

Get More From
The T199/4A

Get More From
The TI99/4A

Garry Marshall

GRANADA
London Toronto Sydney Newark

"w

Granada Technical Books

Granada Publishing Ltd
8 Grafton Street, London WIX 3LA

First published in Great Britain by
Granada Publishing 1983

Copyright © 1983 Garry Marshall

British Library Cataloguing in Publication Data
Marshall, Garry

Get more from the TI99/4A.
1. Texas TI99/4A (Computer)
I. Title

00l.64'04 QA76.8.T/

ISBN 0-246-I228M

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or
transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

Contents

Preface

1 Introduction To TI BASIC 1

2 Graphics And Sound 10

3 Screen Displays 24

4 Program Development 40

5 Tiles, Tiling And A Puzzle 47

6 Writing A Game 59

7 Writing A Simple Database 68

8 Writing A Simulation 75

9 Expanding The TI99/4A 89

Appendix I: The ASCII Code 98

Appendix 2: Binary And Hexadecimal Notation 100

Appendix3: Logic And Logical Expressions 102

Appendix 4: Notes And Further Reading 104
Glossary \05

Index 11J

Vll

Preface

This book is about getting more from the Texas Instruments
TI99/4A computer. The way of doing this that it advocates is to
learn to program the TI99/4A effectively. Now, the User's
Reference Guide that is supplied with the computer gives a rather
good treatment of the features ofTI BASIC and makes an excellent
source of reference. It is not so good at explaining how to write and
develop programs, however. This book aims to supplement the
User's Reference Guide by showing how to develop interesting
programs. By the same token, it avoids repeating material from the
Guide, except for a little of the introductory material that must be
included to make the book self-contained.

After a broad introduction to the features of TI BASIC in

Chapter 1, the book moves on to developing short programs for
colour graphics and sound effects in Chapter 2. In Chapter 3, it
concentrates more on graphics and the production of effective
screen displays. In the second and third chapters most of the features
of TI BASIC that are needed in later chapters are introduced. At the
same time utility routines are developed for performing tasks that
cannot be achieved directly in TI BASIC. Chapter 4 provides a
discussion on how to develop lengthy programs in a systematic way
and on how to document them to make them readable. Then

Chapters 5 to 8 are devoted to the development of some fairly long
programs for interesting applications, including a Space Invader
game and a simulation. All the programs presented in these chapters
are written to take advantage of the particular strengths of the
TI99/4A. The final chapter examines how the computer can be
expanded, with particular emphasis on the programming languages
that are available as alternatives to TI BASIC. In fact, the computer
can be expanded with an impressive array of programs and
peripherals.

The book does not cover every aspect of TI BASIC. It does,

viii Preface

however, try to provide some motivation for each of the topics that it
does cover. I hope that this approach will encourage the reader to
use the TI99/4A with confidence, to experiment with its capabilities
and, above all, to enjoy using it.

Finally, I should like to thank Richard Miles of Granada
Publishing for his continual encouragement and for arranging for
me to have the use of a TI99/4A with many programs and
peripherals prior to and during the writing of this book. I would
also like to thank Texas Instruments for makingaTI99/4A available
for me.

Garry Marshall

Chapter One

Introduction To TI BASIC

The version of BASIC that is built into the Texas Instruments
TI99/4A is known as TI BASIC. It can always be accessed by
pressing the 1 key when the computer's master selection list is
displayed. Programming the computer in TI BASIC is one way to
get it to do exactly what you want it to do. Whether you want it to
display brilliant colourgraphics, to play music, to playa game or to
store and manipulate information, you can make it perform to your
wishes by programming it.

The purpose of this introductory chapter is to introduce the
features of TI BASIC so that we can see what capabilities it
possesses and how they can be used as the building blocks for
constructing programs. Later, in Chapters 2 and 3, we shall write
some quite short programs and, in Chapters 6 to 8, we shall have
progressed to the stage of developing substantial ones. Before
proceeding to write programs ofanylength however, we shall pause
in Chapter4 to consider how they can be developed in a systematic
way. Adopting a systematic approach to program development not
only makes it possible for the reader to get the most from the
programs themselves but also helps to ensure that the programs
work properly!

The programs that are presented are intended to do more than
demonstrate how to program the computer. They are all written
withan eyeto showing off the capabilities of the TI99/4A. Thus, its
colour graphics and sound production capabilities are prominently
featured. The programs also illustrate the kinds of uses to which
computers can be put. In this way they should provide the reader
with a fund of ideas for what to do with the computer either by
enhancingthe programs presented in the book or byusingthem asa
launching pad for further, personal, developments.

2 Get More From The TI99/4A

The TI BASIC environment

TI BASIC provides a number ofcommands that makeit easy to use.
They are typed in directly andare obeyed as soonas the ENTER key
is pressed. Tasks typical of those for which commands are provided
are the entering,examining and alteringof programs.Thefollowing
Table 1.1 lists the more useful commands and gives summaries of
their purposes.

Table LI. Some of the commands of TI BASIC.

Command

BYE

EDIT

LIST

NEW

NUMBER

OLD

RUN

SAVE

Purpose of command

To leave TI BASIC and return to the master title screen.
To edit existing program lines. Bytyping EDIT followed
by a line number, the program line with that number can
be amended by replacing, inserting or deletingcharacters.
To list the program currently stored in the computer. A
part of a program can also be listed by giving the line
numbers of the first and last lines in the part as, for
example, in LIST 200-300.
To erase the program currently stored in the computer
and to prepare it generallyfor the entry of a newprogram.
To generate the line numbers for program lines auto
matically. When issued by itself the line numbers start at
100and increase in steps of 10. However, the command
can specify the starting number and the step as in
NUMBER 200, 50 which gives an initial line number of
200 and then the numbers 250, 300 and so on.
To copy a program that is stored on cassette, or some
other permanent storage medium, into the computer's
memory. The commandcauses the instructionsfor operat
ing the cassette recorder to be generated and displayed
automatically.
To run the program that is currently stored in the
computer.
To save the program that is currently stored in the compu
ter by copying it onto cassette or some other permanent
storage medium. As with OLD, the instructions for
operating the cassette recorder are generated and dis
played automatically.

Introduction To TI BASIC 3

The features of TI BASIC

In essence, what most computer programs do is to accept and store
information, to manipulate the information in some way, and to
present the results of this to the person using the program. This
pattern isevident in an arcade gameprogram suchas Space Invaders
where the person playing the game provides the inputs by pressing
keys as are appropriate for moving his missile base and for firing
missiles. The inputs are manipulated by, first, determining which
command they represent and then taking the appropriate action
such as moving the missile launcher to the left. The result of this is
presented to the user by an appropriate modification to the display
screen. As an example from the use of computers in business, a stock
control program gives a direct reflection of the pattern. Changes in
stock are typically provided to the stock control program as inputs.
This information is manipulated so that a correct representation of
the current stock position is stored in the computer, and this can be
displayed to show the state of the stock at any time. When a
computer runs a program to enable it to control another item of
electronic equipment, the program accepts as input signals from the
equipment it is controlling. It then processes these signals to
determine what action it needs to take, and then produces as output
the control signals that will cause the necessary actions to be taken.
Since most computer programs conform to this pattern, all
computer languages, and TI BASIC in particular, must have
features with which a programmer can direct the computer to accept
information, store it, manipulate it, and display the results. Some of
these actions can be achieved with commands, and we shall

demonstrate this before moving on to show them being done by
simple programs.

We can store a word such as 'Houston' in the memory of the
computer by making an assignment. This is done by enclosing the
word in quotation marks and assigning it to a variable. To do this we
must give the name of the variable. A variable name should begin
with a letter, it can be from one to fifteen characters long, and the
other characters can be letters or numbers. (Actually, a few other
characters can be placed at the beginning of or within a variable
name, but we shall not do so in this book.) As far as possible,
variables will be given names in this book which indicate the purpose
to which they are being put. This helps to make programs more
readable and easy to understand. Finally, if a word, rather than a
number, is to be assigned to a variable, then the name of the variable

4 Get More From The TI99/4A

must end with a dollar sign. This is so the computer can tell when it is
dealing with words and when it is handling numbers. Thus, one way
to store our word is with the assignment command:

CITY$ = "HOUSTON"

When it is executed it causes the string of seven characters in the
word to be stored in a part of the computer's memory which can be
referred to as CITY$.

Numbers can be stored using similar assignments. For example,
we can store the numbers five and six with the two assignments:

FIVE = 5

SIX = 6

Again, these numbers are stored in parts of the computer's memory
that can be referenced by the names of the respective variables to
which they are assigned.

With two numbers stored in the computer, we can write
commands which cause these numbers to be processed and to store
the results. For example, we can find and store the sum and the
difference of the two numbers with

SUM = SIX + FIVE

and

DIFFERENCE = SIX - FIVE

When one of these commands is executed what happens is that the
computer takes the part of the command to the right of the equals
sign, which is written as it would be in ordinary arithmetic, and uses
it to find a value. Thus, when finding the sum, it looks up the values
assigned to the variables FIVE and SIX, and adds these values
together. When a value has been found as a result of dealing with the
right-hand side of an assignment, it is assigned to the variable whose
name is given on the left-hand side. So, when the last two commands
have been executed we have 11 stored under SUM and one stored

under DIFFERENCE.

When these commands are obeyed there is no external evidence
that anything has occurred, since they have caused events to happen
only inside the computer, in its memory. However, to find out what
has happened there we can use the PRINT command or, to equal
effect, the DISPLAY command. Either of the commands

PRINT CITYS

Introduction To TI BASIC 5

and

DISPLAY CITY$

will cause whatever is stored under the variable name CITYS to be

displayed on the screen. In this case we shall see

HOUSTON

To see what is stored in the variables FIVE and SIX and the results

that were stored in SUM and DIFFERENCE we can give the
command

PRINT FIVE, SIX, SUM, DIFFERENCE

or

DISPLAY FIVE, SIX, SUM, DIFFERENCE

They will both cause the display

5 6

11 1

In this way, with simple assignment commands and commands
involving PRINT or DISPLAY we can cause the computer to store
and manipulate information, and to display the results. Each
command is obeyed at once, and so to achieve a chain of actions we
have to enter the successive commands one after another following
the completion of the prior commands.

We turn now to writing programs to tell the computer what to do,
rather than giving it commands to do one thing at a time. A program
is a sequence of instructions that tells the computer how to perform a
task when the sequence is obeyed. The computer must store the
program first. When it is stored completely, it can be run using the
RUN command. When a command is preceded by a number the
computer recognises it as a program line and proceeds to store it as
part of the current program. The number is usually referred to as a
line number and the combination of number and command as a

program line or statement. The computer uses the line numbers to
order the program lines, constructing a program by placing the lines
in increasing order of their line numbers.

A simple program to store two numbers, find their sum and
difference, and display the result can be written based on previously
given commands.

6 Get More From The T199/4A

It is

100 FIVE = 5

110 SIX = 6

120 SUM = SIX + FIVE

130 DIFFERENCE = SIX - FIVE

140 DISPLAY FIVE, SIX, SUM, DIFFERENCE
150 END

Remember that just typing in the program as it is written
automatically causes it to be stored. It can be listed by issuing the
LIST command and run as often as you like by issuing the RUN
command repeatedly.

This program is of strictly limited value since it always finds the
sum and difference of the same two numbers. We can generalise it so
that it can do the same for any two numbers that we might care to
give the program when it is running by using the INPUT statement.
When an INPUT statement is executed it causes the computer to
display a question mark as a prompt and then to wait until an entry
is typed and ENTER is pressed, when it assigns the entered value to
the variable mentioned in the statement. Thus, execution of the
statement

100 INPUT FIVE

will cause the entered value to be assigned to the variable named
FIVE. The facility also exists for providing your own prompt rather
than the question mark, and well-designed prompts make a program
much easier to use. If we would like the prompt

FIRST NUMBER?

to appear when we should enter the first number, we can write the
INPUT statement as

100 INPUT "FIRST NUMBER?" : FIVE

Note the use of the colon, which is compulsory. A program to accept
any two numbers and find their sum and difference can now be
written as:

100 INPUT "FIRST NUMBER?" : NUMBER1

110 INPUT "SECOND NUMBER?" : NUMBER2

120 SUM = NUMBER1 + NUMBER2

130 DIFFERENCE = NUMBER1 - NUMBER2

140 DISPLAY NUMBER1,NUMBER2, SUM, DIFFERENCE

150 END

Introduction To TI BASIC 7

A typical dialogue produced by running this program is:

FIRST NUMBER? 10

SECOND NUMBER? 2

10 2

12 8

Another way of providing data to a program is to use the READ and
DATA statements. With these, the data (whether numbers or
words) is given in the DATA statement or statements. The first
READ statement that is executed in a program causes the first item
of data to be read, the second READ statement reads the second
item and so on. Clearly, since the data items must be explicitly listed
in a DATA statement they must be known at the time the program is
written. If this is not the case, then the use of an INPUT statement is
probably a more appropriate way of providing data. The use of the
READ and DATA statements is illustrated by the next program.

100 I = 1

110 READ WORDS

120 DISPLAY "WORD NUMBER "; I;" IS "; WORDS

130 I = I + 1

140 GOTO 110

150 DATA ABILENE, GALVESTON, LAREDO, AUSTIN
160 END

Note that since the data consists of words it is read into an

appropriately named variable, WORDS. The GOTO statement is
introduced in line 140. The effect of executing

GOTO 110

is to cause line 110 to be executed next. When this program is run it
produces the display

WORD NUMBER 1 IS ABILENE

WORD NUMBER 2 IS GALVESTON

WORD NUMBER 3 IS LAREDO

WORD NUMBER 4 IS AUSTIN

*DATA ERROR IN 110

The program reads and displays the items.ofdata, but it also gives an
error. What has happened is that the GOTO statement in line 140
has created a loop that is executed for ever (unless an error occurs).
Every time line 140 is reached it sends the computer back to do line
110 again. However, the fifth time that the READ statement in line

8 Get More From The T/99/4A

110 is executed there is no data to read, for the DATA statement
contains only four items. This is the cause of the error.

One way to amend the program is with the use of the conditional
statement. This has the form:

IF condition THEN line number 1 ELSE line number 2

When executed, the condition is tested. If it is found to be true then
the statement having its line number given by line number 1 is done
next, otherwise that with the line number given by line number 2 is
done next. The statement can be abbreviated to

IF condition THEN line number 1

In this form, the condition is tested, and if it is true the statement
with the line number given by line number 1 is done next, otherwise
the next line after the conditional statement is executed.

The last program can be corrected if we include a special item of
data to indicate that it is the last item, and then use the conditional
statement to detect it and cause the program to end properly. The
resulting program is:

100 I = 1

110 READ WORDS

120 IF WORDS = "END" THEN 170 ELSE 130

130 DISPLAY "WORD NUMBER "; I;" IS "; WORDS

140 I = I + 1

150 GOTO 110

160 DATA ABILENE, GALVESTON, LAREDO, AUSTIN,
END

170 END

The program will display only the first four data items and not the
last one which is only an end-marker and presumably not an item of
data as such for the program.

Since the program that gave the error is about reading and
displaying a word repeatedly, it could equally well be fixed using TI
BASIC'S facility for repetition. This involves the use of the FOR and
NEXT statements. Using them, an alternative version of the fixed
program is:

100 FOR I = 1 TO 4

110 READ WORDS

120 DISPLAY "WORD NUMBER "; I;" IS "; WORDS
130 NEXT I

Introduction To TI BASIC 9

140 DATA ABILENE, GALVESTON, LAREDO, AUSTIN

150 END

The repetitions are achieved by repeating the statements between the
FOR and NEXT statements as often as directed by the FOR
statement. In this case the first repetition is done with 1=1, the next
with I increased by one to two, the next with I increased by one to
three and finally with 1= 4. The general form of the FOR statement
is:

FOR variable = initial value TO final value STEP step

This gives the initial value to be assigned to the variable for the first
repetition, the final value for the last repetition and the step by which
the initial value is to be increased up to the final value for the
repetitions in between. If STEP is omitted, as it is in the last
program, it is taken to be one.

Finally, we will introduce TI BASIC'S CALL KEY statement. It
has the form:

CALL KEY (0, CODE, STATUS)

Its purpose is to allow interactive entry of data to a program. With
its use a program can determine whether a key has been pressed and,
if so, which one. However, the program does not halt, as it does with
an INPUT statement, but proceeds immediately after executing
CALL KEY to the next statement as it would with any other
statement. When it has been executed, the value of STATUS
indicates whether or not a key has been pressed, and the value of
CODE gives the code for the character on the key that has been
pressed. The codes are explained in full in the next chapter.

Summary

This chapter provided an introduction to the facilities of TI BASIC.
First the commands it provides were described. Then the ways in
which data entry, storage, manipulation and display can be achieved
were explained. Input can be achieved with the INPUT, CALL
KEY, and READ and DATA statements. Assignments permit both
storage and manipulation. The PRINT and DISPLAY statements
can both be used to display results.

Chapter Two

Graphics And Sound

The strong points of the Texas computer include its graphics and
sound capabilities, and the ease with which graphics and sound
effects can be programmed. In this chapter we shall examine the
fundamental techniques for producing graphics displays and for
generating sounds.

Graphics

A program or text appears on the screen when letters and numbers
are positioned in the appropriate places. Letters and numbers are
represented when stored in the computer by their codes. To give one
example, the code for 'A' is 65. In fact, the computer uses the ASCII
code to represent the standard characters that can be entered from
the keyboard. The code is listed in Appendix 1. When the computer
is switched on the codes from 32 to 127 are automatically assigned to
the characters as shown there.

In the same way as positioning letters on the screen gives a
paragraph of text, so a picture can be displayed by placing graphics
characters on the screen. To illustrate this, the image shown in
Figure 2.1 can be formed by combining the small number of
graphics characters in Figure 2.2 in the way illustrated by Figure 2.3.

The computer itself does not provide any graphics characters.
However, it does provide the user with the capability to define his
own graphics characters. The codes from 128 to 159 have no
characters assigned to them, and they are there, in essence, for the
user to assign his own characters. Besides this, characters may be
reassigned to any of the codes from 32 to 127 within a program if this
should suit the user.

Every character that can be displayed on the screen occupies an
area that consists of eight rows each with eight dots along it called a

Graphics And Sound 11

Fig. 2.1. An image.

Fig. 2.2. Some graphics characters.

dot matrix. This is equally true whether the machine defines the
character automatically or you define it yourself. A character is
displayed in this area by (in monochrome terms) turning some of the
dots on and leaving others off. Expressing this rather more
appropriately in terms of colour, a character is displayed in colour
by making some of the dots one colour and the rest another colour.

12 Get More From The T/99/4A

Fig. 2.3. The image of Fig. 2.1 composed of graphics characters.

Thus, the character '5' is produced as shown in Figure 2.4(a) while
the first of the graphics characters in Figure 2.2 can be produced as
in Figure 2.4(b).

(a) (b)

Fig. 2.4. (a) Dot matrix for '5'. (b) Dot matrix for a graphics character.

Suppose that we want to use the character shown in Figure 2.4(b)
in one of our programs. It can be defined and assigned a code by
using the CALL CHAR statement which takes the following form:

CALL CHAR (code, character description)

Graphics And Sound 13

The character description is arrived at by representing each dot that
is on with a l and each that is off by a 0, and writing the 0's and l's
down in the same pattern as the dots that make up the character.
The string of eight binary digits representing each row is then
converted to two hexadecimal digits (see Appendix 2 for an
explanation of binary and hexadecimal notation). The whole
process is illustrated in Figure 2.5. The character can then be
assigned the code 128 by:

CALL CHAR (128, "FFC0A09088848281")

Binary Hexadecimal

11111111 FF

11000000 CO

10100000 A0

10010000 90

10001000 88

10000100 84

10000010 82

10000001 81

Fig. 2.5. A character and its description.

