: 'V.

Hints and Tips 99

d) The new, rounded value for V is given by:

V = INT(.5 + (V * D)) / D

19) When typing in a program, make it a habit to SAVE a copy
every twenty lines or so; if you have a power failure, or the
machine 'locks' for some reason, you will lose only those
lines which you have entered since the last SAVE. Don't
forget to make a final copy of the finished program before
RUNning in case the system crashes, or in case you lose the
program for some other reason.

20) Use NUM for entering programs whenever possible; it will
encourage you to keep your program listings neat and tidy,
a condition which is helpful when-searching for bugs. It
can also be useful if entering a program from a published
listing, especially if the other author has placed REMs on
line numbers ending in 1-9, as NUM will automatically
skip over them.

21) If you want to know how many statements your program
has, simply 'RES 1, V and then LIST 32767. The last
program line will be listed, and its line number will be the
number of lines in the listing.

22) If you want a function which isolates the fractional part of a
number (i.e., the opposite of INT()) then DEF can provide
it. Simply use the line:

DEFF(X) = X- INT(X)

and then use it thus:

A = F(B)

where the fractional part of the number represented by B
will be assigned to A. Incidentally, once a program stops,
the functions defined by DEF remain operational in the
Immediate Mode until editing takes place. This means that
you can create special functions and test them out manually
without needing to write a program to do so. You can also
use the function defined above to test for an integer:

IF F(C) THEN . . . (routine for non-integer)

which translates as 'if the fractional part of the number
represented by the variable C is not equal to zero then. . .'.

100 Mastering the TI-99

23) If you want to place a border around your screen display,
you can do so very quickly with just two program lines.
Choose the character which will form the border, for
example CHR$(30) — the cursor — and use these
statements:

CALL VCHAR(1,32,30,48)
CALL HCHAR(24,1,30, 64)

(with line numbers, of course). This makes use of the
'wrap-around' effect of H- and V- CHAR. To thicken the
border, simply double up:

CALL VCHAR(1,31,30,96)
CALL HCHAR(23,1,30,128)

You could use a redefinable character and produce all sorts
of variations on the border theme.

24) The command INPUT has some useful attributes. If you
don't specify an 'input prompt', the computer will print a
helpful'?' for you. However, if you want to take advantage
of the full 112-character input line you must trick the
computer into thinking that there is an input prompt when
in fact there isn't. To do this all you need is a 'null string'
input prompt:

INPUT "":S$

In addition, if you create a 'pending print' condition by
following the last PRINTed item with a semi-colon or
comma, a subsequent INPUT will cause the prompt/query
to be printed immediately following the item.

25) The ENTER key is not the only one which can be used to
put data into the computer. Both X and E keys, when used
with Shift (99/4) or FCTN (99/4A), are also capable of acting
like ENTER, not only when editing (which will move you
up and down through the listing) but also when using
INPUT. This means that INPUT can take on a degree of
flexibility if CALL KEY() is used in the statement immedi
ately following the INPUT. If the key used for entry
is held down for a short period and CALL KEY() tests for
the codes for the three valid keys, then a branch to alter
native sections of the program can take place.

Hints and Tips 101

26) If you want to ask a user to select from a range of choices
represented by single characters, i.e.:

PRESS: FOR:

1 First choice

2 Second choice

3 Third choice

then you can use CALL KEY() and test if the code of the
pressed key lies outside the permitted range. In the above
example this could be programmed thus:

First line: CALL KEY(0, K, S)
Second line: IF (K < 49) + (K > 51) THEN

First line

Thirdline: ONK - 48GOTO .

This is also applicable to ranges which use letters of the
alphabet. The process is known as inputvalidation, or mug
trapping. A more sophisticated solution which permits
selection from a list of keys which do not form a simple
range involves the use of POS(). If, for example, your valid
keys were W, E, R, S, D, Z, X, C, 0, 1, and 2, then the
following routine would be of use:

First line: CALL KEY(0, K, S)
Second line: IF S < 1 THEN First line

Third line: ON 1 + POS("WERSDZXC012",
CHR$(K), 1) GOTO First line,

If an invalid key is pressed then POS() will return a value
of 0. Adding 1 means that if the first line number in the list
following GOTO (or GOSUB) is 'First line' then a branch
will be made back to the 'First line', and only the valid keys
will cause the relevant section of program to be branched
to. By making use of careful arrangement of the valid
characters in the string in POS() and the 'start position'
facility for a search for CHR$(K), you could further impose
restrictions — for example, if using the 'arrow' keys in an
Alien Invader-type game, a hit on your defending ship
could disable the 'up' keys simply by making the 'start
position' 4 instead of 1 in our example above. In that case

102 Masteringthe TI-99

the search for CHR$(K) will begin with the 4th character in
the string, ignoring "WER".

