

SOFTWARE

DEVELOPMENT

HANDBOOK

Geoff Vincent

Jim Gill

Texas Instruments October 1981

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any
time to improve design and to supply the best possible
product for the spectrum of users.

The Software Development Handbook is copyrighted by Texas
Instruments. All rights reserved. No part of this
publication may be reproduced in any manner including storage
in a retrieval system or transmittal via electronic means, or
other reproduction in any form or any method (electronic,
mechanical, photocopying, recording or otherwise) without
prior written permission of Texas Instruments.

Information contained in this publication is believed to be
accurate and reliable. However, responsibility is assumed
neither for its use nor for any infringement of patents or
rights of others that may result from its use. No license is
granted by implication or otherwise under any patent or
patent right of Texas Instruments or others.

Copyright Texas Instruments 1981

Note "Texas Instruments" includes where the context permits
Texas Instruments Incorporated, and any of its affiliated
companies, including Texas Instruments Limited.

SOFTWARE DEVELOPMENT HANDBOOK PREFACE

PREFACE

This Second Edition of the Software Development Handbook has
been extensively revised and updated to incorporate new
developments, and to improve and clarify the presentation.

As before, it is hoped that the book will appeal on several
levels. The first three chapters are an introduction to the
technology, and assume little or no technical knowledge.
Chapter 1, which is introductory, describes the nature of
software and the particular contribution of microsystems
technology. Chapter 2 describes, step by step, the process
of software development for microcomputers. Chapter 3
describes the tools of the software engineer. It is hoped
that these chapters will appeal to those who have a
peripheral interest in the technology, as well as to those
who are or will become directly involved in software
engineering.

Chapter 4 addresses the subject of software design, which we
feel can and should be tackled separately from the
discipline of programming in a particular language. The
goal of appealing to a wide level of readership means that
experienced software engineers will find some of the
material familiar; however the approach may well be new, and
some at least of the ideas will be novel. This chapter
introduces suggested algorithmic and graphical notations for
language independent software design. Those new to the
technology are advised to read Chapter 4 in conjunction with
some practical experience of programming in one of the
languages available.

Chapter 5, Component Software, is the major new addition to
the book. It describes a method of developing and packaging
complex real time software functions. Such packages are
available off the shelf from Texas Instruments for direct
incorporation in application systems. Component Software is
a significant step towards complete packaged functions,
incorporating both hardware and software. These are likely
to play an important part in microsystems technology in the
future. Chapter 5 also includes a description of
concurrency and the requirements of real time software.

Chapters 6, 7 and 8 describe in turn Microprocessor Pascal,
Power BASIC, and 9900/99000 Assembly Language. These
chapters are not intended to be complete language
tutorials. Tutorials are available elsewhere; and it is
felt that programming is best taught by a combination of

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK PREFACE

personal tuition and practical experience. Courses on
programming are available from various sources, including
Texas Instruments. Rather, these chapters are designed to
give a feel for each language, its important features, and
its areas of application. Microprocessor Pascal is a
professional programmer's tool which permits the
construction of reliable, real time software systems of any
level of complexity. Power BASIC is a much simpler language
that can be learned in a few hours, and can be used even by
non software professionals to provide quick solutions to
simple problems. Assembly language provides direct access
to all the resources of the microcomputer, and can be used
in critical areas of a system to "fine tune" for maximum
performance. Naturally, effective use of assembly language
requires a certain level of skill. Chapter 8 contains an
extensive "Algorithms and Techniques" section, describing
some commonly used solutions to specific problems. Each
chapter includes, besides the language description, a
Reference Section that tabulates the vital elements of each

language.

This handbook is not intended as a complete course in
software development for microcomputers. However, with
appropriate additional material and combined with practical
experience of one or more of the languages described, it
could form the basis for such a course. The aim is to
provide a Handbook for the emerging discipline of software
engineering for microcomputers, and to begin the process of
identifying and communicating those elements of the
technology that will prove to be of lasting value. This
book is a distillation of the practical experience of
software engineers, and it is hoped that it will make some
contribution to those entering on or already immersed in the
technology.

The authors wish to thank all those who have contributed
approaches, ideas, descriptions or actual software examples,
and without whom this book could not have been written.

Geoff Vincent

Jim Gill

October 1981

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK

We would appreciate your comments on the usefulness of this
handbook. Please complete and return this form to the
address overleaf.

Name: (last) (first):
Company: Position:
Address:

Country:

1. Is the handbook well organised? Yes No
Comments:

2. Is the text correctly presented and adequately
illustrated? Yes No
Comments:

3. What subject matter could be expanded or clarified?

4. Are you directly involved in software development?
Please indicate your main area(s) of interest.

5. Have you found this handbook useful
(a) As an introduction to the field

(b) As a source of ideas/information
(c) As a reference book
(d) In any other way (please specify)

6. Do you use any Texas Instruments software products?
Is the information on these products useful to you?

7. Any other comments

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK

Please mail this sheet to:

M/S 35
Microprocessor Group
TEXAS INSTRUMENTS Ltd

Manton Lane

Bedford

MK41 7PA

ENGLAND

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

TABLE OF CONTENTS

Section Title Page

CHAPTER 1 INTRODUCTION

1.1 WHAT IS SOFTWARE 1-1
1.2 BLACK BOXES AND DIGITAL ELECTRONICS 1-5
1.3 COMPUTERS 1-7

1.4 SOFTWARE DEVELOPMENT 1-12
1.5 GENERAL PURPOSE COMPUTERS 1-14
1.6 DEDICATED COMPUTERS 1-16
1.7 ROM AND RAM - SEMICONDUTOR MEMORY 1-17
1.7.1 ROM Types 1-17
1.7.2 RAM Types 1-18
1.7.3 ROM/RAM Summary 1-19
1.8 APPLICATIONS 1-20
1.9 FUTURE DEVELOPMENTS 1-22

CHAPTER 2 SOFTWARE DEVELOPMENT

2.1 THE SOFTWARE DEVELOPMENT PROCESS 2-1

2.2 FUNCTIONAL SPECIFICATION 2t3
2.3 SYSTEM DESIGN 2-5
2.3.1 Documentation 2-7

2.4 HARDWARE DESIGN 2-8
2.4.1 Estimating System Load 2-9
2.4.2 Memory Size 2-11
2.5 SOFTWARE DESIGN 2-11

2.6 PROGRAMMING 2-13

2.7 PROGRAM TRANSLATION 2-14

2.8 CONFIGURATION AND LINKING 2-15

2.9 DEBUGGING 2-15
2.9.1 Simulation 2-15

2.10 HARDWARE INTEGRATION AND EVALUATION 2-16
2.10.1 Emulation 2-16

2.10.2 Evaluation 2-17

2.11 PRODUCTION 2-18

CHAPTER 3 DEVELOPMENT TOOLS

3.1 OVERVIEW 3-1

3.2 DEVELOPMENT SYSTEMS 3-1

3.3 FILES 3-2

Texas Instruments i October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

3.3.1 Backups 3-3
3.4 TEXT EDITING 3-5
3.5 PROGRAMMING LANGUAGES 3-8

3.5.1 Assembly Language 3-8
3.5.2 Assemblers 3-9

3.5.3 High-Level Languages 3-10
3.5.4 Pascal 3-12

3.5.5 Compilers 3-13
3.5.6 Interpreted Languages 3-13
3.5.6.1 BASIC 3-14
3.5.6.2 Interpreted Pascal 3-14
3.5.7 High-Level vs Low-Level 3-15
3.6 LINKER 3-16
3.6.1 Absolute and Relocatable Code 3-16
3.7 TARGET SYSTEM EXECUTION 3-18

3.7.1 Loader 3-18
3.7.2 PROM Programmer 3-19
3.8 TEXT FILES 3-19

CHAPTER 4 SOFTWARE DESIGN

4.1 OVERVIEW 4-1
4.2 SOFTWARE STRUCTURE 4-2

4.3 SOFTWARE PACKAGES 4-3
4.4 DESIGN LANGUAGE 4-4

4.5 ALGORITHMS 4-5
4.5.1 Sequence 4-7
4.5.2 Selection 4-9

4.5.3 Algorithm Design 4-12
4.5.4 The CASE Construct 4-14
4.5.5 Iteration 4-16
4.5.6 Structured Programming 4-18
4.6 DATA 4-19
4.6.1 Data Types 4-20
4.6.2 Variables 4-22
4.6.3 Operators 4-23
4.6.4 Data Design 4-26
4.7 DATA STRUCTURES 4-26
4.7.1 Records 4-27
4.7.2 Arrays 4-28
4.7.3 Dynamic Data Structures 4-31
4.7.4 Data Diagrams 4-32
4.8 DESIGN APPROACHES 4-34
4.9 BLOCK STRUCUTRE 4-38
4.10 PROCEDURES AND FUNCTIONS 4-39
4.10.1 Parameter Passing 4-43
4.11 REAL TIME SOFTWARE 4-44
4.11.1 Semaphores 4-46
4.11.2 Executives 4-47

4.11.3 interrupts 4-47
4.12 MAKING TEA 4-49
4.13 BIBLIOGRAPHY 4-54

Texas Instruments ii October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

5 .1

5,.1,.1

5,.1..2

5,.2

5,.2,.1

5,.2,.1.,1

5,.2,.1.,2

5,.2,.1.,3

5,.2,.2

5,.2,.2.,1

5,.2,.2.,2

5,.2,.3

5,.2,,3.,1

5,.2,,3. 2

5,.2,.4

5..2,.4..1

5..2,,5

5,.2,.6

5,.2,.7

5,.2,.7.,1

5,.2,.7. 2

5,.2,,7. 3

5,,2,.8

5,.2,,9

5,.2,,1C)

5,.2,,11

5..3

CHAPTER 5 COMPONENT SOFTWARE

WHAT IS COMPONENT SOFTWARE 5-1

The Functional Approach 5-3
Function to Function Architecture • • • • 5-6

THE COMPONENT SOFTWARE ENVIRONMENT 5-7

Concurrency 5-7

Packaged Functions 5-9
Implementation of Concurrency 5-10
Levels of Concurrency 5-11

Data and Re-entrancy 5-12
Memory Allocation 5-14

Multiple Activations 5-15
The Realtime Executive 5-15

Channels and Interprocess Files 5-16
Rx vs Operating Systems 5-17

File I/O Standards 5-19
I/O Subsystems 5-19

Configuration 5-21

Customisation 5-23

Microprocessor Pascal 5-22
Code Efficiency 5-24
Programming Support Environment 5-24
Microprocessor Pascal and Component Software 5-26

Other Languages 5-26
Hardware 5-26

Component Software Products 5-28
Silicon Functions 5-28

BIBLIOGRAPHY 5-30

CHAPTER 6 MICROPROCESSOR PASCAL

6.1 INTRODUCTION 6-1

6.2 TEXAS INSTRUMENTS IMPLEMENTATIONS 6-3

6.3 MICROPROCESSOR PASCAL OVERVIEW 6-4

6.3.1 Features 6-4

6.3.2 Stack and Heap 6-5
6.3.3 Systems and Programs 6-6
6.3.4 Processes and Procedures 6-6

6.3.5 Declarations and Statements 6-6

6.3.6 Block Structure 6-8

6.4 MICROPROCESSOR PASCAL SYSTEM - PROGRAMMING SUPPORT

ENVIRONMENT 6-11

6.4.1 Microprocessor Pascal Editor 6-12
6.4.2 Microprocessor Pascal Compiler and Code Generator 6-14
6.4.3 Microprocessor Pascal Host Debugger 6-16
6.5 MICROPROCESSOR PASCAL LANGUAGE 6-17

6.5.1 Basic Language Elements 6-17
6.5.2 Character Set 6-17

6.5.3 Keywords 6-17

Texas Instruments iii October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

6.5.4 Identifiers 6-18
6.5.5 Language Element Separators 6-19
6.5.6 Comments 6—19

6.5.7 Constants 6-19

6.5.8 Variables 6-20

6.5.9 Expressions 6-21
6.5.9.1 Operands 6-21
6.5.9.2 Operators 6-21
6.5.9.3 Function Calls 6-22

6.5.10 Assignment Statement 6-23
6.5.11 Routine Declaration • 6-23

6.6 DATA TYPES 6-25

6.6.1 User Defined Types 6-26
6.6.2 Integer and Longint Type 6-27
6.6.3 Boolean Type 6-27
6.6.4 Char Type 6-27
6.6.5 Enumeration Type 6-28
6.6.6 Subrange Type 6-29
6.6.7 Real Type 6-29
6.6.8 Semaphore Type 6-30
6.6.9 Array Type 6-30
6.6.10 Record Type 6-31
6.6.11 Set Type 6-33
6.6.12 File Type 6-33
6.6.13 Pointer Type 6-34
6.6.14 Type Compatibility 6-36
6.7 CONTROL STRUCTURES 6-37

6.7.1 Procedure Statement 6-37

6.7.2 Compound Statement 6-38
6.7.3 IF Statement 6-39

6.7.4 CASE Statement 6-39

6.7.5 FOR Statement 6-41

6.7.6 WHILE Statement 6-42

6.7.7 ESCAPE Statement 6-44

6.7.8 GOTO Statement 6-45

6.8 CONCURRENCY 6-46

6.8.1 Processes 6-46

6.8.2 Process Record 6-47

6.8.3 Process Scheduling 6-47
6.8.4 Process Synchronization 6-48
6.8.4.1 Semaphores 6-48
6.8.4.2 Wait Operation 6-49
6.8.4.3 Signal Operation 6-49
6.8.5 Interprocess Communication 6-51
6.8.5.1 Shared Variables 6-51

6.8.5.2 Message Buffers 6-51
6.8.5.3 Channels 6-53

6.8.5.4 Interprocess Files 6-55
6.9 MODULARITY 6-57

6.10 INTERRUPTS 6-60

6.11 INPUT/OUTPUT 6-62

6.11.1 CRU Operations 6-62
6.11.2 Memory-Mapped 1/0 6-62
6.11.3 Files 6-64

6.12 DIGITAL VOLTMETER (DVM) EXAMPLE 6-65

Texas Instruments iv October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

6,.13

6,.13,.1

6,.13,.2

6 .13,.3

6,.13,.4

6,.13,.5

6,.13,.6

6,.13,.7

6.,13,.8

6,.13..9

6,.13,,9.1

6,.13,,9.2

6..13,,9.3

6,.13,,9.4

6,.13.,9.5

6..13,,9.6

6..13,,9.7

6.,13,,9.8

6.,13,,9.9

6.,13,,9.1

6.,13,,9.1

6.,13,,10

6.,13.,10.

6.,13,,10.

6.,13,,10.

6,,13,,10.

6.,13,,10.

6.,13.,10.

6.,13.,10.

6.,13,,10.

6.,13,,10.

6.,14

REFERENCE SECTION 6-72

System Commands 6-72
Utility Commands (990/4 and TMAM9000 only) . 6-72
Edit Commands • • 6-73

Debug Commands • • • . • 6-74
File Manipulation Routines 6-76
Arithmetic Routines ... 6-78

CRU Routines 6-79

Miscellaneous Routines 6-80

Rx Routines 6-80

Processor Management (Scheduling) Routines . 6-80
Semaphore Routines 6-80
Semaphore Attribute Routines 6-81
Interrupt Routines 6-82

Process Management Routines 6-82

Heap Management Routines 6-83
Channel 1/0 Routines 6-83
Interprocess File Transfer Routines . • . 6-84
Exception Handling Routines 6-85

0 Critical Transaction Routines . 6-86

1 Rx Error and Exception Codes 6-86
Backus-Naur Form (BNF) Syntax Definitions . . 6-89

1 Compiler Options 6-89
2 Concurrent Characteristics 6-90

3 System Declaration 6-90
4 Type Syntax 6-92
5 Statement Syntax 6-94
6 Expression Syntax 6-95
7 Variable Syntax 6-96
8 Constant Expression Syntax 6-97
9 Language Element Syntax 6-97
BIBLIOGRAPHY 6-99

CHAPTER 7 POWER BASIC

7.1 INTRODUCTION 7-1

7.2 POWER BASIC 7-2

7.2.1 Evaluation Power BASIC 7-3

7.2.2 Development Power BASIC 7-4
7.2.3 Configurable Power BASIC 7-5
7.3 BASIC LANGUAGE OVERVIEW 7-8

7.4 POWER BASIC OPERATION 7-10

7.4.1 Operating Modes • 7-10
7.4.2 Editing Source Statements 7-10
7.4.3 Automatic Line Numbering 7-11
7.4.4 System Initialisation 7-12
7.5 VARIABLES 7-12

7.5.1 Variable Names 7-13

7.5.2 Variable Declaration 7-13

7.5.3 Numeric Representation 7-14
7.5.3.1 Integer Variables ... 7-14
7.5.3.2 Floating Point Variables 7-14
7.5.3.3 Character String Variables 7-14

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

7.5.3.4 Array Variables 7-15
7.6 POWER BASIC PROGRAM 7-15
7.6.1 Control Statements 7-16
7.6.1.1 GOTO Statement 7-16

7.6.1.2 IF THEN Statement 7-16

7.6.1.3 ELSE Statement 7-19

7.6.1.4 FOR NEXT Statement 7-20
7.6.2 Subroutines 7-23

7.6.3 ON Statement 7-26
7.6.4 ERROR Statement 7-27
7.6.5 CRU Operations 7-28
7.6.5.1 BASE Statement 7-28
7.6.5.2 CRB Function 7-28
7.6.5.3 CRF Function 7-29
7.6.6 Memory Operations 7-29
7.6.6.1 MEM Function 7-29
7.6.6.2 MWD Function 7-30
7.6.7 Assembly Language Routines 7-31
7.6.8 Interrupts 7-32
7.6.8.1 IMASK Statement 7-34
7.6.8.2 TRAP Statement 7-34
7.6.8.3 IRTN Statement 7-35
7.7 POWER BASIC STORAGE ALLOCATION 7-35

7.7.1 Variable Storage 7-35
7.7.1.1 Integer Format 7-36
7.7.1.2 Floating Point Format 7-37
7.7.1.3 Character String Format 7-37
7.7.1.4 Array Storage 7-38
7.7.2 System Memory Map 7-40
7.8 REFERENCE SECTION 7-43
7.8.1 Character Set 7-43
7.8.2 Hexadecimal Constants 7-43
7.8.3 Variable Names 7-43
7.8.4 Edit Commands 7-43
7.8.5 Power BASIC Commands 7-44
7.8.6 Power BASIC Statements 7-45
7.8.7 Operators 7-49
7.8.7.1 Arithmetic Operators 7-49
7.8.7.2 Relational Operators 7-49
7.8.7.3 Boolean Operators 7-49
7.8.7.4 Logical Operators 7-49
7.8.7.5 Operator Precedence 7-50
7.8.8 Arithmetic Functions 7-50
7.8.9 CRU Operations 7-51
7.8.9.1 CRB Function 7-51
7.8.9.2 CRF Function 7-51
7.8.10 Memory Functions 7-52
7.8.10.1 BIT Function 7-52
7.8.10.2 MEM Function 7-52
7.8.10.3 MWD Function 7-52
7.8.11 Miscellaneous Functions 7-53
7.8.11.1 NKY Function 7-53
7.8.11.2 SYS Function 7-53
7.8.11.3 TIC Function 7-53
7.8.12 String Operations 7-54

Texas Instruments vi October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

7.8.13 String Functions 7-55
7.8.14 INPUT Options 7-56
7.8.15 PRINT Options 7-57
7.8.16 Floating Point XOP Package 7-58
7.8.17 Variable Storage 7-59
7.8.18 ASCII Character Set 7-60
7.8.19 Hex-Decimal Table 7-61
7.8.20 Error Codes 7-62
7.9 BIBLIOGRAPHY 7-63

CHAPTER 8 ASSEMBLY LANGUAGE

8.1 INTRODUCTION 8-1
8.2 INSTRUCTION FORMAT 8-3
8.3 INSTRUCTION FORMAT RESTRICTIONS 8-4
8.4 MEMORY ORGANIZATION 8-5
8.4.1 Byte 8-5
8.4.2 Word 8-5
8.4.3 Registers 8-6
8.4.4 Workspace Registers 8-7
8.4.5 Register Functions 8-8
8.4.6 Context Switch 8-8
8.4.7 Addressing Modes 8-10
8.4.7.1 Register Addressing 8-11
8.4.7.2 Register Indirect Addressing 8-11
8.4.7.3 Symbolic Memory Addressing 8-12
8.4.7.4 Indexed Memory Addressing 8-13
8.4.7.5 Register Indirect Autoincrement Addressing 8-13
8.4.8 Specialized Addressing Modes 8-13
8.4.8.1 Immediate Addressing 8-13
8.4.8.2 CRU Bit Addressing 8-14
8.4.8.3 Program Counter Relative Addressing . . . 8-14
8.5 SUBROUTINES 8-15
8.6 PARAMETER PASSING 8-17
8.7 STRUCTURING 8-20
8.7.1 Selection 8-20
8.7.1.1 Condition Codes 8-21
8.7.1.2 Jump Instructions 8-22
8.7.2 Iteration 8-24
8.7.3 Sequence 8-26
8.8 PROGRAMMING FOR RX AND COMPONENT SOFTWARE . . 8-28
8.9 COMMUNICATIONS REGISTER UNIT 8-30
8.9.1 Single-Bit CRU Instructions 8-32
8.9.2 Multiple-Bit CRU Instructions 8-33
8.10 INTERRUPTS 8-35
8.10.1 Interrupt Structure 8-36
8.10.2 Interrupt Vectors 8-37
8.10.3 Interrupt Sequence . . 8-38
8.10.4 Fault Tolerant Interrupt Systems 8-40
8.11 EXTENDED OPERATION INSTRUCTIONS 8-41

8.11.1 Defining Extended Operation Instructions • . 8-42
8.11.2 Extended Operation Instruction Vectors • • 8-43
8.11.3 Extended Operation Instruction Execution . . 8-43

Texas Instruments vii October 1981

C
O

H5
3

WHZoowP
Q

<
J

HooP
Q

5
3

H5
5

WP
u

O•JW>wQWHOC
O

v
O

v
O

O
N

N
N

^
O

O
O

O
^
O

>
O

O
H

H
H

N
n

i
n

i
n

v
O

v
O

C
O

O
O

C
O

^
O

H
N

C
O

^
i
n

v
O

t
s
|
N

O
\
H

n
r
O

i
n

v
O

N
O

O
O

O
N

<
f
<

r
i
O

v
O

O
O

O
O

O
O

H
C

O
l
O

^
^
^
^
^
s
f
^
^
v
r
^
^
^
i
n

i
n

^
i
n

i
n

u
i
^
i
n

^
^
i
n

i
n

i
o

j
n

v
o

v
o

v
o

v
o

s
o

v
o

v
o

v
o

v
o

v
O

N
r
s
N

N
N

N
N

N
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
c
f
t
o

>
o

»
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

a
o

o
o

o
o

o
a

o
o

o
o

o
o

o
o

c
o

c
o

o
o

o
o

o
o

w
o

o
o

o
o

o
o

o
o

o
w

o
o

o
o

o
o

o
o

a

.
.