When a character has been defined in this way in a program it can be
plotted on the screen. It can be positioned in any of the 32 columns
along any of the 24 rows on the screen. The plotting is done using
either of the statements CALL HCHAR or CALL VCHAR. With

both of these, a character can be plotted at a specified screen
position by giving the row and column of the position to be occupied
and the code for the character. The forms of the statements are:

CALL HCHAR (ROW, COLUMN, CODE)

and

CALL VCHAR (ROW, COLUMN, CODE)

Additionally, a character can also be plotted repeatedly along a row
(that is, horizontally) using HCHAR and along a column
(vertically) with VCHAR. The repetitions start from the specified

14 Get More From The TI99/4A

position and are achieved by placingthe number of repetitions after
the code in HCHAR and VCHAR.

On the screen, the rows are numbered 1to 24 from top to bottom,
and the columns 1to 32 from left to right. A short program to define
a character and place it in the centre on the screen is:

100 CALL CLEAR

110 CALL CHAR(128, "FFC0A09088848281")
120 CALL HCHAR02, 16, 128)
130 GOTO 130

The first line of the program is the CALL CLEAR statement which
causes the screen to be cleared when it is executed. The final

statement prevents the program from halting so that no messages or
prompts can appear to interfere with the display that we are trying to
create. The program can be stopped by pressing FCTN 4, the
CLEAR key. The third line of the program could equally well be:

120 CALL VCHAR (12, 16, 128)

We can create a border around the screen by placing the solid block
character, in which all the dots are turned on, around the edges of
the screen with the following program:

100 CALL CLEAR

110 CALL CHAR(129, "FFFFFFFFFFFFFFFF")
120 CALL. HCHAR(1, 1, 129, 32)
130 CALL HCHAR(24, 1, 129, 32)
140 CALL VCHAR(1, 1, 129, 24)
150 CALL VCHARO, 32, 129, 24)
160 GOTO 160

The screen can be completely filled with the same character by:

100 CALL CLEAR

110 CALL CHAR(129, "FFFFFFFFFFFFFFFF")
120 FOR R0Wr1 TO 24

130 FOR C0LUMN=1 TO 32
140 CALL HCHAR(ROW, COLUMN, 129)
150 NEXT COLUMN

160 NEXT ROW

170 GOTO 170

However, it can be done much more simply by replacing lines 120to
160 with either:

120 CALL HCHAR (1, 1, 129, 24*32)

or

120 CALL VCHAR (1, 1, 129, 24*32)

Graphics And Sound 15

Colour

Colour displays can be created with the use of fifteen colours. The
colours are coded from 1 to 16 and are listed with their codes in the

following Table 2.1.

Table 2.1. The available colours and their codes.

Colour Code

Transparent 1
Black 2

Medium green 3
Light green 4
Dark blue 5

Light blue 6
Dark red 7

Cyan 8
Medium red 9

Light red 10
Dark Yellow 11

Light yellow 12
Dark green 13
Magenta 14
Grey 15
White 16

The screen can be set to any of these colours using the CALL
SCREEN statement with the code for the required colour. Thus,

CALL SCREEN (5)

sets the screen to dark blue. In the absence of any command to the
contrary, the screen becomes light green when a program is running.

When the screen colour is set, we can place characters on it which
have their own colours. Any character can be given its own
foreground colour for the dots that are on and a background colour
for the ones that are off. These colours are assignedusingthe CALL
COLOR statement. For use with COLOR, the range of character
codes is divided into sets, each of which contains eight codes. The
sets are given in the following Table 2.2, which is repeated for
reference in Appendix 1.

16 Get More From The TI99/4A

Table 2.2. Division of the character codes into sets.

Set number Codes in set

1 32-39

2 40-47

3 48-55

4 56-63

5 64-71

6 72-79

7 80-87

8 88-95

9 96 - 103

10 104-111

11 112-119

12 120-127

13 128 - 135

14 136 - 143

15 144-151

16 152-159

When the CALL COLOR statement is used it assigns foreground
and background colours for every character with its code in a
particular set. The form of the statement is

CALL COLOR (set, foreground colour, background colour)

and, as an example,

CALL COLOR (13, 6, 5)

assigns to all the characters with codes in set 13, that is those with
codes 128 to 135, a foreground colour of light blue and a
background colour of dark blue. When colour code 1 is used for
either foreground or background colour the screen colour shows
through. Until colours are assigned the standard foreground colour
is black (code 2) and the background is transparent (code 1).

To illustrate the way in which a coloured display may be
produced, consider how we might plot a coloured display consisting
of a single line in each of light red, white and dark blue on a cyan
screen. Basically, we can do this by plotting on a screen of cyan
characters with a cyan background. (We could equally well make the
background transparent.) The lines can be made up by using a
graphics character with a single horizontal line across it. This

Graphics And Sound 17

character, however, must be used to produce three differently
coloured lines. To do this, we use the same character description to
define three characters with codes in different sets. We can then
assign a different foreground colour to each version of the character.
The program to generate our display is:

100 CALL CLEAR

110 CALL SCREENC8)

120 A$="000000FF"
130 CALL CHAR(128, A$)
140 CALL CHAR(136, A$)
150 CALL CHAR(144, A$)
160 CALL COLOR(13,10,8)
170 CALL C0L0R(14,16,8)
180 CALL C0L0R(15,5,8)
190 CALL HCHAR(4, 1, 128, 32)
200 CALL HCHAR(12, 1, 136, 32)
210 CALL HCHAR(20, 1, 144, 32)
220 GOTO 220

As this program suggests, all fifteen colours can appear on the
screen simultaneously. Also, characters that are invisible can be
placed on the screen. This can be done by making both foreground
and background colours of the character transparent. It can be done
equally well by making the foreground and background colours the
same as the screen colour. A character plotted invisibly in this way
can be made visible by changing the colours assigned to it.

Creating large images

Although a tremendous variety of graphics characters can be
defined on the eight by eight dot matrix assigned for each character,
it is not always possible to design a convincing representation of a
fairly complex object on a single character. To illustrate this, an
attempt at designing a tank as a single character is shown in Figure
2.6(a). The effectiveness of this design is left for the reader to judge,
but it cannot compare with that which can be obtained by using a
block of four characters as shown in Figure 2.6(b). The latter tank
can be plotted at the centre of the screen with the next program.

100 CALL CLEAR

110 CALL CHAR(136, "0000060F1F3F3F1F")
120 CALL CHAR(137, "0000000080FFC0C0")
130 CALL CHAR(138, "073F55BF6A1F")
140 CALL CHAR(139, "80FC57FAACF8")
150 CALL HCHAR(12, 16, 136)

18 Get More From The TI99/4A

160 CALL HCHAR02, 17, 137)

170 CALL HCHAR03, 16, 138)

180 CALL HCHAR03, 17, 139)
190 GOTO 190

Fig. 2.6. (a) Small tank, (b) Large tank.

It isworth notingthat if the codes used for the four parts of thetank
all belong to the same set, then any colour assignment that is used
always gives the same colour to each part.

In general, large images can be designed as a set of adjacent
characters. Making sure that the characters all belong to the same
set simplifies the task of assigning colours to the parts of a large
image and of displaying it with a unified colour scheme.

Simple animation

The graphics features we have examined are sufficient for us to
create a simple animated display. Suppose we want the small tank
created in Figure 2.6(a) to move successively to the different
positions along a row as shown in Figure 2.7. This movement

ROW 6

I

4 6

COLUMN

Fig. 2.7. Movement pattern.

Graphics And Sound 19

sequence can be created by plotting the tank in one of the positions,
leaving it there for a short time, blanking it out with a space (which
has code 32) and immediately plotting it in the next position.
Following this process repeatedly gives the illusion of movement. A
program for this is:

100 CALL CLEAR

110 CALL CHAR(128, "10387F78307CAA7C")
120 CALL SCREEN(12)

130 CALL C0L0RO3, 2, 1)
140 R0Wr6

150 C0LUMN=2

160 CALL HCHAR(ROW, COLUMN, 128)
170 FOR J=1 TO 100

180 NEXT J

190 CALL HCHAR(ROW, COLUMN, 32)
200 C0LUMN=C0LUMN+2

210 IF C0LUMN=10 THEN 150
220 GOTO 160

Lines 170 and 180 provide a delay. Decreasing or increasing the
number 200 in line 170 speeds up or slows down the motion
correspondingly.

An alternative way of creating this effect is to plot invisible tanks
at each position where a tank is to appear and then to make the tank
visible for a time and then invisible again at its successive positions.
This necessitates defining the tank as four separate characters,
otherwise the tanks in each of the four positions cannot be
manipulated individually. The following program creates the
motion in this way.

100 CALL CLEAR

110 CALL SCREEN(12)

120 A$="10387F78307CAA7Cn
130 FOR J=128 TO 152 STEP 8
140 CALL CHAR(J, A$)
150 NEXT J

160 FOR K=13 TO 16
170 CALL C0L0R(K, 1,1)
180 NEXT K

190 CALL HCHAR(6, 2, 128)
200 CALL HCHAR(6, 4, 136)
210 CALL HCHAR(6, 6, 144)
220 CALL HCHAR(6, 8, 152)
230 FOR L=13 TO 16
240 CALL COLOR(L, 2, 1)
250 FOR M=1 TO 200

260 NEXT M

270 CALL COLOR(L, 1,1)
280 NEXT L

290 GOTO 230

20 Get More From The T/99/4A

If we want the tank to move over a part of the screen that already
contains a display in such a way that the original display is restored
when the tank has passed, then we can modify the first method. The
modification involves the use of the CALL GCHAR statement

which enables us to examine any position on the screen to see what is
plotted there. The form of this statement is

CALL GCHAR (ROW, COLUMN, VARIABLE)

and when it is executed it causes the ASCII code for the character

displayed at the position given by ROW and COLUMN to be
assigned to VARIABLE. Thus, if there is an 'A' on the screen at
column 2 of row 3, the statement

CALL (3, 2, TEMP)

will cause the value 65 (the code for 'A') to be assigned to the variable
TEMP.

In this way, we can examine the position to which the tank is
about to move and store the code for the character displayed there so
that it can be replaced when the tank moves on. A program to plot
the column number of the positions the tank is to occupy and then to
make the tank follow the same path as before without destroying
them is listed below.

100 CALL CLEAR

110 CALL SCREEN(12)

120 CALL CHAR(128, "10387F78307CAA7C")
130 CALL C0L0RO3, 2, 1)
140 CALL HCHAR(6, 2, 50)
150 CALL HCHAR(6, 4, 52)
160 CALL HCHAR(6, 6, 54)
170 CALL HCHAR(6, 8, 56)
180 R0W=6

190 C0LUMN=2

200 CALL GCHAR(ROW, COLUMN, TEMP)
210 CALL HCHAR(ROW, COLUMN, 128)
220 FOR J=1 TO 200

230 NEXT J

240 CALL HCHAR(ROW, COLUMN, TEMP)
250 C0LUMN=C0LUMN+2

260 IF C0LUMN=10 THEN 190
270 GOTO 200

Thus, TI BASIC provides us with the facilities we need to create and
examine any display. With CHAR we can create any characters that
we need and they can be displayed with HCHAR and VCHAR. The
screen can be examined using GCHAR.

Graphics And Sound 21

On a number of machines the role of HCHAR and VCHAR is
played by POKE whilethat of GCHAR isfilled by PEEK. However,
the features of TI BASIC are much easier to use than are PEEK and

POKE because they allow us to refer to the screen directly and do
not require us to know about such things as the location of the screen
memory and the screen memory map.

Sound

The computer has an in-built sound generator that can be controlled
from TI BASIC. Sounds consisting of up to three tones and one
noise played simultaneously can be generated. When a tone is
generated the user can specify its duration, its frequency (that is, its
pitch) and its volume. When generating noise, its duration, type and
volume must be given. The types of noise that can be produced
include various kinds of periodic noise and of white noise.

A single tone is generated by using the CALL SOUND statement
in the form

CALL SOUND (DURATION, FREQUENCY, VOLUME)

In this statement, DURATION gives the length of the tone in
milliseconds (thousandths of a second), FREQUENCY gives its
frequency in Hertz (or cycles per second), and VOLUME gives its
loudness using numbers from 0 to 30 with 0 indicating the loudest
level and 30 the quietest. The maximum value for DURATION is
4250, so that a note can last for up to four and a quarter seconds. The
frequency can vary from 110to 44733which is from the note A in the
octave containing low C to well above the range of human hearing.
The User's Reference Guide gives the frequencies corresponding to
all the notes in a range of four octaves. With reference to this table,
the command for playing middle C at full volume for a quarter of a
second can be written as:

CALL SOUND (250, 262, 0)

When used to the full, SOUND permits up to four simultaneous
sounds to be produced, and then it takes the form:

CALL SOUND (DURATION, Fl, VI, F2, V2, F3, V3, F4, V4)

In fact, anything from one to four pairs of values for frequency and
volume can be included. Not more than three of the sounds can be

tones, though, and not more than one can be a noise.

22 Get More From The TI99/4A

In this way, a two-tone chord can be produced by:

CALL SOUND (250, 262, 0, 330, 0)

and a three-note chord by:

CALL SOUND (250, 260, 0, 330, 0, 392, 0)

When DURATION has a positive value, the sound produced
does not commence until any existing sound comes to an end. The
computer can continue its other actions while it generates sounds.
However, giving a negative value to DURATION causes the sound
produced to be generated at once, interrupting any sound currently
being produced. This can be useful in causing sounds to be generated
at a precise time or in generating sound effects.

The noise channel isactivated by giving FREQUENCY a negative
integer value from -1 to -8. Each value causes a different type of
noise to be generated. They are given names in the User's Reference
Guide, but they need to be heard to be appreciated or distinguished.
A single sound can be generated by:

CALL SOUND (2000, -5, 2)

A sound consisting of a single tone accompanied by noise by:

CALL SOUND (1000, 220, -5, 4)

Finally, to give an example showing all four sound channels in use, a
3-note chord accompanied by noise is generated by:

CALL SOUND (2000, 523, 2, 220, 2, 175, 2, -4, 4)

Sound effects can be generated quite easily. For example, an
increasingly loud blast is generated by:

100 FOR VOL=30 TO 0 STEP -5
110 CALL SOUND(-100, 523, VOL, 262, VOL)
120 NEXT VOL

A tuneless trill that increases in pitch is produced by

100 FOR FREQ=220 TO 440 STEP 10

110 CALL SOUND(-100, FREQ, 0)
120 NEXT FREQ

Summary

The features of TI BASIC for producing colour graphics and sound

Graphics and Sound 23

have been introduced in this chapter. We have met the statements
SCREEN, COLOR, CHAR, HCHAR, VCHAR, GCHAR and

SOUND. Examples of their use in producing displays and in
generating sound were presented and the techniques introduced here
will be used in the programs developed in later chapters.

Chapter Three

Screen Displays

The attractiveness of any program is considerably enhanced by
taking care in designing the screen displays that it produces. This is
self-evident as far as the display of pictures and images is concerned.
It is, however, just as important when a screen full of text is to be
displayed. When reading the instructions for playing a game or for
using a program of any kind there are few things more off-putting
than having to read a screen that is filled to capacity with capital
letters all displayed in white on a black background. A little care in
arranging the layout and in using colours imaginatively can make
even reading instructions enjoyable rather than making it a chore
which may well be skipped altogether. In this way it can encourage
the users of a program to read the instructions for using it rather
than tempting them to start to use the program without having any
clear idea of how to drive it.

In short, whatever the display, it can always be improved by the
thoughtful use of colour and graphics. It is worth remembering that
in almost all instances the screen is the interface between the

program and its user. It shows the user what his program is doing at
any time.

Placing text on the screen

On nearly all computers the PRINT statement is most commonly
used for displaying text on the screen. The TI99/4A, however, has a
DISPLAY statement which is purely for displaying items on the
screen, so that we shall use DISPLAY for this purpose. It is worth
remembering, though, that everything that is true of DISPLAY is
also true for PRINT.

When the CALL CLEAR statement is executed, it not only causes
the screen to be cleared but it also causes the display position (which

Screen Displays 25

is analogous to the print head on a typewriter) to be set to the bottom
left corner of the screen. Thus, by clearing the screen in this way we
can remove any unwanted items from the screen and also be sure
where the next item will be displayed.

A DISPLAY statement causes a list of items to be displayed on
the screen. The items of the list must be separated in the DISPLAY
statement by at least one of the special separator characters. These
are the semicolon, the comma and the colon. A semicolon indicates
that the item following it should be printed immediately after the
previous one. A comma indicates that the item following it should be
displayed starting at the next available position in either column 1or
column 15. A colon indicates that the next item should be displayed
at the beginning of the next line.

These rules do not make it particularly easy to control the
accurate positioning of messages on the screen. Suppose that in a
game we should like to display the current score continually at the
bottom left of the screen. We can start by clearing the screen and
displaying the score with:

200 CALL CLEAR

210 SCORE = 0

220 DISPLAY "THE SCORE IS "; SCORE

Later on in the program the score will be increased when a space
invader is destroyed or whatever, and the score will be increased and
then displayed by lines such as:

900 SCORE = SCORE+1

910 GOTO 220

Unfortunately, while this causes the new score to be displayed at the
bottom of the screen, it also causes the screen to scroll upwards. This
pushes the previous score up by one line and causes the previous top
line to be lost. Every time the score is increased the screen scrolls up,
eventually causing the display for the game itself to vanish
completely. This is clearly not what we want.

The only alternative seems to be to clear the screen immediately
before the new score is displayed. But if we do this, we shall wipe out
the display of the game, thereby disrupting the game, and we shall
have to re-create the display each time. This is not satisfactory
either. The only solution seems to be for us to write a routine
ourselves that allows us to position messages as we would like to.

The CALL HCHAR statement allows us to position a character
precisely on the screen provided that we know its code. We propose

26 Get More From The TI99/4A

to use this in developing a routine for displaying a given message
starting at a particular screen location.

First, let us store the message itself in the string variable M$ and
the row and the column of the starting position in the variables
ROW and COLUMN. Thus, in our program we might have the
assignments:

M$ = "THE SCORE IS "

ROW= 1

COLUMN = 3

Our routine needs to take the characters in the string assigned to M$,
find their ASCII codes and pass them to HCHAR so that it can be
used to position each individual character in its proper place on the
screen. There is quite a lot of work to do here but, fortunately, TI
BASIC provides us with the tools for doing it all.

Since we must take the characters in the string one by one, we
should first of all like to know how many characters there are in the
string. The function LEN is provided for doing this. It gives the
length of a string. To show how it is used, after the assignment

A$ = "STRING"

the command

DISPLAY LEN (A$)

displays the result 6 because there are six characters in the string
assigned to A$, that is, the characters S, T, R, I, N and G. With
reference to our assignment to M$, the result of

DISPLAY LEN (M$)

is 13. This is because apart from ten letters the string contains three
spaces, and a space is just as much a character as a letter or a number
is. (If you don't believe this, consider that the string would have a
rather different appearance if the spaces were absent from it.)

Now that we can find the number ofcharacters in a string, we need
to be able to get at each one individually. The function that is
provided for taking strings apart is SEG$. Its use is illustrated
typically by SEG$ (B$, 2, 3) which gives the part of the string
assigned to B$ that starts at character 2 and is 3 characters long.
Thus, after the assignment

B$ = "DALLAS,TEXAS"

the command

Screen Displays 27

DISPLAY SEG$ (B$, 8, 5)

gives TEXAS, and

DISPLAY SEG$ (B$, 2, 3)

gives ALL. In this way, the fourth character of the string can be
obtained by SEG$ (B$, 4, 1) and, in general, the Kth character by
SEG$ (B$, K, 1). The following program causes the characters of a
string to be displayed with one on each line:

100 B$ = "DALLAS,TEXAS"
110 DISPLAY B$
120 FOR K=1 TO LEN(B$)
130 DISPLAY SEG$(B$, K, 1)
140 NEXT K

The remaining thing that we need to do is to find the ASCII code ofa
character in a program. BASIC provides the function ASC for this
purpose. When given a character string it returns the ASCII code of
the first character in the string. Thus:

DISPLAY ASC ("A")

gives 65, while after the assignment

B$ = "BASIC"

the command

DISPLAY ASC (B$)

gives 66, the code for B.