27) When the CALL KEY() command is used, the usual test for
keys being pressed is to examine the status variable, S, to
see if it is —1,0, or 1. However, the key-return variable, K,
can also hold some useful information. Besides containing
the code of any key being pressed, when no key is pressed
K contains -1, so it too performs a kind of status function.
And instead of:

First line: CALL KEY(0, K, S)
Second line: IF S < 1 THEN First line

Third line: IF K <> valid code THEN First line

you could use:

First line: CALL KEY(0, K, S)
Second line: IF K <> valid code THEN First line

28) The use of CALL KEY() with key unit 0 on a 99/4A has a
slightly different effectfrom that on a 99/4:on a 99/4A,key
unit 0 will scan the keyboard according to the key unit
specified in the last scan. Thus if key unit 1 is followed by
key unit 0, on a 99/4Athis will function like key unit 1. The
key unit on a 99/4Awhich corresponds to unit 0 on a 99/4 is
3: in all the examples here it has been assumed that CALL
KEY(0, -, -) will be replaced by CALL KEY(3, -, -) on a
99/4A, but not all of the software on the market may take
this into account, so there may be problems when using
99/4A software on a 99/4.

Further Useful Routines

To scan the keyboard for the 'arrow' keys — W, E, R, S, D, Z, X,
and C, the following routine will automatically alter row (R) and
column (C) variables, increasing/decreasing by 1 each time the
relevant valid keys are pressed:

100 R = 12

110 C = 16

120 CALLKEY(1,K,S)
130 IFS<1THEN120

HintsandTips 103

140 R = R+(K = 4) + (K = 5) + (K= 6)-((K + 1) = 1)-(K =
14) - (K = 15)

150 C = C + (K = 2) + (K= 4) + (K= 15)-(K = 3)-(K = 6)-
(K = 14)

160 continuation of program

Note that the CALLKEY() bug mentioned earlier is catered for in
line 140; this will not affect its correct use on an unbugged
machine. The scan is for key unit 1, which is the left side of the
keyboard. Change the key unit to 2, and the right side of the
keyboard will be scanned.

To scan the joysticks, you could use this simple routine:

100 R = 12

110 C = 16

120 CALLJOYST(l,X,Y)
130 IF (X = 0) * (Y = 0) THEN 120
140 R = R - Y / 4

150 C = C + X / 4

160 continuation of program

Line 120scans joystick #1, line 130doesn't continue the program
if the joystick is not being used, and lines 140 and 150 auto
matically increment/decrement the row and column variables R
and C, depending upon the direction in which the joystick is
being pushed.

In both instances, there is no check for the values of R and C
being off-screen; you can prevent any crashes due to attempts
perhaps to use HCHAR with invalidrow or columnco-ordinates,
simply by checking the row and column values thus:

nnn IF(R > 0)* (R<25)* (C> 0)* (C <33)THEN . . .both
co-ordinates are on-screen, so skip over the section
which copes with them being off-screen

The section of program which copeswith the co-ordinates being
off-screenis simply the reverseof lines 140 and 150 in both of the
above examples:

nnn + 1 R = R - (K = 4) - (K = 5) - (K = 6) +
((K + 1) = 1) + (K = 14) + (K = 15)

nnn + 2 C = C - (K = 2) - (K = 4) - (K = 15) +
(K = 3) + (K = 6) + (K = 14)

104 Mastering the TI-99

or for joysticks:

nnn + 1 R = R + Y / 4

nnn + 2 C = C-X/4

PRINT AT

Mimicking PRINT ATin TIBASIC is reasonably straightforward,
and requires a simple subroutine. All you need to do is to assign
your item to be printed to a string variable and specify a row and
column for printout, and then branch to this subroutine:

First line: FOR L = 1 TO LEN(M$)
Second line: CALL HCHAR(R, C + L - 1, ASC(SEG$(M$,

L, 1)))
Third line: NEXTL

Fourth line: RETURN

In the above example subroutine, the text to be printed is in M$,
the screen row is given by R,and the screen column by C. To use
such a subroutine, simply follow this format:

500 R = 4

510 C = 10

520 M$ = "HELLO FOLKS"

530 GOSUB First line

You can put numbers on screen using such a subroutine, by
turning them into strings using STR$():

520 M$ = STR$(V)

It is advisable to clear the line on which printing is to occur, as a
long item followed by a short item on the same line will produce
garbage. Youcan get round the problem by inserting a line before
'First line' in the example above:

Zero line: CALL HCHAR(R, 1,32,32)

and causing the routine to GOSUB First line if no clearing is
required, and GOSUB Zero line if it is. Partial clearing can be
managed by using the length of the text item to calculate the exact
part of the line to be cleared:

Zero line: CALL HCHAR(R, C, 32, LEN(M$))

Hints and Tips 105

This techniquecanbe used to leave untouched sections of textor
data already on the screen. One final warning: if the text to be
printed is longer than the amount of space left on the row
between the end of the screen and the start of the text, then an
error will occur, so beware of making that mistake. Ifyou want to
be really sophisticated, youcould amend thesubroutine sothat it
copes with several lines of text at one go, perhaps printing in
blocks of specified dimensions to produce a screen display like
this:

DINSDALE'S DOINGS

An Adventure Game For Up To Four Players,
Requiring Skills

Of Both Mind

And Body.

ACCEPT AT

Implementing ACCEPT AT is far less easy. To beginwith, there
are not only the valid key ranges to be considered, but also the
provision (or not,asthe case may be) ofcursor control toedit the
line before inputting it, and the concomitant changes to the
contents of the variable being used to hold the input.

The aspect of input validation has already been discussed
earlier, and the finer details need not concern us here. Let us
examine a very simple routine which will accept any keys
pressed, compiling them into a string variable — A$ — until
ENTER is pressed. First, we need a keyboard scan, effected
through CALL KEY().

1000 CALL KEY(0, K, S)
1010 IFS< 1 THEN 1000

This will only continue processing if a key is pressed, and
because'S < V is used, will 'debounce' the keyboard — i.e., you
will have to release a key and press it again before the system will
recognise that you are pressing keys. Using 'S = 0', if you kept
your finger on a key for a fraction ofa second toolong, more than
one character would be accepted.

106 Mastering the TI-99

Next, we need to test for the ENTER key, in which case the
entry is complete:

1020 IF K = 13 THEN 1050

Then we simply add to A$the CHR$() of the key pressed thus:

1030 A$ = A$ & CHR$(K)
1040 GOTO 1000

1050 RETURN

Apart from the obvious things like the lack of control over the
input — you can't retrace an entry and re-enter a corrected
version—and thefact thatA$ isgoing tofill up prettyquicklywith
successive jumps to the subroutine because it is not reset to a null
string ("") before being used, there is one glaring omission:

How can you tellwhat you are typing?

What is needed is an 'echo' to thescreen; that is to say, everykey
that you press should result in the characterrepresented by that
key appearing on the screen. There are several routes to this, but
one of the simplest, if your subroutine is to be a true mimic of
ACCEPT AT, is to use CALL HCHAR(), specifyinga screen row
and column location at which the input is to occur:

1000 CALLKEY(0,K,S)
1010 IFS< 1 THEN 1000

1020 IF K = 13 THEN 1070

1030 A$ = A$ & CHR$(K)
1040 CALLHCHAR(R,C,K)
1050 C = C + 1

1060 GOTO 1000

1070 RETURN

This subroutine makes no checks to see if the 'echo' is about to go
off-screen, although these could be added with a little thought.
To call it, the main routine might look like this:

3000 R = 14

3010 C = 4

3020 CALL HCHAR(R, 1,32,32)
3030 A$ = " "

3040 GOSUB 1000

3050 IF A$ = " " THEN 3040
3060 IF A$ = "FIRE" THEN 6000

Hints and Tips 107

and so on. Please note that this is by way of example only, and is
not intended as a piece of model programming.

There are still a couple of small points which may not be
immediately obvious: there is no cursor, so you won't know
where you are on the screen until you begin typing something.
This can be avoided by adding a line to place the cursor (character
30) on the screen in such a way that it doesn't interfere with what
you type, yet shows you exactly where you are. In addition, the
data which are echoed to the screen are not removed by the
example routine, so you will need to add such a line, between lines
1060and 1070, modifying line 1020accordingly so that the jump is
made to that 'clearing' line. The line providing the cursor might
best be placed between lines 1020and 1030, thus:

1025 CALL HCHAR(R, C, 30)

You may have your own ideas or preferences.