•
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

C
O

u

.
.

.
.

.
.

.
.

C
O

.
.

X
i

0

.
.

.
.

»
.

.
.

u
.

p
O

<
0

C
O

!Z
C

M
r
H

U
r
H

u
O

p
m

cu
•

.
rQ

CU
.

<
M

•
O

N
o

•
u

•M
0

rQ
p

O
N

•H
<

u
P

cu
0

•H
4

J

>
P

•
.

C
O

p
O

6
0

cu
cd

•
o

o
C

O
2

C
O

fa
po

P•
H

rP
r
H

4
J

P•H
o

.
C

U
p

6
0

•H
•

N
O

0
•

•H
M

u
m

>
o

P
4

J
•H

O
N

6
0

u
4

J
4

J
C

U
p

o
•
H

•H
•
H

cd
C

O
C

O
O

N
P

cu
o

0
)

4
J

cu
•

•P
U

i
J

cu
o

•
C

U
•

S
t

•H
4

J
•

cu
0

C
O

>
t*»

C
d

O
cd

•
p

o
C

O
P

>
*

CU
CO

C
U

•p
r
p

•
H

w
C

O
r
H

0
0

cd
o

o
r
H

C
U

r
H

>
*

U
rP

P
Q

cu
u

0
0

^
»

.
w

•H
C

O
cu

M
rH

r
H

o
r
H

•
P

cd
•

rQ
o

4
J

Q
£

•H
0)

M
C

O
p>

0
p

2
5

fa
fa

cd
<

:
o

*
>

0
C

O
cu

O
n

C
d

0
)

u
C

O
o

*
cd

o
0

*
j

•
H

u
cu

6
0

CU
u

P
rH

<
3

4
J

•
o

u
M

fa
•H

<
w

U
H

m
•H

P
cu

•
P

M
*

C
U

a
P

P
cd

•
O

«
W

6
0

p
C

O
cu

z
4

J
o

o
o

O
cu

P
C

O
o

X
C

U
4

J
•H

«
H

fa-
•H

M
M

ctf
0)

C
O

•u
s
a

o
cd

0
)

•
p

o
cu

cd
o

*
J

C
O

cu
C

O
4

J
4

J
cu

O
r
H

0
•

CU
p

C
O

o
o

•u
C

O
p

p
p

«
P

6
0

«H
•

P
c
u

•
cu

C
O

•H
>

P
P

*P
•

{H
O

>
fa

cu
>

*
o

p
.

P
W

O
N

P
0

o
o

o
cu

C
O

P
•U

•H
C

O
H

•
H

6
0

-
H

O
P

•
J

P
o

Q
u

r
H

o
0

o
H

O
N

cu
CU

•
H

•H
•
H

•
P

a
0

•H
•H

4
J

M
0

0
P

O
C

U
4

J
M

P
i

cd
M

•
•

•
M

H
5=>

o
•

•
«

H
n

o
•
H

C
O

4-J
•U

•u
•U

C
U

cu
C

U
C

O
P

p
U

•
C

O
CU

U
*

«
v
.

fa-
o

O
P

Q
cd

S
•P

O
a

P
d

C
U

0
C

U
fa

C
J

C
O

4
J

Q
cu

cu
C

O
cd

cd
cd

T
>

•
p

u
C

O
•
H

r
H

O
o

P
P£{

P
M

p
O

O
4

J

<
J

C
O

•H
C_>

Q
cd

U
4

J
cd

2
5

rP
u

>
*

4
J

•M
•M

O
P

C
O

C
U

M
-l

rH
U

>
»

>
o

4
J

4
J

M
H

^
«

.
o

cd
P

n
•

P
4

J
M

fa
O

•
p

•
p

C
U

u
<

J
4

J
O

D
u

C
O

P
p

P
O

H
>

>
O

C
U

C
d

rO
o

cu
cu

6
0

CU
•
P

P
4

J
U

H
•H

Q
H

<
D

O
C

U
p

.
4

J
cu

cu
p

<
u

H
0)

cu
CU

cu
C

O
O

Q
o

p
P

p
O

rH
P

P
fa!

CU
CU

C
O

4
J

O
<

J
<

J
0

4-1
•H

•H
^

^
o

C
O

rP
X

M
X

P
.

C
O

0
0

rJ
<

J
U

P
i

U
C

O
C

O
C

O
>

»
P

M
C

O
o

cd
•H

rQ
cd

•
H

U
0

CU
cu

C
U

cd
*

p
o

o
o

o
r
H

m
O

4=
4

3
J
3

O
N

O
o

o
o

o
o

u
C

O
o

a
p

O
P

i
<

CU
cu

cu
CU

u
O

a
fa

O
o

•H
M

u
cd

r
H

C
U

M
C

U
C

U
Q

rH
r
H

0
CU

O
O

O
C

O
0

0
o

\
M

4
J

4
J

O
O

0
0

J
P

u
<

J
o

n
ct)

cd
CU

r
J

P
C

•
H

<
3

P
Q

m
a

M
rQ

u
u

u
cd

•
H

<
J

P
rH

*
P

C
O

C
O

•p
cd

H
r
H

C
U

O
<

H
M

C
U

C
U

o
,a

o
n

o
n

o
n

o
n

O
N

o
>

O
•H

C
O

O
N

H
C

m
H

O
N

o
•M

4
J

4
J

M
&

H
r
^

•J
a

a
to

CU
0

C
U

c
u

p
.

P
4

J
P

i
o

O
O

C
U

M
U

p
0

C
U

C
d

M
m

O
P

0
0

4
J

O
O

N
O

N
O

N
O

N
O

N
O

N
CO

M
Q

)
P

P
O

N
P

-i
M

5
5

O
N

cd
•M

•u
P

fa
P

4
M

O
P

Q
{H

X
!

Q
rQ

p
cu

cu
cu

•H
•H

^
•
^

u
C

d
cd

4
J

o
P

cu
o

c
u

O
5

M
P

P
o

•H
«

H
p

cd
^
.

C
O

C
m

C
O

C
O

C
O

a
<

H
o

O
P

M
S

X
J

M
C

O
a

<
3

<
J

H
a

O
P

rf
>

r
J

C
O

H
c
o

0
5

3
P

i
fa

fa
P

Q
C

O
a

o
a

a
co

cd
o

1
4J

0
C

O
C

O
w

P
Q

H
5

3
C

O
C

O
<

d
C

m
o

S
«

g
a

a
P

Q
a

O
P

P
O

o
cd

CU
u

cu
cu

P
P

•
H

O
H

C
O

H
H

H
C

O
H

o
H

2
5

fa
P

i!
a

2
C

O
fa-

P
i

<
J

r-,
a

o
n

r
J

O
N

r
H

C
M

C
O

r
H

C
M

C
O

s
t

m
v
O

<
r
H

C
M

c
o

<
t

r
H

C
M

r
o

s
t

m
r
H

C
M

O
rH

C
M

r
H

C
M

C
M

C
M

C
O

C
M

S
t

C
M

mC
M

C
M

C
M

0
0

O
N

C
M

C
M

H
N

C
O

s
t

m
r
H

C
M

C
O

S
t

m
v
o

v
O

v£>
v
O

1
^

r
*

.
r
^

r
^
.

r
*

i
^

r
^

r
H

r
H

r
H

r
H

r
H

C
M

C
M

C
M

C
M

C
M

C
M

C
O

s
t

m
m

m
v
o

r
^

0
0

O
N

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
M

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

c
o

c
o

c
o

c
o

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

c
o

C
O

C
O

C
O

C
O

C
O

C
O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

O
Nucu

rOo4
J

oOC
O

upcu0Pu4
JC
O

PC
O

cdr)C
U

H

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

8.14 REFERENCE SECTION 8-96
8.14.1 Instruction Formats 8-96
8.14.2 Status Register 8-97
8.14.3 Interrupts 8-98
8.14.4 CRU 8-99
8.14.5 Register Restrictions 8-99
8.14.6 Assembly Language Instructions 8-100
8.14.7 Pseudo-Instructions 8-103
8.14.8 Assembler Directives 8-104
8.14.9 Object Record Format and Code 8-107
8.14.10 Instruction Execution Times 8-108
8.14.10.1 TMS9900 8-108
8.14.10.2 SBP9900A 8-110
8.14.10.3 TMS9980A/TMS9981 8-111
8.14.10.4 TMS9995 8-113
8.14.10.5 SBP9989 8-115
8.14.10.6 TMS99000 Family 8-118
8.14.11 Pin Assignments 8-121
8.14.11.1 TMS9900 8-121
8.14.11.2 TMS9980A 8-121
8.14.11.3 TMS9981 8-122
8.14.11.4 SBP9900A 8-122
8.14.11.5 TMS9995 8-123
8.14.11.6 SBP9989 8-123
8.14.11.7 TMS99000 Family 8-124
8.14.12 ASCII Character Set 8-125
8.14.13 Hex-Decimal Table 8-126
8.15 BIBLIOGRAPHY 8-127

LIST OF TABLES

Table Title Page

1-1 Semiconductor Memory Characteristics . . . 1-19
4-1 Methods of Parameter Passing 4-44
8-1 Interrupt Mask Table 8-37
8-2 Interrupt Vector Table 8-38
8-3 X0P Vector Table 8-44

LIST OF FIGURES

Figure Title Page

1-1 Conventional Machine 1-1
1-2 Microprocessor Machine 1-1
1-3 Layout of a Microprocessor Machine 1-2
1-4 Program Control 1-3
1-5 Software Has No Unique Physical Form • • • 1-4
1-6 "Black Box" 1-5
1-7 AND Gate 1-6
1-8 AND Gate Truth Table 1-6

Texas Instruments ix October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

1-9

1-10

1-11

1-12

1-13

1-14

2-1

2-2

2-3

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16a

4-16b

4-17

4-18

4-19

4-20

4-21

4-22

4-23

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

Data Translation 1-7
Computer 1-10
Structure of a Computer 1-11
A General Purpose Computer 1-14
A Dedicated Microcomputer 1-16
Electronic Function Package 1-22
The Software Development Process 2-2
Hardware Design for a Microprocessor System • 2-8
Emulation 2-17
Software Tools 3-3
Backup Cycle - 1 3-4
Backup Cycle - 2 3-4
Backup Cycle - 3 3-5
Editor Function 3-6
Use of a Screen Based Editor 3-7
Microprocessor Pascal Editor 'Menu' of Commands 3-8
Assembler 3-10
Relocatable Code 3-17
Component Packages of a Factory Control System 4-3
Tea making Algorithm 4-6
"Pour cup" Algorithm 4-6
Sequence Structure Diagram 4-8
Selection Structure Diagram 4-9
"Pour cup" Structure Diagram 4-10
Alternative Algorithm for "pour cup" . . . 4-11
The CASE Construct 4-14
CASE Construct with OTHERWISE Clause . . . 4-15
Iteration Structure Diagram 4-16
Data Representation of a Temperature . . . 4-20
Data Diagram for an Array of Records . . . 4-32
The Record Variant 4-33
Initial Design Algorithm 4-36
"Read Input" Algorithm Expansion 4-37
Procedure Declaration 4-40
Procedure Call 4-41
Function Declaration and Reference 4-41
Procedure Call Mechanism 4-42
Semaphore Signalling 4-46
Real Time Algorithm 4-49
Compilation Listing for the Tea Making Algorithm 4-50
Corrected Compilation Listing 4-51
Reverse Assembled Object Code for the Tea Making
Algorithm 4-53
Configuration of Component Software Packages . 5-2
The Traditional Approach 5-4
TI Functional Architecture 5-5

Concurrency 5-7
SYSTEMS, PROGRAMS and PROCESSes 5-13
Conventional Operating System Structures . . 5-18
Software Function Bus 5-18
1/0 Subsystem 5-20
5 Levels of Interface to 1/0 Subsystems. . . 5-21
Configuration 5-22
The Microprocessor Pascal System 5-25
Software/Hardware Correspondence 5-27

Texas Instruments October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

5-13 The Functional Approach • 5-29
6-1 Program Structure Diagram 6-7
6-2 System Structure 6-9
6-3 Lexical Hierarchy 6-10
6-4 Concurrent Hierarchy 6-10
6-5 Interpretive vs Compiled Characteristcis . . 6-15
6-6 Repeat Until Construct 6-43
6-7 A Sample Program 6-43
6-8 Channel Mechanism 6-53
6-9 Interprocess File Mechanism 6-56
6-10 DVM Example - Lexical Hierarchy 6-65
6-11 DVM Example - Concurrent Structure 6-65
7-1 Code Minimisation 7-8
7-2 First Variable Allocation 7-36
7-3 Second Variable Allocation 7-36
7-4 Integer Format 7-36
7-5 Floating Point Format 7-37
7-6 Character String Format 7-38
7-7 Character String Storage Example 7-38
7-8 Array Storage 7-39
7-9 System Memory Map 7-41
8-1 Assembly Language and the Computer 8-1
8-2 A Byte 8-5
8-3 A Word 8-5
8-4 Memory Organisation 8-6
8-5 Before Executing the BLWP Instruction . . . 8-10
8-6 After Executing the BLWP Instruction . . . 8-10
8-7 After Executing the RTWP Instruction . . . 8-10
8-8 Parameter Passing 1 8-18
8-9 Parameter Passing 2 8-18
8-10 Parameter Passing 3 8-19
8-11 General Selection Construct 8-21
8-12 Condition Codes for the TMS9900 Status Register 8-21
8-13 A Three Way Selection Example 8-22
8-14 A Two Way Selection Example 8-23
8-15 An Iteration Example (REPEAT) 8-24
8-16 An Iteration Example (WHILE) 8-25
8-17 A Sequence Example 8-26
8-18 A Complex Structure 8-27
8-19 CRU Bit Addressing 8-32
8-20 CRU Transfer of More Than 8 Bits 8-34
8-21 CRU Transfer of 8 Bits Or Less 8-34
8-22 CRU Output Example 8-35
8-23 CRU Input Example 8-35
8-24 State Prior to a Level 8 Interrupt 8-39
8-25 State After a Level 8 Interrupt 8-40
8-26 State Before Executing the XOP 2 Instruction . 8-45
8-27 State After Executing the XOP 2 Instruction . 8-45
8-28 Macrostore 8-53

8-29 Attached Processor 8-54
8-30 Attached Computer 8-55
8-31 Full TMS99000 Instruction Sequence 8-56
8-32 Bit Grouping 8-64
8-33 Floating Point Format 8-66
8-34 A Possible BCD Format 8-67

Texas Instruments xi October 1981

SOFTWARE DEVELOPMENT HANDBOOK TABLE of CONTENTS

8-35 ROM/RAM Partitioning 8-69
8-36 Macro Processor Operation 8-72
8-37 Stack Representaion 8-76
8-38 A Stack/Workspace Allocation Implementation . 8-80
8-39 TMS9902 Character Timing 8-93

Texas Instruments xii October 1981

SOFTWARE DEVELOPMENT HANDBOOK

1.1 WHAT IS SOFTWARE?

CHAPTER 1

INTRODUCTION

INTRODUCTION

Software is what makes microprocessor technology different
from conventional engineering techniques. Fundamentally,
software is a set of instructions that tells the hardware
(the microprocessor, and any electrical or mechanical
devices connected to it) what to do.

In a conventional machine, the physical layout of the parts
determines what the machine will do:

MOTOR

Figure 1-1 Conventional Machine

In a microprocessor machine, it is not always possible to
tell from the physical arrangement exactly what the machine
does:

MOTOR
MICROPROCESSOR

MOTOR

Figure 1-2 Microprocessor Machine

The function of the machine is determined by software.

Texas Instruments 1-1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

The general layout of a microprocessor machine is shown in
Figure 1-3.

INPUTS OUTPUTS

PROCESSOR

SENSORS

(TEMPERATURE,
POSITION, MOTORS,

LIGHT, ETC) \ XACTUATORS,^^^
^4l \s rMCDi A\/e // XV-v

^

SWITCHES,
KEYBOARDS

/

^DISPLAYS, <^ ^&^>
PRINTERS *=>

\ m

Figure 1-3 Layout of a Microprocessor Machine

In the centre is the microprocessor. To the processor are
brought a series of inputs - which might come from
temperature sensors, limit switches, operator keyboards and
so on. All inputs must be converted to electrical signals
before they reach the processor.

outputs - again
to operate motors,

ssor itself has an

perform, involving
tions. However, by
s a program - a set

fy exactly what
• The program will

read) the input
t output signals to
the machine.

From the processor come a collection of
electrical signals, which can be used
actuators, displays and so on. The proce
extensive repertoire of operations it can
inputs, outputs and internal raanipula
itself the processor is useless. It need
of software instructions that spec!
operations to perform, and in what order
determine when to take notice of (to
signals, what to do with them, and wha
produce. It is the program that controls

xas Instruments 1-2 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

^

INPUTS OUTPUTS
PROCESSOR

SENSORS

(TEMPERATURE,
POSITION, MOTORS,

LIGHT, ETC) V * ACTUATORS,^^^^
ou"Trucc *' '^DISPLAYS, oS ^jt^SWITCHES,

KEYBOARDS PRINTERS to

\ m

PROGRAM

Figure 1-4 Program Control

One characteristic of microproce
different program placed in the
cause the machine to do different

scope of what can be done is dete
there is not a motor control

microprocessor, there is no way
able to turn a motor on and off.

determines what is possible; i
determines what the machine actual

ssor systems is that a

same set of hardware will

things. Of course, the
rrained by the hardware: if
circuit connected to a

that the software will be

It is the hardware that

t is the software that

ly does.

Software must have some ultimate physical reality in order
to have any effect on the real world. However, it has two
fundamental characteristics which distinguish it from
hardware. First, it is at least an order of magnitude
easier to manipulate than hardware: changing a piece of
software usually involves no more than typing a few keys at
a keyboard, while changing a hardware layout (say a printed
circuit board) requires a lot of work and a lot of time.
Second, software has a chameleon-like quality of being able
to change its physical form without altering its essential
nature. The same piece of software may exist on a magnetic
disk, in semiconductor memory, as printed output or
displayed on a screen.

Texas Instruments 1-3 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

HUMAN READABLE MACHINE READABLE

Figure 1-5 Software Has No Unique Physical Form

The problems which characterise software engineering are
problems of management and organization rather than the
problems of dealing with the physical world.

The way the traditional computer evolved was determined by
the size and cost of available technology. These factors
influenced how the different parts of the computer
developed, how they were put together, and the kinds of
applications where computers could be used. For reasons of
cost and physical size it made no sense at all to consider
placing a computer in a consumer product, or even in the
average factory. Microprocessors are small and cheap enough
to be placed in any piece of equipment. This, in turn, has
revolutionised some aspects of computer technology:
microcomputers are not just smaller copies of large
computers, but have some significant new characteristics.

The major effort of design for a microcomputer application
goes into software. Software is in a number of ways easier
to deal with than hardware. However, it must be treated
with respect. Designing the software for a complex
application is not trivial, especially as the potential of
the microprocessor leads to more ambitious projects. With a
new technology, new methods must be used: those developed
for hardware design are not appropriate. Even techniques

Texas Instruments 1-4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

used in the design of software for 'mainframe' or 'mini'
computers need adapting, because of the special features and
the different areas of application of microcomputers. This
book describes the techniques of system and software design
that are applicable to the new technology of microsystems
(= microprocessor systems).

1.2 BLACK BOXES AND DIGITAL ELECTRONICS

Any mechanical or electrical device can be considered, very
simply, as a black box with inputs and outputs:

^^^P
INPUTS OUTPUTS

Figure 1-6 "Black Box"

"Inputs" might be switches, temperature sensors, flow, rate
detectors, or keys pressed by a human operator. "Outputs"
might control a motor, print text or figures, switch on a
heater, and so on.

The "black box" processes these inputs and produces outputs
in a well-defined fashion. For example, a typewriter takes
key presses as input and produces printed characters
corresponding to the key inputs as outputs. All problems
that are solvable by machinery can be analyzed in this
manner. The black box, with its inputs and outputs, may be
called a system.

How can such black boxes be built? The traditional,
non-computer method would be to design a dedicated piece of
hardware: a mechanical device. Methods of implementation
have varied. Early workers used wires, pulleys, cogs and a
great deal of mechanical ingenuity. In general, mechanical
systems are restricted to the kind of simple and direct
response characterised by the typewriter. Electrical
systems provide additional power, but in general do not
permit much greater complexity.

Texas Instruments 1-5 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

Electronics introduced a whole new range of possibilities.
Perhaps the most significant advance in black-box
Implementation was the invention of digital electronics,
based on the binary digit, or bit.

A bit can be considered as a switch. It has two possible
states: on or off, 1 or 0, high or low. Bits can easily be
represented in electronic circuits, and they can be used to
store information. Circuit elements can be designed that
combine bits in various useful ways. One such element is
the AND gate, conventionally depicted as follows:

A

INPUTS — OUTPUT

Figure 1-7 AND Gate

The basic AND gate has two inputs, here called A and B, and
one output C. These are digital signals, each of which can
take one of two possible values (conventionally represented
as "0" and "1"). Each input and output line represents one
bit of information. For given conditions of the inputs A
and B, the output C is completely determined. For an AND
gate, C is 1 only when both A and B are 1. This can be
summarised in a truth table, which maps the value of the
output C for all possible values of the inputs A and B:

B

I 0 1

0 | 0 0

A I
1 I 0 1

Figure 1-8 AND Gate Truth Table

By combining logic elements such as the AND gate, electronic
circuits can be constructed to take decisions and signal
appropriate outputs depending on the state of any number of
inputs. It is only necessary to arrange that the inputs
represent the state of switches, sensors etc, and to connect
the outputs to motor control circuits, actuators and
displays, to construct very complex pieces of machinery.

Electronic systems can provide a limited kind of memory,
counting operations, and simple arithmetic. Integrated

Texas Instruments 1-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

circuit technology allows many thousands of logic elements
such as the AND gate to be implemented on a single chip of
silicon 4 or 5 mm square. Electronics works very fast, too:
many millions of decisions of the AND gate variety
(determining the value of C given the values of A and B) can
be made per second, and many decisions can be made in
parallel. However, the technology becomes very expensive
for complex applications, and systems take a long time to
develop.

Digital electronics is powerful because it permits any
operation that can be conceived using bits; and any real
world action that can be translated into electrical signals
can be represented as bits. The techniques of digital
electronics can be used for a vast range of different
applications, where any kind of logical decision making or
arithmetic processing is required.

Solving a real world problem, of course, depends on
translating real inputs (such as mechanical movements,
temperature readings, etc) into bits, and translating bits
back into the real world.