We nowhave all the tools weneed to write a programsegment for
passing the code of each character in a string to HCHAR so that it
can display it in the desired position. It is:

2000 FOR K=1 TO LEN(M$)
2010 CH = ASC(SEG$(M$, K, 1))
2020 CALL HCHAR(ROW, COLUMN-1+K, CH)
2030 NEXT K

This works properly as longas the message can bedisplayed on one
line along the specified row. If it is too long to do this„ it must be
made to continue on the next row. To do this, we must find when the
message reaches the end of a row and then direct it to the next row.
This can be done by:

2000 FOR K=1 TO LEN(M$)

28 Get More From The TI99/4A

2010 CH = ASC(SEG$(M$, K, D)
2020 IF COLUMN-1+K <= 32 THEN 2050
2030 R0W=R0W + 1
2040 COLUMN = COLUMN - 32
2050 CALL HCHAR(ROW, COLUMN-1+K, CH)
2060 NEXT K

We are still not quite at the end of the road, for our original
example displayed not onlythe message "THE SCOREIS" but also
the score itself with the statement:

DISPLAY "THE SCORE IS "; SCORE

Our method of display depends on the message to be displayed
beinggiven as a characterstring. It cannot dealwithnumericvalues.
Our wayaround this isto usethefunction STR$which isspecifically
intended for converting numbers to strings. The value of STR$ (16)
is the string of two characters"16". Similarly, STR$ (1.75) gives the
four character string "1.75". With this function we can express the
score itself as a string. All we need now is a way to combine "THE
SCORE IS " and STR$ (SCORE) into a single string. This can be
done using &, whichpermitstwo strings to be combined. The value
of A$ & B$ is the string assigned to A$ followed by the string
assigned to B$. To illustrate, after the assignments

A$ = "SHREVE"

B$ = "PORT"

The command

DISPLAY A$ & B$

gives SHREVEPORT.

Thus, we canget the required display bymaking the assignment

M$ = "THE SCORE IS " & STR$ (SCORE)

prior to using the display routine.
Although the development of this routine has taken quite a long

time, the routine itself is quite short because of the way that it uses
the BASIC functions. In fact, as a finalstep, it isusefulto write it as a
subroutine because in this way we have provided a utility that can
be called by any program that needs it. A subroutine is a sub
program that can be called from a main program. When a main
program requires the same task to be performed several times at
various points in the program, it is easier to write a subroutine for

Screen Displays 29

the task and call it when it is needed than to write out the statements

for the task every time it is needed in the main program. Subroutines
can also be used to impart structure to a large program by splitting it
into smaller parts. This is discussed more fully in Chapter 4.

A subroutine is called from a main program by a statement of the
form

GOSUB number

where 'number' gives the line number of the first line in the
subroutine. Placing a RETU RN statement in the subroutine ensures
that control passes back from the subroutine to the main program.
The return is to the statement following the one that called the
subroutine.

The display subroutine is:

2000 FOR K=1 TO LEN(M$)
2010 CH = ASC(SEG$(M$, K, 1))
2020 IF COLUMN-UK <= 32 THEN 2050

2030 R0W=R0W + 1

2040 COLUMN = COLUMN - 32

2050 CALL HCHAR(R0W, C0LUMN-1+K, CH)
2060 NEXT K

2160 RETURN

It expects to find the necessary values in M$, ROW and COLUMN
when it is called, and it is called by

GOSUB 2000

Placing other characters on the screen

Since our display subroutine handles characters and is in no way
specific to dealing with text it can be used to position any kind of
character on the screen. Graphics characters can be handled injust
the same way as letters. The only prerequisite to using the display
subroutine for plotting characters is to present them to it having
been assigned to the string variable M$.

All the characters appearing on the keyboard can be typed
directly into an assignment statement, so that there isno problemin
making an assignment such as:

M$ = "1 2 3 & $ % 7 8 9"

to display these characters. This only leaves uswith the problem of
dealing with user-defined characters.

30 Get More From The TI99/4A

Suppose that three charactershave been defined in a program and
have been assigned the codes 128, 129 and 130. To display these
three characters alongside each other we need to be able to assign
them to the variable M$. This can be done using the CHR$ function
because, as a typical example, CHR$ (128) gives the characterwith
code 128. In this way, the character can be displayed directly by

DISPLAY CHR$ (128)

or assigned to a string variable with

A$ = CHR$ (128)

Our problem is solved by the assignment

M$ = CHR$ (128) & CHR$ (129) & CHR$ (130)

It should be mentioned that any characters, and not just the user-
defined ones, can be dealt with in this way. It is also worth
mentioning that the functions CHR$ and ASC arethe oppositesof
each other in that when CHR$ is given a code it returns the character
with that code whereas when ASC is given a character it returns the
code for that character. Another way of seeing this is to observe that:

DISPLAY CHR$ (ASC ("+"))

gives + because it displays the character whose code isthecode for
+. Similarly,

DISPLAY ASC (CHR$ (65))

gives 65 because it displays the code of the character whose code
is 65.

Designing a display

This section provides an illustration of how the ideas we have
developed so far can beused to produce asimple display withwhich
the user can interact. The illustration shows how the screen can be
used as a form to be filled in interactively. The instructions for filling
in the form are given at the top of the screen. Any wrongly typed
entries can be corrected simply by entering them again. When the
form is filled to the user's satisfaction this can be indicated to the
computer. The ways in which theinformation once entered couldbe
stored in a file so that it is saved permanently are covered in
Chapter 7.

Screen Displays 31

The appearance of the display is shown in Figure 3.1. The
program must first create this display with the instructions at the top
and the labels in each box. Then it must scan the keyboard to see if a

TO FILL THE FORM

1. SELECT BOX WITH 1, 2, 3 OR 1
2. ENTER ITEM

3. TERMINATE ENTRY WITH 'ENTER'

RE-ENTRY IS DONE IN THE SAME WAY

PRESS 0 WHEN THE FORM IS COMPLETED

SURNAME FIRST NAME

AGE SEX

Fig. 3. J. Appearance of the form on the screen.

key has been pressed. If a key from 1to 4 has been pressed, thenany
existingentry in the appropriate box must be wiped out (in case we
are correcting an error), and a cursor appears to give a visual
response to indicate where thenext inputisto beplaced. The input is
then accepted and placed in its box. If the zero key is pressed the
program terminates. All other keys are ignored.

The initial display can be created by:

CALL CLEAR

CALL SCREEN (8)
CALL COLOR (13, 2, 1)
CALL CHAR (128, "FF')
CALL CHAR (129, "0101010101010101")
CALL CHAR (130, "FF01010101010101")
CALL HCHAR (10, 1, 128, 32)
CALL HCHAR (18, 1, 128, 32)

32 Get More From The TI99/4A

CALL VCHAR (10, 16, 129, 14)
CALL HCHAR (10, 16, 130)
CALL HCHAR (18, 16, 130)

The instructions and labels can be added, using the display
subroutine, by:

M$="TO FILL THE FORM"
ROW= 1

COLUMN = 8

GOSUB 2000

M$ = "1.SELECT BOX WITH 1, 2, 3 OR 4"

ROW = 3

COLUMN = 2

GOSUB 2000

M$ = "2.ENTER ITEM"

ROW = 4

COLUMN = 2

GOSUB 2000

and so on. Although the placing of the labels must be planned
initially at this level ofdetail, theprogramming isclearly repetitive.
It can be presented more compactly as:

FOR J = 1 TO 10

READ M$, ROW, COLUMN
GOSUB 2000

NEXT J

DATA "TO FILL THE FORM", 1, 8
DATA "l.SELECT BOX WITH 1, 2, 3 OR 4", 3, 2
DATA "2.ENTER ITEM", 4, 2

and so on to include all the remaining DATA statements.
Next, the keyboard must be scanned, and the appropriate action

taken for the keys 0 to 4 while all other keys are ignored. Thiscan be
done by

500 CALL KEY(0, CODE, STATUS)
510 IF STATUS = 0 THEN 500

Screen Displays 33

520 IF CODE=ASC("0") THEN 1590

530 IF C0DE=ASC(n1w) THEN 1000
540 IF C0DErASC("2") THEN 1100

550 IF C0DE=ASC("3") THEN 1200
560 IF C0DE=ASC("4") THEN 1300
570 GOTO 500

1000 R0W=14

1010 C0LUMN=3

1020 GOTO 1500

1100 R0W=14

1110 C0LUMN=18

1120 GOTO 1500

1200 R0W=22

1210 C0LUMN=3
1220 GOTO 1500

1300 R0W=22

1310 C0LUMN=18

1320 GOTO 1500

1500 CALL HCHAR(ROW, COLUMN, 32,10)
1510 CALL HCHAR(ROW, COLUMN, 30)
1520 CALL HCHAR(ROW, COLUMN, 32)
1530 CALL KEY(0, CODE, STATUS)
1540 IF STATUS=0 THEN 1510

1550 IF C0DE=13 THEN 500
1560 CALL HCHAR(ROW, COLUMN, CODE)
1570 COLUMNrCOLUMN + 1

1580 GOTO 1530
1590 END

In the final section of this program from line 1500 to 1590, line
1500 blanks out the previous entry in any box by plotting ten spaces,
so that for the purposes of this program we are assuming that no
entry is longer than ten characters. Line 1510 plots the cursor, which
has the code 30, and line 1520 blanks it out, making it flash. The code
for ENTER is 13, and line 1550 detects when ENTER is pressed to
terminate an entry. Lines 1560 and 1570 place the entries on the
screen character by character in a simple fashion which we can use
since we have assumed that no entry is long enough to reach the end
of its row.

The section from line 500 to the end of the program can be
simplified, as well it might be. It contains rather a lot of GOTO
statements that make it none too easy to follow. The main
simplification can be achieved by attending to the IF ... THEN
statements. In our program, we should like to be able to include
conditional statements with the form:

IF (CODE < 48) OR (CODE > 52) THEN

This is not possible in TI BASIC. However, by resorting to

34 Get More From The TI99/4A

something of a trick we can construct an equivalent feature.
When TI BASIC deals with a conditional statement of the general

form:

IF condition THEN line number

the condition part can be a logical expression involving a relation or
a numeric expression. When it is a numeric expression, the
expression is evaluated and a zero result is treated in the same way as
false while any non-zero result is treated as true. Similarly, when
dealing with a logical expression, zero is used to represent its being
false and any non-zero value represents its being true. Now the truth
table for the OR operator is:

B A OR B

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

The addition table for zero and non-zero values is:

X X + Y

zero zero zero

zero non-zero non-zero

non-zero zero non-zero

non-zero non-zero non-zero

If we observe that both tables have the same pattern, we can
conclude that as a consequence of the way in which truth values are
represented we can use addition to represent the OR operator. This
means that where we would like to write:

IF (CODE < 48) OR (CODE > 52) THEN

we can achieve the same effect by writing

IF (CODE <48) + (CODE > 52) THEN

Screen Displays 35

The AND operator can be dealt with in a similar way. The truth
table for AND is:

A AND B

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

The multiplication table for zero and non-zero values follows
exactly the same pattern. It is:

X*Y

zero zero zero

zero non-zero zero

non-zero zero zero

non-zero non-zero non-zero

The consequence of this correspondence is that we can use
multiplication to represent the AND operator. Thus, where we
might like to write:

IF (CODE >128) AND (COLOURS = "BLUE") THEN

we can write

IF (CODE > 128)*(COLOUR$ = "BLUE") THEN

See Appendix 3 for a fuller explanation of logic and logical
expressions.

Using conditional statements with the simulated OR operator, the
section of the program for scanning the keyboard and responding
appropriately can be rewritten more compactly as follows:

500 CALL KEY(0, CODE, STATUS)
510 IF (STATUS = 0)+(C0DE < 48)+(CODE > 52) THEN 500
520 IF CODE=ASC(n0n) THEN 680
530 R0W=14

540 IF (CODE=49)+(CODE=50) THEN 560
550 R0W=22

560 C0LUMN=3

36 Get More From The TI99/4A

570 IF (C0DE=49)+(C0DE=51).THEN 590
580 C0LUMN=18

590 CALL HCHAR(ROW, COLUMN, 32,10)
600 CALL HCHAR(ROW, COLUMN, 30)
610 CALL HCHAR(ROW, COLUMN, 32)
620 CALL KEY(0, CODE, STATUS)
630 IF STATUS=0 THEN 600

640 IF C0DE=13 THEN 500
650 CALL HCHAR(ROW, COLUMN, CODE)
660 COLUMN=COLUMN + 1

670 GOTO 600

680 END

Screen patterns

We have already seen that it is a simple matter to fill the screen with a
single character, and the use of a single specially designed character
can by itself produce an attractive display. Figure 3.2 gives an

Fig. 3.2. An octagonal character.

example of a character that is well suited for this purpose. A
program to fill the screen with it is:

100 CALL CLEAR

110 CALL SCREEN(8)
120 CALL C0L0RO3, 2, 1)
130 CALL CHAR028, "1824429191422418")
140 CALL HCHARO, 1, 128, 24*32)
150 GOTO 150

Screen Displays 37

However, more varied displays than this can be created by using
some rule to compute the code for the character to be placed at each
position on the screen. We can, for example, produce the equivalent
of a contour map as found in an atlas if we have a rule giving the
height at each screen position, such as:

HEIGHT = ROW + COLUMN

Then, by representing different ranges of values of HEIGHT by
differently coloured characters, we can plot a contour map on the
screen. Using the rule just given, we can note that since ROW varies
from 1 to 24 and COLUMN from 1 to 32, the values of HEIGHT
range from 2 to 56. Thus, we can divide the range of values of
HEIGHT into four intervals, each to be represented by a different
colour as shown in the following Table 3.1.

Table 3.1. The colours used for the intervals of HEIGHT.

Range of values Colour

2-14 Light green
15-28 Dark green
29 - 42 Light yellow
43 - 56 Medium red

A program to produce the map is:

100 CALL CLEAR

110 A$="FFFFFFFFFFFFFFFFn
120 CALL C0L0RO3, 4, 1)
130 CALL C0L0RO4, 13, 1)
140 CALL C0L0RO5, 12, 1)
150 CALL C0L0R(16, 9, 1)
160 FOR J=128 TO 152 STEP 8
170 CALL CHAR(J, A$)
180 NEXT J
190 FOR R0W=1 TO 24

200 FOR C0LUMN=1 TO 32
210 HEIGHT=R0W + COLUMN
220 IF HEIGHT <= 14 THEN 270
230 IF HEIGHT <= 28 THEN 290
240 IF HEIGHT <= 42 THEN 310
250 C0DE=152

260 GOTO 320
270 CODE=128

280 GOTO 320

38 Get More From The TI99/4A

290 C0DE=136
300 GOTO 320
310 C0DE=144

320 CALL HCHAR(ROW, COLUMN, CODE)
330 NEXT COLUMN

340 NEXT ROW

350 GOTO 350

If the transitions between the colours in this display strike you as too
sharp, then they canbe blurredsomewhat by usingsuitably designed
characters. For example, a better character to represent the range
from 29 to 42 might be one with alternate dark green and medium
red dots defined by:

CALL CHAR (144, "55AA55AA55AA55AA")
CALL COLOR (15, 13, 9)

There is tremendous scope here for experimenting with different
divisions of the range of HEIGHT and for designing characters to
give the display with the greatest effect.

We can amend the last program quite easily to create a display
that is circular in character rather than diagonal. This time
HEIGHT is given by changing line 210 to:

210 HEIGHT=(ROW - 12)~2 + (COLUMN - 16)*2

Its values range from 0 to 400. If we use the same colours as before,
but this time to represent the divisions 0 - 50, 51 - 100,101 -200 and
201 - 400 then lines 220 to 240 must be changed to:

220 IF HEIGHT <= 50 THEN 270

230 IF HEIGHT <= 100 THEN 290

240 IF HEIGHT <= 200 THEN 310

The resulting new program should help to make it clear that our
program provides a framework for creating any number of screen
patterns by systematically assigning a specially designed character
to each position on the screen.

Summary

In this chapter we have developed methods for creating interesting
displays composed of text, graphics or a mixture of both. At the
same time we have introduced a number of the features ofTI BASIC

and indicated how they can be used. These features include

Screen Displays 39

DISPLAY, LEN, SEG$, ASC, STR$, CHR$ and GOSUB. We
have also developed some utility routines to make up for
shortcomings in TI BASIC.

Chapter Four

Program Development

In this book, we are trying to adopt a systematic approach to
program development at all times. The purpose of this is to make the
programs presented in subsequent chapters as easy to understand as
possible, and also to make them as easy as possible to amend or
extend in any way that the reader may care to. The approach to
program development that we shall adopt is known as top-down
design. Extensive use is made of subroutines to break a program
down into smaller parts. Remarks are used liberally, particularly to
identify the purposes of subroutines, but also to identify the
components in any rather long sequence of BASIC statements.

Top-down design

When designing a program in top-down fashion, the program is
specified first at the top level as a set of tasks which must be
accomplished in some order so that the program may achieve its
stated purpose. In this way the structure of the program can be made
quite clear. In general, a task will be accomplished by calling a
subroutine to perform it. However, it may be that some of the tasks
are quite complex and can be broken down further into sub-tasks. In
this case a subroutine called at the top level in the program will itself
call further subroutines. The process of task refinement may go on
to some depth. It willbe reflected in the programby subroutines that
call subroutines, and so on. When it actually comes to writing the
BASIC statements for a particular sub-task this should be quite an
easy matter, since any end sub-task should be small and therefore
easy to program.

The idea can probably be made clearerwith an example than by a
general discussion, so let us considerhow we might goabout writing
a program for a particular application. Suppose that we want to

Program Development 41

read text from some input device, divide it into words and then do
particular things with any words that begin with X, Y or Z. At the
top level, the division into tasks can be accomplished in this way:

Initialise

Repeatedly
Get a word

Take special actions for words starting with X, Y or Z
Until all words are read

The application now consists of two tasks to be carried out
repeatedly. They are preceded by an initialisation stage, but this
cannot be written until we have decided on the details of how the two
tasks are to be accomplished. Therefore, neglecting the initialisation
stage for the moment, a program for the application which reflects
the structure we have chosen could be

200 GOSUB 1000

210 GOSUB 2000

220 GOTO 200

230 END

where the subroutine starting at line 1000 is for getting a word and
the one starting at line 2000 is for taking the special actions.

If we decide that the task of getting a word is a single task that is
not worth splitting into sub-tasks, then there is no further
refinement needed for this task. The task for taking the special
actions can probably be usefully divided into sub-tasks, though.
Suppose that the actions to be taken when a word starting with one
of the special letters is found are to count all the words starting with
X, to store all the words beginning with Y, and to display any words
beginning with Z. The task then has the form:

Find first letter of the word

If it is X then count it

If it is Y then store it

If it is Z then display it

By making the counting, storing and displaying into sub-tasks, we
can write the subroutine for this task as:

2000 FIRST$=SEG$(WORD$, 1,1)
2010 IF FIRST$="X" THEN 2100
2020 IF FIRST$="Y" THEN 2200

2030 IF FIRST$="Z" THEN 2300
2040 RETURN

42 Get More From The T/99/4A

where starting at line 2100 we have the routine for counting, at 2200
that for storing, and at 2300that fordisplaying. We would like these
routines to be written as subroutines, but in this case it is easier to
write them as sections of code within the same subroutine. The
reason for this is the rather restricted form of the IF statement in TI

BASIC.