Quirks

There are a number of quirks on different models which may be
specific to a particular machine. For example, when using the
Thermal printer with an NTSC 99/4 you may refer to the printer
with only "." instead of the specified "TP". Thus "TP.U.S.E"
becomes ".U.S.E".

Again, a specific quirk which can be examined on those models
which have the Equation Calculator involves deliberately inducing
an error condition. This particular condition shows the sprites in
action in TI BASIC, although alas no useful functions can be
performed with them (unless someone finds otherwise). They are
invoked with this line:

CALLKEY(0, K, ''@@@@@@e@e@@@@QQQ@@@Q@@@@@@@@@
6@@@6666666666Q66666QQQ66Q6666Q6666(36@@@")

You need to fill the four screen lines with characters (here
represented with '@') and then press ENTER. Some quite extra
ordinary things can happen if you place the flawed CALL KEY()
statement in a short program and then RUN it. Recent experi
ments have produced some interesting effects, but they will be of
little interest to 99/4A owners.

Another quirk which seems to work on all but the most recent

108 Masteringthe TI-99

machines involves the addition of comments to certain types of
program line. There are several different ways of adding these,
some of them more useful than others, but the pick of the bunch
involves taking advantage of a weakness in the computer's error-
checking of program statements. I have called it a quoted comment
because it uses the quotation mark ("). To check whether your
machine can make use of this facility (although I would not
recommend its use for anything other than development of a
program — any routine using the quoted comment could cause a
crash on a machine which cannot make use of the effect), type this
into your machine and RUN it:

100 GOTO 110"JUMP TO THE NEXT LINE"
110 PRINT "IT WORKED"

If the computer crashes with an error message which refers to line
100, then your machine cannot support quoted comments. If the
text in line 110 is printed, then your machine can support them.
They can be used, as shown in line 100, with GOTO, GOSUB, ON
. . . GOTO, ON . . . GOSUB, and IF . . . THEN . . . ELSE. With
the IF . . . THEN . . . ELSE type, the quote can appear only after
the ELSE and line number, and with the ON . . . type the quote
must appear after the last line number in the list. When you use
them, you don't need to begin the routine(s) to which they refer
with a REM, thus avoiding the pitfall of accidentally using the
REM line as the destination for the jump. In addition, if you are
writing a program and there are forward jumps involved (where
you may not always have a clear picture of what the exact line
number will be) you can substitute 'labels':

1000 GOTO START

or:

1010 GOSUB PRINTOUT

1020 GOSUB KEYSCAN

1030 IF R = 20 THEN ENDGAME

and so on. Note that these do not need quotes, and, more
importantly, will not permit you to run the program — they are an
aid to entry only, not to actual execution. Once you have the
program written you can replace PRINTOUT, KEYSCAN, and
ENDGAME with their relevant line numbers.

There is another quirk which is specific to the 99/4A and

Hints and Tips 109

involves the CTRL (control) and FCTN (function) keys. A full
discussion is beyond the scope of this book, but if you type a line
number followed by REM and then hold the CTRL key down and
press a few others, followed by ENTER, and then attempt to list
the line, you will find a whole string of characters and TI BASIC
words in the REM line. In TI BASIC this has very little practical
use as yet, but it is worth experimenting with if you like an
intellectual challenge.

Finally, an oddity which appears on some, if not all, 99/4s,
concerning the Equation Calculator. If you enter:

B = 10

then the variable B appears in the box with its associated value.
However, if you enter:

LETC = 100

nothing appears in the box, although the computer has actually
executed the instruction.

Index

A=A+8 routine see Available

Memory
ACCEPT AT 9,105etseq.
Accumulator 29

Acoustic Coupler 24
Advance Button (Thermal Printer)

98

AID 24

Algol 31
Algorithm 80,82
Alternatives to ENTER key 100
Ampersand (&) 88
AND 4,31,32,38,95
Animating a shape 73,75,80
Antilogarithm 16
APL 31

APPEND 50

Arithmetic Operators 31
Arrays 34, 35, 60, 62, 63, 65, 66, 67,

74,76,88,97
Arrow keys 24,101,102,103
ASC() 10
ASCII 24, 29, 37, 38, 48, 60, 61, 63,