This process of translation can be represented (adding to
the black box diagram) as:

PHYSICAL

MEASUREMENTS

(TEMPERATURES,
PRESSURES, ETC)

&

INFORMATION

MOTORS,
ACTUATORS
(DIRECT
PHYSICAL

MANIPULATION)

PRINTERS,
DISPLAYS

(INFORMATION)

REAL WORLD 'BLACK BOX' SYSTEM

Figure 1-9 Data Translation

'Data' is a term used for coded information - that is,
information translated into a pattern of bits for processing

as anby a digital circuit. Data can be considered

Texas Instruments 1-7 October 1981

REAL WORLD

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

abstracted representation of the real world.

In extracting data from the real world for processing by a
digital circuit, the designer selects only the aspects of
the information available that he wants, enumerates all
possible values, and designs his system to cope with and
respond predictably to every possible combination. The
digital circuit does not know or care what the data
represents; it simply processes bits according to the logic
designed into it.

This can cause problems, because bits (data) are entirely
abstract entities. The designer must be very sure that he
knows exactly what his data represents. Translating
information into data in a well thought-out manner is
probably the most important step in designing any digital
system.

In the last 20 years, advances in technology have vastly
decreased the price and increased the capability of digital
electronics. However, with the technological advance has
come the problem of organization. Organizing all these
logic elements to perform the desired action is a very
difficult, time consuming, and expensive task, requiring -a
highly skilled designer (or team of designers). In
addition, because an AND gate is a piece of hardware - a
physical device - it is quite awkward to manipulate. Once a
design has been put together, it is extremely difficult to
change in any significant way without starting again from
scratch.

This is where the computer comes in.

1.3 COMPUTERS

The idea for the computer existed long before the
implementation techniques that made it practically
realisable. In the 19th Century, Charles Babbage conceived
a 'difference engine' that would operate according to the
instructions of a stored program. However, the techniques
available to him (mechanical cogs and levers) were unequal
to the task. Babbage never completed his project.

Practical realisation of the computer had to wait for
electronics - first using valves (which were notoriously
unreliable, large, and power hungry), then transistors, and
finally integrated circuits. What the computer does is to
separate the device which carries out the work of decision
making, calculation etc - the processor - from the set of
instructions - the program - which tell the processor what
to do. This separation allows specialist manufacturers to
design and implement powerful and efficient processors for

Texas Instruments 1-8 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

the range of possible applications, while application
engineers can take a standard processor and write a software
program to tailor its operation to their specific need.

Like other digital devices, computers work with bits. In
fact, they usually work with groups of bits. The Texas
Instruments TMS 9900/99000 family of microprocessors uses a
basic unit of 16 bits, called a word. The possible
operations that can be performed on words are strictly
limited and well defined, which is what makes the computer
possible.

Of the total range of operations, the most useful are
selected to form the computer's instruction set. Each
instruction performs one operation. For example, there is
an operation to perform a logical AND on two words of data:

first word 0101101110010110
second word 0101010110101101

result 0101000110000100

Corresponding bits in each word are ANDed together to
produce the corresponding bit in the resultant word. Here,
a word is treated as containing 16 unconnected bits. The
instructions which operate on words in this way are called
logical instructions.

Using the binary number system *, a 16-bit word can also
represent a number. There is a group of
arithmetic instructions which treat words as numbers, and
perform the usual arithmetic operations on them. For
example, ADD:

BINARY DECIMAL

first word 0101101110010110 23446
second word 0101010110101101 + 21933

result 1011000101000011 = 45379

The instruction set for the TMS9900 and 99000 also includes
operations on bytes (1 byte = 8 bits) of data.

In addition there are instructions to read input signals
from the outside world and to write outputs, and to move
data around within the computer.

* The binary number system is described in Chapter 8,
section 8.13.2.1

Texas Instruments 1-9 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

A program is a list of these instructions stored in the
computer's memory. A computer, then, looks like Figure
1-10.

PROGRAM

"

INPUTS
DDnrpccno OUTPUTSrrMJU

Figure 1-10 Computer

The stored progr
The processor

time. Instruct!

after another,

change this. It
execute one se

might depend on
memory, or the
condition.

am controls the operation of the computer.
fetches the program instructions one at a
ons are normally executed in sequence, one
However, the computer has the capability to
can make simple decisions about whether to

t of instructions or another. The decisions
the value of some data word stored in

state of some input, or on a more complex

For example,

"IF temperature LESS THAN set value AND heater is off THEN
switch heater on"

rol instructions, which can change program
-programmed decisions, are the final group
make up the computer's instruction set.
basic groups of instructions - logical,
output (I/O), data transfer, and control -
form any task that can be precisely and
cified. The task of software design is to
cification and, ultimately, to produce the
that the computer can implement it.

The primitive cont
flow and make pre

of operations that
With these five

arithmetic, input/
a computer can per

unambiguously spe
carry out this spe
program in a form

The program completely determines the operation of the
system. If the initial conditions and all of the inputs are
known, the action of the computer will be entirely
predictable. Thus a computer is a black box, but one whose
operation is determined not by the physical arrangement of
its parts, but by a software program. Computer hardware can

Texas Instruments 1-10 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

be regarded as a pool of resources, which are organized by
the software. By placing the burden of organization on
software, many of the problems of designing a digital system
are solved.

Figure 1-11 shows
detail.

INPUTS

the structure of a computer in more

MEMORY

PROGRAM DATA

CONTROL

ARITHMETIC

AND

LOGIC UNIT

(ALU)

PROCESSOR (CPU)

OUTPUTS

.1

Figure 1-11 Structure of a Computer

The Arithmetic and Logic Unit (ALU) performs the operations
requested by the program (addition, subtraction, logical
ANDing, etc). The Control section supervises the reading
and writing of program, data, and I/O (Input/Output), and
ensures that everything happens in the proper sequence.
These two elements are traditionally grouped together to
form the Central Processing Unit (CPU), or Processor. When
this is implemented on a single silicon chip it is called a
Microprocessor, or MPU. The complete system is a
Microprocessor System, or Microcomputer. A microcomputer
may be implemented as a single chip (eg the Texas
Instruments TMS9940) or as several chips.

Besides inputs and outputs, a computer will need a place in
which to store intermediate data (a scratchpad or filing
system). Therefore a computer will generally have data
memory as well as program memory.

Texas Instruments 1-11 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

The inputs and outputs, more than anything else, determine
what a computer system "looks like" to the user. When the
usual peripherals (card reader, visual display unit (VDU),
line printer, magnetic tapes, etc) are connected, the system
looks like the traditional idea of a computer. But connect
motors, actuators, lights, switches, displays and it could
be a part of anything from a washing machine to a car. A
microcomputer is small and inexpensive enough to be hidden
in almost any piece of electrical equipment, and the user
need not even know that it is there.

1.4 SOFTWARE DEVELOPMENT

Because there is typically a large gap between the task to
be performed by the system (eg "control a factory production
line") and the instruction set of the computer ("ADD two
numbers"), various techniques have been evolved to bridge
the gap and make the task of software design and development
simpler and faster. Most of these make use of development
tools and utilities that are themselves implemented in
software. In fact, one of the major advantages gained in
moving from a digital electronic to a software
implementation is that the design information itself can be
manipulated by computer, allowing much of the design and
development process to be automated.

The tools of the software engineer are rather more abstract
than the screwdriver and the soldering iron. A software
engineer will spend much of his time typing information at a
keyboard, and looking at results displayed on a screen.
However, the keyboard and screen will take on different
roles depending on which utility program (which "software
tool") is being used at the time. Chapters 2 and 3 of this
book describe what is involved in the process of designing
and developing software for a microprocessor system, and the
tools and procedures used. Chapter 4 describes some of the
principles of software design, and the modern techniques of
software engineering which have been developed to make
complex software systems manageable.

A high level language (see Sections 2.6 and 3.5) allows the
software designer to make strategic decisions about what the
system will do, while the compiler determines the tactics to
be employed by the computer (memory addresses, storage
allocation and other "housekeeping" functions that have to
be performed thousands of times a second). The compiler is
a software utility that translates high level language
programs into the detailed machine instructions required by
the computer.

In effect, a high level language provides a more powerful

Texas Instruments 1-12 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

computer that can deal with most of its internal functions
automatically, allowing the software designer to concentrate
on the application problem to be solved.

Component Software supplies further assistance by permitting
complete pre-written software packages, designed to
implement whole areas of an application. Chapter 5
describes Component Software in detail. This chapter also
describes concurrency, which is a powerful technique for
designing software systems which have to perform a number of
different tasks simultaneously (as is often required in real
systems).

Early programming languages performed their task
imperfectly, and were often designed simply as extended
versions of the instruction set of a particular computer.
Modern languages, with the benefit of two decades of
research on the requirements for specifying and solving
application problems, come much closer to the ideal of
requiring nothing more than a complete and unambiguous
specification of what is to be done (an algorithm) in order
to produce an executable program. One of the best and most
successful of the modern languages is Pascal. Chapter 6
describes the Microprocessor Pascal language.

Pascal is a professional programmer's tool, designed to
produce reliable systems and yet to give full flexibility
for implementing complex applications. For users who do not
wish to become professional programmers, but who need to
write occasional programs in the course of their work, BASIC
may be an acceptable alternative. BASIC is a simple
language that can be learned in a few hours and is
exceptionally easy to use. Chapter 7 describes Texas
Instruments' implementation of Power BASIC.

For those who wish to understand the machine architecture of
the TMS 9900/99000 family, or to program directly in the
instruction set of the microprocessor, Chapter 8 describes
9900/99000 assembly language. Assembly language programming
requires more detailed knowledge and there is more risk of
error than when using a high level language. However,
assembly language programming allows the designer to squeeze
the last ounce of performance out of the machine, and may be
especially useful in critical areas of a software design.

Texas Instruments 1-13 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

1.5 GENERAL PURPOSE COMPUTERS

Until a few years ago, the only computers in common use were
general purpose machines. A general purpose digital
computer consists of a central processing unit (CPU), main
memory and a set of standard peripherals - devices which
enable data to be input to and output from the computer. A
typical configuration might look something like this:

VISUAL

DISPLAY

UNITS (VDU's)

SYSTEM

CONSOLE

BACKING

STORE

Figure 1-12 A General Purpose Computer

The input and output to a computer of this type is likely to
be entirely textual or numeric information (customer files,
order details, scientific results etc), and the work that it
does is entirely information processing or data processing
(DP for short). Human beings always act as buffers to this
kind of system - preparing textual or numeric input data in
the form of punched cards or keyboard input, and
interpreting or acting on printed results or reports.

Texas Instruments 1-14 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

One of the most important peripherals is the backing store.
This is a memory device that is slower acting than the main
memory, but has a large capacity. Its principal function is
to load programs and data into the computer's main memory.
A general purpose computer has a large repertoire of
programs in its backing store, any one of which can be
loaded and executed. Some of these programs are
systems programs, which control the operation of the
computer and provide commonly required tasks. These will
normally be provided by the computer manufacturer. Others
are application programs developed by the user for his
particular needs.

The most important systems program is that which runs the
entire computer, and controls the loading and executing of
other programs under commands from the operator. This
program is called the Operating System (OS) and is loaded
into main memory when the computer is switched on, remaining
in control the whole time the system is running. Other
systems programs provide software tools for developing
application programs. They can be called in as required by
the Operating System.

A general purpose computer is, therefore, a chameleon-like
device which can perform any processing function depending
on the application program which is loaded into it.
However, the range of things it can do is limited by its
input and output devices. Standard peripheral devices
include keyboard and visual display unit (VDU), teletype,
line printer, punched card or paper tape readers and
punches, and magnetic disc or magnetic tape devices. These
last two are forms of backing store; the others are means of
communicating with the user.

Texas Instruments 1-15 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

1.6 DEDICATED COMPUTERS

A microcomputer can be constructed as a general purpose
computer. But the microcomputer has brought a new
possibility: the dedicated system. A dedicated
microcomputer might look like this:

PRESSURE

SENSOR

KEYPAD

PROGRAM

MEMORY

DATA

MEMORY

I
M P U

EI
DISPLAY

MINIATURE PRINTER

INPUTS OUTPUTS

Figure 1-13 A Dedicated Microcomputer

This system could serve as a weighing scale. A program
would be written to read the pressure sensor and the price
(entered on the keypad), multiply the weight by the price,
display the result, and print a ticket. With extra
software, the system could become a complete cash register.
The complete microcomputer and associated circuitry could be
fitted into one corner of the case.

A term that is often applied to dedicated computer
applications is real time. "Real time" means that the
computer is responding to and controlling events as they are
happening. Unlike a DP system, which provides huge
processing power but at a considerable remove from real
physical events, a real time system must respond
immediately. It will often need to respond within
milliseconds or less.

Dedicated microcomputers often have an executive rather than
an Operating System. While an Operating System is likely to
be a large, all-inclusive piece of software, an executive is
more likely to be a set of service functions selected for
the particular application, and occupying very little memory
space. The program for a dedicated system may well be

Texas Instruments 1-16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

permanently and ineradicably stored in read only memory (see
below), and the microcomputer may only execute one small set
of programs all its life. A dedicated microcomputer may
well have no backing store from which to load alternative
programs.

In the example pictured above, the program would repeatedly
check whether or not there was any input from the pressure
sensor or the keypad. If there was, the portion of the
program written to deal with that input would execute.

1.7 ROM AND RAM - SEMICONDUCTOR MEMORY

Computer memory can be thought of as a collection of pigeon
holes or locations in which values (ie, numbers or patterns
of bits) can be stored. These locations can be referred to
by their consecutively numbered adresses.

Semiconductor memory systems are typically organized in
bytes (1 byte = 8 bits). The TMS 9900/99000 family can
operate on both bytes and words (16 bits) of data. A word
is stored in two consecutive memory locations, starting at
an even address.

A general purpose computer requires a program memory that
can be written to as well as read, since different programs
must be loaded into It from the backing store. However,
once the program is loaded, the portion of program memory in
which the program is stored will not normally be changed
until the operating system loads in the next program. (The
program can change data memory, but not the program code.)

A special type of program memory, called Read Only Memory
(ROM) is commonly used for dedicated microcomputer systems.
A ROM memory chip is programmed (ie, loaded with a program)
once, during production of the system in which it will be
used, and retains its contents permanently, even when the
power is switched off. This last feature is important
because there will often be no backing store from which to
load the program when the device is switched on.

1.7.1 ROM Types

There are several different types of ROM, each with its
characteristics.

own

Mask ROM has the program inserted as part of the
manufacturing process. A mask must be made to etch the
pattern of binary digits which form the program on the
surface of the silicon chip. Generating this mask is an

Texas Instruments 1-17 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

expensive process, because it must be done with great
precision. However, once the mask has been made, programmed
ROMs can be manufactured very cheaply. Where large
quantities (hundreds of thousands) of identical ROMs are
required, this method is by far the least expensive.

Programmable ROM (PROM) is manufactured with fusible metal
links in each memory cell. These links can be selectively
fused by applying high voltage pulses to the PROM chip after
manufacture using a device known as a PROM Programmer.
Blank PROMs are supplied by Texas Instruments and can be
programmed by the user, with appropriate development tools,
to put in his system. Once the pattern of O's and l's has
been 'burned in' in this way the PROM cannot be erased.
PROMs are more expensive per chip than mask ROMs, but work
out cheaper overall for small to medium quantities
(thousands), because of the cost of manufacturing a mask.

Erasable Programmable ROM (EPROM) is supplied blank and
programmed in the same way as PROM. But the high voltage
pulses do not break fusible links: instead they selectively
establish static charges in the memory cells, which turn on
or off switching devices (transistors) that represent the
O's and l's. An EPROM is a very useful device. It can be
programmed permanently, like a fusible link PROM; the static
charge will be retained for a period of 20 years or more.
But by exposing it to ultraviolet light for a period of
about 20 minutes, the EPROM becomes erased and can be
programmed with something different. EPROMs are now
commonly used in all medium volume applications, except for
very high performance applications where the superior speed
of bipolar PROMs is required.

1.7.2 RAM Types

Most microcomputer systems require some memory that can be
written to as well as read, for storage of intermediate
results. This is achieved by using RAM (Random Access
Memory) instead of ROM. RAM is a slightly misleading term,
since ROM can also be accessed randomly. (Read/Write Memory
would be more descriptive, but 'RAM' is at least easier to
say.) In a general purpose computer, the main memory is
implemented entirely with RAM. A microcomputer system is
more likely to have a partitioned memory - some ROM and some
RAM.

Semiconductor RAM is volatile; that is, the contents
disappear when the power is switched off. There are, in
fact, two types of RAM:

o Static RAM retains its contents for as long as

the power is switched on.

Texas Instruments 1-18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

Dynamic RAM must be refreshed, that is, read or
written to every few milliseconds, or its
contents decay. Dynamic RAM requires some
external circuitry to implement this refresh,
and is therefore more difficult to design into
a microcomputer. However, it is less expensive
and smaller than static RAM. Static RAM is
normally used for systems that require a
relatively small amount of RAM; dynamic RAM for
larger systems where the cost of refresh
circuitry can be justified by the savings on
memory chips.

1.7.3 ROM/RAM Summary

The characteristics of semiconductor memory are summarised
in Table 1-1 below.

Mask PROM EPROM Static Dynamic
ROM RAM RAM

Readable? Y Y

Writeable? N N

User programmable? N Y
(outside system)

Eraseable?

(outside system)

Retain contents

without power?
(non-volatile)

Require refresh?

N N

N N

Y Y

N Y

Y

N

N N

N

Table 1-1. Semiconductor Memory Characteristics

Texas Instruments 1-19 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

1.8 APPLICATIONS

The microcomputer has accomplished three things:

1) It has revolutionized the design of both
small and large-scale electrical devices,
from toys to cars

2) It has changed the nature of conventional
computer systems

3) It has made possible a completely new range
of applications, for which the new technology
of microsystems is uniquely suited.

There is virtually no electrical device within which a
microcomputer cannot be incorporated, providing cheap but
sophisticated control, and powerful processing capability.

Many applications previously performed by large general
purpose computers ('mainframes') can now be carried out more
effectively by microprocessor systems, located at the point
where they are needed rather than isolated in a remote data
processing department.

With the arrival of the minicomputer several years ago, the
death of the mainframe was predicted. That death sentence
was premature. But a 'mainframe' is no longer likely to be
a solitary monolith, isolated within a data processing
department. It is more likely to fulfil a specialised need
for central data storage or massive processing power, within
a network incoporating microcomputers, minicomputers and
possibly other mainframes too.

Computer power now comes in sufficient shapes and sizes (and
prices) that it can be distributed anywhere that there is a
need for it. Large computer systems look less and less like
traditional computers and more like communications networks,
with processors judiciously placed at appropriate points in
the network. The microcomputer allows the distribution of
computing power to the place where it is needed - the
office, the factory floor, or the home. Local processors
can be linked to larger computers, using the telephone
network if permanent connection is not required. Special
purpose microcomputers can be constructed to collect
information where it is generated and in the form that it
already exists. Such devices can do away with the tedious
manual process of data preparation.

Microcomputers have been used to build 'intelligent'
peripherals for mainframes (disc controllers, for example)
which can handle some of the local 'housekeeping' functions
required by the peripheral and take the load off the central

Texas Instruments 1-20 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

processor. One significant development in this regard has
been the intelligent terminal, a visual display unit
containing a microcomputer. The intelligent terminal
provides local processing power for small tasks, and can be
linked to a network for reference to central files, and for
handling large processing tasks.

The development of "personal' computers and small business
systems allows a further stage of development. A
storekeeper, for example, might use a microcomputer to
handle his daily transactions, and then transmit his
accounts over a dial-up link to the central office network.

In future, there are likely to be a number of imaginative
applications linking the power of the microprocessor with
rapidly developing communications technology. Viewdata is
an example that makes use of television, telecommunications
and processor technology. This is a public computer network
which can be accessed by anyone with the right equipment (an
adapted TV set) via the telephone network. It provides
information and services, and can even be used to transmit
software to a subscriber's computer.

The development of local area networks will allow separate
computing devices to be connected together simply and
straightforwardly, to build distributed systems for office,
factory and even home environments. Fibre optics technology
promises a cheap, reliable and interference-free
communication medium.

The automation of industrial processes was first made
possible by minicomputers, which were general purpose
computers small and cheap enough that they could be placed
in a factory or chemical plant and used to provide some
degree of automatic control. However, such computers still
typically required a room to themselves.

Microcomputers are small and cheap enough to be incorporated
in individual machines, and to be distributed across the
factory floor wherever control functions or processing power
are required. Cheap, fast microprocessors make robots of
all kinds technically and economically feasible. Robots can
be used to construct flexible manufacturing systems, which
can provide the advantages of mass production in the
manufacture of small quantities of diverse products.

Microcomputer applications range from simple real time
control functions (such as a weighing scale) to production
control systems and sophisticated computer networks. In
"real-time" applications the computer is in direct control
of a process, event, or phenomenon such as engine control -
monitoring electronic ignition timing and fuel mixing, for
example, and modifying the physical parameters while the
process is taking place. Real time applications can be on a
small scale, or could involve control of (say) a complete

Texas Instruments 1-21 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

chemical plant. The TMS 9900/99000 family is particularly
suited for real time and control applications. It has a
fast context switch to implement multiprocessing and modular
programs, and a flexible bit-oriented method of input and
output (the architecture of the 9900/99000 family is
described in Chapter 8).

The microcomputer has a dual personality: it is both
electronic component and computer. This is why it provides
such a rich field for applications. The technology and the
opportunity exist for a wide range of products; the only
real limit is the imagination of the designer.

1.9 FUTURE DEVELOPMENTS

With microcomputers cheap and readily available, there is no
need for systems to be restricted to a single processor.
Groups of cooperating processors, each with its own software
and possibly local input and output, can implement powerful
and reliable systems.

A significant development in this regard is
Function Package (EFP).

LOCAL I/O

DATA

MEMORY

PROGRAM

MEMORY

PROCESSOR

MESSAGE

INTERFACE

FUNCTION BUS

the Electronic

Figure 1—14 Electronic Function Package

Each package encapsulates a local processor with program and
data memory, I/O, and a standard functional interface to

Texas Instruments 1-22 October 1981

SOFTWARE DEVELOPMENT HANDBOOK INTRODUCTION

other packages. The first implementation of such a package
will be as a complete circuit board; but miniaturisation
will quickly reduce the size and cost of such packages.
Developments In hardware and software will make such
packages easy to construct, and easy to connect together
into application systems. Such packages are likely to be
common components in tomorrow's systems.

Speeds of microcomputer devices are likely to increase
significantly over the next decade, so that many new
applications, including real time signal processing, will
become possible. Among other things, real time processing
and storage of speech, audio and even video signals is
likely to become a reality, all at reasonable cost. The
scope for new products and applications is considerable.

Texas Instruments 1-23. October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

CHAPTER 2

SOFTWARE DEVELOPMENT

2.1 THE SOFTWARE DEVELOPMENT PROCESS

This chapter gives an overview of the steps required to
design and implement software for a microprocessor system.