Notice that in writing this subroutine, we are assuming that the
first subroutine leaves any word that it has found in the variable
WORDS, so that we have established how the two subroutines
communicate with each other. We can write a very simple version of
the first subroutine for finding words so that we end up with a
completeworking program. We shall cheat a littleby makingit read
words from a data list so that it is not really as powerful as our
original specification suggested thatit should be.The simple version
of the subroutine is:

1000 READ W0RD$
1010 IF W0RD$=nEND" THEN 230
1020 DATA AYE, ZERO, BEE, XYLOPHONE, SEA, YOU
1030 DATA DEED, ARE, ZEST, END
1040 RETURN

At this stage, we have written the main program and the
subroutines for its tasks, but we have not written the routines for the
end sub-tasks. A consequence of not having written the end sub-
tasks is that we cannot yet write the initialisation stage either.
Without writingthe routines for the sub-tasks, it is possible to test
the program as it is developed so far to ensure that its structure is
properly designed. By including dummy versions of the unwritten
routines we can ensure that they are called in the way that they
should be. Forexample, rather than writing the routine to count all
the words starting with X, we can include the dummy statement:

2100 DISPLAY "COUNT'

Byputting together all the program segments thatwe have written so
far, and including the dummy routines, we can get the following:

200 GOSUB 1000

210 GOSUB 2000

220 GOTO 200

230 END

1000 READ W0RD$

1010 IF W0RD$="ENDM THEN 230
1020 DATA AYE, ZERO, BEE, XYLOPHONE, SEA, YOU
1030 DATA DEED, ARE, ZEST, END

1040 RETURN

2000 FIRST$=SEG$(W0RD$, 1, D
2010 IF FIRST$="X" THEN 2100

2020 IF FIRST$="Y" THEN 2200

2030 IF FIRST$="Z" THEN 2300
2040 RETURN

2100 DISPLAY "COUNT"

2110 RETURN

2200 DISPLAY "STORE"

2210 RETURN

2300 DISPLAY "DISPLAY"

2310 RETURN

Program Development 43

Having run this program and gained the confidence that we have a
program the structure of which is correct, we can proceed to
complete it by writing the BASIC statements for performing the end
sub-tasks. If we decide that the variable XCOUNT is to be used to

hold the count of the number of words starting with X, that the
words starting with Y are to be stored in an array named Y$, and
that words starting with Z are to be displayed using the DISPLAY
statement, then we can write not only the routines but also the
initialisation stage. The routines are, for the counting:

2100 XCOUNT = XCOUNT + 1

for the storing:

2200 Y$(I) = WORDS
2210 1 = 1+ 1

and for the displaying:

2300 DISPLAY WORDS

At this stage the complete program can be listed. However, if we
simply list it in exactly the same way as the version that we used to
test that the structure of the program wassatisfactory, it will be just
as unreadable as that was. The program can be made easier to read
and easier to understand by adding remarks to it. A line that starts
with REM can contain any remark that we care to make. Remarks
are completely ignored by the computer when the program
containing them is run.

We shall use remarks to indicate the purposes of the sections of a
program and of subroutines. Aremark(REM) will alwaysbe placed
beforethe part of the program to which it relates. Witha subroutine,
we shall introduce a line or lines immediately before the start of the
subroutine to state its purpose. Thus, typically, for the subroutine

44 Get More From The T/99/4A

starting at line 1000, the explanation is given on line 999. It is
considered poor style to jump to a remark as the first line of a
subroutine. One reason for this is that utility programs do exist to
remove the remarks from other programs, thereby reducing the
amount of storage needed when they are run. We shall also use
remarks to provide a gap between a program and its subroutines,
and between the subroutines themselves.

When listing a program we shall always adopt the arrangement
that the main program is listed first, followed by its first-level
subroutines, then by the second-level subroutines, and so on. When
our programis presented in thiswayand remarksareadded to it, the
listing becomes:

100 REM DEALING WITH WORDS

110 REM •»» INITIALISATION ***

120 DIM Y$(100)
130 1=1

140 XC0UNT=0

190 REM **« MAIN PROGRAM LOOP *«*

200 GOSUB 1000

210 GOSUB 2000

220 GOTO 200

230 END

998 REM

999 REM SUBROUTINE TO GET A WORD

1000 READ W0RD$
1010 IF W0RD$="END" THEN 230
1020 DATA AYE, ZERO, BEE, XYLOPHONE, SEA, YOU

1030 DATA DEED, ARE, ZEST, END
1040 RETURN

1998 REM

1999 REM SUBROUTINE FOR SPECIAL WORDS

2000 FIRST$=SEG$(WORD$, 1, 1)
2010 IF FIRST$="X" THEN 2100
2020 IF FIRST$="Y" THEN 2200
2030 IF FIRST$="Z" THEN 2300
2040 RETURN

2099 REM COUNT

2100 XC0UNT=XC0UNT+1

2110 RETURN

2199 REM STORE

2200 Y$(I)=WORD$
2210 1=1+1

2220 RETURN

2299 REM DISPLAY

2300 DISPLAY W0RD$
2310 RETURN

This listing illustrates the style in which we shall present programs in
subsequent chapters. Of course, the reader may or may not choose

Program Development 45

to adopt this style, but the inclusion of remarks in a consistent way
does help to make programs easier to understand, although the use
of remarks can be overdone.

Debugging aids

Just in case a systematic approach to program development should
fail to produce a properly working program, TI BASIC provides
two debugging aids to help in finding what is wrong with the
program.

The first is provided by the command

TRACE

which causes a program to display the output that it would give
normally but also to display the line number of each statement in the
program as it is executed. In this way, a trace shows the order in
which the statements of a programare beingexecuted. Thispermits
a check to be made on matters such as whether a program calls its
subroutines correctly or if the program is stuck in a loop. Once
invoked, tracing remains in force until it is terminated with the
command

UNTRACE

Thesecond aid isBREAK, and thispermits a program to bestopped
at a specified line so that the state of the computation can be
examined, for example by looking at the values of variables. A
breakpoint can be set with a command such as

BREAK 200

which causes the program to halt immediately before line 200 is
executed. Multiple breakpoints can be set with a command such as

BREAK 200, 300, 450

Theexecution ofa program canberesumed afterit hasbeen stopped
at a breakpoint by issuing the command

CONTINUE

Once invoked, breakpoints remain in force until theyare cancelled
with the command

UNBREAK

46 Get More From The TI99/4A

Breakpoints can also be set with a program statement such as:

10 BREAK 200

Summary

The top-down method of developing programs and the style in
which the programs will be presented in later chapters have both
been presented and explained. By developing a program in a
systematic way and by adding remarks to it in a consistent fashion
the programs will be as easy to understand and to amend as is
possible. The debugging aids BREAK and TRACE that are
provided by TI BASIC have also been described.

Chapter Five

Tiles, Tiling And A Puzzle

Tiling a floor or a wall with square tiles is something that most of us
have either done or seen the results. Many intriguing patterns can be
created by using comparatively simple decorated tiles. We are in a
position to create the same sort of patterns with the computer. We
can design graphics characters using CALL CHAR in a waysimilar
to that in which a pattern for a tile is designed. Wecan also place a
character on the screen in a way that isentirely comparable, in terms
of the visualresult, to whena tile isplaced ona wall. In fact, graphics
characters are sometimes referred to as tiles. We have seen an
example of tiling already in one of the 'screen patterns' of Chapter 3.
We are aiming here to develop some more designs for tiles which,
when displayed, will produce interesting and perhaps unexpected
patterns. The example in Chapter 3 has already produced one
unexpected pattern in that covering the screen with an essentially
octagonal tile also caused diamonds to appear.

Regular tiling

Thinking in terms of tiles, suppose that we want to tile an area using
tiles entirely of one shape. There are only three shapes with which
this can bedone, and theyare the square, triangularand hexagonal
shapes shown in Figure 5.1.

Now, the problem in designinggraphics characters for producing
displays with these appearances is that we are restricted to working
withcharacters based on a square. To design a shape to producethe
square pattern of Figure 5.1(a) is clearly the easiest task. This
pattern will be produced when the screen is filled with the character
having shape description "FF818181818181FF' shown in Figure
5.2(a), although it may be less clear that the 'inverted L' of Figure
5.2(b) which hasshapedescription "FF80808080808080" will dojust

48 Get More From The TI99/4A

(b

lc)

Fig. 5.1. Regular coverings, (a) Square, (b) Triangular, (c) Hexagonal.

Tiles, Tiling And A Puzzle 49

Fig. 5.2. (a) Square character, (b) Inverted L-shaped character, (c) X-shaped
character.

as well. The program scheme for placing one of these shapes at every
screen position to produce the overall pattern is essentially that
given in Chapter 3. We repeat it here as we shall use it as the basis of
several variations. It is

100

110

120

130
140

150

CALL CLEAR

CALL SCREENC8)

CALL C0L0RO3, 2, 1)
CALL CHAR(128, nFF80808080808080n)
CALL HCHAR(1, 1, 128, 24*32)
GOTO 150

An equivalent effect can be obtained by filling the screen with the
X-shaped character of Figure 5.2(c)whichhas the shape description
"8142241818244281". This fills the screen with diamonds, but a
diamond is a square turned through 45 degrees, so although it is
rotated we have produced the square pattern again, but in a slightly
unexpected way.

The triangular and hexagonal patterns are a little more difficult to
generate. However, if we define a character with the shape shown in

50 Get More From The T/99/4A

(a) (b)

Fig. 5.3. (a) Basic character for triangular covering, (b) Inverse of (a).

Figure 5.3(a) having the description "FF814242242418FF" and
another having the shape obtained by turning this upside down as in
Figure 5.3(b), which has shape description "FF 18242442428IFF',
then we can produce the triangular mesh by filling alternate lines
with each character. (Having two characters available, one of which
is the other upside down is only equivalent to providing the
capability that someone laying tiles has of laying a tile directly or
rotating it by 180 degrees before laying it.)

The program for producing this pattern plots the original
character in the odd-numbered rows and the inverted one in the
even-numbered rows. The program is:

100 CALL CLEAR

110 CALL SCREEN(8)

120 CALL C0L0RO3, 2, 1)
130 CALL CHAR(128, "FF814242242418FF")
140 CALL CHAR(129, "FF182424424281FF")
150 FOR R0W=1 TO 23 STEP 2
160 CALL HCHAR(R0W, 1, 128, 32)
170 CALL HCHAR(R0W+1, 1, 129, 32)
180 NEXT ROW
190 GOTO 190

The hexagonal pattern can be produced (unexpectedly?) by the same
program with the Y-shaped character shownin Figure 5.4(a) having
shape description "8080412222140808" and its inverse as shown in
Figure 5.4(b).

Other patterns

Geometry can provide us with many other patterns of a similar

Tiles, Tiling And A Puzzle 51

(a) (b)

Fig. 5.4. (a) Y-shaped character for hexagonal covering, (b) Inverse of (a).

Fig. 5.5. A pattern.

nature to those we have created already. These patterns are often to
be seen on wallpaper and floor coverings. One that is commonly
used in this way is shown in Figure 5.5. It can be obtained by
repeatedly alternating lines filled with the two characters shown in
Figure 5.6 which have shape descriptions "FF424281814242FF"

Fig. 5.6. Characters for a repetitive pattern.

52 Get More From The TI99/4A

and "2424181818182424". At this stage, the resolution of the screen
is starting to become a problem, but if you examine this display
carefully you can see hexagons, triangles and even Stars of David.

Fig. 5.7. A pattern.

The pattern of Figure 5.7 can beobtained by plotting alternately
thecharacter withshape description "81423C24243C4281" shownin
Figure 5.8 and a space. A program for this is:

100 CALL CLEAR

110 CALL SCREEN(8)
120 CALL C0L0RO3, 2, 1)
130 CALL CHAR(130, "81423C24243C4281")
140 FOR R0W=1 TO 24
150 FOR C0LUMN=1 TO 32
160 SUM=R0W + COLUMN

170 IF (2«INT(SUM/2))=SUM THEN 180 ELSE 190*
180 CALL HCHAR(R0W, COLUMN, 130)
190 NEXT COLUMN
200 NEXT ROW

210 GOTO 210

Tiles, Tiling And A Puzzle 53

Fig. 5.8. Character for an unexpected pattern.

Plotting the character with shape description "0C0C3F3FFCFC3030"
shown in Figure 5.9(b) at every screen position gives a remarkable
effect because the backgrounds combine to produce the foreground
shape in reverse, that is, facing in the opposite direction. The effect is
even more unexpected when rotated through 45 degrees. Filling the
screen with character shown in Figure 5.9(a) which has shape
description "007C445C507C14F7" produces a 'swastika frieze'.
These last two examples are based on patterns from Islamic art,
which can supply just as many interesting and pleasing patterns as
can geometry.

Fig. 5.9. (a) Character for a swastika frieze, (b) Character for a pattern with an
inverse background.

Moving patterns

In this section we shall create a pattern, and then develop methods
for making it move as a prelude to developing a puzzle program in

54 Get More From The TI99/4A

the next section. We can create a tile of the shape shown in Figure
5.10 as the building block for our pattern. By associating it with two
different codes we shall be able to plot it in two colours. We shall

Fig. 5.10. Character for a moving pattern.

then use two arrays to hold the rows and columns occupied by each
tile in the pattern. If the pattern is to be a square with five character
positions along each side having its top left corner in row 6 and
column 10we can store the position for each character in the pattern
by:

100 DIM R0H(16),C0LUMN(16)
110 FOR K=1 TO 5

120 R0W(K)=6

130 C0LUMN(K)=9+K
140 R0W(8+K)=10
150 COLUMN(8+K)=15-K
160 NEXT K

170 FOR J=1 TO 3
180 R0W(5+J)=6+J
190 C0LUMN(5+J)=14
200 ROW(13+J)=10-J
210 COLUMN(13+J)=10
220 NEXT J

The characters can be defined and given colours by

230 CALL CHAR(128, "FF818199998181FF")
240 CALL CHAR(136, "FF818199998181FF")
250 CALL C0L0R(13,5,1)
260 CALL C0L0R(14,7,1)

The square pattern can then be filled with tiles ofalternating colours
by:

270

280

CALL CLEAR

FOR K=1 TO 16

Tiles, Tiling And A Puzzle 55

290 SUM=R0W(K)+C0LUMN(K)
300 IF (2«INT(SUM/2))=SUM THEN 310 ELSE 330
310 CALL HCHAR(R0W(K),C0LUMN(K),128)
320 GOTO 340
330 CALL HCHAR(ROW(K),COLUMN(K),136)
340 NEXT K

We can then make the square move by moving each character to the
position occupied by its successor, and doing this repeatedly. It can
be done by:

350 CALL GCHAR(R0W(1),COLUMN(1),CODE)
360 L=2
370 CALL GCHAR(ROW(L),COLUMN(L),NEXTC0DE)
380 CALL HCHAR(ROW(L),COLUMN(L),CODE)
390 CODE=NEXTCODE

400 L=L+1

410 FOR M=1 TO 100
420 NEXT M

430 IF L < 17 THEN 370
440 CALL HCHAR(R0W(1),COLUMN(1),CODE)
450 GOTO 350

This completes the program. The delay in lines 410 and 420 can be
altered to speed up or slow down the movement.

A puzzle

The puzzle consists of two intersecting square patterns of the kind
plotted in the previous section. We shall refer to one square as P and
the other as Q. Initially, the square P is made up of 8 blue tiles and 8
green tiles, and square Q is made up entirely of 14red tiles except for
where it intersects with square P. The initial configuration is
illustrated in Figure 5.11. The user can rotate at any time one of the
squares in a clockwise direction. The idea of the puzzle is to rotate
the squares until a position is arrived at in which the tiles in square P
are alternately blue and red, while those of square Q are alternately
green and red.

Thus, the form of the program for this puzzle is:

Plot the squares
Repeatedly

Accept a request to move a square
Move a square accordingly

The program listing for the puzzle isgivenas Figure 5.12. The square

56 Get More From The TI99/4A

B G B G B
R - red

B - blue

G
P

G
G - green

B R R B R R

G R G R

B G B G B R

R
Q

R

R R R R R

Fig. 5.11. Initial configuration for puzzle.

labelled P can be rotated by pressing P and the square Q can be
caused to rotate by pressing Q.

100 REM PUZZLE

110 REM *** PLOT SQUARES ***
120 DIM PR0W(16),PC0LUMN(16),QR0W(16),QC0LUMN(16)
130 FOR K=1 TO 5

140 PR0W(K)=6
150 PC0LUMN(K)=9+K

160 PR0W(8+K)=10

170 PC0LUMN(8+K)=15-K
180 NEXT K

190 FOR J=1 TO 3

200 PROW(5+J)=6+J

210 PC0LUMN(5+J)=14

220 PR0W(13+J)=10-J

230 PC0LUMN(13+J)=10
240 NEXT J

250 FOR K=1 TO 16

260 QR0W(K)=PR0W(K)+2

270 QC0LUMN(K)=PC0LUMN(K)+2

Tiles, Tiling And A Puzzle 57

280 NEXT K

290 A$="FF818199998181FF"
300 CALL CHAR(128, A$)
310 CALL CHAR036, A$)
320 CALL CHAR(144, A$)
330 CALL C0L0R(13,5,1)
340 CALL C0L0R(14,7,1)
350 CALL C0L0R(15,13,D
360 CALL CLEAR

370 FOR K=1 TO 16

380 CALL HCHAR(QR0W(K),QC0LUMN(K),136)
390 NEXT K

400 FOR K=1 TO 16

410 SUM=PROW(K)+PCOLUMN(K)
420 IF (2*INT(SUM/2))=SUM THEN 430 ELSE 450
430 CALL HCHAR(PROW(K),PC0LUMN(K),128)
440 GOTO 460

450 CALL HCHAR(PR0W(K),PC0LUMN(K),144)
460 NEXT K

470 CALL HCHAR(7,11,ASC("P"))
480 CALL HCHAR(11,15,ASC("Q"))
490 REM REQUEST FOR MOVEMENT
500 CALL KEY(0, CODE, STATUS)
510 IF STATUS=0 THEN 500

520 IF CODE=ASC("P") THEN 600

530 IF C0DE=ASC("Q") THEN 800
540 GOTO 500
590 REM ROTATE SQUARE P

600 CALL GCHAR(PR0W(1),PC0LUMN(1),CODE)
610 FOR L=2 TO 16

620 CALL GCHAR(PROW(L),PC0LUMN(L),NEXTCODE)
630 CALL HCHAR(PROW(L),PCOLUMN(L),CODE)
640 FOR T=1 TO 50
650 NEXT T

660 C0DE=NEXTC0DE

670 NEXT L

680 CALL HCHAR(PR0W(1),PC0LUMN(1),CODE)
690 GOTO 500
790 REM ROTATE SQUARE Q

800 CALL GCHAR(QR0W(1),QC0LUMN(1),CODE)
810 FOR L=2 TO 16

820 CALL GCHAR(QR0W(L),QCOLUMN(L),MEXTCODE)
830 CALL HCHAR(QROW(L),QCOLUMN(L),CODE)
840 FOR T=1 TO 50
850 NEXT T

860 C0DE=NEXTC0DE
870 NEXT L
880 CALL HCHAR(QR0W(1),QCOLUMN(1),CODE)
890 GOTO 500

Fig. 5.12. Listing of puzzle program.

58 Get More From The TI99/4A

Summary

We have developed a number of methods in this chapter for filling
the screen with tiling patterns. These patterns were inspired by ideas
from geometry and from Islamicart. Some of them can be produced
in unexpected ways and some are surprisingly complex. After this a
much simpler pattern was created and a technique for making it
move was developed. This was the prelude to writing a program for
an intriguing puzzle.

Chapter Six

Writing A Game

In this chapter, we shall write a program for a scaled-down Space
Invader type of game. The program is restricted to a mini-version of
Space Invaders to keep the programming task to a reasonable size so
that we can finish having written a fairly short program that can be
understood without difficulty while providing a reasonably
entertaining game. Having understood the core of the game, the
reader can then extend it in any of a number of ways.

It must be admitted at the outset that all arcade games are written
in machine code and not in BASIC. The main reason for this is to

make the action in the games happen quickly. As soon as a BASIC
program assumes any complexity, the action it provides takes place
slowly. This is another reason for keeping the game developed here
quite simple. Nevertheless, the outline presented for the game isjust
as suitable for programming in machine code as it is in BASIC.

Our program starts by displaying six Invaders on the screen. They
move across it in fairly unpredictable fashion. The user has a firing
position which can be moved to the left or to the right, and from
which missiles can be launched to shoot down the Invaders. The

game terminates naturally when all the Invaders have been
despatched.

Obvious ways of extending the game from the stage developed
here include designing different Invaders, adding more Invaders and
giving them the ability to fire at and destroy the user's missile
launcher.