64,65,67,91,95
Assemblers 19,31
Assembly Language 31
Assembly Language subroutines 10
Automatic inclusion of spaces 85
Available Memory 91,92

BACK 24

BAD ARGUMENT 84

BAD LINE NUMBER 98

BAD NAME 84

BASIC 3,27,29,30,33,34,44,45,47
Basic building blocks 30
BEGIN 24

Binary 8,28,35, 36, 66, 67,76
Bit (Binary Digit) 28, 29, 30, 32, 33,

38,67

Boolean Algebra 31,95
Boolean Operators see AND, OR,

XOR, NOT
Briggsian logarithm 15,16
Buffer 42,43,44,47,48
Bugs 25, 82,95, et seq., 103
BYE 47

Byte 28,29,30,32,33,38,50,91
Bytes used and remaining 92, see

also Available Memory

C (CHECK) during SAVE 94,95
CALL 10,88
CALL CHAR() 28,60,63,65,73,74,

75,80,94,97
CALL CLEAR 61,62,64
CALL COLOR() and contrast 79
CALLFILESO 92
CALLGCHARO 18,60,61,89
CALL HCHAR() 18, 60, 61, 65, 67,

80,89,100,103,104,106
CALLJOYSTO 14,103
CALL KEY() 14,17,96,98,101,102,

103,107
CALL KEY() bug
CALL parameters
CALL SOUND()
CALL VCHAR()

96

83,88
17

18,60,89,100
Calling routine 62,67
Caret (^) 88
Cassette File Handling 40,41,42,44
Cassette File information summary

47

Cassette Filing 45,47,48,49,50
Cassette Operating System (COS)

42,44
Cassette tape recorder 42,44
Central Processing Unit (cpu) 29,30
CHAIN 10

Changing shape 73

112 Mastering the TI-99

Character movement 73

Character redefinition 51,52,64,65,
67,68,80,94

Character sets 24

Chevron shape 74
CHR$() 48, 49, 88, 93, 96, 100, 101,

106

CHR$() and PRINT 10
CLEAR 10,20
Clear(Break) 24
CLOSE 10,42,47,48
CLOSE# 45,50
Co-ordinates 62,64,69
CoBoL 31

CODE() 10
Codes 29,48,61,63,64,65,67,68
Comments 107,108
Confusing letters with numbers 84,

85

Contrast and CALL COLOR() 79
Control (CRTL) characters 37,86
Counter 84,91
cpu see Central Processing Unit
CS1 25,44,45,46,47,49
CS2 25,44,45,46,47
CTRL (Control) key 24,86,109
Cursor 61,100,107
Cursor control 105

Dangerous language 28
DATA ERROR 86

Data files 40,41
Data Processing 42,44,45
DATA Statements 74,85
Data transfer 42,44,49,92
Debounce 105

Debugging 82 et seq.
Decimal 31,35,36,37
Decision 64

DEEKandDOKE 17

DEF 10,11,16,87,88,98,99
DEF FN 11

Defaults 44,45,46,47
Defining characters 51,52,91,92,94
Definition string 60, 61, 63, 67, 68,

74,80
Degree of resolution 52,72
DEL 24

DELETE 50

Destination line number 63,97
Devicename. filename 44

DIM 11,97,98
Disk controller 44

Disk drive 42,44
Disk system 44,50,92
Display 46
Display file 18,91
Division-by-zero errors 87
Dot matrix 74,75
Doubling 76
Down arrow 24

DRAW 51,52,58,72
Drawing continuous lines 72
DRAW subroutine listing 58
DSK1. 44

Dummy 96

E (CHECK) during OLD/SAVE 94,
95

Echo 106,107
Editing 92,99,100,105
Elements 34,35,60,63,65,66,67,74,

76

End of file (EOF) 50
ENTER key 24, 61, 92, 98,100, 105,

109

Equation Calculator 107,109
ERASE 24

ERROR DETECTED IN DATA 93,95
EVAL 11,12, 21, 22
Even Parity 38
Exclusive OR see XOR

EXEC 10
Exponentiation 33,88

FALSE 4,31,96
FCTN (Function) key 24, 86,93,100,

109

File 42,43,44,46
File#0 10,43,45
File handling 40,41,42
File life 47

File name 44,45,47
File number 43,45,47,48,49
File organisation 45,47
File processing 40
File specification 43,44,49
File structure 48

File type 46,47
FIXED 46,47,49
FOR-NEXT ERROR 98
FOR. . . TO. . . STEP. . . NEXT 16,

86,98,104
Forms 48

Forth 31

ForTran 31

Forward jumps 108
Fraction function 99

FRE 12,16
Further useful routines 102 et seq.