The end result of software development is a program - a
pattern of bits residing in memory that instructs the
processor what to do. To achieve this requires several
stages of development:

(1) Functional Specification

(2) System Design

(3) Software Design (and, in parallel, hardware
design)

(4) Programming (ie entering the software design
in precisely coded source program statements
on a development computer system)

(5) Translation of the source program (in a
human-readable programming language) into
binary machine code

(6) Configuration and linking of the software

(7) Debugging the software

(8) Integration and testing of hardware and
software

(9) Evaluation of the final system

Each of these is an iterative process. Problems encountered
at any stage may alter decisions taken at a previous stage,
so that the true picture is more like Figure 2-1:

Texas Instruments 2-1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

FUNCTIONAL

SPECIFICATION

SYSTEM

DESIGN

SOFTWARE

DESIGN

PROGRAMMING

PROGRAM

TRANSLATION

SOFTWARE DEVELOPMENT

CONFIGURATION
& LINKING

INTEGRATION

EVALUATION

Figure 2-1 The Software Development Process

Texas Instruments 2-2 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

/

2.2 FUNCTIONAL SPECIFICATION

Functional specification is where product requirements and
implementation technology meet. It is the first, and most
important, stage in developing any system.

A good functional specification will take account of the
spectrum of possible market requirements, and the range of
possible implementation techniques, and derive a "best fit"
solution. Characteristic of a good functional specification
is that it can accomodate a degree of change both in product
requirements and in implementation technology.

As both types of change are likely to happen during the
development phase of a product, it is worth spending a good
deal of time (perhaps 30 per cent of the total project
effort) to derive the best possible functional
specification. Microprocessor technology, software and
hardware, means that implementation from a well defined
functional specification is fast and straightforward.
Surprisingly, the major cause of delays, problems, and
ultimately project failure is inadequate specification.

The task of specification is to isolate and identify, from a
general appreciation of what is required, precise
definitions of the functions to be performed. Fast
developing technology, and rapidly changing markets and user
requirements, dictates collaboration between experts in the
area of application and engineers with knowledge of the
technology (software and hardware).

Microprocessors can replace more conventional technology
for example digital logic - in existing applications, but
there are other possibilities. Software is a medium that
can be engineered in the same way as hardware. If it is
managed correctly, software development can be done much
more cheaply, more quickly and more flexibly than developing
custom hardware. Software functions can provide
"intelligent" control, information processing, and flexible
operator interaction. With software it is possible to
construct "working models" that can be tried out, adapted,
tested and finally "frozen" in silicon memory chips for use
in a production system.

A microprocessor is both a programmable logic device and a
computer. Where it is being used to replace conventional
logic, its abilities as a computer may also be used to
advantage, and vice versa. For example, a microprocessor
might replace digital logic in controlling a scientific

Texas Instruments 2-3 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

instrument. In this application, it can also be used to
perform calculations on the results obtained by the
instrument, something not easily achieved by digital logic.
New forms of operator interface might also be considered; a
keyboard and visual display screen, for example, rather than
the traditional knobs and switches. The instrument can be

given some degree of programmability, to allow the user to
set up a series of operations to be performed unattended.
New possibilities are introduced simply by using a
microprocessor.

A full functional specification for a microcomputer based
product involves:

(1) Defining the environment - that is the devices
and signals with which the product must
operate, the operator controls and displays,
and any special interfaces

(2) Defining how the product reacts to this
environment - that is the actions it is

required to take, the inputs it is required to
respond to and the outputs it is required to
produce. Usually, this can be done by
defining a number of distinct functions that
the product is required to perform - operator
interface, data storage, machine control,
report generation etc. The major functions
must be identified, their operation specified
and their interaction detailed. If the

different functions are clearly isolated and
well defined, they can be implemented
straightforwardly as separate "packages".
Some functions may be implemented directly
using standard hardware and software
components•

Writing the functional specification requires some
understanding of what is possible with microprocessor
systems, as well as what is required by users. Functional
specification cannot be completely isolated from system
design, which considers some of the "how" of
implementation. Several passes through the functional
specification/system design cycle may be needed before an
acceptable solution is produced.

Nevertheless, the functional specification should be
maintained as a separate document, which does not describe
any of the "how". The functional specification is the
interface between market (or user) requirements and
implementation technology; changes In either can be
incorporated in the functional specification and their
implications worked through. Functional specifications can
be written in a language that both engineers and marketing
executives (or users) can understand. Other types of

Texas Instruments 2-4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

specification may be incomprehensible to one or the other.
With both market requirements and technology changing month
to month, this channel of communication is essential.

2.3 SYSTEM DESIGN

The purpose of system design is to derive from the what of
specification, a how that describes an implementation
strategy. The system designer must decide how to integrate
hardware and software, whether any special interfaces are
required, if any special hardware is needed (for analog to
digital conversion, for instance), and so on. System design
must specify how each function is to be performed - in
software, hardware or a combination of both, and with what
mix of standard and custom-developed components.

The first step is to identify whether standard hardware or
software packages can be used for any of the functions
identified. An existing custom IC designed for a particular
function (eg control of a floppy disc) brings increased
performance and, usually, cheapness. A standard Component
Software package gives tremendous savings in development
cost and time, plus reliability. Unlike hardware
components, Component Software can also be tailored to meet
very precise application needs (see Chapter 5).

Having eliminated those parts of the system to be
implemented with standard components, attention can be
turned to the other functions required. System design
requires an appreciation of the characteristics of hardware
and software, and how they fit together. Often a function
(say, signal averaging) can be performed in either hardware
or software. Strictly, the comparison is between dedicated
hardware, and general purpose hardware (eg a microprocessor)
plus custom software. The advantages of a software
implementation are flexibility, fast development time and
low development cost. The general equation governing
microsystems production is:

development cost
unit cost = material, labour, overheads + ————.

no of items

For products which will be produced in large quantities,
development cost is of no importance: where a product is to
be mass produced in tens or hundreds of thousands,
development of a custom integrated circuit is justified. As
the number of products to be produced falls, development
cost becomes more and more important. For systems to be
produced in small quantities (say 1 - 100 per year) the cost
of development dominates all consideration of material
costs. Microsystems technology (in particular software

Texas Instruments 2-5 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

technology) allows the tremendous advances in integrated
circuit technology to be applied to areas where a custom
chip design could not be justified. It does so by
dramatically lowering the cost of development for a product.

Other considerations may apply: if a microprocessor is
already present in a product and has spare capacity, it
makes sense to use it to "mop up" as much as possible of the
logic. Some functions may require custom hardware for speed
reasons. Again, there are functions, such as complex
calculations, that simply cannot be performed economically
in hardware.

However, software is not just directed to solving problems
of cost. Software also gives flexibility that, in some
applications, can be crucial. Whereas changing a hardware
design requires, probably, manufacture of a new printed
circuit board, a software program can be changed by typing
the modification at a keyboard, executing one or two
automatic software utilities (a matter of minutes), and
programming a new EPROM. Engineering changes can be made in
days rather than weeks or months (assuming the use of PROMs
or EPROMs rather than mask ROMs).

Modern techniques are integrating software and hardware in
new ways, and giving the system designer an expanding range
of choices. TI's Function to Function Architecture (FFA) is
directed to defining a common set of rules for the
interaction of complex functions, whether implemented in
hardware, software or a combination. In future systems, it
will be possible to choose the appropriate mix of hardware
and software (and a wide range of corresponding standard
components) for every function in a system.

A well thought out system design, with adequate appreciation
of functional divisions, will make possible relatively
painless evolution of today's systems to make use of
advanced functional components. Functions can be replaced
incrementally, to incorporate new components and new
application requirements, without requiring major redesign
of the whole system. Chapter 5, Component Software, gives
more details of the functional approach to system design.

The end result of system design should be a specification of
how each function is to be implemented, and a precise
definition of the interface between functions. System
design should specify all hardware/software interaction (eg
the configuration of all I/O devices), so that hardware and
software design can proceed independently.

Texas Instruments 2-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

2.3.1 Documentation

It is important to keep a record of the design process.
Notes, and formal documents such as specifications, can be
collected together to form a project notebook. Some part of
this can usefully be an "electronic notebook". Documents
stored in files on a development system computer (see
Section 3.3) can easily be kept up to date, and printed
copies can be obtained when required. This is an ideal
medium for specifications.

The project notebook should record design decisions taken.
For example, an analog input (a voltage, for example) may be
required. Decisions to be taken include:

(1) How much precision (ie, how many bits) is
required

(2) How often a reading must be taken

(3) What type of analog/digital converter can be
used

(4) Whether the input should be binary or coded
decimal

Hardware/software trade-offs can also be recorded in the
notebook. When writing a number to a seven segment display,
should the conversion from binary to decimal digits, and
then from digits to the signals used to drive the display
segments, be handled by microprocessor software or by
external hardware?

If processor resources are available, it makes sense to
perform the conversion in software and save the cost of
extra hardware. However, this depends on the processor
having enough spare time to handle it.

If the situation changes (eg new technology becomes
available), a comprehensive project notebook makes it much
easier to backtrack and discover for what reasons the

original decisions were made, and whether they are still
valid.

Texas Instruments 2-7 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

2.4 HARDWARE DESIGN

This section describes some aspects of hardware design which
affect and are affected by software.

In many applications, it makes sense to regard the hardware
of a system as resources, to be controlled by the software.
This implies an approach that is different from designing a
purely hardware system.

Much of the design effort consists simply of interfacing the
outside world (the inputs and outputs) to the microprocessor
system bus.

INPUTS

PROGRAM

MEMORY
DATA

MEMORY

M P U OUTPUTS

Figure 2-2 Hardware Design for a Microprocessor System

What must be presented to the bus is a control interface.
The software will only have access to those signals which
are connected to the bus.

The design decision which must be taken when constructing
each I/O interface is "how much control and information is
to be given to the software?". The answer will be based on

(a) the decisions taken at the system design stage on
what is to be implemented in software and what in
hardware

(b) how much flexibility is required in the design.

Where software access is provided, design changes can be
made simply by reprogramming rather than redesigning the
hardware. Extra software control signals may be provided
for this reason, particularly at an early stage of the
design.

Use of a ready-built microcomputer board (or boards)
simplifies the process of hardware design. Texas
Instruments supplies a range of microcomputer modules (the
TM990 and TM990/Euroboard series) which are ready built
microcomputers with a range of inputs and outputs, and

Texas Instruments 2-8 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

memory configurations, to suit many requirements. Expansion
boards are available to extend both memory and I/O, and to
provide additional functions.

2.4.1 Estimating System Load

A single microprocessor can do only one thing at a time. If
it is required to perform several functions in parallel (as
a real time system usually is) it must do so by tackling
each one in turn, sufficiently fast that every one is
performed within the required time. An important part of
specification is defining how fast and how often the
microprocessor needs to perform each function. (For
example: an analog input might need to be sampled every 5
ms, this being the minimum period in which it could change
significantly in a particular application). An important
part of hardware design is to determine that the processor
can meet these specifications.

A useful measure of this is system load, which can be
defined as:

Processor Time

Real-Time

For a given task, the load on the system is the processor
time needed to perform the task, divided by how often the
task must be performed. If the processor spends 2 ms
carrying out a particular task, and the task must be
performed every 10 ms, this represents a .2 or 20 per cent
system load.

An estimate of the total system load can be obtained by
calculating the system load for each task that must be
performed, and adding them together. System load is not a
foolproof test of a design's practicality; but it does give
the designer an indication of the magnitude of the task, and
quickly shows up impossible specifications. Estimating the
load for a given task involves a consideration of the
software algorithm that will be used to perform it. This
need not be very detailed at this stage. A rough
calculation often shows that use of system resources is
dominated by a very small number of tasks.

An estimation of 0.1 per cent could be out by a factor of 5
without making too much difference; a task calculated at 25
percent, however, needs careful evaluation. Usually, it is
only necessary to look at a very small portion of program,
which can be coded experimentally if necessary.

If the total system load comes out at more than 50 percent,

Texas Instruments 2-9 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

the design should be reconsidered. There are two reasons
for leaving a wide margin:

(1) To allow for errors in the estimation, and for
modifications to the software

(2) Most systems have a degree of randomness: the
average rate at which things happen may be
predictable, but it may sometimes be exceeded
by quite a large amount. It is wise to leave
some power in reserve to deal with bursts of
activity.

Besides the raw estimates of system load, timing constraints
need to be considered. The straightforward estimate assumes
(naively) that processor time is spread evenly over
real-time. If the system needs to do a great deal within a
period of 1 ms, and then nothing for 50 ms, this obviously
must be taken into account. In this case, the load during
the 1 ms period should be evaluated separately.

If the system load does come to more than 50 per cent, there
are several alternatives:

(1) Unload some of the work from software to
external hardware

(2) Reduce the specification of the system

(3) Use a more powerful processor

(4) Add another processor

If the system load comes out very low (less than 1 per cent,
for example) this need not be a bad thing, if design and
cost criteria are met. However, if there are tasks being
performed by external hardware that could equally be done in
software, this is worth considering.

Microprocessors have become inexpensive enough to make it
economically feasible in many applications to have them
lying idle for much of the time. On the other hand, having
to redesign because design parameters have been pushed too
far can be expensive.

Once the load has been calculated and the design fixed, the
design engineer needs to beware of 'creeping enhancements'.
Microprocessor systems follow a revised form of Parkinson's
Law: unless carefully controlled, designs expand to fill 150
percent of the resources available. To avoid this, the
designer needs to evaluate carefully the effect of proposed
enhancements, and consider them in relation to his loading
estimates - which can be checked experimentally once the
design is built.

Texas Instruments 2-10 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

2.4.2 Memory Size

Naturally, one important consideration when designing the
hardware for a system is how much memory space to allow.
The only way to estimate memory size is to break a system
down into software packages and estimate the size for each,
based on existing packages. If the software designer making
the estimate lacks confidence in his figures, then the
packages should be broken down still further and, perhaps,
parts of them trial coded.

Whatever the figure arrived at, the hardware designer should
allow a sizeable margin for expansion; first, because no-one
has yet found a completely reliable method for estimating
the final size of a software package, and second because of
the previously mentioned tendency for 'creeping
enhancements'. It is usually much easier to cut down an
over-designed prototype version when producing a production
model, than to add significant memory space not foreseen in
the original design. The size of each software package
can be monitored as it is produced and compared with the
original estimate, to give a progressively better picture of
the final memory size.

2.5 SOFTWARE DESIGN

Software design consists of turning the specification of
each function the processor is to perform into precise
software algorithms (ie step by step procedures for
performing the desired function) and data structures. This
is not yet programming, which occurs at a more detailed
level. Starting to program too early, before a software
design strategy has been worked out, will lead to a design
that is Incoherent and badly structured. At least a third
of the software development effort should be spent on
design, to establish the overall structure of the software
before starting on the details.

Software design should identify:

(1) The data structures to be used

(2) The routines and algorithms to be written

(3) How the different parts of the software will
work together.

The basis of software is data, since this represents the
information that will be manipulated by the algorithms. A

Texas Instruments 2-11 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

system uses two types of data: input or output data, which
is the system's means of communication with the outside
world, and stored data, which is held in memory and
represents those concepts internal to the system of which a
record must be kept.

The first task of the software designer should be to
determine:

o What data is required

o How it should be organized (structured).

The data should be structured to reflect as closely as
possible the information it represents. This involves:

o identifying those aspects of the information
which are fundamental and not superficial

o using these as the basis for structuring

o wherever possible using structures instead of
single unrelated data items. This makes the
software more coherent and more manageable.

Older 'high level' languages such as FORTRAN, and low level
assembly language, provide no means of grouping and
structuring basic items of data to form more complex
entities. Any such grouping that is done must be done
inside the programmer's head. Newer languages such as
Pascal provide, within the language itself, powerful means
of building complex data entities out of simple ones. This
means that complex software systems can be built up that
model the outside world, and real operations, with
surprising accuracy. A single data structure, for example,
referred to by a single name, may contain all the
information that needs to be known about a chemical process,

or the operation of a machine. This data structure may be
passed as a single item to a routine that performs a complex
operation - say, shutting down the chemical reaction or
using the machine to manufacture a part for a motor. The
data structures establish a basis - an abstract model of the

"real world" - from which program algorithms can be
developed to perform various useful tasks. The real time
structure of Microprocessor Pascal and Component Software
also makes it possible to define and group complex
operations, "packaging" a group of concurrent, closely
interacting operations, together with the data they operate
on as a single, higher level function.

The process of software design is considered in detail in
Chapter 4.

Texas Instruments 2-12 October

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

2.6 PROGRAMMING

Programming involves turning a software design into source
program code, following the syntax rules of a particular
programming language. The amount of work involved depends
on the programming language selected for implementation.

Pascal was designed as a problem-oriented language
incorporating modern design techniques. Turning a software
design into a Pascal program should involve little more than
formalizing it and writing it to conform to the syntax
rules. The constructs used in design can be implemented
directly in Pascal. The routine work of translating the
design into machine instructions is handled automatically
by a software utility - the compiler.

BASIC, like Pascal, is a high-level language that handles
much of the routine work (data allocation, for example) of
translating the design into machine terms automatically.
However, BASIC was designed for simplicity and is not as
powerful as Pascal. It does not provide all the constructs
required for reliable software design in a directly usable
form.

BASIC does have other advantages. Being simple, it is easy
to learn. As an interpreted language, it has special
characteristics which are explained in Chapter 7. Because
it is designed to run on the TM990 range of microcomputer
modules, a design can be developed very quickly and cheaply
using standard hardware and a very low cost development
system. BASIC is ideal for experimental and low volume
designs.

Assembly Language is the most powerful, the most time
consuming and the most difficult alternative. It gives the
programmer complete control over all the resources of the
microcomputer, but to exploit this control requires skill
and discipline. Program development also takes much longer
than in a high level language. Assembly language should be
used where code size and efficiency is crucial (for example,
in small, high volume applications). It can also be used to
code critical areas of a program written in a high level
language (I/O routines, for example). In general, assembly
language can be used very effectively in small areas; large
programs quickly become unwieldy.

Selecting which language to use depends very much on the
application, the development facilities available, the
development timescale, and the skills of the programmers.
Later chapters of this book describe each language in more
detail.

Texas Instruments 2-13 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

Programming, or coding, is a relatively mechanical process
which involves expressing a software design in a precise,
unambiguous form that conforms to strict syntax rules. The
real creative work, of development is done at the system
design and software design stages. When choosing which
implementation language and what type of development system
to use, the designer is choosing how much of the programming
process will be handled automatically by software
development tools (compilers, linkers, etc) and how much
will be done by a human programmer.

Programs may be written on paper and then entered into the
development system, or they may be written directly at the
computer. The second method offers many advantages - no
duplication of effort, easy modification of the program, and
an immediate printed record if required. The development
system acts, in effect, as an electronic notebook
faithfully recording the program as it develops, and also
checking periodically that the programmer has followed the
rules of the programming language.

The programmer uses a software tool called an editor (see
Section 3.4) to enter and modify his program on the
development system. A structured high level language like
Pascal makes it easy to build up a program as it develops in
the mind of the programmer. The Microprocessor Pascal
System (Chapter 6) includes a syntax-checking editor, which
will point out language errors for immediate correction on
the screen, during an edit session.

2.7 PROGRAM TRANSLATION

The source program, which is in a programming language, must
be translated into machine executable form - that is, a

pattern of binary O's and l's corresponding to the
microprocessor's instruction set.

This is done by software tools called compilers and linkers
(see Sections 3.5.5, 3.6). The process of translation from
human-readable to machine-executable form is almost entirely
automatic, and takes only a few minutes. It will usually
need to be done several times, as the programmer corrects
errors in his program by changing the source program code
and re-translating.

Two types of error can arise:

(1) Language errors. If what the programmer
writes does not conform to the rules of the

programming language, the compiler or
assembler will give an appropriate error

Texas Instruments 2-14 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

message, and the error can be corrected
immediately.

(2) Logical errors. If there is an error in the
logic of the program, this may not be found
until the software is tested.

To minimise frustration and development bottlenecks, it is
important that compilers and assemblers can be called up
simply and directly from the development system keyboard,
and that they execute quickly.

2.8 CONFIGURATION AND LINKING

Most software systems are written not as one large piece of
software, but as several smaller packages. Smaller programs
are much easier to manage, and take less time to translate.

This means that the pieces must be welded together into one
complete system before they can be used. Configuration is
the process of selecting the pieces of software required for
an application (perhaps from a "library" of software parts),
taking care of any system-wide considerations (such as how
to allocate memory, and what will be the hardware addresses
of I/O devices), and linking the pieces together.
Configuration is particularly relevant to Component Software
systems - see Chapter 5.

The actual forging of the links between software packages is
carried out automatically by a software tool called a
link editor or a linker (see Section 3.6).

2.9 DEBUGGING

Once a program has been written, it must be tested.
However, a microcomputer program is often designed to run on
a system other than the one on which it is developed. (The
development system is often referred as the host system; the
final application system is called the target system). The
program is often ready for testing some time before the
target system is built; and in any case the target' system
may not provide the facilities needed to test a program.

2.9.1 Simulation

To overcome this problem, some means of simulating the
target system environment on the development system is
required. The Texas Instruments Microprocessor Pascal

Texas Instruments 2-15 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

System provides a host debugger that permits target system
programs to be executed and monitored interactively on the
host development system. The debugger builds a "software
model" of the target system on the development system.
Inputs and outputs can be simulated via operator commands.
Program flow can be traced, and data items examined. Using
the debugger, the user can examine exactly what goes on when
the program is running. A 9900 Simulator is also available^
to test assembly language programs.

Testing should exercise every possible path through the
software, and every possible condition. A good test
strategy is to test each software module separately,
simulating its interaction with the rest of the system
(perhaps writing a test program to provide suitable inputs
and outputs). Modules can then be placed together with
confidence that they work in themselves, and the interaction
between modules can then be tested. Without a test plan
like this, it is almost impossible to carry out a thorough
test.

2.10 HARDWARE INTEGRATION AND EVALUATION

While a simulator provides powerful debugging facilities,
and can be used to check out completely the logic of a
program, it does not prove that the software will work
correctly with the target system hardware. The critical
stage of hardware/software integration is best handled by
emulation.

2.10.1 Emulation

Using emulation, the software can be tried out in the target
system hardware, while retaining the facilities of the
development system to monitor program execution and change
the program if necessary.

This is achieved by connecting the development system to the
target by a special cable. The microprocessor is removed
from the target system and the cable plugged in in its
place.

Part way along the cable is a "buffer module" containing a
microprocessor and interface circuitry. This microprocessor
can execute a program contained in "emulation memory" on the
development system. Emulation memory can be loaded from the
development system with the program under test. The program
executes in the buffer module exactly as it would in the
target system (in real-time) and is connected to the target
system hardware for input and output. The development

Texas Instruments 2-16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

system can monitor program execution, trace the program flow
and stop execution if specified conditions (breakpoints)
occur.