Even with the game in its simple form, there are quite a lot of tasks
for the program to perform. These include plotting the Invaders,
moving them, scanning the keyboard to see if a command for
moving the firing position or for launching a missile has been issued,
and responding to these commands when they are given. The
commands that the program must recognise are issued by pressing a
single key as follows:

60 Get More From The TI99/4A

KEY Action

L Move the firing position to the left
R Move the firing position to the right
F Fire a missile

If any other key is pressed it is to be ignored. The keys to be pressed
to issue the commands can be changed quite simply if other keys
seem to be more convenient.

When a missile is fired, the program must determine whether an
Invader is shot down or whether the missile has passed harmlessly
off the screen. Furthermore, some activities must appear to take
place simultaneously. They cannot actually take place at the same
time, of course, since the computer only has a single processor which
executes instructions sequentially. The illusion, for example, of
moving a missile and the Invaders at the same time is created by
moving the missile a little, then moving the Invaders a little, and
repeating this for as long as necessary.

Figure 6.1 gives a specification of the actions to be taken by the
program in the form of a flowchart. This is quite a good way to
represent a fairly complex application, and shows how it is broken
down into tasks. In the flowchart ordinary computational tasks are
enclosed by a rectangular box, points at which a decision must be
made are enclosed by a diamond, and a rhombus encloses any task
the purpose of which is to provide an output for display.

The initialisation stage can be broken down into the following
sub-tasks

1. Represent the Invaders.
2. Design the characters for the Invaders.
3. Clear the screen.

4. Plot the Invaders.

5. Design missile and missile launcher.
6. Plot the missile launcher.

7. Set score to zero.

8. Display score.

To be able to display an Invader we need to know its position, that
is, the row and the column that it occupies on the screen, and its
code. When an Invader is represented by these three things (row,
column and code) it can be displayed using HCHAR. Since we have

(start ^

initialise

plot Invaders

T
plot missile launcher

delay

move Invaders

no

move

left yes

move

right yes

Writing A Game 61

move missile

occasionally

move Invaders

Fig. 6.1. Flowchart for Space Invader game.

six Invaders to deal with, it is convenient to be able to handle them
all in the same way. For this reason we shall make use of the array.
An array is a set of variables which can be used in the same way as
ordinary variables, but with the added convenience that they include
a bracketed index. An array with six elements can be declared with
the statement:

DIM INVADER(6)

This provides us with the six variables INVADER(l) to
INVADER(6). (It also gives us INVADER(O), but we shall ignore
this. It can be eliminated by usingthe command OPTION BASE 1.)
These variables can be used in the same way as ordinary variables, so

62 Get More From The TI99/4A

that we can set INVADER(l) to 128, INVADER(2) to 129 and so on
up to setting INVADER(6) to 133by:

INVADER(1)= 128
INVADER(2) = 129

INVADER(6) = 133

However, by making use of the bracketed index, it is much easier to
set these values with:

FOR K = 1 TO 6

INVADER (K)= 127+ K
NEXTK

By using six-element arrays to hold the rows, columns and codes for
the six Invaders, they can be plotted and moved quite easily. If we
use IROW, ICOLUMN and INVADER, respectively, for the rows,
columns and codes then they can be declared by:

DIM IROW(6), ICOLUMN(6), INVADER(6)

Initial positions and codes can be assigned by

FOR K = 1 TO 6

IROW(K) = 2 + K
ICOLUMN(K) = 5*K
INVADER(K)=127 + K
NEXTK

Since codes 128 to 133 are being used for the Invaders, we need to
design the shapes to go with these codes. In the program the shape
description "183C7EDB7E244281" is assigned to codes 128 to 130
and "3C42E75A5A81C366" to codes 131 to 133 using CALL
CHAR. The Invaders can then be plotted in their initial positions
by:

FOR K = 1 TO 6

CALL HCHAR (IROW(K), ICOLUMN(K), INVADER(K))
NEXTK

In similar fashion, the Invaders can be moved (to the right) by
blanking them out, with a space, increasing their column position by
one and then replotting them. After an Invader has reached the
position at the extreme right of a row it is moved to the left of the
next row down the screen. This can be done by:

Writing A Game 63

5000 FOR K=1 TO 6

5010 CALL HCHAR(IROW(K),ICOLUMN(K),32)
5020 IC0LUMN(K)=IC0LUMN(K)+1
5030 IF ICOLUMN(K) <= 32 THEN 5060
5040 IR0W(K)=IROW(K)+1
5050 IC0LUMN(K)=1

5060 CALL HCHAR(IROW(K),ICOLUMN(K),INVADER(K))
5070 NEXT K

5080 RETURN

The missile launcher and the missileare given codes 136and 137,
and the initial position of the launcher is stored with its row in
FROW and its column in FCOLUMN. The plotting and movement
of the missile launcher are then achieved in the same way as for an
Invader. When a missile is launched, it proceeds up the column
occupied by the launcher when it was fired until it hits an Invader or
leaves the screen. The score is displayed at the top left of the screen
using the subroutine developed in Chapter 2.

In the main part of the program, the keyboardisscannedusingthe
CALL KEY statement. Note that if keys other than R, L and F are
thought to be more convenient for moving the missile launcher and
for firing missiles, lines 490 to 510 can be modified very easily to
enable other keys to be used. The random movement of the Invaders
is created by using the random number generator, RND. When
RND is used, a random number that is greater than or equal to zero
but less than one isgenerated. Thus a random number in this range
can be assigned to the variable R by:

R= RND

The random numbers are generated sequentially each time RND
is used. The sequence of random numbers is the same each time the
program is run unless the RANDOMIZE statement appears in the
program, in which case the sequence varies from run to run. The
random numbers are also equally distributed between zero and one.
For this reason, if wewant an event to occur at random, but to occur
on average half of the time that every other event within a loop
occurs, we can achieve this if the occurrences of the event are
controlled by

IF RND <0.5 THEN

Similarly, an event can be made to occur with one tenth of the
frequency of others when its occurrences are controlled by:

IF RND<0.1 THEN

64 Get More From The T/99/4A

This device is used to ensure that the Invaders move, on average,
one place across the screen for every ten places moved by a missile
fired up the screen at them.

An 'explosion' character is defined to have code 144. It is for use
when a missile knocks out an Invader. The explosion character is
made to flash by changing the colours assigned to it using CALL
COLOR statements. When an Invader is hit, the code for the space
character is placed in the appropriate element of the INVADER
array to ensure that the destroyed Invader is no longer plotted.

Because the tasks of displaying the score, creating a delay and
moving the Invaders are frequently required, and are needed in more
than one branch of the program, they are written as subroutines.

The entire program is listed below in Figure 6.2. The special
characters defined in the program are listed in the following Table
6.1, and the variables used by the program with their purposes are
given in Table 6.2.

Table 6.1. Special characters defined in the Space Invader program.

Code

128

129

130

131

132

133

136

137

144

Character

Space Invader 1

Space Invader 2

Missile launcher

Missile

Explosion

Writing A Game 65

Table 6.2. Variables used in Space Invader program and their
purposes.

Variable

A$

B$

CHA

CODE

DELAY

FCOLUMN

FROW

ICOLUMN

INVADER

IROW

MROW

SCORE

STATUS

Purpose of Variable

Holds shape description of Invader I.
Holds shape description of Invader 2.
Code of character in next position in

missile path.
Code returned by CALL KEY.
Variable in delay loop.
Column occupied by missile launcher.
Row occupied by missile launcher.
Array for columns occupied by Invaders.
Array for codes of Invaders.
Array for rows occupied by Invaders.
Row for missile path.
Score of Invaders destroyed.
Status of CALL KEY.

100 REM SIMPLE SPACE INVADERS
110 REM *** INITIALISATION ***
120 RANDOMIZE

130 DIM IR0W(6),ICOLUMN(6),INVADER(6)
140 FOR K=1 TO 6

150 IR0W(K)=2+K

160 IC0LUMN(K)=5*K
170 INVADER(K)=127+K
180 NEXT K

190 A$="183C7EDB7E244281"
200 CALL CHAR(128, A$)
210 CALL CHAR(129, A$)
220 CALL CHAR(130, A$)
230 B$=»3CH2E75A5A81C366»
240 CALL CHAR031, B$)
250 CALL CHAR(132, B$)
260 CALL CHAR(133, B$)
270 CALL CLEAR

280 REM PLOT INVADERS
290 FOR K=1 TO 6

300 CALL HCHAR(IROW(K),ICOLUMN(K),INVADER(K))
310 NEXT K

320 REM DESIGN AND PLOT MISSILE LAUNCHER
330 CALL CHAR(136, "08081C1C3E3EFFFF")
340 CALL CHAR037, »1818181818181818»)
350 CALL C0L0RO4, 14, 1)

66 Get More From The T/99/4A

360 FR0W=24
370 FC0LUMN=16
380 CALL HCHAR(FROW,FCOLUMN,136)
390 CALL CHAR(144, "8142241818244281")
400 CALL COLOR05, 14, 1)
410 SCORE=0

420 GOSUB 3000

430 GOSUB 4000
440 GOSUB 5000
450 REM *** MAIN PROGRAM LOOPS «**
•460 REM SCAN KEYBOARD

470 CALL KEY(0, CODE, STATUS)
480 IF STATUS=0 THEN 430
490 IF CODE=ASC("R") THEN 1000
500 IF C0DE=ASC("L") THEN 1100
510 IF C0DE=ASC("F") THEN 1200
520 GOTO 430
999 REM MOVE LAUNCHER TO RIGHT
1000 IF FC0LUMN=32 THEN 430
1010 CALL HCHAR(FR0W,FC0LUMN,32)
1020 FC0LUMN=FC0LUMN+1

1030 CALL HCHAR(FROW,FCOLUMN,136)
1040 GOTO 430
1099 REM MOVE LAUNCHER TO LEFT

1100 IF FC0LUMN=1 THEN 430
1110 CALL HCHAR(FR0W,FC0LUMN,32)
1120 FCOLUMN=FCOLUMN-1

1130 CALL HCHAR(FROW,FCOLUMN,136)
1140 GOTO 430
1199 REM FIRE MISSILE

1200 MROW=23
1210 CALL GCHAR(MROW,FCOLUMN,CHA)
1220 IF (CHA > 127)*(CHA < 134) THEN 2000
1230 IF MR0W=1 THEN 2200

1240 CALL HCHAR(MROW,FCOLUMN,137)
1250 IF RND > 0.1 THEN 1270
1260 GOSUB 5000
1270 CALL HCHAR(MROW,FCOLUMN,CHA)
1280 MR0W=MR0W-1

1290 GOTO 1210

1999 REM INVADER DESTROYED
2000 CALL SOUND(1000,220,2,-5,4)
2010 CALL HCHAR(MR0W,FC0LUMN,144)
2020 FOR K=1 TO 8
2030 CALL COLOR(15,1,14)
2040 CALL C0L0R(15,14,1)
2050 NEXT K

2060 CALL HCHAR(MROW,FCOLUMN,32)
2070 I=CHA-127
2080 INVADER(I)=32

2090 SC0RE=SC0RE+1

2100 GOSUB 3000

2110 GOTO 440

Writing A Game 67

2199 REM MISSILE OFF SCREEN

2200 CALL HCHAR(1,FC0LUMN,CHA)
2210 GOTO 440

2998 REM

2999 REM SUBROUTINE TO DISPLAY SCORE
3000 M$=STR$(SCORE)&" INVADERS DESTROYED"
3010 FOR K=1 TO LEN(M$)
3020 CH=ASC(SEG$(M$,K,1))
3030 CALL HCHAR(1,K+2,CH)
3040 NEXT K

3050 RETURN

3998 REM

3999 REM SUBROUTINE FOR DELAY
4000 FOR DELAYs1 TO 200
4010 NEXT DELAY
4020 RETURN
4998 REM

4999 REM SUBROUTINE TO MOVE INVADERS
5000 FOR K=1 TO 6

5010 CALL HCHAR(IROW(K),ICOLUMN(K),32)
5020 ICOLUMN(K)=IC0LUMN(K)+1
5030 IF ICOLUMN(K) <= 32 THEN 5060
5040 IROW(K)=IROW(K)+1
5050 ICOLUMN(K)=1

5060 CALL HCHAR(IROW(K),ICOLUMN(K),INVADER(K))
5070 NEXT K

5080 RETURN

Fig. 6.2. Listing of Space Invader program.

Chapter Seven

Writing A Simple
Database

A database program is a program with which information can first
be stored and can subsequently be retrieved in any of a variety of
ways that may suit the user. Clearly database programs have a vast
number of applications. These range from keeping the details of a
record collection, or keeping the records of the members of a golf
club and administering theirhandicaps to controllingthe stock held
by a shop. It is possible to purchase any of a large number of
database programs for these kinds of purposes. Thebetterones tend
to be rather expensive and, because they are quite generally
applicable, theyrequire acertain amount of studybefore theycan be
used. For this reason we shall develop in this chapter a simple
database program. With itsaid the user will have a program, orwill
be able to proceed to develop one, for use in any simple, or even
moderately complex, application requiring data storage and
retrieval.

The features of TI BASIC that are introduced in this chapter are
those for file handling. These are necessary because the information
contained in the database must be stored permanently in some way
or else it will have to be entered afresh every time the program is
used. This is obviously neither desirable nor practical. Thus, after
the information has been entered initially, it is stored in a file on
cassette using the file-handling commands. When the information is
required subsequently, it can be read from the file on cassette.

The database program

Suppose we are interested in keeping track of the price and
capabilities ofthe various items ofsoftware that are available for our
computer so that we can decide what to buy when we have some
money to spend. The details that we are likely to be interested infor

Writing A Simple Database 69

each item of software include its title, price, type and the amount of
memory that it requires. If we were keeping this information on
record cards to be stored in a card box, rather than as records to be
stored in a database, we could design a record card as shown in
Figure 7.1 for the purpose. Each card would hold the details of one
item of software, and the card box would be full of such cards. If
more details are needed, such as what medium the software is
available on, then a further field can be added to each card.

TITLE:

Chess

TYPE:

Game

PRICE:

$42.95

AMOUNT OF MEMORY:

16K

Fig. 7.1. File card.

Once all the information is recorded in this way, we can sort it or
search it to obtain particular information that we may require. For
example, to find all the items of software of a particular type that are
represented in our card box, all we have to do is to examine each
card, compare its TYPE field to see if it matches the type we require
and to select every card where the match succeeds. A more
complicated search might be made for all the software ofa particular
type that costs less than a certain price. In this case both the TYPE
and the PRICE fields of every card must be examined, and the cards
to be selected are those for which the entries in both fields match our

requirements.
To write our database, we need to store the information in a way

analogous to that used with the card file. It can then be searched and
examined in ways comparable to those that are used with a card file.
One way to store the information so as to allow this is to store it in a
set of arrays, with one to hold the titles, one for the prices, one for the
types and one for the amounts of memory required. If other details
of items of software are to be recorded, then further arrays can be
added. In this way, the first record will be stored in the first elements
of the arrays, the second record in the second elements and so on.

70 Get More From The TI99/4A

Note that the titles and types must be stored in arrays of string
variables while the prices and amounts of memory required can be
stored in arrays of numeric variables. If we assume that the price is
always given in pounds and the amount of memory required in
kilobytes, then we could write assignments to store the information
represented in Figure 7.1 as the first record in the database. The
assignments are:

TITLE$(1) = "CHESS"
PR1CE(I) = 42.95
TYPE$(1) = "GAME"
MEMORY(l) = 16

In practice, of course, we shall enter all the information using a
FOR... NEXTloop. Ifweuse INPUTstatements, and assume thatthe
database contains twenty records, then the information can be
entered and accepted by the following statements:

DIM TITLE$(20), PRICE(20), TYPE$(20),
MEMORY(20)

FOR K = 1 TO 20

DISPLAY "ENTER RECORD", K

INPUT "TITLE:" : TITLE$(K)

INPUT "PRICE:" : PRICE(K)

INPUT "TYPE:":TYPE$(K)
INPUT "MEMORY:" : MEMORY(K)
NEXT K

This way of entering information is rather dull, at least in terms of
the screen display produced, compared to that introduced in
Chapter 3. It is used in the database program to illustrate an
alternative means of data entry. The reader may care to improve the
way in which the program accepts its inputs by adapting the
techniques from Chapter 3.

Once the information has all been entered and stored in the arrays
it must be stored in some permanent way or it will be lost when the
computer is turned off. We shall do this by storing it in a file on
cassette unit number one. (It is equally easy to store it on cassette
unit number two or on any other storage medium such as disk
provided the necessary storage unit is attached to the computer.)
This can be done by opening a file and associating cassette unit
number one with the file. Subsequently, the data can be written to
the file by using the PRI NT# statement together with the file number.
The information can be copied from the arrays to the file by:

Writing A Simple Database 71

OPEN#l: "CS1", OUTPUT, INTERNAL, SEQUENTIAL,
FIXED

FOR K = 1 TO 20

PRINT#1: TITLE$(K), PRICE(K), TYPE$(K), MEMORY(K)
NEXTK

CLOSE#l

The file is opened as file number one (any number from 1 to 255
could have been chosen). Because it is opened for output it can only
be written to. As explained more fully in the User's Reference Guide,
the records are written in the computer's INTERNAL form,
SEQUENTIALly, and as records of FIXED length since all our
records have the same format.

When the data has been placed in a file in this way, it can be read
back into the arrays in the main program by:

OPEN#2: "CS1", INPUT, INTERNAL, SEQUENTIAL,
FIXED

FOR K = 1 TO 20

INPUT#2: TITLE$(K), PRICE(K),TYPE$(K), MEMORY(K)
NEXTK

CLOSE#2

This time the file on cassetteunit number one should be opened for
input. In this way its contents can be read into the computer. They
are transferred sequentially using INPUT# statements with the
number assigned to the file.

Using these methods, we can fill the arrays in the main program
with the necessary information whether the information is entered at
the keyboard or stored in a file. The information can then be
searched, for example, for all items of software classified as games
by:

10 FOR K = 1 TO 20

20 IF TYPE$(K) = "GAME" THEN 30 ELSE 40
30 DISPLAY TITLE$(K)
40 NEXT K

The equivalents of OR and AND for use in logical expressions
that are developed in Chapter 3 are particularly useful if our search
criterion involves more than one field. To illustrate this, we can find
all the items of software that are games and cost less than £50 with:

10 FOR K = 1 TO 20

20 IF (TYPE$(K) = "GAME")*(PRICE(K)<50) THEN 30

72 Get More From The TI99/4A

ELSE 40

30 DISPLAY TITLE$(K)
40 NEXT K

Structure of the database program

The structure of the database program is shown in Figure 7.2. The

c start j>

enter data store data
yes.

read file

yes

interrogate

display results

Fig. 7.2. Flowchart for database program

Q end 3

Writing A Simple Database 73

program starts by asking the user if the data is to be entered from the
keyboard or from a file and it then takes the appropriate action. The
database can then be interrogated. The simple form of interrogation
that is implemented involves searching the database on one field
looking for matches to a given pattern. In this way the database can
be searched for items of software of a particular type, of a given price
or needing a specified amount of storage.

When the information is entered from the keyboard the program
provides the user with the chance to correct it if it is not entered
correctly. Note that the computer itself generates the messages
instructing the user to operate the cassette unit. The complete
database program is shown in Figure 7.3 below.