Garbage 104
GET 12,14
GOSUB 12, 62, 63, 72, 84, 91,97,98,

104,108
GOTO 12,84,97,98,108
Graphics and Plotting 51etseq.
Graphics character 88
Graphics manipulation 75
Graphics Utility routines 77 et seq.

Hash symbol (#) 45
Header tone 49,93,95
Hexadecimal (Hex) 29,31,35,37
Hexadecimal definition strings (hex

strings) 60,63,65,66,68,74,78
Hexadecimal digits (hex digits) 63,

66,67,73,74,77
High level language 29
High resolution 52
High resolution subroutine listing

53

High resolution subroutine discus
sion 52etseq.

Hints and Tips 90 et seq.
Home 10

Horizontal mirror image 77

I/O (INPUT/OUTPUT) buffer 40,42
IF . . . THEN . . . ELSE 5,13,23,97,

98,101,102,108
IMAGE 18

Image inversion 79
Immediate Mode 61,99
IN 14

Inactivating program lines 97
Inclusions 86

Inclusive OR see OR
INCORRECT STATEMENT 85, 86,

87

Initial use of memory 92
INKEY 14

INKEY$ 14

INPUT 15,18, 45, 46, 47,50, 98,100
INPUT# 45,50
INPUT#0 45

INPUT AT 9, 10, see also ACCEPT
AT

INPUT prompt 45,100

Index 113

INPUT USING 15

Input validation 101,105
INPUT/OUTPUT (I/O) 42
Insert 24

Instruction set 30

INT() 98,99
Integer 98,99
INTERNAL 46,47,49
Internal differences 90
Interpreter 19,30
Introduction 1

Inverter see NOT

Jargon 26
Joysticks 103,104

Key unit 0 102
Key-return variable 102
Key units 96,102,103
Keyboard 42,43,44,45,105
Keys active during OLD/SAVE 94,

95

Labels 108

Languages 31
Leading zeroes 75
Left arrow 24

LEFT$() 15
LET 109

LISP 31

LIST 15,98,99,109
LLIST 15

Ln 15

Log 15
LOGO 15
Loge 15
Logic 31
LOGO 31
Look-before-you-leap principle 81
Low level language 31
Low resolution 52,68
Low resolution subroutine listing

56

Machine code 30,31
Machine code instructions 30,31
Machine language 29,30,32,33,38
Measuring initial use of memory 91
Medium resolution 52,68
Medium resolution subroutine

listing 54
MEM 12,16
MEMORY FULL 90,91

114 Mastering the TI-99

Memory used 90 et seq.
Memory-saving hints 97etseq.
MID$() 16
Mirror image counterparts 77, 78
Mirror imaging 77 et seq.
Missing lines 87
Missing symbols 87, 88
Mnemonic 27

Modem 24

Morse code 37

Movement 73 et seq.
Movement algorithm 80,81
Moving graphics 73
Moving shapes 52, 73 et seq.
Mug-trapping 101
Multiple statements 14

Napierian logarithms 15
Natural language 29
Negative numbers 33
Nested IF . . . THEN 13

NEW 94

NEXT 16

NO DATA FOUND 41,93
NOT 8,9,31,32,33,95
NOT PI 9

NTSC 99/4 23,24,91,93,95,102,107
NTSC99/4A 23,24
Null string (" ") 65,74,97,100,106
Null string INPUT prompt 100
NUMBER (NUM) 99
Number of program lines 99
Numeric variable 33,34
Nybble 28,29

Octal 37

Odd Parity 38
OLD 25,93,94
OLDCS2 95

OLDing monitor 93 et seq.
Omissions 83 et seq.
ON ERR 16,19
ON ERROR 16

ON . . . GOTO/GOSUB 101,108
Ones Complement 8, 33, see also

NOT

OPEN 17,22,41,42,43,45,47,49,50
OPEN delay 41,42,49
OPEN mode 46,47
Optional LET 83
OR 4,5,31,32,66,67,95,101
OUT 17

OUTPUT 46,47,49,50

Padding 46
PAL 99/4 24,25,93,102
PAL 99/4A 24, 25, 91, 93, 102, 108,

109

Parameters 83,88, 89
Parity bits 38
Parity checking 38
Pascal 31

Patches 83

PAUSE 17

PEEK and POKE 3,17,18
Pending PRINT condition 100
Peripheral 44,45
Peripheral name 44
PERMANENT 47