BACKING

STORE

DEVELOPMENT

SYSTEM

BUFFER

MODULE

TARGET

SYSTEM

(MICROCOMPUTER
BOARD)

STATUS INFORMATION
DISPLAYED

ON SCREEN

USER ENTERS COMMANDS
TO CONTROL EMULATION

Figure 2-3 Emulation

For Texas Instruments microprocessors, emulation is provided
by the AMPL (Advanced Microprocessor Prototyping Laboratory)
module. Emulation is controlled by a structured high-level
language, in which sophisticated test procedures can be
written.

2.10.2 Evaluation

Once the system is working in emulation, the software can be
programmed into PROMs and the "umbilical cord" to the
development system can be severed. At this stage the device
should undergo a thorough evaluation and audit by someone
not involved in its development. The designer will have
tested the device to the best of his ability, knowing its
internal structure and what might be likely to go wrong.

Texas Instruments 2-17 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DEVELOPMENT

The independent auditor will test without knowledge of the
internal workings, according to how the device is likely to
be used. This audit should be performed against the
original statement of requirements; and it should use (and
criticize) the documentation (User's Guide, etc) that is to
be provided to the end user.

2.11 PRODUCTION

When a working system has been obtained that satisfies the
design criteria, the hardware can be frozen and production
of the device can begin. (If the device is 1-off, of
course, this is the end of the road.) Hardware typically
requires a much longer production lead time than software
(for printed circuit board layout, tooling, etc) and
therefore needs to be frozen much earlier. Minor software
changes and enhancements can still be made, provided they do
not affect the hardware.

The software should not be frozen until it has been tested
with production hardware. It may be possible to fix minor
problems introduced by the move from prototype to production
by modifying the software. This will usually be much easier
than changing the hardware at this stage.

Texas Instruments 2-18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

3.1 OVERVIEW

CHAPTER 3

DEVELOPMENT TOOLS

This chapter describes the hardware and software tools used
in software development for microprocessors, and some of the
mechanics of software development.

3.2 DEVELOPMENT SYSTEMS

In traditional forms of computing, software is usually
developed on the machine on which it is to run. Such
computers are general purpose machines capable of running
many different programs, including the 'software tools' used
in program development.

With microcomputers, this is not usually possible.
Normally, a dedicated system cannot be used to develop the
software that is to run on it. Many dedicated systems will
not provide the peripheral devices (keyboard, printer,
etc.), much less the software tools, required for program
development.

For this reason, a general purpose computer system called a
development system (or host system) is used to develop
software for a microcomputer. The dedicated microcomputer
in which the software will finally run is called the
target system. The development system is often a
minicomputer, such as the Texas Instruments 990 family. 990
minicomputers have the same basic instruction set as the TMS
9900 family of microprocessors, which makes software
development much easier. However, it is possible to develop
software for a microcomputer on a large mainframe computer,
such as an IBM 370.

A microcomputer development system is likely to have one or
two special purpose peripherals, such as a PROM Programmer.
The AMPL package (Advanced Microprocessor Prototyping
Laboratory) provided by Texas Instruments also allows target
system emulation. The target hardware is connected by a
cable to the development system. The emulator runs a
program contained in the development system's memory, on the
actual hardware of the target system. All the resources of

Texas Instruments 3-1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

the development system are available to monitor and to
change the program if necessary. AMPL provides
sophisticated testing aids for both hardware and software.

Using the peripheral devices and the software tools provided
with the development system, it is possible to write a
microcomputer program, translate it into machine
understandable form (ie binary digits), test it under
simulation on the development system, try it out in the
target system hardware, and finally write it permanently
into the memory of the target microcomputer system.

3.3 FILES

program develo
les on a develo

Much of the mechanics of
creating and manipulating _fi_
file is a sequential list
storage device (disc, magnet
may be text, numbers or bina
store the source program co

to store the machine code

microcomputer. Files ca
documentation, user's guides
be reduced to words, numbers

of information

ic tape, etc),
ry digits. Fil
de that a progr

that can be

n also be

etc - in fact

or bits.

pment consists of
pment system. A
held on a backing
This information

es are used to

ammer writes, and
executed by the
used to store

anything that can

11 consist

stem. This

rking with
soldering

have been

to work in.

the design

design and
repetitive

Once a design has passed the paper stage, it wi
entirely of files stored on the development sy
medium may be unfamiliar to those used to wo
circuit diagrams, printed circuit boards and
irons. However, once the basic techniques
mastered, it is an easy and natural medium
Software tools can manipulate the "stuff" of
directly, and hence a large part of the
development process is automated, eliminating
work and enhancing productivity.

A file can be read as input data by a program running on the
development system; the program can write back a file of
output data.

Utility programs are provided with a development system to
perform many of the tasks associated with program
development - for example, translating source code written
in a high-level language into object code that can be
understood by the microprocessor. The source code is read
from a file held on backing storage; the object code is
written to another file.

Texas Instruments 3-2 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

FROM BACKING
STORE

INPUT

FILE(S)

SCREEN

DISPLAYS

STATUS

UTILITY

PROGRAM

DEVELOPMENT TOOLS

TO BACKING

STORE

OUTPUT

FILE(S)

TAPE CASSETTE

or

FLOPPY DISC

or

'HARD' DISC

USER CONTROLS
FROM KEYBOARD

Figure 3-1 Software Tools

These utility programs are the tools of the software
engineer; they are what he or she uses to create and
manipulate software. A utility program (a 'software tool')
may have several input and several output files, depending
on the function it performs. An output file need not go to
backing storage: if it contains textual information it might
be sent directly to a printer. Similarly, an input file
might be typed in at a keyboard.

Files which contain readable text - that is, information
that can be understood and manipulated by a programmer - are
known as text files. Binary codes are used to represent the
individual text characters (see section 3.8).

3.3.1 Backup

Once programming has begun, the work of the software
designer will be held entirely on files in backing storage.
While storage media are inherently very reliable, errors do
occasionally occur (due, for example, to dust accidentally
getting into a disc drive) which can wipe out days or even

Texas Instruments 3-3 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

weeks of work. It is therefore necessary to have some form
of backup for important files - an extra copy, stored away
from the computer. There are many ways of doing this: for
example, copying files at regular intervals to magnetic tape
or paper tape.

One method which works particularly well for floppy
disc-based systems, and can also be used for hard discs, is
to duplicate the complete disc (or discs) containing the
files for a project. The suggested way of doing this is to
have 2 backup discs for each disc in use. The 3 discs
(labelled A, B, C for convenience) can be used in a
backup cycle:

o'

B
O

o1
I

CURRENT DISC

FIRST BACKUP DISC

SECOND BACKUP DISC

Figure 3-2 Backup Cycle - 1

At regular intervals - say once a week, but depending on how
much work has been done - the current disc is backed up.
This is done by copying the complete disc to the second
backup (C). The copy should be verified after it has been
made.

CURRENT DISC

COPY FIRST BACKUP DISC

SECOND BACKUP DISC

Figure 3-3 Backup Cycle - 2

Once this has been done, the second backup (C) becomes the
current disc, the previous current disc (A) is relegated to
backup, and the first backup to second backup:

Texas Instruments 3-4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

o' CURRENT DISC

oj FIRST BACKUP DISC

O
B

SECOND BACKUP DISC

Figure 3-4 Backup Cycle - 3

There are two reasons for using C as the new current disc
instead of continuing with A:

1) If the cycle is carried out regularly each disc
will get the same amount of use

2) If for any reason the copy did not work, this
will quickly become apparent when trying to use
C.

If the current disc becomes corrupted at any time, the first
backup can be used to restore the situation at the time of
the last backup cycle.

The second backup provides an extra insurance policy against
catastrophes - for example if a disc drive fault corrupts
both the current disc and the first backup, or a power
failure occurs during the backup process.

The extra expense of triplicating discs (not much for
floppies) and the time spent backing up is more than paid
for by the savings if a fault does occur.

3.4 Text Editing

The text editor is a program which allows the user to create
and manipulate text files. The editor is perhaps the most
important tool on the development system. It is the tool
which a programmer will spend more time using than any
other. So it is important that an editor is well designed,
easy to use and has a good set of facilities.

New text is entered at a keyboard, and saved in a file on
backup storage (cassette, floppy or hard disc). The text
will usually consist of source program code in assembly or
high level language; however most editors will allow any

Texas Instruments 3-5 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

kind of textual information to be entered. The text
(whether newly entered or recalled from backing storage) can
be modified by entering commands at the keyboard (Figure
3-5).

Generally the editors which are easiest to use are those
which are screen based: that is, the text is displayed on a
visual display screen and can be modified by moving a cursor
and using simple key strokes to change, insert or delete
characters at appropriate positions (Figure 3-6).

(1) Creating a new file

USER

ENTERS

TEXT

(2) Modifying an existing file

TEXT FILE

READ FROM

BACKING STORAGE

TEXT

EDITOR

TEXT

EDITOR

EDITOR

CREATES TEXT FILE

ON BACKING STORAGE

MODIFIED TEXT

FILE WRITTEN TO

BACKING STORAGE

USER ENTERS COMMANDS

TO MODIFY TEXT

Figure 3-5 Editor Function

Texas Instruments 3-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

CURSOR

MOVEMENT

KEYS

"INS" KEY "DEL" KEY
= INSERT CHARACTERS = DELETE CHARACTER
AT CURRENT CURSOR AT CURRENT CURSOR
POSITION POSITION

DEVELOPMENT TOOLS

CURSOR

Figure 3-6 Use of a Screen Based Editor

Texas Instruments 3-7 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

Most editors also provide a repertoire of commands that
allow such functions as searching for and replacing
specified strings of characters.

Commands

ABORT

INPUT

QUIT

SAVE

CHECK

COPY

DELETE

MOVE

PUT

a.*-*-*-*-*-*-*-*-*-*-*-* Commands *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

Exit the editor

Edit another file

Save file & ABORT

Save file & INPUT

Check syntax of file

BOTTOM Position cursor at end-of-file
TOP Position cursor at top-of-file
+/- int Position cursor up or down "int'

INSERT Insert a file

SHOW Display a file

Copy the specified block after the current line
Delete the specified block
Move the specified block after the current line
Put the specified block into the specified file

FIND(tok.n)
REPLACE(tokl,tok2,n)
TAB(increment)

Find the Nth occurrence of tok
Replace tokl with tok2 for n occurrences
Set tab increment

A-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* Function Keys *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
Fl F2 FA F5 F6 F7 F8

Roll Up Roll Down Duplicate Start Block End Block Edit/Compose Split

File

<>

INPUT.FILE Tab

Figure 3-7 Microprocessor Pascal Editor 'Menu' of Commands

3.5 PROGRAMMING LANGUAGES

As far as a programmer is concerned, software development
consists mainly of manipulating text files stored on a
development system. These text files will probably be
written in some programming language. A programming
language is a precise form of notation that a programmer
uses to specify what he requires the microprocessor to do.
Software tools are used to translate the program in this
form (in which it can be created and worked on by a software
engineer) into a form that can be understood and executed by
the microprocessor. Together, the language and the software
tools form a design system for programming electronic
parts.

Texas Instruments 3-8 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

3.5.1 Assembly Language

The earliest computers were programmed directly in machine
code: that is, binary digits. Each instruction in a
computer is represented by a unique pattern of bits within a
word of program code. For example, in the TMS 9900,

1010XXXXXXXXXXXX means "add"

The X's carry other information (where the elements to be
added can be found, and where to store the result) and may
be 0's or l's. Some instructions require two or three
words, because they contain data, addresses of memory
locations, etc.

Programming in machine code is extremely tedious and very
prone to errors. Therefore assembly language was invented.
Using assembly language, a program can be written with
meaningful mnemonics (e.g., MPY for multiply) instead of
binary code for instructions, and symbols instead of numeric
addresses for memory locations:

C (?W0RD1,@W0RD2 COMPARE W0RD1 WITH W0RD2
JEQ SAME JUMP IF RESULT = 0 TO LABEL "SAME"

SAME TB

W0RD1 BSS 2

W0RD2 BSS 2

3.5.2 Assemblers

TEST INPUT BIT 7

RESERVE STORAGE (BLOCK STARTING
WITH SYMBOL) FOR W0RD1 AND W0RD2.
2 BYTES = 1 WORD EACH

Translation from assembly language to machine code, which
must be done before the program can be executed, is a
tedious but fairly straightforward process; the sort of
thing computers do well. The translation is carried out
automatically by a software tool (a computer program) called
an assembler.

An assembler converts assembly language source code, which
is produced by a programmer, into object code, which can be
understood by the microprocessor. The input to the
assembler will normally be a text file created by the
editor. The output will be a file of object code. The

Texas Instruments 3-9 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

assembler also generates a listing file, which is a text
file containing details of the assembly, and any error
messages.

O

TEXT FILE

OFSOURCE

CODE

CONTROL

COMMANDS

ASSEMBLER

STATUS

MESSAGES

o

OBJECT

CODE

FILE

LISTING

FILE

Figure 3-8 Assembler

One of the advantages of using an assembler (instead of
programming directly in machine code) is that programs can
easily be changed. For example, an extra instruction can be
inserted in an assembly language program and the program
simply reassembled. Inserting an extra instruction in a
machine code program would involve going through the whole
program changing (eg) jump addresses, because the position
of all the code after the insertion would have changed.

3.5.3 High-Level Languages

Assembly language, though a great improvement on machine
code, still requires a problem to be translated into machine
terras before it can be programmed. Each assembly language
instruction corresponds to one machine instruction.

Texas Instruments 3-10 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

The programmer must write a statement like

IF temperature less than 70 degrees AND
pressure sensor is off THEN

notify operator

in terms of the low-level tests and conditional jumps that
are the only things the computer understands:

CI @TEMP,70
JNE NEXT

CI @PRESS,0FF
JNE NEXT

BLWP @NTFY0P
NEXT

In addition, the programmer must manage all the resources of
the computer, such as which memory locations are to be used
to store each item of data, himself.

High level languages were introduced to allow the computer
to handle all these 'housekeeping' functions automatically,
and to free the programmer to concentrate on the problem.

One of the first high-level languages was FORTRAN, which
stands for FORmula TRANslation. It allows programs to be
written in a stylized language that combines elements of
mathematics and English:

10 J = 4

I = 5*J + 7

IF (I.EQ.27) THEN GOTO 100

The programmer can set up storage locations with names like
"I" and "J". I and J are called variables because they can
be assigned any value. The first line of the program
(labelled 10) sets J to the value of 4. The second line
takes the value stored in J (which we know to be 4),
multiplies it by 5, adds 7 and assigns the resulting value
to I. Line 30 then tests I to see if it has the value 27;
if so, the next line to be executed will be the one labelled
100. Otherwise the program continues with the next line in
the sequence.

I and J represent memory locations. But the programmer does
not have to worry about where in memory they are.

It is much easier to write programs in FORTRAN than in
assembly language. However, in some respects FORTRAN is
still closer to the way machines operate than to the way
human beings think. The GOTO statement, for example, is
obviously derived from the assembly language JMP; it is a
machine construct and not a human, or logical, one.

Texas Instruments 3-11 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

Implementation of conditional statements, for example,
requires GOTO statements and labels. To program "j^ I is
equal to 5 then do X else do Y", it is necessary to write:

IF (I.EQ.5) THEN GOTO 50

(do Y)

GOTO 100

50

(do X)

100

Not only are the statement numbers an additional confusion
and a source of error, but the order is inverted: the then
action comes second. FORTRAN was designed simply as an
easier and quicker way of writing assembly language
programs.

More recently, high-level languages have been designed with
the intention of getting as close to the problem as
possible. The ideal is that writing a program should
require no more than a precise and unambiguous statement of
what to do. Everything else (translating this precise
statement into code to be understood by a machine, and
allocating machine resources) should be done automatically
by software tools.

A precise and unambiguous statement of what to do is known
as an algorithm. One advantage of this approach is that the
algorithms derived are independent of a particular machine
architecture, and can survive changes in hardware
technology. Many of the newer languages are based on ALGOL
(ALGOrithmic Language), which was designed in the 1960s as a
natural language for writing algorithms.

3.5.4 Pascal

Pascal is acknowledged as one of the best modern high-level
languages. Developed principally by one man, PASCAL has a
coherence which some committee-designed languages lack. It
implements most of the generally accepted good programming
practices. Besides providing the fundamental constructs
needed to write algorithms, in a much more natural way than
in FORTRAN (say), Pascal also has powerful methods of
organizing and structuring data.

Algorithms can be turned directly into Pascal programs with
very little effort.

Texas Instruments 3-12 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

A Pascal program is easy to read, and is almost
self-documenting:

IF input_value = 5 THEN
BEGIN

perform_test_procedure;
print_results
END

ELSE

record_value;

perform_test_procedure, print_results and record_value will
be precisely defined elsewhere in the program.

3.5.5 Compilers

A compiler performs the same function as an assembler (see
section 3.5.2 above), but its input will be a program
written in a particular high level language. Some compilers
produce object code (machine code) directly; others generate
assembly language source, which must be run through an
assembler to generate object code. This is an extra step,
but it does give the user the option of hand optimizing the
compiler output before it is assembled. The input to a
compiler or assembler is called source code; the output is
object code.

Execution of a compiler or an assembler is completely
separate from execution of the resulting program. A
compiler or assembler is a software tool used during
development that translates a program written in a
programming language into a machine executable form. In
developing a microcomputer application, the
compiler/assembler will run on the development system and
the compiled or assembled program will be designed to
execute on the target system.

3.5.6 Interpreted Languages

Languages such as FORTRAN are compiled languages; that is,
the source program is turned into machine code in a separate
step (perhaps on a different machine) before it is
executed.

With an interpreted language, such as BASIC, there is no
separate compilation step. The program is not stored in
machine code but in intermediate code, which can be regarded
as condensed source code with all unnecessary symbols
removed. At execution time, the interpreter, a program
which resides with the intermediate code in the target
system, looks at each line of intermediate code, determines

Texas Instruments 3-13 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

what it means and carries out the necessary action. The
intermediate code is not executed directly; the interpreter
examines it to determine what it means, then calls an
appropriate piece of assembly language code, contained
within the interpreter, to perform the operation.

Intermediate code is much more compact than machine code;
however, the interpreter must always be there, whatever the

size of the intermediate code, so that there is a minimum
overhead in an interpretive system. Beyond a certain size,
an interpreted program will take less memory than an
equivalent compiled program. However, an interpreted
program will run a lot slower (typically 5 to 10 times) due
to the extra work that must be done at execution time in

interpreting the intermediate code.

3.5.6.1 BASIC

BASIC is a simple language which is very easy to learn.
BASIC systems also use a very simple set of software tools.

BASIC is especially suited to systems where development and
execution are carried out on the same hardware. BASIC

systems usually have a special editor, which converts input
programs to intermediate code, a line at a time, as they are
entered. The BASIC editor checks each line for syntax

errors as it is entered, and signals any errors for
immediate correction. There is no separate compilation or
assembly step; programs can be executed simply by typing
"RUN". Programs can be halted and changed, then run again,
which makes for very quick, interactive development.

Texas Instruments' Power BASIC (see Chapter 7) is designed
to run on the TM990 range of microcomputer boards. A BASIC
program can be developed and executed using, at minimum, one
TM990 board and a terminal. BASIC provides an inexpensive
microcomputer system which is ideal for small applications
and experimental work, and can be used by people without
computer experience.

However, BASIC does have limitations. Its "line at a time"
nature means that there is no adequate program or data
structuring, and very limited checks on program
correctness. BASIC is not recommended for the development

of complex systems.

3.5.6.1 Interpreted Pascal

Microprocessor Pascal programs (see chapter 6) will normally
be executed in machine code ("native" code). This gives
maximum execution speed. However, they can optionally be
executed interpretively. This allows the user to trade-off
execution speed against memory size, and to select which is

Texas Instruments 3-14 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

more important for his particular application. Interpretive
execution is slower, but takes less memory.

3.5.7 High-Level vs Low-Level

Faced with the choice of which language is best, some
general observations can be made.

Low-level (assembly) language allows the programmer direct
access to all the features of the machine and thus the
opportunity to write compact and efficient programs. To
capitalize on this requires skill and time. The opportunity
equally exists to make mistakes and to write inefficient
programs.

High-level languages can shorten development time by a
factor of 5 or more, and produce more reliable code. With a
high-level language it is much more difficult to make
expensive mistakes. High-level programs are more
understandable (if properly written, they can be
self-documenting), so that a project is less likely to be
dependent on one programmer. Changes are easier to make in
the late stages of a project. The cost is some code
inefficiency because a compiler cannot optimize as well as a
good assembly language programmer. However, this becomes
less true as the size of the program increases.
Inefficiencies (and errors) may be introduced in a large
assembly language program simply because of the intellectual
difficulty of managing such a large amount of detail
(especially when it is worked on by more than one
programmer). Compilers do not suffer from this problem.

Restrictions on code size, particularly for high volume
products, may dictate the use of assembly language in order
to produce the most compact code possible. Unless this is
the case, it makes sense to use a high-level language.
Assembly language projects of more than a few K (= thousand)
bytes should be considered very carefully because complexity
increases very rapidly with size. (Studies have estimated
that complexity is proportional to the square of the size of
the program).

For many projects, a compromise solution may be attractive.
For example, the control aspects, where clarity of the
design is important, can be programmed in high-level
language, with assembly language routines for critical low-
level areas such as input and output.

An alternative (or complementary) solution is to
hand-optimize compiler-produced code, once the program has
been completely checked out; or even to rewrite it in
assembly language after proving the design in (say) Pascal.
Both approaches have been used very successfully by Texas

Texas Instruments 3-15 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

Instruments in internal projects

3.6 Linker

A linker, or link editor, is a program which will combine
separately compiled or assembled object code modules to form
a complete system.

With a system of any size, it is much easier to break the
program down into modules which can be written separately.
Usually, these modules will be chosen so that each performs
a fairly self-contained function and can be treated as a
logical unit.

The interfaces between these modules - that is, the way that
they will fit together to form a complete system - must be
carefully considered when the system is being designed.
Modules will often need to use programs or data contained in
other modules. These can be defined as external references
to symbolic names: they will be indicated (tagged) as
unresolved addresses in the object code. Definitions to be
used by other modules will also be included in the object
code. The linker connects together, or resolves, these
loose ends by linking references with their corresponding
definitions.

3.6.1 Absolute and Relocatable Code

Before a program can be executed, it must be located at a
particular place in memory. Addresses in a program refer to
particular memory locations, and the right data or program
code must be present at those locations for the program to
work.

Some assemblers for the 9900 (the Line-By-Line Assembler for
example) produce only absolute code; that is, the position
of the code in memory is specified at the time of assembly,
and cannot subsequently be changed.