100 REM DATABASE PROGRAM

110 REM *** DATA ENTRY ***

120 DIM TITLE$(20),PRICE(20),TYPE$(20),MEMORY(20)
130 CALL CLEAR

140 DISPLAY " DATA ENTRY"

150 DISPLAY "FOR ENTRY FROM KEYBOARD-PRESS K"

160 DISPLAY "FOR ENTRY FROM FILE-PRESS F"
170 CALL KEY(0, CODE, STATUS)
180 IF STATUS=0 THEN 170
190 IF C0DE=ASC("K") THEN 300
200 IF C0DE=ASC("F") THEN 500

210 GOTO 170

299 REM ENTRY FROM KEYBOARD

300 FOR K=1 TO 20

310 DISPLAY "ENTER RECORD", K
320 INPUT "TITLE:": TITLE$(K)
330 INPUT "PRICE:" : PRICE(K)

340 INPUT "TYPE:": TYPE$(K)
350 INPUT "MEMORY:": MEMORY(K)
360 DISPLAY "PRESS A TO ACCEPT THIS DATA"
370 DISPLAY "PRESS ANY OTHER KEY TO RE-ENTER"

380 CALL KEY(0, CODE, STATUS)
390 IF STATUS=0 THEN 380
400 IF CODE <> ASC("A") THEN 310
•410 NEXT K

420 0PEN#1: "CS1",OUTPUT,INTERNAL,SEQUENTIAL,FIXED
430 FOR K=1 TO 20

440 PRINT #1: TITLE$(K),PRICE(K),TYPE$(K),MEMORY(K)
450 NEXT K
460 CLOSE #1

470 GOTO 600
499 REM ENTRY FROM FILE

500 OPEN #2: "CS1",INPUT,INTERNAL,SEQUENTIAL,FIXED
510 FOR K=1 TO 20

520 INPUT #2: TITLE$(K),PRICE(K),TYPE$(K),MEM0RY(K)
530 NEXT K

74 Get More From The T/99/4A

540 CLOSE #2
599 REM »*» INTERROGATION *««
600 CALL CLEAR
610 DISPLAY "INTERROGATION"

620 DISPLAY " PRESS 1 FOR PRICE"

630 DISPLAY " 2 FOR TYPE"
640 DISPLAY " 3 FOR MEMORY"
650 CALL KEY(0, CODE, STATUS)
660 IF STATUS=0 THEN 650

670 IF C0DE=ASC("1") THEN 750
680 IF C0DE=ASC("2") THEN 850
690 IF C0DE=ASC("3") THEN 950
700 GOTO 650
750 DISPLAY "ENTER PRICE REQUIRED"

760 INPUT P
770 FOR K=1 TO 20

780 IF PRICE=P THEN 790 ELSE 800
790 DISPLAY TITLE$(K)
800 NEXT K

810 GOTO 1010

850 DISPLAY "ENTER TYPE REQUIRED"
860 INPUT T$
870 FOR K=1 TO 20

880 IF TYPE$(K)=T$ THEN 890 ELSE 900
890 DISPLAY TITLE$(K)
900 NEXT K
910 GOTO 1010

950 DISPLAY "ENTER AMOUNT OF MEMORY REQUIRED"

960 INPUT M
970 FOR Kr1 TO 20

980 IF MEMORY=M THEN 990 ELSE 1000
990 DISPLAY TITLE$(K)
1000 NEXT K

1010 DISPLAY "PRESS SPACE FOR FURTHER INTERROGATION"

1020 DISPLAY "AND ANY OTHER KEY TO END"

1030 CALL KEY (0, CODE, STATUS)
1040 IF STATUS=0 THEN 1030

1050 IF C0DE=32 THEN 600
1060 END

Fig. 7.3. Listing of database program.

Chapter Eight

Writing A Simulation

Simulation is a valuable application for computers in many areas. In
industry it is used to test the integrity of a complex system such as an
aeroplane without incurring the expense involved in actually
constructing the system. An administration can use it to test the
effectiveness of new administrative procedures, for purposes such as
controlling the flow of traffic, without risking the chaos that might
result from putting them into practice straight away.

In this chapter we shall develop a simulation of a tank moving
around a fixed path composed of roads and tracks. At certain points
the path divides so that the tank driver must decide whether to turn
to the right or the left. The simulation is to be written so that
commands can be issued while it is in progress by pressing a single
key. With the commands that are available we can direct the tank as
to which way it should turn at a junction in the path, we can cause an
obstacle to be placed in the path of the tank at a random position
along the path, and we can decide whether or not the tank should
have the capability to avoid automatically any obstacle in its path.
Messages are displayed at the top of the screen to indicate the
current status of the simulation with regard to each of the three
factors over which the user has control.

The layout of the path to be followed by the tank is shown in
Figure 8.1. The path is displayed by placing specially designed
characters in each of 106 screen locations. The characters that are

specially designed for plotting the path are assigned the codes 128 to
135. The characters with codes 128 and 129 are, respectively,
horizontal and vertical line characters for plotting the horizontal
and vertical sections of the path. The characters with codes 130 to
133 provide the rounded corners, and those with codes 134 and 135
provide the points at which the path divides into two or at which two
paths converge. Since the tank must always move along the paths in
the directions indicated by the arrows in Figure 8.1, the path only

76 Get More From The TI99/4A

Fig. 8.1. Layout of path.

divides at the points labelled A and B in the figure. It is at these
points that the tank driver must decide which way to turn. The 106
screen locations to be occupied by the graphics characters making
up the path are placed and labelled as indicated in Figure 8.2. Each
location can, as usual, be fixed by giving its row and column, and the
positions of all the screen locations on the tank's pathare stored in
the 106-element arrays named ROW and COLUMN.

When the ROW and COLUMN arrays are initialised and the

155)—V5^KH£3

Fig. 8.2. The locations on the path and their connections

(as)- — — —(n)

(Vy— — — —-(99)

Writing A Simulation 77

characters for plotting the track are defined, the path can be plotted
by:

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

HCHAR

HCHAR

HCHAR

HCHAR

VCHAR

VCHAR

VCHAR

VCHAR

HCHAR

HCHAR

HCHAR

HCHAR

HCHAR

HCHAR

HCHAR

HCHAR

HCHAR

HCHAR

(ROW
(ROW
(ROW
(ROW
(ROW
(ROW
(ROW
(ROW
(ROW
(ROW
(ROW
(ROW
(ROW
(ROW
(ROW
(ROW
(ROW
(ROW

(1), COLUMN (1), 128, 21)
(55), COLUMN (55
(85), COLUMN (85
(91), COLUMN (91
(1), COLUMN (1),
(21), COLUMN (21
(85), COLUMN (85
(77), COLUMN (77
(62), COLUMN (62
(74), COLUMN (74
(1), COLUMN (1),
(21), COLUMN (21
(35), COLUMN (35
(55), COLUMN (55
(62), COLUMN (62
(88), COLUMN (88
(74), COLUMN (74
(28), COLUMN (28

128, 21)
128, 9)
128, 9)

129, 15)
129, 15)
129, 7)
129, 7)
128, 7)
128, 7)

131)
130)
132)
133)
134)
135)
134)
135)

To display the tank we shall use the special character designed in
Chapter 2, assigning it the code 144. The position of the tank on its
path is held in the variable TANKPOS. Once TANKPOS is
initialised, the tank can be plotted by:

CALL HCHAR (ROW(TANKPOS), COLUMN(TANKPOS),
144)

However, to make the tank move along its path we always need to
know the position after the present one to which the tank will move
next. Thus, the position after position 1 is position 2, and that after
position 2 is position 3. But, as Figure 8.2 shows, the next position is
not always given by increasing the current position number by one.
In particular, the position after position 68 is position 1, while the
position following number 28 may be either 29 or 69 depending on
which way the tank turns at point B. To record the position after
each position on the path, we use the array named AFTER, so that, for
example:

AFTER (68) = 1

and

AFTER (106) = 62

78 Get More From The TI99/4A

When this array is initialised, the tank can be moved along its path
in such a way that the plotted path is not destroyed by repeatedly
executing

CALL HCHAR(ROW(TANKPOS), COLUMN(TANKPOS),
TEMP)

TANKPOS = AFTER (TANKPOS)
CALL GCHAR(ROW(TANKPOS), COLUMN(TANKPOS),

TEMP)

CALL HCHAR(ROW(TANKPOS), COLUMN(TANKPOS),
144)

(We can note in passing that it would be more helpful to call the
array of next positions NEXT rather than AFTER, since
TANKPOS = NEXT (TANKPOS) is more readily understood than
TANKPOS = AFTER (TANKPOS). Unfortunately, NEXT is a
reserved word in TI BASIC, being reserved for use in FOR... NEXT
loops, and so cannot be used as a variable name.)

Messages are placed on the screen to show the status of the
simulation. They are placed above the tank track and are positioned
using our standard display subroutine from Chapter 3.

The keys listed in the following Table 8.1 are used to issue the
interactive commands.

Table 8.1. Keys and commands for simulation.

Key Command

T Change direction in which tank turns at a
branch in the path from right to left or from
left to right.

O Generate an obstacle if none exists, or remove
an obstacle if one exists.

A Activate or deactivate automatic avoidance of

obstacles.

In essence there are three aspects of the simulation each of which can
assume one of two states. These states are initialised at the beginning
of the simulation, but every time a command is issued the relevant
aspect is switched from one of its states to the other. The state of
each aspect is always recorded by the messages at the top of the
screen.

Writing A Simulation 79

One aspect is the direction in which a tank turns when it comes to
a branch in the path at A or B in Figure 8.1. It is initialised to turn to
the left and will contine to do so until the T command is issued when

it will consistently turn to the right. Each time this command is given
the turning status of the tank is altered. The turning status is
recorded in the variable TURN. Assigning it a value of 1 represents
turning to the right, and zero represents turning to the left. Each
time this command is issued we must cause the appropriate message
to be displayed and also amend the AFTER array. At point B, if the
tank is to turn to the left we must have:

AFTER (28) = 29

whereas if it is to turn to the right we require

AFTER (28) = 69

These changes must be made every time the turning command is
issued. The value of the variable TURN can be altered as is

appropriate by:

10 IF TURN = 1 THEN 40

20 TURN = 1

30 GOTO 50

40 TURN = 0

50

or, much more compactly, by:

TURN = 1 - TURN

The O command is used to create an obstacle on the path if none
exists currently. The random number function is used to generate a
random position for the obstacle. The obstacle itself is assigned the
code 136. If the tank should strike the obstacle it willbe destroyed. If
this command is issued when an obstacle isalready on the path, then
it will cause the obstacle to be removed. The obstacle status is

recorded in the variable OBSTACLE, with a value of zero
representing no obstacle and a non-zero value representing not only
the existence of an obstacle but also its position on the path.

The third command is issued with the A keyand affects the ability
of the tank automatically to avoid any obstacle in its path. If this
capability is not assigned currently, then issuing the command
assigns it and vice versa. If the tank's capability for avoiding an
obstacle is switched off then it inevitably crashes into any obstacle
on the track but if the capability is turned on it automatically

80 Get More From The TI99/4A

invokes a procedure for skirting round the obstacle. The automatic
avoidance status is recorded in the variable AVOID with zero

indicating its absence and one its presence.

Program specification

A specification of the simulation program based on the preceding
somewhat informal discussion may be written as follows:

Initialise path
Initialise tank

Initialise variables

Clear the screen

Display status messages
Plot path
Plot tank

Repeatedly
Examine next position
IF obstacle there THEN

IF avoidance on THEN avoid it ELSE crash

ELSE

Move tank

Scan keyboard
IF command issued THEN obey it ELSE delav

The flowchart given in Figure 8.3 expands and refines this
description of the program.

At this stage, the only task of any particular difficulty is that of
programming the tank to avoid obstacles automatically. On closer
inspection this task is not too severe as it resolves itself into the two
cases, represented in Figure 8.4, of avoiding an obstacle along a
straight path or of avoiding it when it is on a corner. In the figure, the
current position of the tank is indicated by TANKPOS, the position
of the obstacle by OBSTACLE and the destination of the tank after
it has avoided the obstacle by DESTINATION. The test to see if
there is an obstacle in the next position is given by:

IF AFTER (TANKPOS) = OBSTACLE THEN ...

DESTINATION is given by

DESTINATION = AFTER (AFTER (TANKPOS))

^

delay

examine next position

crash

move tank "

Q end)

Writing A Simulation 81

avoid

obstacle

— change TURN, AFTER

no

•— change AVOID
yes ' -

display

message

erase

obstacle

generate and

plot obstacle

Fig. 8.3. Flowchart for simulation program.

6—o—cb

9—0

6—6
(b)(a)

Fig. 8.4. Avoiding obstacles.

82 Get More From The TI99/4A

or, equally well, by

DESTINATION = AFTER (OBSTACLE)

The paths for avoiding the obstacle are indicated in Figure 8.4 by
broken lines. Avoidance on a straight line path involves visiting
three screen positions that are off the tank's path, but if the obstacle
is on a corner the tank can cut the corner and need only visit one
screen location away from the path. In fact, because the simulation
program is getting rather long, the program presented here only
allows obstacles to fall on the top and bottom horizontal sections of
the path. This simplifies the avoidance procedure considerably.
However, we shall discuss the general avoidance procedure a little
further to help you implement it for yourselfshould you wish to do so.

The key to determining how to avoid an obstacle automatically is
to find the pattern of the positions occupied by the three positions
TANKPOS, OBSTACLE and DESTINATION. If they lie on a
horizontal straight line the tank can skip round the obstacle by
taking three positions above the path as in Figure 8.4(a). If they lie
on a vertical straight line the tank can take three positions to the
right of the path, and if the obstacle is on a corner, the tank can cut
the corner as shown in Figure 8.4(b).

The pattern of positions can be found by using a test such as:

IF ROW (TANKPOS) = ROW (OBSTACLE) THEN ...
ELSE

If the test is true then the tank and the obstacle are in the same

row, but if the test is false they are in the same column. Making
successively the tests for whether

ROW (TANKPOS) = ROW (OBSTACLE)

and for whether

ROW (OBSTACLE) = ROW (DESTINATION)

will give the pattern of the three positions. If both tests are true they
are all in a row, and if both tests are false they are all in a column.
When one is true and the other is false the obstacle is on a corner. In

this case, if the first test is true the tank is approaching the corner
on a horizontal part of the path and if it is false the tank approaches
on a vertical part. This is summarised in Figure 8.5, and inspection
of this figure shows, for example, that the location of the position for
cutting the corner when the first test is true and the second is false
has its row given by ROW (DESTINATION) and its column by

Writing A Simulation 83

TEST 1 TEST 2

ROW(TANKPOS) = ROW(OBSTACLE) = CONFIGURATION

ROW(OBSTACLE)? ROW(DESTINATION)?

TRUE TRUE ooo

TRUE FALSE

oo

FALSE TRUE

o-o

FALSE FALSE §
Fig. 8.5. Patterns of the positions for avoidance.

COLUMN (TANKPOS) so that we can plot the tank cutting the
corner with:

CALL HCHAR (ROW (DESTINATION), COLUMN
(TANKPOS), 144)

The entire interactive simulation program can now be written. It
is listed below in Figure 8.6. The following Tables 8.2 and 8.3 give,
respectively, the codes for the special characters defined in the
programand the variables used by the program with their purposes.

84 Get More From The TI99/4A

Table 8.2. Special characters defined in the simulation program.

Code

128

129

130

131

132

133

134

135

136

144

Character

Horizontal character for path
Vertical character for path

Corner characters for path

Branching characters for path

Obstacle

Tank

Table 8.3. Variables used in simulation program and their purposes.

Variable

AFTER

AVOID

CODE

COLUMN

DESTINATION

M$

MCOLUMN

MROW

OBSTACLE

ROW

STATUS

TANKPOS

TEMP

TURN

Purpose of variable

Array of next positions on path
Records whether automatic avoidance of

obstacles is on or off

Code returned by CALL KEY
Array holding columns for path positions
Position of tank on path after avoiding an
obstacle

Holds messages for display
Gives column in which message starts
Gives row in which message starts
Gives position of obstacle or is zero for no
obstacle

Array holding rows for path positions
Status of CALL KEY

Holds position of tank
Holds code for path character in position
occupied by tank
Records turning state of tank

0
\
O

N
O

%
U

1
U

l
U

1
U

1
0

1
U

l
U

1
U

1
U

1
U

1
J
r
4

r
i
r
.t

r
4

r
-
t
4

r
i
r
4

r
.t

r
U

J
U

>
U

J
U

O
U

O
U

>
U

J
U

J
U

^
!
\
)
-
»

O
v
O

O
O

-
>

)
<

T
i
U

l
J
r
W

(
\
)
-
«

O
v
O

C
»

~
J
<

y
i
U

l
*

U
)
l
\
)
-
»

0
»

0
0

0
-
<

3
0

\
U

l
J
r
U

J
(
\
)
-
»

O
v
O

O
O

-
J
O

M
J
1

t
U

)
I\

)
-
»

O
v
O

C
O

-
«

J
f
f
i
U

l
J
r
w

r
O

-
»

0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o

o
o

o
o

z
o

a
**

j
o

a
C

l
a

z
o

a
**

j
z

o
a

i
j

z
O

>
>

>
>

>
>

r
a

o
o

o
o

O
O

o
m

o
o

o
c
d

o
o

o
M

o
c

r
r

t
-

r
-

r
1

t
-

r r
a

c
-

s
:

a

S
w

w

t
-

a
s

t
r

3
r
-

^
c
-

s
:

a

g
«

?"
*

^1
r
-

o
o

o
o

o
o

«
2

o
2

5
o

w
2

*
->

II
«

2
N

—
'

II
W

S
X

X
X

X
X

X
*

~
*

II
—

fc
*

—
N

^
^

-
N

o
^
•
^

II
M

D
^

II
0

9
*

~
*

>
>

>
>

>
>

?"
?

-
»

o
_

1
\
y

—
1

N
—

'
?

?
—

»
—

»
?

3
i*

3
c
n

«
a

a
a

a
a

a
w

»
j
i

r
o

o
n

o
II

^
^

•
0

0
>

-»
1

x
_

^

*
'—

*
*

*
*

*
•
"
>

.
*

*
-N

*
—

N
*

—
*

ii
_

*
^

o
^

II
H

H
--

3
H

ii
^

—
^

_
A

^
m

m
A

_
A

-
»

H
^
^

cr
>

N
^

-
J

?
?

O
-
»

O
O

O
V

O

0
0

U
)

O
O

u
>

r
o

r
o

-
»

O
ii

11
1

IV
)

-
j

u
>

r
o

-
*

o
\£

>
0

0
o

o 1
-
»

p<
?

o

r
o

o
r
o

o
O

i

3
3

3
3

3
3

e
n

o
o

o
o

O
o

c
d

o
o

o
o

0
0

o
o

-
»

o
o

o
o

4=
-

O
O

o
C

O
o

o
r
o

o
o

o
o

r
o

o
o

o
C

O
o

o
o

o
o

o
^

_
»

o
-
»

o
0

0
^

3
3

o
r
o

o
^

^
r
o

o
0

0
s
^

^

o
^

o
-
tr

O
c
o

o
o

o
*

r
0

0
C

O
o

o
o

C
O

0
0

0
0

a
i
'
i
i
n
a
o
M
Z
o
a
T
Z

O
O

O
O

O
O

P
J
O

O
O

P
1

^
^

C
'••n

Q
'—

>
*-

9
c

«—
*

1-
3

P
S

P
S

3
—

3
3

—
J

3
P

S
P

S
w

i
i

z
c
n

z
u

i
p

s
z
^
i
i

p
s

||
-
J

--
N

x
-»

.^
-s

w
^
1

1
O

N
—

*
—

3
—

J
ii

—
a

••
?

*
?