Personal Computer World 4
Personal Computing Today 4
PLOT 51,52,62,63
Plotting 51 et seq.
Pointer 66

POS() 78,95,96,101
Power failure 99

Predefined characters 91,94
PRINT 17,18,45,97,100
PRINT# 45,49
PRINT#0 45

PRINT AT 18,104,105
PRINT list 86

PRINT separators 86,93,96,100
PRINT USING 18

Printer 42,44,45
Printing errors 1,82 et seq.
PROC'D (Proceed) 24
Processing data 44
Program expansion 90
Program files 40
Program listing 61
Pseudo-random numbers 19

Pseudo-spaces 86
Punctuation 86

Punctuation marks 83,86

Quirks 107 et seq.
QUIT 24,47,93
Quotation marks 86,108
Quoted comments 108

RAND 18,21
Random Access 43

RANDOMIZE 18

RANDOMIZE USR see VSR
READ 86

READY 61

REC 50

Record 46,49
Record length 22,50
Record type 46
Redefinable characters 51,100
Redefining characters 52, 63, 67, 68,

80

REDO 24

Reference string 66,67,78
Relational expressions 4 et seq., 95

etseq., 102 et seq.
Relational operators 4 et seq., 88
RELATIVE 50

REM 19,97,98,108,109
Remote lead 41

REPEAT . . . UNTIL see WHILE

. . . WEND

RESEQUENCE (RES) 98,99
Reserved words 3 et seq., 83,109
Resolution 52,72
RESTORE 50

RESUME 19

RETURN from subroutine 67,91
Return-variable 89

Right arrow 24
RIGHT$() 19, 20
RND 20

Rotation 76

Rounding values 70,98
RPT$() see STRING$()
RUN 20, 90, 91, 93

SAVE 21,25,41,95,99
Screen 42,43,44,45, 60,91
Screen border 100

Screen echo 106,107
Screen location 63,64
Scrolling 61,94
Searching 45
Seed 19

SEG$() 15,16,19, 20, 23, 66, 75, 78
SEQUENTIAL 45,46
Sequential Access 43
Sequential files 45,46
SGN PI 9

Shedding oxide 41,44
Shift key 24
Sine wave 68

Sine wave routine 68

SIZE 12,21
Size of a TI BASIC program 90
Sloppy thinking 28
Sorting 45

Index 115

Space character 61
Speech synthesiser 42, 44
Spoken resume on tape 95
Sprites 51
Sprites in TI BASIC 107
Status variable 102

STR$() 88,104
Straight lines 72
String concatenation operator (&) 88
String constant 86
String manipulations 66, 76 et seq.
String symbol ($) 88
String variable 33,34,48,50, 88,97
STRING$() 20,21
Subprograms 88,89
Subroutine entry 63
Subroutine location 62, 63, 97
Subscripts 34,35
Successful OLDing 93,94
SYS 10

System lock 98, 99
System variables 92,94

Technical drawings 72
TEMPORARY 47

Testing special functions 99
Thermal printer (TP) 22, 25, 46, 98,

107

Three-dimensional image 71,72
Three-dimensional image routine

listing 71
Tiles 52,59,60,61,65
Title page 93,94
TO (string function) 15,22,23
TRACE 21

Trailing zeroes 74
Transcription errors 82, 84,85
Transformed definition strings 76
Translation 3 et seq., 66, 67, 78, 88,

90

TRAP 16

TROFF 21

TRON 21

TRUE 4,31
Twos Complement 9, 33
Typographical errors 82,89

UNTRACE 21

Up arrow 24
UPDATE 46,50
User-definable characters 24, 28, 51

etseq., 93, 94
USR 10,21

116 Mastering the TI-99

Utilities 74 etseq.

VAL() 21,22
Validation 62,105
VARIABLE (records) 46
Variable names (4A only) 25
Variables 33 etseq., 62, 64, 65, 83 et

seq.

Vertical mirror image 77,78,79
Volume adjustment for OLDing 93,

94

WAIT 17,22
WHILE . . . WEND 22

WIDTH 22

Word 28,29
Wrap-around 80,100

XOR (Exclusive OR) 4,5,6,32,33,95

Zero and letter O 84,85

	front-cover
	content01
	content02
	content03
	content04
	back-cover