However, most assemblers produce relocatable code. Program
and data addresses are calculated relative to the program
base address - usually 0. Address fields are specified as
"relocatable" in the object code output. When the program
is loaded for execution, starting at, for example, address
100, the loader program can add this value to all the fields
tagged "relocatable" so that the program will execute
correctly (Figure 3-9).

Relocatable code allows the programmer to postpone deciding
where the program will be located until the time comes to

Texas Instruments 3-16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

load it. This can be very useful when a system is being
constructed from a number of different program modules.
Each module can be assembled separately without needing to
calculate exactly where it will fit in memory - which would
involve knowing the lengths of all the other modules. More
important still, one module can be changed (perhaps
increasing its length) without the need to reassemble all
the others in different positions to make room for it.

Program assembled at

base address 0

0

•4A

5F

* Branch to

* address >4A

B @LABEL

LABEL MOV R1,R2

Loaded in memory
at address MOO

0

100

MOO added to

relocatable

addresses

* Branch to

* address >14A

B @LABEL

LABEL MOV R1,R2-•14A

15F

Figure 3-9 Relocatable Code

Modules to be linked will usually be relocatable. The
linker stacks them one after the other in memory, adjusting
all the addresses accordingly. Output from a linker can
either be a larger relocatable module, or absolute code,
designed to be executed at a particular position in memory.

Linkers and relocatable code make a great difference to
software development. It is possible to break a project
down into manageable modules. One module can be changed
without recompiling or reassembling the whole system. The
linker automatically takes care of changes in module size
and in the addresses of external variables. This can save a

great deal of time (and money) in developing software.

A linker also allows the use of libraries of standard

routines. Libraries can provide, for example, mathematical

Texas Instruments 3-17 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

capabilities or run-time support for a particular
programming language. A library consists of a number of
different modules, which can either be written by the user
or supplied by a manufacturer. These modules are stored as
relocatable object code. A user can reference any of these
modules in his program; when the time comes to link, the
linker will automatically select from the library the
modules required by the program, and link them into the
system. See Chapter 5, Component Software, for further
information on the use of software libraries.

With a linker, some modules can be written in high level
language and others in assembly language, according to their
characteristics. This makes possible a very flexible
approach to system design.

3.7 TARGET SYSTEM EXECUTION

Having produced an executable program using the software
tools of a development system, there are two ways of
transferring the program for execution in the intended
target system (a third method, emulation, is described in
Chapter 2, section 2.10.1).

3.7.1 Loader

A loader is a software utility that loads an executable
program from some form of backing storage into read/write
(RAM) memory, for execution by the processor. A loader will
therefore be used in a target system which has been designed
to execute more than one program, and which has a backing
store of some kind (magnetic disc, tape etc) available.
However, a loader may also be used in a target system
without backing storage, to load a program into RAM memory
for test execution. Here, the "backing store" is likely to
be a host development system, or a terminal with some form
of storage.

Any computer system requires some form of program stored in
read only memory that will be executed immediately when the
system powers up. In a general purpose computer, this
program may do nothing more than load in the Operating
System or Control Program from backing store, and then
relinquish control. Such a program is called a "bootstrap
loader".

Some loaders are relocating loaders - that is, they can take
a relocatable object program from backing storage and place
it at any specified position in memory, adjusting the
addresses tagged 'relocatable' so that the program will

Texas Instruments 3-18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

execute correctly. Other loaders require program code in
image format - that is, absolute binary code that can be
placed directly in the computer's RAM memory.

3.7.2 PROM Programmer

A dedicated microcomputer is likely to have its program code
already stored in read only memory when the system powers
up, so that no loader is required. A utility called a PROM
Programmer is used to permanently fix the program into a
PROM memory chip which can be plugged into the target
system. (In the case of EPROM, the program can be erased
again by exposure to ultraviolet light - see Section 1.7,
Semiconductor Memory). A PROM Programmer is a peripheral
device attached to a microcomputer development system,
together with a software utility which takes program files
from disc on the development system and feeds them to the
peripheral device.

For systems produced in large quantities, mask ROM (Section
1.7) may be used. In this case the developed program will
be incorporated into the ROM device during manufacture.
However, PROM (Programmable ROM) is likely to be used to
prove the final program before it is committed to mask.

3.8 TEXT FILES

In order to store textual information in a machine which
recognizes only binary digits, some form of code must be
used - that is, some rule for transforming textual
information into binary data. The code adopted for the 990
and 9900 series is ASCII (American Standard Code for
Information Interchange). The ASCII code specifies a unique
bit pattern (number) for each member of the ASCII character
set - letters, digits, punctuation marks and control
characters. 7 bits are sufficient to uniquely identify an
ASCII character. ASCII characters are usually stored one
per byte (8 bits), with the most significant bit often being
used for error detection (parity check).

This means that textual information can be held in memory,
saved as a text file on backing storage and manipulated by
utility programs.

Texas Instruments 3-19 October 1981

SOFTWARE DEVELOPMENT HANDBOOK DEVELOPMENT TOOLS

Character ASCII'. code

Binary Hexadei

A 01000001 41

T 01010100 54

1 00110001 31

5 00110101 35
? 00111111 3F

line feed 00001010 0A

It is the input and output devices (Visual Display Unit,
printer, etc) that recognize '01000001' as 'A', and so on.
They translate key presses into ASCII coded data, and coded
data back into displayed and printed characters.

Program manipulation of textual data is normally limited to
moving it around in memory (to insert or delete text),
searching for particular sequences of characters, and
similar operations. (Arithmetic operations on text do not
make much sense.)

Numbers (decimal, hexadecimal or otherwise) can be
represented in text as a string of ASCII digits. However,
the bit pattern representing these digits in the computer is
a code and bears no direct relation to the binary
representation of that number - which the computer would use
to perform any calculation.

* For the hexadecimal number system, see Section 8.13.2.1

Texas Instruments 3-20 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.1 OVERVIEW

CHAPTER 4

SOFTWARE DESIGN

This book cannot present a full description of the software
designer's craft. However, the aim of this chapter is to
suggest directions and provide a starting point for further
investigation. The science of software - particularly real
time software - is inexhaustible.

New tools and procedures are gradually automating the "lower
levels" of software development and pushing the area where
creative engineering is most needed back towards system
design and requirements specification. New requirements
will always provide scope for innovative and practical
engineering solutions.

This chapter is concerned with the design and structuring of
software for microcomputer applications. What is presented
here is independent of any particular programming language -
though much of it is quite close to Pascal, which was
designed with the explicit goal of implementing the
"universal" elements of a programming language.

Producing an initial language-independent software design
has a number of advantages. It allows the overall strategy
of the design to be worked out before it becomes cluttered
with implementation detail; and it provides a common point
of reference that can be returned to when making changes to
the system, or if it is desired to implement the same
application using different techniques. For a large
project, the initial design can be kept sufficiently simple
to be manageable by one man, or a small team. This design
specification can then be used to coordinate the efforts of
a larger group.

Some languages (eg assembly language, FORTRAN, BASIC) offer
no means of developing a high level design strategy without
descending to the details of implementation. Here a
stylized design language must be used in the initial
stages. Using more modern, application-oriented languages
such as Pascal, it is possible to develop a high level
design in the language itself. Some users may still prefer
to use a design language to produce a separately documented
design.

Texas Instruments 4-1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.2 SOFTWARE STRUCTURE

Good structure, both of program and data, makes the
difference between a well-ordered, reliable program that is
easy to maintain and upgrade, and untidy ("spaghetti") code,
with hidden bugs that may not be found until it is too
late. Establishing a good structure may mean spending some
time on system and software design before going near a
keyboard or coding pad, but the time spent is well worth
while. Errors not caught at the design stage become ten
times more expensive to correct at the programming stage, a
hundred times more expensive at final test, and,
potentially, thousands of times more expensive when the
product is in the field.

Structure is equally important for high level and for
assembly language programs, although a good high level
language gives much more assistance by supplying pre-defined
structural constructs.

This chapter describes the basic principles of modular
software design (ie structuring at the level of
software/hardware packages and modules), and also some of
the 'fine detail' of data structure and program algorithms.
An algorithmic design language and a structured graphical
notation that can be used for design are introduced. This
chapter owes much to the pioneers of modern software
engineering techniques, in particular Dahl, Dijkstra, Hoare
and Wirth. The graphical notation used in this book was
developed by Eric Richards * from a notation devised by
Michael Jackson. The references at the end of this chapter
provide material for further research.

No accepted standard for a design language yet exists. A
suggested notation and standard is introduced in this
chapter. Designers who wish to adopt a strict formal
notation for software design are recommended to use Pascal.
Designs can then be checked automatically for consistency by
a suitable Pascal compiler. This approach has been very
successfully adopted within the experience of the authors.

The present chapter describes in some detail the basic
structuring techniques that are fundamental to modern high
level languages. Chapter 5 describes how these have been
extended in the Component Software environment to apply to
real time microprocessor systems. Chapter 6 describes Texas
Instruments' Microprocessor Pascal System.

* Described in an article in the British journal Computing,
May 19 1977

Texas Instruments 4-2 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.3 SOFTWARE PACKAGES

With a project of any size, it is helpful to split the
overall problem up into smaller packages which can be
tackled separately.

When adopting this approach, two things must be considered:

(1) The detailed nature of each package

(2) How the packages will fit together to form a
complete system.

To simplify the task of interfacing, packages should be
selected to be as self-contained as possible. In other
words, the package boundaries should be drawn so that
relatively little information needs to be exchanged between
packages, compared with the work done within each package.

"Mature" systems, where significant thought and experience
has been put into the design, and where the implementation
medium is flexible enough not to dictate the system
structure, tend to migrate to this condition. However, for
a new system, the designer may have to put in considerable
thought to ensure that the system structure is appropriate
from the start. Where the designer is implementing an
existing system in a new way (ie where the application is
mature), much of this thought may have been done for him.

Packages should be logically self-contained, each performing
a well-defined set of functions. The ways in which each
package interfaces with the rest of the system must be
clearly defined.

A designer implementing a factory control system, for
example, might identify the following packages:

CONTROL

INDUSTRIAL

PROCESS

FACTORY

CONTROL

COMMUNICATE

WITH REMOTE

COMPUTER

STOREAND

RETRIEVE

DATA

DISPLAY

INFORMATION

TO OPERATOR

Figure 4-1 Component Packages of a Factory Control System

Texas Instruments 4-3 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Each of these packages is still a fairly complex entity, but
the problem is beginning to look more manageable.

This analysis identifies the logical components of the
system. At this point, it is important to determine the
physical distribution - where will each function need to be
performed, and what communication paths are necessary? The
physical analysis will determine the likely hardware
components of the system - where processing capability is
required, where physical operations have to be performed,
at what points interaction with a human operator is
required, and where the communication paths will run.
Microsystems technology allows information processing
capability (which includes the ability to control things,
and the rudiments of an "intelligent" response) to be
located wherever it is required.

Although the example described is a factory control system,
the same considerations, on an appropriate scale, apply to
systems of all types and sizes.

A software package encapsulates a particular type of
"intelligence", a control function, or a data processing
operation. Many such packages can be specified
independently from the hardware environment where they will
be used, and some may be available as standard software (see
Chapter 5, Component Software). A standard package will
usually need to be "configured" into the particular
application (analagous to providing a standard socket and
circuit elements to interface to an integrated circuit).

Some applications may require little more than selecting
standard software packages and configuring them into a final
system. However, most applications will require some custom
software to be developed.

Each package can in turn be split into successively smaller
packages, until the complete problem has been broken down
into manageable blocks. At every level in the structure,
the packages can be regarded as 'black boxes' that perform
clearly specified functions and combine in clearly defined
ways. The programmer can focus on a particular part of the
design, knowing that he can concentrate on the other parts
of the structure at other times.

4.4 DESIGN LANGUAGE

Design language can be compared to the logic diagrams used
by circuit designers. As yet there is no universal standard
for software design languages, but there are some generally
agreed "good practices". The notations used in this and the
following sections incorporate the features generally

Texas Instruments 4-4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

regarded as useful in software design.

A design language can be regarded as a generalised
programming language, with the following characteristics:

(1) Syntax need not be completely rigid, as long
as the logic is clearly defined and
unambiguous

(2) Operations can be identified by verbal
description to start with, and later described
precisely - eg "calculate mean"

(3) Only standard, "universal" constructs -
sequence, selection, iteration (see below) and
standard data structures - are used.

Language-dependent constructs are not
included•

The aim of the design language is to establish the precise
logical structure of the application before proceeding to
implementation. In fact the notation described here is very
close to the Pascal programming language (see Chapter 6).
Pascal was developed as a language that would implement,
more or less directly, the features required for software
design. It was not designed for any particular machine
architecture and hence has a "universal" structure.

It is possible to use Pascal itself as a design language.
The advantage of this is that a design can be checked
automatically for logical correctness, even if parts of the
design are incomplete.

The graphic notation described below provides an alternative
notation that implements the same constructs. Either or
both can be used during design; sometimes a graphic notation
provides a clearer picture, especially in the early stages.

4.5 ALGORITHMS

An algorithm is a list of instructions: a statement of 'how
to do' something. More precisely, it is the specification
of a finite number of steps required to achieve a desired
end. A function can be performed by a computer if and only
if that function can be stated as an algorithm. However,
writing an algorithm rather than a program liberates the
designer from concern with the syntax and details of a
particular programming language. An algorithm should be
understood by people who are not programming specialists;
hence it is very useful when specifying a project.

Texas Instruments 4-5 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

An algorithm for making tea might be as follows:

begin
fill kettle;
put kettle on;
put tea in teapot;

wait for kettle to boil;
fill teapot;
delay 5 minutes;
for number of cups required do_

pour cup

end

Figure 4-2 Tea Making Algorithm

Two things can be identified in this (or any) algorithm.
First, there are the fundamental operations (fill kettle,
pour cup etc). Second, there are the control structures
which dictate if and when these operations are to be
performed. These control structures are identified by
underlined keywords:

begin
if ...

... end

then ... else

for •.

while

• do ...

... do .. .

etc

It is the control structures that provide the power of an
algorithm, and of a computer program. Algorithms can
specify alternative or repeated operations, provided the
conditions that determine the different actions are

specified completely and precisely. The algorithm
enumerates all possible options, and specifies exactly how
to take every decision. This is what is required to write a
computer program.

The individual operations described in Figure 4-2 can
themselves be analyzed into algorithms. For example, 'pour
cup':

if milk is required
then

begin
pour milk;
pour tea

end

else

pour tea

Figure 4-3 "Pour cup" Algorithm

Texas Instruments 4-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

By combining the control structures shown here, extremely
powerful algorithms can be developed to control, for
example, a complex scientific instrument or an industrial
process.

It is possible to define many different control structures.
However, it can be proved that any sequential algorithm (and
any computer program) can be written using only three basic
constructs — sequence, selection and iteration — all of
which are included in the above examples.

4.5.1 Sequence

A sequence is simply a list of operations carried out one
after the other, in order:

begin
fill kettle;

put kettle on;
put tea in teapot
end

The keywords "begin" and "end" bracket the sequence, so that
it can be treated as one logical entity. The general form
of a sequence is:

begin
<statement>;

<statement>

end

<statement> defines a single operation. Individual
statements are separated by semicolons. In the design
language, a statement can be a verbal description that will
later be expanded into a precise definition (as in the
example above, which could be expanded into a precise
program for a tea making robot).

It is impossible to start the sequence anywhere other than
at the begin, or finish it anywhere other than at the end.
This property of having a single entry and a single exit
point is shared by all of the basic constructs.

Texas Instruments 4-7 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

A sequence can also be represented graphically, as follows:

p
r

e

P
a

r

e

fill kettle

put kettle on

put tea in
teapot

Figure 4-4 Sequence Structure Diagram

The long vertical box represents the sequence as a whole.
The other boxes are the elements of which it is composed.
It is often useful to give a sequence a name, because it can
then be referred to as a single operation in a
'higher-level' algorithm. The elements of the sequence are
carried out in order, from top to bottom.

This is a structure diagram. The connecting lines show that
the elements belong to the sequence. (The lines do not
indicate logic flow, as in a flowchart). The logic flow is
obtained simply by proceeding from top to bottom, performing
each operation in turn.

The elements of a sequence might be simple operations, or
they can themselves be any of the three basic constructs
(sequence, selection or iteration).

A complete program will usually be a sequence. In the
design language, the semicolons are an important part of the
sequence construct. They are not part of the individual
statements; rather they separate (or delimit) the
statements, and should more properly be regarded as
belonging to the begin ... end construct. Note that there
is no semicolon following the last statement; there is no
need for one, as the end serves as a delimiter instead.

Texas Instruments 4-8 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.5.2 Selection

The selection is a

ofcondition, one

selected and performed. For example,

if weather is fine

then open ventilators
else switch on heaters

Graphically, this is represented as:

decision construct. Depending on a
two or more alternative operations is

weather] YES open

ventilatorsis fine?J

V

switch on

heaters

Figure 4-5 Selection Structure Diagram

The circle represents the selection as a whole: that is, a
single component which can be either of two things. The
boxes are the elements of the selection. For each execution
of the selection, one and only one of the elements is
executed. Once again, the connecting lines express that the
components are members of the selection (they are
subordinate to it). The logic flow through a selection
consists of testing the condition, and executing one only of
the elements.

Texas Instruments 4-9 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

There is a selection in the example algorithm:

if milk is required

then begin

pour milk;

pour tea

end

else

pour tea

milk

is

reqd

\ Y
pour

milk

N

pour

tea

Figure 4-6 "Pour cup" Structure Diagram

Here, the first alternative is a sequence of operations.
The begin and end indicate clearly that, as far as the
selection is concerned, the sequence is a single element
that can be regarded as one statement. The single
entry/exit property of the sequence makes this possible.
Each of the three basic constructs "packages" a complex
operation, so that from outside it can be regarded as a
single, indivisible statement.

The keywords begin end can be regarded as "bracketing"
a sequence of statements in the same way that parentheses
are used to bracket numerical expressions:

5 x (2 + 7) = 45

The general form of a selection in the design language is:

if <condition> then <statement>

else <statement>

<condition> is any expression which evaluates to one of the
values TRUE or FALSE. Such an expression is called a
Boolean expression, and the most common way to arrive at it
is by the use of comparison operators such as =, <, >:

if temperature > 70 then ...

A special case of
alternative, to
satisfied. If it is not satisfied, nothing is
can be regarded as a selection in which
components is the null action, "do nothing". This component

Texas Instruments

a selection occurs when there is only one
be executed when the. condition is

done. This

one of the

4-10 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

is usually left out of the diagram. In the design language,
this corresponds to omitting the else clause:

if <condition> then <statement>

In the example, 'pour cup' can be written another way:

begin

if milk is required

then pour milk;

pour tea

end

pour tea

Figure 4-7 Alternative Algorithm for "pour cup"

Here, 'pour cup' is a sequence consisting of two elements:
an ±f_ construct (with only one alternative), and a simple
statement. 'Pour tea' is always executed; 'pour milk' is
executed only if milk is required. The effect is exactly
the same as before.

The semicolon (which, as indicated in section 4.5.1, is part
of the begin ... end construct) separates the two elements
of the sequence, and makes clear where the end of the if
statement occurs. 'Pour tea' is not a part of the Tf"
statement, and hence is not dependent on the condition; TF
is the next item in the begin ... end sequence, and is
executed in all circumstances. If 'pour tea' was to become
part of the ±f_ statement, begin ... end brackets would be
used as in Figure 4-6. The indentation of the text makes
the relationship clearer. The structure diagram shows
without doubt that "pour tea" is an element of the sequence
and not of the selection. The strong visual resemblance of
the diagram to the indented text makes comparison of the two
notations easy.

Texas Instruments 4-11 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.5.3 Algorithm Design

It is common in software design to start with a vague
formulation of the problem (if weather is fine ...) and
gradually home in on a precisely defined, deterministic
solution that specifies every measurement and calculation.
Although a precise solution is finally needed (or it will
never get past a compiler or assembler), a degree of
vagueness (or "controlled imprecision") is actually
beneficial in the early stages, even though it may go
against the grain. A precise formulation too early on may
exclude some vital elements, particularly if the software
designer does not have direct knowledge or experience of the
application. The design language helps here by permitting
partial solutions to be tried out on paper before they
become cast in silicon. The logic of the application can be
precisely formulated before considering in detail how the
individual operations required are to be implemented. The
design language allows the designer to identify and
precisely specify each operation required (reading a
temperature, controlling motors and heaters etc) before an
attempt is made to implement them.

The software design can be compared to the architect's plans
for a building. Although some of the details may be changed
during implementation, plans for the foundations and overall
structure must be established before starting to build
individual rooms.

The algorithm of Figure 4-5 might be part of a system
controlling the environment in a greenhouse (say). The next
stage in design might be to consider whether it is the
inside or outside temperature (or both) that is significant,
whether the temperature should vary according to the time of
day, and what effect other parameters such as humidity might
have.

There are often several alternative ways of writing an
algorithm to perform a particular function. The first
solution hit upon may not always be the best.

Just as a good data structure (see section 4.6) extracts the
essential elements of the information being represented, so
a good algorithm extracts the essential elements of the
process being performed and uses these elements as the basis
of its design.

The best algorithms are usually those that clearly reflect
some underlying structure of the application itself, rather
than imposing some new structure invented by the system
designer. It's quite easy to see why. Unless the
specification for a piece of software is perfect the first

Texas Instruments 4-12 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

time, changes are likely to occur. Perfect specifications
are almost unheard of. If the software is structured along
the same lines as the application, the software will be able
to follow changes in specification quite easily. It will
have some "resilience" in the face of changing
requirements.

A software design that is structured in a significantly
different way to the application is likely to be "brittle",
and to break under the strain rather than adapt gracefully
to new requirements. Changes in requirements may have
unpredictable consequences in different areas of the design,
which will either make adaptation impossible, or will reduce
confidence in the reliability of the final system.

The nature of software aggravates the problem. Software
tends to be applied to complex problems, so that changes are
likely to be complex. It's very easy to actually make a
software change - simply type in something new. It is much
more difficult to ensure that the change is correct.

At first sight it may be very hard to tell the difference
between a change that has only limited effect in an isolated
software function, and a change that can have ramifications
throughout the design.

For this reason it's necessary to pay a lot of attention to
software design. Programming is only a part (a relatively
small part) of the story. Software needs to be designed and
engineered for resilience and reliability, rather than
stacked up like a house of cards.

In fact, there are two types of resilience. Software should
be able to cope with and recover from unexpected conditions
and, ideally, minor hardware faults. Secondly, the system
should maintain its integrity in the face of changes to
parts of the software itself - perhaps in response to new
requirements. A structured design methodology, such as is
presented here, assists greatly. The framework of Component
Software (Chapter 5) and Microprocessor Pascal (Chapter 6)
was designed to the same purpose.