-
»

v
o

r
o

o
\

-
»

vj
>

-
»

>
-»

u
i

H
^
U

l
^
-
t

II
H

O
H

II
v£

>
O

r
o

r
o

*
r

c
o

o
o

i
^
i

<
ji

?
s

-
t

o
a

^
z

o
a

**
j

o
o

o
p

j
o

o
o

o C
T

i

5 C
O

c 5T 0
0

0
1

86 Get More From The TI99/4A

630 CALL CHAR034, "080C0A0908080808")
640 CALL CHAR035, "1828488808080808")
650 CALL CHAR(136, "FFFFC3C3FFFFFFFF")
660 FOR K=1 TO 105
670 AFTER(K)=K+1
680 NEXT K

690 AFTER(68)=1

700 AFTER(106)=63
710 CALL CHAR(144, "10387F78307CAA7C")
720 TANKP0S=1
730 AV0ID=0

740 OBSTACLES

750 TURN=0

760 CALL CLEAR

770 REM MESSAGES

780 M$="TURN TO LEFT "
790 MR0W=1

800 MC0LUMN=3
810 GOSUB 2000

820 M$="NO OBSTACLE ON TRACK"
830 MR0W=3
840 MC0LUMN=3
850 GOSUB 2000

860 M$=»AUTOMATIC AVOIDANCE OFF"
870 MR0W=2
880 MC0LUMN=16

890 GOSUB 2000
900 GOSUB 3000

910 CALL GCHAR(ROW(TANKPOS),COLUMN(TANKPOS),TEMP)
920 CALL HCHAR(ROW(TANKPOS),COLUMN(TANKPOS),144)
930 GOSUB 4000

999 REM *•* MAIN SECTION OF PROGRAM ***

1000 CALL HCHAR(ROW(TANKPOS),COLUMN(TANKPOS),TEMP)
1010 IF AFTER(TANKPOS)=OBSTACLE THEN 1060 ELSE 1020

1020 TANKPOS=AFTER(TANKPOS)
1030 CALL GCHAR(ROW(TANKPOS),COLUMN(TANKPOS),TEMP)
1040 CALL HCHAR(ROW(TANKPOS),COLUMN(TANKPOS),144)
1050 GOTO 1250

1060 IF AV0ID=1 THEN 1070 ELSE 1090
1070 GOSUB 5000

1080 GOTO 1250
1090 CALL S0UND(2000,-5,2)
110C CALL HCHAR(ROW(TANKPOS),COLUMN(TANKPOS),136)
1110 FOR J=1 TO 8

1120 CALL C0L0R(14,1,2)
1130 CALL C0L0R(14,2,1)
1140 NEXT J

1150 M$="TANK DESTROYED BY OBSTACLE"
1160 MR0W=5
1170 MC0LUMN=3

1180 GOSUB 2000

1190 STOP

1250 CALL KEY(0, CODE, STATUS)

Writing A Simulation 87

1260 IF STATUS=0 THEN 930
1270 IF C0DE=ASC("T") THEN 1400
1280 IF CODE=ASC("A") THEN 1600
1290 IF C0DE=ASC("0") THEN 1800
1300 GOTO 930

1399 REM CHANGES FOR TURN

1400 TURN=1-TURN

1410 MR0W=1

1420 MC0LUMN=3
1430 IF TURN=1 THEN 1440 ELSE 1490
1440 M$="TURN TO RIGHT"
1450 GOSUB 2000

1460 AFTER(28)=69
1470 AFTER(88)=102
1480 GOTO 1000

1490 M$="TURN TO LEFT "
1500 GOSUB 2000

1510 AFTER(28)=29
1520 AFTER(88)=89
1530 GOTO 1000

1599 REM CHANGES FOR AVOID

1600 AV0ID=1-AVOID

1610 MR0W=2

1620 MC0LUMN=16

1630 IF AV0ID=1 THEN 1640 ELSE 1670
1640 M$="AUTOMATIC AVOIDANCE ON "
1650 GOSUB 2000

1660 GOTO 1000

1670 M$="AUTOMATIC AVOIDANCE OFF"
1680 GOSUB 2000

1690 GOTO 1000

1799 REM CHANGES FOR OBSTACLE

1800 MR0W=3

1810 MC0LUMN=3
1820 IF OBSTACLES THEN 1830 ELSE 1920
1830 M$=" OBSTACLE ON TRACK"
1840 GOSUB 2000

1850 IF RND < 0.5 THEN i860 ELSE 1880

1860 0BSTACLE=2+INT(18*RND)
1870 GOTO 1890
1880 0BSTACLE=36+INT(18*RND)
1890 CALL GCHAR(R0W(OBSTACLE),COLUMN(OBSTACLE),TEMP2)
1900 CALL HCHAR(ROW(OBSTACLE),COLUMN(OBSTACLE),136)
1910 GOTO 1000

1920 M$="NO OBSTACLE ON TRACK"
1930 GOSUB 2000

1940 CALL HCHAR(R0W(0BSTACLE),C0LUMN(0BSTACLE),TEMP2)
1950 OBSTACLES

1960 GOTO 1000

1970 END

1998 REM
1999 REM DISPLAY SUBROUTINE

2000 FOR K=1 TO LEN(M$)

88 Get More From The TI99/4A

2010 CH=ASC(SEG$(M$,K,1))
2020 CALL HCHAR(MR0W,MC0LUMN-1+K,CH)
2030 NEXTK

2040 RETURN

2998 REM
2999 REM SUBROUTINE TO PLOT TRACK

3000 CALL HCHAR(R0W(1),C0LUMN(1),128,21)
3010 CALL HCHAR(ROW(55),COLUMN(55),128,21)
3020 CALL HCHAR(ROW(85),COLUMN(85),128,9)
3030 CALL HCHAR(ROW(9D,COLUMN(9D, 128,9)
3040 CALL VCHAR(ROW(1),COLUMN(1),129,15)
3050 CALL VCHAR(ROW(21),COLUMN(21),129,15)
3060 CALL VCHAR(ROW(85),COLUMN(85),129,7)
3070 CALL VCHAR(ROW(77),COLUMN(77),129,7)
3080 CALL HCHAR(ROW(62),COLUMN(62),128,7)
3090 CALL HCHAR(R0W(74),COLUMN(74),128,7)
3100 CALL HCHAR(ROW(1),COLUMN(1), 13D
3110 CALL HCHAR(R0W(21),C0LUMN(21),130)
3120 CALL HCHAR(ROW(35),COLUMN(35),132)
3130 CALL HCHAR(ROW(55),COLUMN(55),133)
3140 CALL HCHAR(ROW(62),COLUMN(62),134)
3150 CALL HCHAR(ROW(88),COLUMN(88),135)
3160 CALL HCHAR(ROW(74),COLUMN(74),134)
3170 CALL HCHAR(ROW(28),COLUMN(28),135)
3180 RETURN

3998 REM
3999 REM DELAY SUBROUTINE

4000 FOR DELAY=1 TO 100

4010 NEXT DELAY

4020 RETURN

4998 REM
4999 REM SUBROUTINE FOR AVOIDING OBSTACLES

5000 DESTINATIONSAFTER(OBSTACLE)
5010 R=R0W(TANKP0S)-1
5020 T=TANKPOS

5030 CALL HCHAR(ROW(TANKPOS),COLUMN(TANKPOS),TEMP)
5040 FOR K=1 TO 3
5050 CALL HCHAR(R,C0LUMN(T),144)
5060 GOSUB 4000

5070 CALL HCHAR(R,COLUMN(T),32)
5080 T=AFTER(T)
5090 NEXT K

5100 CALL GCHAR(ROW(DESTINATION),COLUMN(DESTINATION),
TEMP)

5110 CALL HCHAR(ROW(DESTINATION),COLUMN(DESTINATION),
144)

5120 TANKPOS=DESTINATION

5130 RETURN

Fig. 8.6. Listings of simulation program.

Chapter Nine

Expanding The TI99/4A

There is a good deal of both hardware and software with which the
TI99/4A can be expanded. This is one of the strengths of the
computer. Although the basic machine can be obtained at a modest
price, it can be expanded in any of a large number of ways to grow as
its owner's interests develop.

The software that is available can be classified broadly into four
categories. These are games, educational programs, serious
programs and programming languages. The games include such
favourites as TI Invaders and Munchman, but there are also
many adventure games and even chess. The educational programs
typically introduce such topics as reading, grammar and arithmetic.
Most of the games and educational software are available
conveniently as plug-in modules, although some are also available
on cassette. The serious programs include a word processor and a
so-called 'personal record keeper'. The programming languages
include Extended TI BASIC, LOGO and UCSD Pascal. Many of the
serious programs and the languages are also available as plug-in
modules, but otherwise the medium is disk. Much of this software is
written to take advantage of the hardware that can be added to the
computer.

The extra peripherals for the TI99/4A include the speech
synthesiser and joysticks. There is also a peripheral expansion unit
with the aid of which disk drives, a printer, extra memory and many
other facilities can be added to the computer. It isworth mentioning
that means of handling many of these peripherals are built into the
programming languages that can be used with the computer. For
example, there is a CALL JOYST statement in TI BASIC for
handling joysticks and, as we shall see, Extended TI BASIC has
statements for operating the speech module.

Since the main thrust of this book has been concerned with
programming, the remainder of this chapter is devoted to

90 Get More From The TI99/4A

introducing the programming languages Extended TI BASIC and
LOGO. Once TI BASIC has been mastered, it is natural to progress to
the use of the extended version, which is not only more powerful but
also enhances the computer's sound and graphics capabilities
considerably. LOGO is a language that is widely advocated for
educational use. Whether it allows the computer's potential as an
educational aid to be realised or it is seen as an alternative to BASIC,
LOGO is a very interesting language that is assuming increasing
importance.

Extended TI BASIC

The extended version of BASIC for the TI99/4A is available as a
plug-in module. When it is plugged into the computer, it can be
chosen from the master selection list. It possesses some features that
are improvements on those ofTI BASIC andit addsothersto them.
Altogether, more than forty new or extended features are provided.

The extended features include a DISPLAY AT statement, of the
kind that we had to write for ourselves in TI BASIC. With this,
information to be displayed can be positioned anywhere on the
screen. However, the statement is more powerful than this since it
can cause the screen to be cleared before displaying the information
and can also cause a tone to be sounded. There are also DISPLAY
USING and PRINT USING statements with which the format of
the information to be displayed can be specified precisely. The
IF...THEN...ELSE statement has been made considerably more
powerful. The condition partofthe statement can contain any ofthe
logical operators NOT, XOR, AND and OR. Again, this
corresponds with something we had to construct for ourselves in TI
BASIC. In addition to this the general form of the statement is:

IF condition THEN statement 1 ELSE statement 2

where statement 1and statement 2 can be any statements or, in fact,
even sequences of statements. This conditional statement is very
powerful, and it permits many ofthe infelicities associated with the
restricted form of the conditional statement in TI BASIC to be
avoided. There are also facilities for error handling which are
provided by the CALL ERR statement.

Of the new features, the most attractive and characteristic ones
are for producing speech from the speech module and for handling

Expanding The TI99/4A 91

sprites. The two statements for generating speech are given in the
following Table 9.1.

Table 9.1. The statements for speech generation.

Statement Result of statement

CALL SAY To cause the computer to say the words given in a
character string or the speech pattern stored in a
string variable.

CALL SPGET To store a speech pattern in a string variable.

In fact, the speech module has a vocabulary of about 400 words
and phrases. These are naturally the words that it can be
commanded to say, although with some juggling, the words that it
possesses can becombined to give others. To illustrate the useof the
statements, the computer can be made to say 'I can say things' by

100 CALL SAY ("I CAN SAY THINGS")

The task is as simple as this because all four words are in the
vocabulary. An alternative way to produce the phrase is

100 CALL SPGET ("I", A$)
110 CALL SPGET ("CAN", B$)

120 CALL SPGET ("SAY", C$)

130 CALL SPGET ("THINGS", D$)
140 CALL SAY (,A$„B$„C$„D$)

Note the commas in line 140. They must be arranged in this way
because the statement expects to be given alternating character
strings and string variables.

Thus, to make the computer say anything composed directly from
the words in its vocabulary is quite straightforward. New words can
be constructed by adding words to each other. For example, 'am'
and 'end' can be concatenated to give 'amend' and, because the
computer will say numbers as well as words, 'be' and '4' give 'before'.
Also, after using SPGET to assign the speech pattern for a word to a
string variable, there is some scope for using SEG$ to obtain a part
of the speech pattern that gives a particular sound. Endings such as

92 Get More From The TI99/4A

's' and 'ing' are particularlyuseful. Unfortunately, this isnot aseasyas
it might seem. We might expect to be able to obtain an's' sound by
storing the speech patternsfor 'thing'and 'things' and then removing
the former pattern from the latter. However, this idea fails at once
when we find that the length of the pattern for 'thing' exceeds that
for 'things'!

Beforethe computer can say anything, it must be presented witha
string that starts with characters 96 and 0, and then has a character
that gives the number of characters in the following speech pattern
followed by the speech pattern itself. The speech pattern can then be
spoken by the computer as a resultof usingCALL SAY. One wayto
generate random speech patterns and to make the computer 'say'
them is illustrated by the next program.

100 DISPLAY "ENTER LENGTH OF SPEECH PATTERN"

110 INPUT L

120 A$=CHR$(96)&CHR$(0)&CHR$(L)
130 FOR 1=1 TO L

140R=1+INT(255*RND)
150 A$=A$&CHR$(R)
160 NEXT R

170 CALL SAY(,A$)
180 GOTO 100

There are also many statements for spritegraphics. A sprite is a
graphics character, or a group of characters, that can be made to
move. When a sprite is a single graphics character, defined in the
way withwhich we are familiar, byCALLCHAR, thespecial sprite
commands allow it to be positioned, continually moved automati
cally, magnified, and evento haveitsshapealtered. A spritecan also
be defined as a block of four characters. For example, the large tank
of Fig. 2.6(b) can be defined as a sprite after using the extended
version of the CALL CHAR statement. A string of 64 hexadecimal
characters is assigned to a string variable, A$, say, consisting of the
16-character definition of the top left character in the tank, followed
by that for the bottom left one and then those of the top right and
bottom right characters. The largecharacter can then be assigned a
code by, for example, CALL CHAR(100, A$).

The commands that are provided for sprite graphics are given in
the followingTable 9.2together with the purposes for whichthey are
intended.

Expanding The TI99/4A 93

Table 9.2. The statements for sprite graphics.

Command Purpose of Command

CHAR To define a character string giving the shape of a sprite.
COINC To detect coincidences, or collisions, between sprites.
DELSPRITE To delete a sprite.
DISTANCE To find the distance between sprites.
LOCATE To move a sprite to a given position.
MAGNIFY To magnify sprites.
MOTION To change the motion of a sprite.
PATTERN To assign a new shape to a sprite.
POSITION To return the position of a sprite.
SPRITE To initialise the shape, position, and motion of a sprite.

It is not difficult to appreciate that these statements make the task
of programming games such as Space Invaders and Pacman
relatively simple. There are statements for automatically producing
movement of, for example, Invaders, for changing their positions
and motion so that a degree of unpredictability can be introduced,
for detecting when an Invader has been shot down by a missile
(another sprite), and for then deleting it. The shape of Pacman can
be altered with PATTERN to make him gobble up anything in his
path. Realistic animation sequences can also be produced by giving
a sprite any of a repertoire of shapes as it moves.

The following short program defines the small tank of Figure
2.6(a) as a sprite, and sets it in motion across the screen, changing its
shape as it moves. The two shapes for the tank sprite differ only in
the appearance of the tank tracks, and the result of the program is to
make the tracks appear to rotate as the tank moves.

100 CALL CLEAR

110 CALL CHAR(96, "10387F78307CAA7C")
120 CALL CHAR(100, "10387F78307C547C")
130 CALL COLOR(13,7,7)
140 CALL HCHAR(20,1,128,32)
150 CALL SPRITE (#1,96,5,137,1)
160 CALL MAGNIFY(2)
170 CALL MOTION(# 1,0,5)
180 CALL PATTERN(# 1,100)
190 FOR DELAY=1 TO 10:: NEXT DELAY

200 CALL PATTERN (#1,96)
210 FOR DELAY=1 TO 10:: NEXT DELAY

220 GOTO 180

94 Get More From The TI99/4A

In Extended TI BASIC, the programmer can write his own named
sub-programs using the CALL statement, so that calls to user-
written sub-programs can have the same appearance as, for
instance, the by now familiar, CALL CLEAR and CALL SPRITE
statements. This makes programs much more readable than when
they are full of GOSUB statements. The following program
illustrates this. It establishes four sprites at the centre of the screen,
and starts them in motion, but as soon as they reach a certain
distance from the centre of the screen (held in the variable R), they
are turned upside down and started back towards the centre again.
Their shapes are restored once they come back within range of the
centre again. The program is:

100 DIM COLOUR(4), RSPEED(4), CSPEED(4)
110 CALL CLEAR
120 CALL CHAR(96, "81423C247E5A4242")
130 CALL CHAR(100, "42425A7E243C4281")
140 FOR S=l TO 4

150 COLOUR(S)=S+l
160 RSPEED(S)=S-2:: CSPEED(S)=3-S
170 CALL SPRITE (#S,96,COLOUR(S),96,128,

RSPEED(S),CSPEED(S))
180 NEXT S

190 R=50
200 FOR S=l TO 4

210 CALL DISTANCE (#S,96,128,D)
220 IF D > R*R THEN CALL CHANGE(S,RSPEED(S),

CSPEED(S))ELSE CALL REPLACE(S)
230 NEXT S

240 GOTO 200

250 END

500 SUB CHANGE(S, H, V)
510 CALL PATTERN(#S, 100)
520 H =-H::V=-V
530 CALL MOTION(#S, H, V)
540 FOR DELAY=1 TO 200:: NEXT DELAY
550 SUBEND

600 SUB REPLACE(S)
610 CALL PATTERN(#S,96)
620 SUBEND

Note that the sub-programs start with a line having SUB followed
by their names and finish with the line SUBEND. Line 220 is very
powerful as it allows the program to choose directly between two
sub-programs. Because of the length of the delay in the CHANGE

Expanding The TI99/4A 95

sub-program, some of the more slowlymovingsprites can becaught
at the edge of the region and oscillate there for a time. Altering the
length of the delay will change the oscillation effects.

LOGO

LOGOis a language that ishighly regarded asa vehicle for accessing
the educational potential of the computer. It has the ability to turn
the computer into a tool for learning, and for learning by doing. The
foremost proponent of LOGO is Seymour Papert, and one of his
ideas is that with LOGO the computer can be made to provide a
'microworld'. Once established, a microworld can be explored or
used as a venue for testing ideas and theories. Because microworlds
are restricted, it is comparatively easy to understand what happens
in them. The complexity of everyday lifeis removed. In this way, the
LOGO user can learn by programming the computer. This is in
distinct contrast to the situation in a good deal of computer-aided
education, where the computer programs the learner as, for instance,
when it takes him through a series of exercise drills.

The best known of LOGO'S microworlds are based on the use of
the 'turtle'. The turtle is sometimes a small wheeled vehicle that can
be controlled from the computer with commands given in LOGO. In
TI LOGO, however, it is a small object on the screen which can be
controlled in a similar way. At any time, the turtle occupies a
position and faces in some direction. The commands for moving the
turtle to another position are FORWARD and BACK, which move
it forwards and backwards by a given number of units or turtle steps.
To make it turn to the right or the left so that it faces in a different
direction, the commands LEFT and RIGHT can be used. The
commands PENUP and PENDOWN, which are derived from a
floor turtle with a real pen, are applied similarly to a screen turtle
and its imaginary pen. They can be used to make the turtle leave a
trace, or not, as it moves. With these commands the turtle can be
made to follow a square path, drawing a square as it goes, by

PENDOWN

FORWARD 100
RIGHT 90

FORWARD 100

RIGHT 90

FORWARD 100

RIGHT 90

FORWARD 100

RIGHT 90

This can be abbreviated to

96 Get More From The TI99/4A

PENDOWN

REPEAT 4 [FORWARD 100 RIGHT 90]

Apart from the turtle commands, LOGO is a complete computer
language, and is, in fact, a list processing language. To give a few
examples of its capabilities for processing lists, it has features for
finding the first item in a list, for removing the first item ofa list, for
finding the last item of a list, and for removing that from a list. A list
is represented by enclosing it in square brackets. Thus:

PRINT FIRST [TEXAS OKLAHOMA ARKANSAS
LOUISIANA]

gives

TEXAS

and

PRINT BUTFIRST [TEXAS OKLAHOMA ARKANSAS
LOUISIANA]

gives the list [OKLAHOMA ARKANSAS LOUISIANA]

The sub-programs in LOGO are known as procedures. A
procedure for drawing a square can be defined by:

TO SQUARE
PENDOWN

REPEAT 4[FORWARD 100 RIGHT 90]
END

Once this is defined, a square can be drawn simply by issuing the
command SQUARE in the same style as LOGO'S own commands
are issued. In this way the definition of procedures can be seen as a
way of extending the language to suit the user. A more general way
of defining a procedure to draw a squarethat can produce one ofany
size is:

TO SQUARE1 :SIDE
PENDOWN

REPEAT 4[FORWARD :SIDE RIGHT 90]
END

LOGO also supports recursion, that is, it has the ability that its
procedures can call themselves. This providesa powerful technique
for solving problems that can produce elegant solutions. A square

Expanding The TI99/4A 97

can be drawn recursively with the procedure

TO SQUARE2 :SIDE
FORWARD :SIDE

RIGHT 90

SQUARE2 :SIDE
END

This illustrates that a procedure can call itself, although it is not a
particularly good example of recursion as the procedure can never
halt by itself. A better example, which does terminate, is the
following, which uses the SQUARE1 procedure to produce a
pattern of squares.

TO SQUAREPATTERN :SIDE
IF .SIDE > 100 [STOP]
SQUARE1 :SIDE
RIGHT 15

SQUAREPATTERN :SIDE+10
END

After making a list of procedure names, it is possible to write
another procedure that will run the procedures in the list, either in
order or at random. This is one step towards creating a microworld
of your own.

Sprites are one of the important features of TI LOGO. They are
handled in a way similar to that in Extended BASIC, with CARRY
to give a sprite a shape, SETCOLOR to give it a colour,
SETHEADING to fix its heading and, most importantly,
SETSPEED to start it moving at a given speed along its heading.

TI LOGO, which is available as a plug-in module, also has sound
and music capabilities.

Appendix 1

The ASCII Code

The TI99/4A uses the American Standard Code for Information
Interchange (more commonly known asthe ASCII code) as thecode
with which its standard characters are represented. The following
table gives these characters and their codes.

ASCII ASCII ASCII
Code Character Code Character Code Character

32 (space) 65 A
33 ! (exclamation point) 66 B
34 " (quote) 67 C
35 # (number or 68 D

pound sign)
36 $ (dollar) 69 E
37 % (percent) 70 F
38 & (ampersand) 71 G
39 ' (apostrophe) 72 H
40 ((open parenthesis) 73 I
41) (close parenthesis) 74 J
42 * (asterisk) 75 K
43 + (plus) 76 L
44 , (comma) 77 M
45 - (minus) 78 N
46 . (period) 79 O
47 / (slant) 80 P
48 0 81 Q
49 1 82 R
50 2 83 S
513 84 T

52 4 85 U
53 5 86 V
54 6 87 W

97 A

98 B

99 C

100 D

101 E

102 F

103 G

104 H

105 I

106 J

107 K

108 L

109 M

HON

111 O

112 P

113 Q
114 R

115 S

116 T

117 U

118 V

119 W

55 7

56 8

57 9

58 : (colon)
59 ; (semicolon)
60 < (less than)
61 = (equals)
62 > (greater than)
63 ? (question mark)
64 @ (at sign)

88 X

89 Y

90 Z

91 [(open bracket)
92 \ (reverse slant)
93] (close bracket)
94 A (exponentation)
95 _ (line)
96 (grave)

The ASCII Code 99

120 X

121 Y

122 Z

123 { (left brace)
124 :

125 j (right brace)
126 ~ (tilde)
127 DEL (appears on

screen as a blank.)

The codes are divided into sets for use with colour graphics
created in programs using CALL COLOR as follows:

Set number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Character codes

32-39

40-47

48-55

56-63

64-71

72-79

80-87

88-95

96-103

104-111

112-119

120-127

128-135

136-143

144-151

152-159

Appendix 2

Binary And
Hexadecimal Notation

In the binary number system there are only the two digits, 0 and 1,
and all numbers are made up from them. Thus, a typical four digit
number is 1101. In such a number, the least significant digit is, by
convention, on the rightand the most significant on the left. In fact,
the position of each digit has a weighting factor associated with it to
indicate its importance, and the weighting factors are, from right to
left, 1, 2,4, 8 and so on whena numberhasmorethan fourdigits. In
fact, for binary numbers, the weighting factors are powers of two
and can be written as 2°, 21, 22, 23 and so on. Thus:

1101 = 1 X 23 + 1 X 22 + 0 X 2' + 1 X 2°

=8+4+1

= 13 on the decimal scale

The base for hexadecimal numbers is sixteen, so that there are
sixteen digits in this number system. They are represented by the
numbers 0 to 9 and the letters A, B, C, D, E and F. Also, the
weighting factors for the positional notation are powers of sixteen.
Thus the hexadecimal number 27A2 is:

27A2 = 2 X 163 + 7 X 162 + 10 X 16' + 2 X 16°

= 8192+ 1792+ 160 + 2

= 10146 in decimal

Writing down the binary and hexadecimal numbers for counting
from 0 to 15 (in decimal) wecan see howto convert binary numbers
to hexadecimal form and vice versa. The counting numbers are:

Decimal Binary Hexadecimal

0 0000 0
1 0001 1
2 0010 2

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

Binary And Hexadecimal Notation 101

3

4

5

6

7

8

9

A

B

C

D

E

F

From this, we can see that a group of four binary digits
corresponds to one hexadecimal digit. Thus, a binary number can be
converted to hexadecimal by dividing it into groups of four digits
starting at the right and adding any leading zeros at the left as
necessary, and then replacing each group by the equivalent
hexadecimal digit. A hexadecimal number is converted to binary by
replacing each digit with the equivalent group of four binary digits.

Appendix 3

Logic And Logical
Expressions

The subject known as logic is one of the oldestbranches of learning.
It concerns propositions, which have the property that they are
either true or false: there is no other possibility. Thus, a proposition
can be used as a decision-rule for determining the membership of a
set. The proposition 'X is a personalcomputer' is true for any X that
is a personal computer, but is false forallothers,and so canbeused
to generate the set of all personal computers. The fundamental
concerns of logic are propositions and the ways in which they can be
manipulated. As an example, thetwo propositions 'the TI99/4A isa
personal computer' and 'the TI99/4A has colour graphics' can be
combined into the single proposition 'the TI99/4A is a personal
computer AND theTI99/4A hascolourgraphics' whichistrue since
both its component propositions are true. Again, we can combine
the two propositions 'Dallas is a coastal town' and 'Dallas is in
Texas' to give'Dallas isa coastal town OR Dallas isinTexas' which
is also true despite the fact that its first component is false.

Our concern is with formal logic in which we study the form and
combination of propositions without regard to their meaning and
content. In this way, using 0 to represent false and 1 for true, the
effects of the operators OR and AND can be represented by truth
tables as in Chapter 3. The other common logical operators, which
are provided in ExtendedTI BASIC areNOT and XOR. Their truth
tables are:

A NOT A A B A XOR B

0 1 0 0 0

1 0 0 1 1

1

1

0

1

1

0

Logic And Logical Expressions 103

A logical expression is an arrangement of truth values, variables
that have been assigned truth values and logical operators. When
evaluated it will provide a value of 0 or l, since as a combination of
propositions, it is itself a proposition and must be true or false.

Just as in arithmetic expressions, the arithmetic operators have an
order of precedence with, for example, multiplication done before
addition, so there is an order of precedence for the logicaloperators.
It is, from the most to the least importance, NOT, XOR, AND and
OR. This order may be modified by using brackets. A logical
expression is evaluated, therefore, by taking the operators in their
correct order, applying them to their inputs to produce an output, as
indicated by the truth tables, and continuing until the entire
expression is dealt with.

The following example shows how a particular logicalexpression
is handled:

l OR 0 AND NOT l

1OR0AND0

l ORO

1

Appendix 4

Notes And Further

Reading

Chapter 1. Any amplification of the materialof this chapter that the
reader may require can be obtained from the User's Reference
Guide.

Chapter 2. Information specific to the machine must be obtained,
again, from the User's Reference Guide. A good deal of relevant
information on graphics, and many ideas for graphics programs,
can be found in Programming With Graphics by Garry Marshall,
Granada, 1983. BBC Micro Graphics And Sound by Steve Money,
Granada, 1983,is a source of useful ideas on graphics and sound that
can be converted for the TI99/4A.

Chapter 3. The best way to develop a feel for the effectiveness of
screen displays is probably to run a number of programs and to
examine critically the displays they produce. The methods used to
create the particularly effective ones can then be noted.

Chapter 4. The classic text on the systematic development of
programs is Structured Programming by Dahl, Dijkstra and Hoare,
Academic Press, 1972.

Chapter 5. A fruitful source of geometrical patterns isMathematical
Models by Cundy and Rollett, Oxford University Press, 1961. It
contains three-dimensional patterns as well as two-dimensional
ones. My source for Islamic patternsis Pattern In Islamic Art by D.
Wade, Studio Vista, 1976. Many other patterns can be found in
Patterns In Nature by P. S. Stevens, Penguin books, 1974.

The puzzleis based on 'Hungarian squares' whichwasdevised by
Stephen Shaw and published in Computer and Video Games,
October 1982, pages 56-7. He also published 'Hungarian hex' in the
same magazine in December 1982, pages 52-3.

Chapter 6. There are many books that contain listings of games

Notes And FurtherReading 105

for a particular microcomputer. The listings can be adapted readily
for the TI99/4A, particularly if the books contain explanations of
how the programs work.

Chapter 7. More information on writing and using databasescan be
found in Databases For Fun And Profit by Nigel Freestone,
Granada, 1983.

Chapter 8. Another treatment of simulation can be found in
Computer Languages And Their Uses byGarry Marshall,Granada,
1983.

Glossary

Animation: the creation of moving images.
Array: a set of variables which can be used in the same way as

ordinary variables, but with the added convenience that they
include a bracketed index. This makes arrays particularly suited
for use with FOR ... NEXT loops.

ASCII code: American Standard Code for Information Interchange.
A binarycodeusedto represent characters numerically within the
computer.

Assignment: A BASIC statementwith whicha numberorastringof
characters can be assigned to a variable to be stored under the
name of the variable in the memory of the computer.

Background colour: the colour that is assigned to the background
of a character when it is displayed on the screen.

BASIC: Beginner's All-purpose Symbolic Instruction Code. The
high-level programming language that is used by almost all
personal computers.

Binary: the number system with base two that uses only the digits
0 and 1.

Binary digit (bit): the digits of the binary number system, usually
represented by 0 and 1.

Break point: a program line at which program execution halts to
allow debugging and the examination of variables.

Byte: a group of eight binary digits.
Cassette: standard audio cassettes are used as the magnetic storage

medium for the permanent storage of programs and data.
Character: any symbol that can be represented in the computer and

displayed on its screen, including letters, numbers and graphics
characters.

Character description: The special description used to define a new
character. It consists of a string of hexadecimal digits. The way
that it is arrived at is illustrated in Figure 2.5.

Character set: one of the sets into which the characters are divided

Glossary 107

for the allocation of their foreground and background colours by
CALL COLOR.

Character string: a string of characters enclosed in quotation marks
that can be displayed, stored or manipulated.

CLEAR key: this key is used to halt the execution of a program.
Code: an assignment of numbers to the characters by which they can

be represented in the computer.
Colour graphics: coloured pictures and images created and

displayed by the computer.
Command: a command to the computer that is obeyed as soon as it

is issued. Examples of commands are RUN and LIST.
Conditional statement: The BASIC statement involving IF...

THEN...ELSE that allows decisions to be made by a program.
Cursor: a flashing marker that shows where the next character to be

displayed on the screen will be placed.
Data: numbers or characters that comprise the input to, or the

output of, a program.
Database: an organised collection of data from which items of data

can be retrieved in a variety of ways to suit the user.
Debugging: correcting the errors ('bugs') in a program.
Disk: a flexible plastic disk coated with a magnetic material. It is

used to store data and programs by recording them magnetically on
its surface. Also known as a floppy disk.

Dot matrix: the array ofeight rows each containing eight dots that is
used to display a character by turning some of the dots 'on' and
leaving others 'off.

EDIT: the command for editing a program line that permits
characters in the line to be altered or deleted.

ENTER key: pressing the ENTER key at the end of a line causes the
line to be sent to the computer to be dealt with, for example, a
command is then obeyed and a program line is stored.

Expression: an arrangement of variables, values and operators that
can be evaluated to provide a value.

Field: a sub-division of a record.

File: a collection of records treated as a single entity that can be
stored on cassette or disk.

Flowchart: a diagram representing in stylised form the steps of a
computer program.

Foreground colour: the colour that is assigned to the foreground of
a character when it is displayed on the screen.

Graphics: pictures and images created and displayed by the
computer.

108 Get More From The TI99/4A

Graphics character: a special character designed to form part of a
picture or image, and defined with CALL CHAR.

Hexadecimal: the base sixteen number system having digits
represented by 0 to 9 and A to F.

Information: the meaning attached to data, although also used to
refer to the data itself.

Initialisation: the initial assignment of values to the variables in a
program.

Input: the data entered for a program to process.
Interactive: The user can supply input to an interactive program

while it is running, as opposed to having to halt it to do so.
Internal form: items stored in the computer's internal form are

represented by binary numbers. They are, therefore, in a form that
makes them suitable for the computer to handle, but unsuitable
for display.

Joystick: a device for providing input that is used by many games
programs. It is similar to the joystick of an aircraft.

Kilobyte: the unit for measurement of memory size. It equals 2'°
or 1024 bytes, and is usually abbreviated as K.

Length (of a string): the number of characters in a string.
Line number: the number associated with a program line or

statement. It is used to determine the position of a line in a
program.

LIST: the command that causes the program currently stored in the
computer to be displayed.

List processing: a style of computing in which data is placed in lists.
Computer languages for list processing have special features for
handling lists.

Logic: the manipulation of binary digits (representing the truth
values true and false) using logical operators such as OR and
AND.

Logical expression: an expression consisting of logical values,
variables and operators.

Logical operators: operators for manipulating binary digits or truth
values.

LOGO: a high-level computer language with facilities for control
ling a turtle and for list processing.

Loop: a sequence of statements to be executed repeatedly. One can
be constructed by surrounding the sequence with FOR and
NEXT statements

Machine code: a language understood directly by a microprocessor
with no need for translation.

Glossary 109

Master selection list: the display showing the items that the user may
select for the computer to run.

Master title screen: the initial display produced by the computer
when it is switched on, and which is also displayed after the QUIT
key is pressed.

Memory: the computer's memory consists of read only memory
(ROM) in which information isstored permanently, e.g.for BASIC,
and random access memory (RAM) in which the user's program
and data are stored, but only for as long as the computer remains
switched on.

Microworld: a restricted world that can be created with LOGO, and
used as a vehicle for learning when experimented with or
explored.

Noise: random sounds that can only be characterised statistically.
Output: the output, typically results, that are displayed or stored by

a program.

Program: a sequence of statements. When a computer runs a
program, it executes each statement in succession. It can carry out
a task by running a program that gives it detailed instructions for
doing so.

Program development: the process of designing and writing a
program.

Program structure: the arrangement of the parts of a program.
Prompt: a character displayed or a noise produced by the computer

to indicate that it expects a response.
Random number: an unpredictable number between zero and one

that is generated using RND.
Record: a collection of fields that represents all the aspects of interest

for some type of item.
REMark: a statement starting with REM that is used to document a

program.

Repetition: the repeated execution of a statement or sequence of
statements, usually realised by surrounding them with FOR and
NEXT statements.

Reserved word: a special word that forms part of the BASIC
language and therefore may not be used as a variable name.

RUN: the command for executing the program that is currently
stored in the computer.

Screenposition: The screen is divided into 24 rows and 32 columns.
A screen position is identified by giving its row and column.

Scrolling: since a new line is always displayed at the bottom of the
screen, the whole screen moves up by one line (scrolls up) before

110 Get More From The T/99/4A

the line is printed to provide a clear bottom line for it, but losing
the previous top line at the same time.

Separator: one of the special characters for separating the items in
DISPLAY and PRINT statements.

Simulation: a program that imitates or catches the essence of a real
or a proposed system.

Sprite: a graphics character that has the extra attribute of
movement.

Statement: a program line consisting of a number followed by a
command.

String: a string, or sequence, of characters enclosed in quotation
marks.

Structuredprogramming: the process of developing a program with
a good, clear structure.

Subroutine: a self-contained sub-program that can be called from a
main program to perform a task that it may require several times.

Task: a job for which a program is to be written.
Text: a display composed of words.
TI BASIC: the version of BASIC supplied with the computer.
Tile: a graphics character.
Tone: a note with a definite pitch. Its waveform is a sine wave.
Top-down design: a method of structured programming that

involves continuously refining tasks into sub-tasks, until sub-
tasks are arrived at that are simple to program.

Trace: a trace of the order in which program lines are executed when
a program is run. Rather than TRACE some systems use the word
TRON.

Truth table: a table showing the output produced by a logical
operator for each of its possible inputs.

Turtle: a wheeledmechanical device (floor turtle) or a shape on the
screen (screen turtle) that can be controlled by commands from
LOGO.

Variable: that to which a value can be assigned for storage, and the
name of which can be used to refer to the stored value.

Index

AND, 35,71, 102
Animation, 18-21,53-5,93,106
Array, 61-2,69,76, 106
ASCII, 10,20,98-9, 106
Assignment, 2, 106

BASIC commands:

BREAK, 45-6
EDIT, 2
LIST, 2, 6, 108
NEW, 2
NUMBER, 2

OLD, 2
RUN, 2, 5,6, 109
SAVE, 2
TRACE, 45

BASIC statements:

ASC, 27
assignment, 2, 106
CALL CHAR, 12,47,92
CALL CLEAR, 14,24
CALL COLOR, 15-16
CALL GCHAR, 20,21
CALL HCHAR, 13,21
CALL KEY, 9,63
CALL SCREEN, 15

CALL SOUND, 21-2
CALLVCHAR, 13,21
CHR$,30
DATA, 7
DIM,61
DISPLAY, 4, 24
FOR... NEXT, 8, 70
GOSUB, 29,94
IF...THEN...ELSE,8
INPUT, 6, 7, 70
LEN,26
PRINT, 4
READ, 7
REM, 43

RND.63
SEG$,26
STRS.28

&, 28, 30
Binary, 13,100-1,106
Breakpoint, 45, 106

Character description, 12-13, 106
CLEAR key, 14, 107
Codes, 10, 107 (see also ASCII)
Colour, 15-21
Command, 2, 107
Computer-aided education, 95
Conditional statement, 7,90, 107

extension of, 33-5
in Extended TI BASIC, 90

Cursor, 31,33, 107

Database, 68-74, 107
Debugging, 45-6, 107
Delay loop, 19
Design of displays, 30-6
Dot matrix, II, 17 107

ENTER key, 2,6, 33, 107
Extended TI BASIC, 90-5

File, 68, 70-2, 107
Flowchart, 60,61,72, 81, 107

Games, 59-67
Graphics, 10-21, 107
Graphics character, 10, 17,49-53,76,

108 (see also Sprite)

Hexadecimal, 13, 100-1, 108

Information, 108
display, 4-5
manipulation, 4
storage. 3

112 Index

Interaction, 9, 30, 83

Joystick, 89, 108

Kilobyte, 70, 108

Large images,creation of, 17-18
Line number, 5, 108
List processing, 96, 108
Logic, 71, 102-3, 108

operators, 34-5, 102
LOGO, 89,95-7,108
Loop, 7,70, 108

Machine code, 59, 108
Microworld, 95,97, 109
Mobile pattern, 53-5

Noise, 21, 109

OR, 34,71, 102

Plug-in module, 89,97
Positioning messages, 24-9
Program, 5, 109

storage of, 5
testing of, 42-3

Program development, 40-6, 109
Prompt, 6, 109
Puzzle, 55-7

Random number generation, 63, 79
Recursion, 96
Remarks, 43-5, 109
Repetition, 8, 109
Reserved word, 78, 109

Screen pattern, 36-8
Scrolling, 25, 109
Separator, 25, 110
Set, 15, 16,99
Shape description, 12-13, 47, 49, 50, 62

(see also Character description)
Simulation, 75-88, 110
Sound generation, 21-2
Space Invaders, 3,59-67,93
Speech synthesizer, 89,90-2
Sprite, 91,92-5,97, 110
Statement, 5, 110
Subroutine, 28-9,40-2, 110

TI BASIC, 1,2,33,89,110
Tile, 47, 110 (see also Graphics

character)
Tiling, 47-53 (see also Screen pattern)
Top-down design, 40-5, 110
Turtle, 95, 110

User-defined character, 10,29

Variable, 3, 110
Variable name, 3

	front-cover
	content01
	content02
	content03
	back-cover