However, a good set of tools is not enough. The system
designer needs to spend a good deal of time understanding
the application he is designing for, and the ways in which
it is likely to change over the lifetime of the system. In
this way, likely changes can actually be anticipated and the
system can be designed to make them possible.

Texas Instruments 4-13 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.5.4 The CASE Construct

There is a version of the selection which permits more than
two choices. This is represented in the design language by
the case construct:

case weather of

sunny: go for walk;

raining: begin

snowing: stay inside

end

Figure 4-8 The CASE Construct

r

a

i

n

i

n

9

put coat on

go for walk

stay inside

The case labels "sunny", "raining", "snowing" specify the
possible values of the case expression "weather", and the
actions to be performed for each ("weather" will have been
declared as a variable of type (sunny, raining, snowing)).
When executing the selection, the case expression is tested
and, according to its value, only one of the operations will
be performed. (Note that the operation for "raining" is a
sequence, enclosed within a begin ... end bracket.)

The case labels can specify a list or a range of values.
There can be any number of case alternatives.

Texas Instruments 4-14 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Case constructs can have an otherwise clause that specifies
an action to be carried out if the case expression has a
value not expressed in any of the case labels:

case number o_£

0..3,8 : add number to total;
4,6,7 : subtract number from total;
5,9 : divide total by 2
otherwise write ('number out of range')

end

Graphically, this is represented as:

number\ 0. .3,8 add number

to total? J

^"V^
subtract

number from

total

%\
divide

total by 2

write ('number
out of range')

Figure 4-9 CASE Construct with OTHERWISE Clause

Texas Instruments 4-15 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

The general syntax of the case statement is:

case <expression> o£

(case label> : <statement>;

(case label> : <statement>
otherwise <statement>

end;

The otherwise clause is optional

4.5.5 Iteration

SOFTWARE DESIGN

The third and final algorithmic construct is the iteration,
or loop. The iteration allows an operation to be repeated
either a specified number of times, or while some condition
remains true. There is an example of the first kind of
iteration in the algorithm of Figure 4-2.

for number of cups required do_
pour cup

Graphically, an iteration can
lozenge—shaped box:

while

buffer

not full

for

number of
cups req

be represented by

Figure 4-10 Iteration Structure Diagrams

Texas Instruments 4-16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Once again, the left hand box represents the iteration as a
whole, which can form a single element in another
algorithm. This single element consists of a (possibly
zero) number of executions of the right hand box. The right
hand box represents an individual execution of the operation
to be performed. The distinction may appear subtle at
first, but it is important. It allows a repeated operation
to be included as a single element of, say, a selection
construct. Like the sequence and selection, the iteration
packages a complex operation as one element with a single
entry and exit point.

Usually, it is a sequence of operations that will be
repeated. As most computer programs carry out some
operation repeatedly (otherwise there would be little point
getting a computer to do it), the iteration is a very useful
construct.

In many iterated operations, it is useful to know which
iteration is currently being performed. Most programming
languages that implement the for construct therefore specify
a for-loop variable:

FOR I := 1 TO 10 DO

BEGIN

START_MACHINE (I);
DISPLAY (START_MESSAGE, I)
END

The variable I keeps a count of the repeated execution, and
can be referred to within the code of the for-loop. This
feature is often required, and this convention will be
adopted in the design language. The general form of the
for-loop, then, is:

for <variable> := <initial expression> t£
<final expression> do

<statement>

<statement> is executed for all possible values of
<variable>, in order, starting at <initial expression> and
ending with <final expression>. <statement> will usually be
a sequence, enclosed within begin ... end brackets.
<initial expression> and <final expression> must be
compatible with the type of <variable>, which can be any
enumeration type (see section 4.6). <initial expression>
and <final expression> are only evaluated once, on entry to
the for loop (so it is not possible to change the value of
<final expression)*, for example, within the loop). If
<initial expression> is greater than <final expression> to
begin with, <statement> is not executed at all. *

* Some programming languages differ slightly from these
conventions. However, some standards must be specified to
maintain consistency in the design language. These
standards represent generally agreed opinion on language

Texas Instruments 4-17 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

A variant is:

for <variable> := <initial expression> downto
<final expression> do

<statement>

Here <variable> is decremented from <initial expression>, which
should be the larger of the two, down to <final expression>.
This may be more useful in some applications.

The alternative form of the iteration construct is:

while buffer is not full do_
read character

The while construct is used where it is not possible, or not

convenient, to find out in advance how many times the loop
must be executed. The general form is

while <condition> d£ <statement>

The condition is checked before each execution of the loop;

as long as it remains TRUE, the loop is executed one more
time.

4.5.6 Structured Programming

Although many programming languages provide additional
control structures, programs written using only the three
constructs described above have been shown to be easily
understood, easily amended, and above all likely to be
correct. This discipline is known as
structured programming.

The three constructs sequence, selection, and iteration are
basic mental structures, representing very closely the way
the human mind analyzes a problem. Consequently they are
very easy and natural to "think in", once the notation has
become familiar. The single entry and exit properties of
each construct mean that "high level", application-oriented
algorithms can be developed without worrying (yet) about
what happens at the detailed level of the operations
described. It is known that the effect of each operation is

design, and most modern languages (including Pascal) behave
exactly like this. When translating a software design into
a particular programming language, it is important to
determine how the language implements the standard
programming constructs - eg does the iteration construct
allow for the special case of zero iterations? Pascal
directly implements all the constructs of the design
language; implementation of these constructs in Power BASIC
and Assembly Language is discussed in Chapters 7 and 8.

Texas Instruments 4-18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

localised, and that the operation will complete and return
control to the high level algorithm without (say) jumping
unexpectedly to another part of the program.

Other notations, such as flowcharts, have sometimes been
used for designing computer programs. Flowcharts may be
useful at the lowest levels of implementation, when coding
in Assembly Language for instance (see Chapter 8). However,
flowcharts are designed to represent the way machines
operate rather than the structure of an application. Trying
to understand a problem using flowcharts involves bending
the mind, and the application, to work in the way machines
do. This may be necessary at some point, but it is not
advisable in the earlier stages of a design. Flowcharts
concentrate on the details of implementation, and have no
way of representing structure.

4.6 DATA

Data elements, which are implemented in the computer simply
as a collection of bits, can be used to represent any kind
of information. Often the information represented will be
numeric, but this need not be the case. A single bit may
signal the state of a digital input or output line; or a
group of bits may be coded to represent text or any other
information.

Most programming languages provide some pre-defined data
types (eg FORTRAN defines integers and real numbers) that
can be used directly in a program. A data type definition
can be regarded as a code that translates some kind of
information into an internal representation in the
computer. Some languages allow users to define new data
types, either by combining already existing data types into
new structures, or by specifying the characteristics of a
new data type from scratch. These capabilities are very
useful when developing software designs.

Structured data types allow related data items to be grouped
together and referred to as a single entity. This is much
easier than remembering that the information about (say) a
piece of production machinery is contained in several
different integer and real variables, all with different
names. Programs with well thought out data structures are
likely to be more reliable and much easier to maintain.

Even where the programming language chosen for
implementation does not support flexible data structures,
such structures can be worked out by developing a paper
design using a design language. This can then be translated
into the implementation language. This method, which seems
roundabout, will often result in a faster development

Texas Instruments 4-19 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

turnround than coding directly in the implementation
language. Certainly, it will produce a more reliable
system.

depends on identifying the essential
o be represented, and choosing the most
tation in terms of numbers or binary

if a temperature is to be input from
a microprocessor system, how should it
the system need to know the actual

To what precision? Or is a single bit,
temperature is above or below some
f

Effective use of data

elements of what is t

appropriate represen
digits. For example,
the outside world to

be represented? Does
temperature value?
indicating that the
threshold, sufficient

HIGH

LOW or

75

20

60.25

or

1.32

Figure 4-11 Data Representation of a Temperature

This decision will, of course, dictate the choice of sensor
used to measure the temperature.

Data items can also represent things that are much more
abstract than a temperature - for example the root mean
square of a collection of statistical figures. It is this
ability to represent and manipulate anything that can be
defined exactly that gives software its power. Data items
can represent things which only have meaning within a
particular piece of software - intermediate results in a
calculation, for example, or codes representing which of a
number of possible operations should be performed.

How the data types are chosen defines the environment within
which software algorithms can work. A program can only
manipulate things which have previously been defined as data
items. Hence, data design is the key to any piece of
software.

4.6.1 Data Types

The first step in building a software design is to identify
the different kinds of information that need to be dealt
with, and to define appropriate data types. A
type declaration identifies a particular type of variable
that will be dealt with in the program, and the range of

Texas Instruments 4-20 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

values that variables of this type might have. For example,
a particular system might need to make decisions according
to what day of the week it is. It makes sense to define a
data type called "day":

type day = (Monday, Tuesday, Wednesday, Thursday,
Friday);

The items in brackets identify the values that variables of
type "day" might have. Note that this declaration does not
actually specify any variables of type "day". It simply
introduces the notion that variables of this type can
exist. After this declaration, we can talk about "days" in
the software design and know exactly what is meant. (In
ordinary conversation we think we know what days are, but in
software it's necessary to be more precise. The definition
makes clear that we're talking about days of the week, not
days of the month, and in particular that we're talking
about workdays: Saturday and Sunday aren't included.)

At this stage it is neither necessary nor desirable to
consider how this data type will be implemented. Data items
of type "day" must be capable of taking five different
values representing the days of the week. These items could
be stored as the values 0-4, 1-5 or as arbitrary patterns of
bits. That decision can be made later. At this point it is
necessary simply to understand what's needed to satisfy the
application.

From the computer's point of view, what has been said so far
is:

(1) There will be data items that can take one out
of five possible values

(2) The designer is going to refer to these as
"day"s

(3) The designer is going to refer to the
different values of these "day"s as Monday,
Tuesday, Wednesday, Thursday, Friday.

The general form of a type declaration is:

type <name> = <type definition>;

The angle brackets indicate a generic name; in an actual
type statement, "<name>" will be replaced by an actual type
name. The form "(<value list>)", as in the "day"
declaration, is one kind of type definition. Other kinds of
type definition are presented below.

For the purpose of a software design, the following data
types can be regarded as predefined:

Texas Instruments 4-21 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

integer (-32768..32767)
real (= floating point)
char (= ASCII character set)
boolean (= TRUE or FALSE)

4.6.2 Variables

Type declarations simply specify a kind of information that
is to be represented. To define actual data storage items,
or variables, of a particular type, a variable declaration
is needed:

var startday, endday : day;

This statement declares two variables, which will ultimately
be storage locations within a computer. These variables are
called "startday" and "endday". They are of type "day",
which means that the values they can take are Monday,
Tuesday etc. Whatever implementation is later decided on
for "day", that amount of storage and that representation
will be assigned to "startday" and "endday".

The general form of a variable declaration is:

var <variable list> = <type>;

Separating out the type declaration from the var declaration
means that the decision on how to represent "day"s is taken
once and once only. There's no need to take this decision
again (perhaps differently - particularly if more than one
designer is working on the same system) every time a
variable of this type is needed. Also, if the requirements
change and it's necessary (say) to include Saturday and
Sunday, this can be done simply and reliably throughout the
system simply by changing the one type declaration.

This is a relatively trivial example; but multiplied by the
thousands of decisions required during implementation,
clearly thought out data typing can make the difference
between manageable programs and intractable ones.

<type> in the var declaration need not be a type name, but
can be an explicit type definition:

var startday : (Monday, Tuesday, Wednesday,
Thursday, Friday);

However, if more than one var declaration uses the same
right hand side defintion, it is preferable to define a
type, and then use the type name in the var declaration.

Texas Instruments 4-22 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Where the values of a data type follow a predefined
sequence, only the start and end need be enumerated:

type weeknumber = (1..52);

Such types are called subrange types because they are
defined as a specific subrange of an already defined type.
The above declaration works because the type "integer",
consisting of the values -32768, -32767, -1, 0,
1,....32766, 32767 (for a 16-bit processor) is predefined.
"Weeknumber" is a subrange of integer.

It is also possible to define subranges of type "day":

type first_half_week = (Monday..Wednesday);

4.6.3 Operators

Having defined data items, it's necessary to do something
with them. In a program, variables of particular types can
be combined using operators. In the statement

a = b + c

"+" is an operator. "+" means "add the values of b and c to
give a third value".

In ordinary mathematical language, the above formula is
simply a statement of fact: "a is equal to b plus c". In
computer language, it's more likely to signify an operation:
"make a equal to the value of b plus c", or, to put it
another way, "a becomes equal to b plus c". This is one of
the most common of algorithm statements, namely the
assignment statement. Here "=" is an operator too - the
assignment operator, whose effect is to assign the value of
whatever expression is on its right to the variable on its
left.

To avoid confusion between the assignment operator and the
mathematical "=", which mean quite different things, modern
languages such as Pascal use a special symbol, ":=", for
assignment:

a := b + c

read, "a becomes equal to b plus c". This convention will
also be used in the design language. The left hand side of
an assignment statement must always be a variable, because a
value will be assigned to it. However, the right hand side
can be an expression: that is, any combination of variables,
operators and constant values that can be evaluated:

Texas Instruments 4-23 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

5*a + b - c/2

The general from of the assignment statement is

<variable > := <expression>;

The expression should evaluate to a type that is compatible
with the variable on the left hand side. It makes no sense

to assign a temperature value to a day of the week.

Some programming languages make no check that the type of
the expression is compatible with the type of the variable:
they simply assign the bit code representing the value of
the expression to the storage location for the variable.

While this can be made use of in special cases, ninety per
cent of the time an unmatched statement indicates that the
programmer has made an error. Programming languages that
check for exact compatibility of types in assignment and
other statements are said to implement strong data typing.

Even when an unmatched statement is written deliberately *,
it is a rather risky operation: it depends on a certain
relationship between the internal bit representations of the
two data types (some examples of internal representations
are given in Chapter 8). If the software is transported to
another machine, or even if the compiler is changed, this
relationship may no longer hold. In developing a software
design, it is wise not to make use of such relationships; or
if they are used, to isolate them to certain routines which
are known to be machine dependent.

In general, an operator will apply only to certain data
types. In developing a software design, all the standard
mathematical operations (+-*/) (* = multipy, / = divide)
can be regarded as pre-existing for numeric data types. But
multiplying days of the week makes no obvious sense, either
in the real world or in a software design. Any operations
to be performed on non-numeric data types must be defined,
perhaps as separate procedures (see section 4.10 below).

Types such as "day" and "weeknumber" (and "integer") are
called enumeration types, because their possible values are
specified by enumerating them, in sequence. The order of
values in the sequence is significant. The operators PREC
(preceding) and SUCC (succeeding) can be regarded as
pre-defined for all sequenced data types:

eg PREC(Wednesday) is Tuesday

* Microprocessor Pascal, which is a strongly typed language,
provides a type transfer operator which can be used to
override type checking. However, the programmer must
explicitly tell the compiler that he is doing something out
of the ordinary, and exactly what he is doing (Section
6.6.14).

Texas Instruments 4-24 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

SUCC(Thursday) is Friday

The assignment operator can also be applied to all data
types. More complex operations can, of course, be devised,
but they must be specified precisely.

Subrange types can be used to specify the range and
precision of numbers that will be used in calculations:

type temperature = (-50..+100);
pressure = (0..900);

(Note that the keywords type, var etc need not be repeated
for multiple declarations. The declarations are separated
by semicolons.) For Pascal designs, the compiler can
optionally perform automatic checks to ensure that variables
never exceed the bounds specified.

In addition to the type "integer" the numeric type
"longinteger" (-2147483648..+2147483647, ie 32 bit signed)
is often useful, and is directly implemented in
Microprocessor Pascal and in some other languages.

Obviously, use of certain facilities of the design language
will be conditioned by what is expected to be available in
the final implementation language - for example, is a
floating point package available? Nevertheless, the freedom
of the design language is useful at least in the early
stages of working out what is needed to implement the
application.

Note that "real" is not an enumeration type. With
enumeration types, it is always possible to identify a
unique predecessor and/or successor for any value (eg with
integers, 5 is preceded by 4 and succeeded by 6). However,
what is the successor of the real number 2.414? Is it 2.415?
2.4141? or 2.41401? Given any two real numbers, it is
possible to define a third real number that lies between
them in value (up to the limit of precision of the
computer). The representation of real numbers follows a
completely different principle from the representation of
integers. Real numbers are stored differently within the
computer,* and cannot, for example, be used as an index to
an array (see below, section 4.7.2).

The discipline of data typing makes it much harder to make
mistakes - such as using variables in the wrong place - and
much easier to find mistakes if they are made. Data types,
and variables, can also be given meaningful names (in the
design language at least, and in some implementation
languages). With variables called I, J, K, or even K2BCPLZ,
and all implemented as (say) integers, it's quite easy to
mistake a variable representing a day of the week for one

* The representation of real and other numbers is discussed
in Section 8.13.2

Texas Instruments 4-25 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

representing (say) the mean of 25 temperature values, and
hence to perform a completely inappropriate operation. Such
errors can easily propogate right through to implementation,
and may only be discovered when the system doesn't work.
For software designs executed in Pascal, the compiler will
automatically check compatibility of data types.

4.6.4 Data Design

Designing good data types and data structures is not easy,
and there is no standard way to go about it. It is perhaps
the biggest challenge of software design.

Some languages (eg Pascal) implement the data type
constructs described here directly. Others implement only a
small range of data types (such as INTEGER and REAL).
Whichever language is to be used for the final
implementation, the software design can be developed using a
design language, as described here. When the design is
complete, each data type can be "mapped" onto a suitable
implementation in the programming language to be used.

One advantage of this approach is that much of the design
work is done in a medium that is not tied to any particular
hardware implementation. This means that the design will be
much more transportable. It also means that details of the
implementation which might sidetrack design thinking at this
stage (such as precise syntax and punctuation, and the
idiosyncracies of a particular programming language) can be
left until a later stage.

Besides documenting the system and the design process, the
software design can be referred to when making changes to
the system. It contains relevant information that may be
lost or obscured in implementation. The design is also a
starting point for implementation using different
programming languages.

4.7 DATA STRUCTURES

Single data items, of whatever type, are of little use in
real applications. Usually, the data required to describe
anything in the real world is much more complex than this.
It is useful to group single data items together into data
structures. As with program algorithms, there is a set of
simple constructs which can be used in a variety of
combinations to represent data structures of any
complexity. The principle data constructs are the record
and the array.

Texas Instruments 4-26 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.7.1 Records

The record enables data items that are associated in some
way to be grouped together, and referred to by a single
name. A record is simply a collection of (probably
dissimilar) data types.

Consider an application that controls a number of pumps at a
self-service filling station. A record can be defined to
contain information about a pump as follows:

type pump_record =
record

status : (off, filling, completed);
grade : (regular, premium, unleaded);
gallons : (0..30)

end;

var pumpl, pump2 : pump_record;

The type declaration defines the structure of the record;
the var statement declares two record variables, pumpl and
pump2, of the newly defined type "pump__record". The record
construct is another form of <type definition>, as described
in section 4.6.1. "end" closes the record definition.
"_" is used to make pump_record into one word.

The record in this example contains three fields (status,
grade and gallons), each of which has a unique name. The
record groups, in one place, the status of operations at a
particular pump (whether the pump is off, in the process of
filling, or has completed); the grade delivered; and the
number of gallons delivered.

The status information for the first pump can be referred to
unambiguously as "pumpl.status". ".status" is called the
field qualifier. All of the information about this pump can
be referred to collectively as "pumpl". This is a very
useful shorthand when dealing with large and complex
collections of data.

The fields in a record can be of any type, including
structured types. This allows the building of very powerful
data structures.

Texas Instruments 4-27 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Types of fields in a record can be predefined, eg:

type status_values = (off, filling, completed);

type purap__record =
record

status : status values;

end;

The algorithm for the filling station application involves
continually checking the status field of each pump record in
turn. When a status of "completed" is read, the program
calculates the cost, displays it at the cash desk and resets
the pump:

if pumpl.status = completed then
begin
calculate_cost;
display_cost;
reset_pump_l
end

calculate_cost, display_cost and reset_pump_l are all
operations that are expanded elsewhere in the software
design.

The cost calculation is based on the "grade" and "gallons"
fields of the pump record and a table of prices.
"Calculate_cost" can be expanded as follows:

cost := pumpl.gallons * cost_table[pumpl.grade]

"cost_table" is an example of another structured data type
called the array.

4.7.2 Arrays

An array is an ordered list of data items of identical
type. The whole array is given one name; an individual
element of the array is referred to (referenced) by giving
the array name and an index or subscript, which identifies
which element in the array is required.

type buffer = array [1..80] of char;

var buf1 : buffer;

or, equivalently

Texas Instruments 4-28 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

var bufl : array [1..80] of char;

"char" is a pre-defined type. The number of elements in the
array (80 in this case) is specified by listing the possible
values of the index, in square brackets.

The fourth element of the array (ie, the fourth character in
the buffer) can then be referred to as "bufl[4]"; this
element is of type "char".

In the design language (and in Pascal), any enumeration type
can be used to index an array. So "cost_table" (above) is
declared:

var cost_table : array [regular, premium, unleaded]
of price;

The reference cost_table[premium] will then give the price
of premium grade ("price" is a type defined elsewhere).

To gain a feel for the notation, and its practical
application, it's worthwhile constructing a few trial
examples. For example: design a record type named
"call_record" to contain all the essential information about
an individual telephone call (originating number,
destination, distance etc). Declare two or three record
variables of this type. Declare an array to hold the tariff
information, and write the algorithm to calculate the cost
of the/ call. Declare another array to hold, for every
subscriber, the current bill. Write the algorithm statement
to add the cost of a new call, to the bill for the
appropriate subscriber.

What is inside the square brackets of an array declaration
has the same form as the right hand side of a type
declaration. In fact, a type name can be used in place of
an explicit list of values. An array containing the daily
receipts of a store can be declared:

var daily__takings : array [day] of money;

(assuming the previous declaration of type "day", as in
section 4.6.1). The receipts for Tuesday can then be
referenced by

daily_takings [Tuesday]

Arrays can be employed for any list of identical items. The
elements can be any data type, including records and other
arrays.

Texas Instruments 4-29 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

It is convenient to use the same type to declare an array
and any variable used to index it:

type buf_size = 1..80;

var bufl : array [buf_size] £f character;

var index : buf_size;

This makes changes to the buffer size much easier, and also
aids documentation. With an appropriate choice of names,
designs such as this can be largely self-documenting. If
this design is turned into Pascal, compiler checks can be
used to ensure that the array index never exceeds the
specified bounds in execution.

With an index variable, the same portion of a program can be
used to operate on different array elements, according to
the value of the index. This is relevant to the gas station
example (above). As it stands, a separate piece of program
needs to be written for each pump. Instead of declaring
pumpl, pump2 as separate variables, declare an array of pump
records:

type no_of_pumps = 1..10;

var pump : array [no_of_pumps] of pump_record;

var pump_no : no_of_pumps;

The same statements can then be used for any pump, first
setting pump_no to the required value, then referring in the
program to:

pump[pump_no]•grade

for the grade field of the pump specified by pump_no. The
notation works like this:

pump is an array
pump[pump_no] is an element of the array, and is a record
pump[pump_no].grade is a field of this record, and is of

type: (regular, premium, unleaded)

Any array can be indexed by adding "[index]"; any record can
be qualified by adding ".field". By nesting definitions in
this way, data structures provide powerful tools for
managing the complex data found in the real world.

It is not necessary to grasp the whole of a large data
structure at once. Beyond a certain point, it is mentally
impossible. Using the techniques described here, if each
level of the structure is correct and well understood, the
designer can be confident that the whole is correct. This
is the principle on which most modern software design

Texas Instruments 4-30 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

techniques are based, and it applies to algorithms and
programs as well as data.

4.7.3 Dynamic Data Structures

Returning to the filling station example, one problem
appears in the original design. In order to save the cost
information, a new customer cannot use a pump until its
previous customer has paid his bill. Several solutions,
however, are possible. For example, an array of
pump_records could be defined for each pump, one record per
customer. A decision will then have to be made as to how
many customers will queue at each pump. In another
solution, the cost information can be stored in a separate
data structure (or printed out) as soon as it becomes
available, and the pump cleared.

A third possibility is to structure the data not by pumps,
but by customers — one record per customer. A customer
record might look something like this:

type customer record =

record

pump_number
status

grade
gallons

end;

no_of_pumps;
(off, filling, completed);
(regular, premium, unleaded);
(0..30)

Each time a customer arrives, a new record is created. An
array of customer records could be declared. These records
could be assigned to customers as they arrive. However,
customers leaving would create "holes" in the array. This
problem can be solved (eg, by a "tidying up" algorithm).
Such a solution, however, is messy. In the array structure
in this application there seems to be no obvious meaning for
the index. This is one indication that an array is not the
right structure to use in this application.

A structure called the list is more appropriate to the
situation spelled out above. Records and arrays must have
their size (the amount of storage allocated to them) defined
when the program is written. These allocations cannot be
changed while the program is running. Lists, on the other
hand, consist of data elements (usually records) which are
dynamically allocated from a pool, or heap, of storage space
while the program is executing. Elements can be deleted
from anywhere within the list when no longer required, and
the storage will be returned to the heap. Thus, customers
can be added to the list when they arrive, and deleted when
they leave. The data structures change dynamically to
reflect the real situation.

Texas Instruments 4-31 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Lists, and other useful data structures such as trees, are
described in more detail in the references given at the end
of this chapter (in particular see reference [1] in the
Bibliography, section 4.13). Lists, and other dynamic data
structures, are generally managed through another data type
called the pointer. Pointers and the structures they can be
used to implement are described in reference [1], and in the
Microprocessor Pascal System User's Manual.

The different solutions illustrate a point made earlier:
that data can be structured in many ways, and it is worth
exploring the alternatives. Data design determines the
basic elements with which the system will work and affects
both algorithms and input/output. The best way to arrive at
an optimum solution is to be aware of the choices that can
be made.

4.7.4 Data Diagrams

The graphical notation described above for algorithms can
also be used for data structures. The sequence notation can
be used to represent records, and the iteration construct to
represent arrays. Thus, the array 'pump' of 'pump_records'
in section 4.7.2 can be drawn:

Figure 4-12 Data Diagram for an Array of Records

The selection construct can be regarded as representing the
record variant, a record structure in which part of the
record can have alternative forms. For example, a personnel
record for a college might need to contain different
information depending upon whether it represented a student,
faculty member or a member of the administrative staff
(Figure 4-13).

Texas Instruments 4-32 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

P
e

r

s

o

n

n

e

I

r

e

c

o

r

d

name

age

college

status

(status?)
v student s

t

u

d

e

n

t

graduate
status

year

\\\ V
w \ f

a

c

u

1

t

y

\% \ tenure
VS

rank

a

d

m

i

n

position

length of
service

Figure 4-13 The Record Variant

Texas Instruments 4-33 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

In the design language, this can be written:

type personnel_record =
record

name : narae_record;
age : 0..100;
college : (cas, tech, music, jour);
status : (student, faculty, admin);
case status of^

(graduate status
year

(tenure
rank

(position
length of service

student

faculty

admin

end

status__type;
1..7);
boolean;
rank__type);
position__type;
1..50)

end

assuming the previous definition of:

type status__type = (graduate, undergraduate);
rank_type = (inst, asst, assoc, prof);
position type = (asstdean, dean, chairman, other);

According to the value of status (called the tag field),
only one of the variants will be used to determine the
structure of the record in any particular case.

Examples of further constructs which can be used (including
the pointer type and dynamic data structures) are given in
the Microprocessor Pascal System User's Manual. The
constructs of Pascal are designed to be "universal", and
many of them can be adapted for direct use in the design
language.

4.8 DESIGN APPROACHES

A completed software design consists of a complex
multi-dimensional mass of information, ranging from overall
structure to details of implementation. When constructing
such an edifice from scratch, what is the best way to

approach it?

At the start, two 'ends' of the problem are known:

1) What the system is supposed to do, and

2) The basic operations that the processor is
capable of performing.

Texas Instruments 4-34 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

This leads to two approaches to software design:

1) Starting from the problem and working down
towards the details of implementation. This
involves splitting the problem into smaller
segments, considering each in turn and
further subdividing until the basic processor
operations are reached.

2) Starting from the basic processor
instructions, putting them together into
larger units that will perform more complex
operations, and so working up towards a
solution of the complete problem.

The second method is the traditional way of designing
software. It has been called the 'bottom-up' approach. For
example, if it was thought that a system required a keyboard
input routine and a display routine, these functions would
be written, together with other routines, and used as
building blocks to construct larger modules which would then
be put together to make the complete system.

However, it has been found by experience that the first
method, 'top-down' design, produces software that is better,
clearer and easier to maintain. The problem with bottom-up
design is that usually not very much thought is given to the
precise requirements of each function, and the ways in which
functions will fit together, before they are implemented.
Therefore the designer ends up with blocks that are of
incompatible size or shape, and he either has to reconstruct
the blocks, or make the best of what he has and design some
special pieces of software to overcome the problems of
incompatibility. This does not lead to very robust
systems.

The major problem of software, unlike other technologies, is
not in the actual construction of functions. Once a
requirement has been precisely identified, implementing a
stand alone piece of software to perform it is fairly
straightforward. The problem lies in organizing a
collection of functions so that they will cooperate to
perform a complex task. This is the problem that is
addressed by top-down design. The requirement and the
interface for each function is identified before it is
implemented.

Actually, pure bottom-up design is not possible. The
designer must have given the problem some 'top-down' thought
or he would have no idea what building blocks to construct.
What top-down design does is to make this thought much more
systematic. It provides the designer with some tools to
attack the problem (such as the design language), which are
better than his bare hands. Traditionally, the only

Texas Instruments 4-35 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

languages available for design were programming languages,
which typically required so much attention to machine detail
that the major issues were obscured. Also, early
programming languages were unstructured, so that it was
difficult to isolate and focus on particular design issues
or to look at the system as a whole without becoming
involved in a mass of detail.

Design languages and notations like those
have largely solved this problem.

introduced above

A design might be conceived initially like this:

s

y

s

t

e

m

initialise

c

o

m

m

a

n

d

I

o

o

P

take

appropriate
action

Figure 4-14 Initial Design Algorithm

This could be a device which, after initialization, would
wait for an operator command, perform the appropriate
action, and then return to wait for the next command. The
device is specified in very general terras, but its basic
operation is already clear.

The operator interface might be a teletype keyboard, on
which the user would type a command telling the system what
to do. Suppose a command consists of a line entered on a
teletype keyboard, terminated by a carriage return (CR).
The device prompts the operator for a command by outputting
'?' to the teletype.

Texas Instruments 4-36 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

"Read Input" could then be expanded like this:

r

e

a

d

i

n

P
u

t

output"?'

r

e

a

d

c

o

m

m

a

n

d

read

character

place
character

in buffer

while

character

not "CR

i

n

P
u

t

t
o

b
u

f
f
e

r

read

character

place
character

in buffer

Figure 4-15 "Read Input" Algorithm expansion

The terminal boxes of this diagram can be
until a complete solution is derived.

further expanded

Because of the single entry and exit properties of the
structured programming constructs used, the designer can be
confident that however he expands the design of, for

example, the box labelled 'take appropriate action', it will
not affect any of the other boxes in the diagram, or the
structure of the diagram.

Texas Instruments 4-37 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

It is this property of structured notation which makes it
possible to hold off consideration of details and to design
from the top downwards (or, more accurately, from
application towards implementation).

In a practical system, top-down design must often be
tempered with bottom-up considerations. It is impossible to
start designing at the top without some idea of what is
possible at the bottom. For example, it may be necessary to
code and try out an I/O routine or a critical piece of code,
in order to check the feasibility of the design. With a
complex problem, it may be necessary to attack the
intractable mass in the middle from both ends. However, the
most important progression in design remains from problem
towards implementation.

4.9 BLOCK STRUCTURE

In a software design, the general form of any programming
unit can be expressed as follows:

TYPE DECLARATIONS

VARIABLE DECLARATIONS

PROCEDURE STATEMENTS

Such a program unit is called a block. The type
declarations specify the types of data that will be used in
the program (in addition to predefined types); the variable
declarations specify actual data items of these types; and
the procedure statements define what the program will do
with these data items.

Most modern programming languages are block-structured -
that is they make use of the block construct to modularise
programs.

The advantages of blocks become apparent when considering
how a large software design can be broken down into smaller
parts for separate implementation (by the same programmer or
by others). Each part can be implemented as a separate
block, with its own types, variables and procedure
statements.

A block encapsulates the complete programming environment
for a particular program unit. The declarations made within
a block apply only to that block. They constitute a local
"language" invented and spoken (or rather written) by the
programmer of that block. This language (the types of data
permitted, the actual data items declared, and the
procedures available for doing things) is designed to be

Texas Instruments 4-38 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

appropriate to the specific problem to be solved by that
block, and is unknown outside the block.

Thus different parts of the same software design can be
developed separately with no possibility of interference or
confusion. It's even possible for two programmers to use
the same name for two completely different variables.
("TEMP", for example, could be chosen to represent a
temperature by one programmer, and to represent a temporary
variable by another. While such name duplication should not
be encouraged, it's difficult to ensure that it doesn't
happen among the many separate decisions that are made in
developing a software design.) There are standard and
controlled means by which information is exchanged between
different blocks.

The block construct can be used wherever a self-contained

programming unit is to be defined. A complete program is a
block; so is a subprogram. Blocks can be nested one within
another.

A smaller block nested within a larger can be regarded as
existing within the environment (or context) of the outer
block. Thus, type and variable declarations in the outer
block apply in the inner block. However, local declarations
override global ones: if by chance a variable is declared in
an inner block with the same name as one already declared in
an outer block, the local declaration applies in the inner
block. This is shown in Figure 6-2, Section 6.3.6.

The block structure defines a hierarchy, or tree, of
relationships between programming units. These are called
lexical relationships. In Figures 6-2 and 6-3, the lexical
parent of PROCEDURE P is PROGRAM A (both PROCEDURE P and
PROGRAM A are blocks). PROCEDURES P and Q are lexical
brothers; P, Q and A, as well as B and R, have SYSTEM X as a
common lexical ancestor. This lexical relationship simply
describes the (static) context in which the individual

blocks are declared, and the data items, types etc which
they share. It does not determine the (dynamic) order in
which blocks will be executed when the system is running.

Block structure is a way of managing complex logical
entities by splitting them into smaller entities with
clearly defined relationships. From experience, this kind
of structure is required to manage all but the smallest
software systems.

4.10 PROCEDURES AND FUNCTIONS

The most common way of implementing a smaller block within a
larger program is as a procedure or function. A procedure

Texas Instruments 4-39 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

(sometimes known as a subroutine) is a separate block that
is declared within a program. A name is assigned to a
procedure to enable the user to reference it.

Declaring a procedure is similar to defining a new statement
or operation in the programming language. Once a procedure
has been declared it can be activated or called from the

main program simply by writing its name. For example, if
the programmer has written a procedure called
calculate_mean, to find the mean of a series of numbers, he
can simply write

calculate_mean;

in the main program wherever this operation needs to be
performed. (Some languages require a keyword, such as CALL,
to precede the procedure name.)

In a case like this, the operation will probably have to be
performed on several different sets of numbers which are
stored as different variables. This can be accomplished by
passing variable names as parameters to the procedure in
order to specify the data objects on which it is to operate:

calculate_mean (array_of_numbers)

Later the same procedure might be called by:

calculate_mean (different_array_of_numbers)

When a procedure is declared, the number and type of
parameters are specified in the procedure header. The
variable names written here are used in the statements in

the procedure body. They are the formal parameters. When
the procedure is executed (called), the formal parameters
will be replaced by the actual parameters specified in the
procedure call.

Procedure declaration:

procedure seq (a : integer; b : real; c : array [1..80]
of char);

begin

.

a := 5;
b := 6.2;
c[a] := 'p';
.

end;

Figure 4-16a Procedure Declaration

Texas Instruments 4-40 October 1981

(* procedure body *)

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

Procedure call:

seq (x, y, z)

Figure 4-16b Procedure Call

The number and type of the actual parameters must exactly
match the formal parameters. Thus, X must be declared as
"integer", Y as "real" and Z as an "array [1..80] o£ char".

A function is a special type of procedure that returns a
single value of a particular type. ("function" underlined
has a specific technical meaning, as described here.
Elsewhere in this book, "function" is used in a more general
sense.) A function can be treated as a variable and
included in an expression, even though calculation of the
value to be returned involves some algorithmic process. The
type of the function is specified in the function header:

function number (a : boolean; b : char) : integer;
begin

end;

and the function can be written as part of an expression:

p := 5 * number (true, 'x')

Figure 4-17 Function Declaration and Reference

Besides variables, values or expressions can usually be
passed as parameters, provided they are of the right type.
Procedures can declare local variables which are only used
within the procedure. In a block structured language the
procedure also has access to the variables of the program in
which it is declared. In Pascal, procedures can be declared
within procedures.

Procedures form a natural method of writing modular
programs, particularly if they can be nested (declared
within other procedures) to any depth as in Pascal. In
implementation, procedures save code. An instruction
sequence that can be used in several places in the program
only occurs once in the object code.

Texas Instruments 4-41 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

seq(5,2.4,buffer);

CALLING PROGRAM

-•procedure seq(a:integer;b:real;
c:array[1..80] of char);

begin

end;

PROCEDURE CODE

Figure 4-18 Procedure Call Mechanism

When a procedure call is executed, the processor transfers
execution to the procedure, saving the address of the the
calling instruction in the main program. Once the called
procedure has finished, the processor returns to the
statement in the main program following the procedure call
and resumes processing of the main program.

Quite apart from code saving, procedures are a useful way of
structuring a program, and may be used even when the
procedure is called only once. In a block structured
language such as PASCAL, variables declared within a
procedure are completely local to that procedure, and cannot
interfere with the operation of a procedure that is
separately declared. (Procedures still have access to the
variables of the program or procedure that contains them, so
this has to be carefully controlled.)

Most programming languages allow a program to make use of
procedures defined elsewhere in the system, perhaps in
another program module. Such procedures are declared within
the program block which is to use them by some form of
EXTERNAL declaration:

procedure select (a : integer; b : real); external;

The standard model for a program block (section 4.9) should
therefore be expanded as follows:

TYPE DECLARATIONS

VARIABLE DECLARATIONS

EXTERNAL DECLARATIONS

PROCEDURE STATEMENTS

Texas Instruments 4-42 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.10.1 Parameter Passing

There are two distinct ways of passing parameters to a
procedure or function. Passing by value will simply cause
the value of the actual parameter to be found and assigned
to a new storage location in the procedure or function. Any
changes made to the formal parameter variable in the
procedure will have no effect on the actual parameter
variable in the calling program. In fact, actual parameters
passed by value can be arbitrary expressions (of appropriate
type):

test (5*x + 2)

Passing by variable reference (sometimes called "passing by
location") transfers not a value, but the address of the
actual parameter variable in the calling program.
Operations in the procedure are performed using the actual
variable in the calling program, not a local copy. Results
can therefore be returned from the procedure to the calling
program (by assigning a new value to a parameter). However,
the call to "test" above would be illegal in this case as
the actual parameter must be a variable.

A simple procedure will illustrate the difference:

Declaration:

procedure modify (x : integer);
begin

x := 2 * x

end;

Call:

modify (a)

If "x" is passed by value, there will be no effect on "a".
If "x" is passed by variable reference, "a" will be doubled
by the call to modify. However, a call such as "modify
(5*a)" would be illegal. The differences are summarised in
Table 4-1.

Texas Instruments 4-43 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

Allows expression as
actual parameter

Allows variable as

actual parameter

Modifies value of actual

parameter variable in
calling program
(ie returns results)

SOFTWARE DESIGN

METHOD OF PARAMETER PASSING

VALUE

N

VARIABLE

REFERENCE

N

Table 4-1 Methods of Parameter Passing

When writing a procedure or function, it is important to be
clear about the method of parameter passing. If a value is
to be returned, variable reference must be used. If not,
value passing gives additional security against accidental
modification of the calling program's data.

Some programming languages provide only one method of
parameter passing, or determine the method required from the
context. But problems can arise: in some versions of
FORTRAN it's possible to change the value of a constant by a
call such as "modify (5)". Strongly typed languages avoid
such anomalies by checking the correspondence of parameter
declarations and calls.

Most modern languages allow the programmer to choose the
method of passing for each individual parameter. In the
design language, parameters to be passed by variable
reference should be identified in the procedure declaration

by the prefix "var":

procedure example (var x : integer; y : real);

All other parameters are assumed to be passed by value. In
the above, "x" is passed by variable reference and "y" by
value.

4.11 REAL TIME SOFTWARE

Much of what has been described so far applies to sequential
software. An algorithm Is a sequential construct,
representing a single thread of logic designed to perform a

Texas Instruments 4-44 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

particular function.

But purely sequential systems are of limited use in a
parallel world. In real life, many things are happening
simultaneously. Microprocessor applications in particular
often need to be aware of, and to control, several things
that don't have a simple, one-after-the-other relationship
in time. A system controlling an industrial process may
need to monitor several different temperatures, pressures
and flow rates, and take appropriate action to control the
process. It may need to open and close valves and start
pumps in a predetermined sequence. And it may need to
respond to commands from an operator, which can come at any
time.

A microprocessor will probably have the capacity to do all
this. The problem lies in organizing its time and other
resources so that everything gets done when it is required.
A general solution to this problem requires something more
than the sequential modularity described above. What is
required is a modularity based on application function, that
comprehends both the sequential and parallel nature of the
world.

A procedure call is a sequential mechanism: the calling
program suspends execution until the procedure has
completed. But real time applications do not split easily
into PROCEDURES and FUNCTIONS with a simple sequential
relationship. Squeezing such applications into a sequential
package means a departure from natural program modularity,
and usually results in "brittle" designs which are difficult
to test and may be unreliable in operation.

It would be much easier to define individual tasks to be
performed as separate program blocks, which could be
considered to be executing at the same time. Concurrency
permits this. Separate tasks can be written as individual
processes. When the system is executing, processor time and
other resources will be shared out automatically between the
processes according to demand and priorities set by the
designer. This sharing out of processor time is known as
scheduling.

Each process is a separate sequential block which can be
written separately from the other processes. Processes can
signal to each other and exchange messages to coordinate the
operation of the system.

A brief description of semaphores, executives and interrupts
is given here. Concurrency and its implementation is
described in more detail in the following chapter.

Texas Instruments 4-45 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.11.1 Semaphores

A semaphore is a signalling mechanism that represents an
explicit event. It can be used for signalling between
individual processes, and between processes and the external
world.

Semaphores can Indicate the occurrence of any kind of event
that is of importance to more than one process in a system.
A semaphore may indicate an external event - eg
"character_received" from a terminal device - or an event
purely internal to the software of the system - eg
"text_buffer_full".

There are two primitive operations that can be performed by
a process on a semaphore - signal and wait. A process that
completes an event signals the appropriate semaphore; the
semaphore "remembers" that the event has taken place.
Another process can execute a wait operation on the
semaphore, which means that it will be suspended until the
semaphore is signalled from somewhere else. (If the
semaphore has already been signalled, the waiting process
will be released immediately and can continue.) Thus a
semaphore is a simple signalling mechanism, mutually
understood by two or more processes:

Process #1 Process #2

for i := 1 to bufsize do .

begin .
wait (char_received) ; ^^j^wait(buffer_full) ;
read_char (a); ^^^^"^ process_buffer;

char_ ^ buffer [i] :=» a bufferfull
received end;

signal (buffer_full);

Figure 4-19 Semaphore Signalling

Texas Instruments 4-46 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

A process can synchronize its operation on an event taking
place anywhere else in the system. A semaphore is a very
simple signalling mechanism that conveys only that some
event (mutually understood by signaller and waiter) has
taken place.

The most useful type of semaphore is a counting semaphore,
which will count and store the number of times it has been
signalled if several signals have been received without a
wait. A counting semaphore will also establish a queue of
waiting processes if more than one wait is received without
a signal. Thus semaphores can provide a degree of
flexibility in a system, to cope with temporary "peaks" and
"troughs".

The implementation of a semaphore must ensure that a process
can complete its signal or wait operation without being
interrupted by another process, so that the semaphore does
not become corrupted.

Semaphores can be used to construct more powerful
communication and synchronization mechanisms between
processes, that allow for the exchange of messages as well
as signalling the occurence of an event. Such mechanisms
are discussed in Chapter 5, Component Software, and in the
Microprocessor Pascal System User's Manual.

4.11.2 Executives

Because the processor instruction set does not directly
implement concurrency and semaphores, a set of software
routines executing on top of the bare machine are required
to provide these facilities. This set of routines is known
as an executive.

A "bare" software system can be written to run on a
processor without an executive. This was often done in the
early days of microprocessors. However, a standard
executive makes things considerably easier and can provide
services such as concurrency and standard management of
interrupts and I/O (see below). An executive tailored to
the needs of a microprocessor need not be large: Texas
Instruments' Realtime Executive can be configured down to a
size of 3K bytes.

4.11.3 Interrupts

There are two ways that a processor can become aware of
something that is happening in the external world. One is
to execute a software instruction at a particular point in a
software algorithm to read or test an external input. This

Texas Instruments 4-47 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

technique is called polling. Until the appropriate
instruction is executed, the software is completely unaware
of the current value of that input (it may have stored the
value read last time that input was polled).

The other technique is to connect a signal in hardware so
that it immediately interrupts the processor when a certain
condition occurs (defined by external hardware). When the
processor receives an interrupt, it will carry out a
context switch to completely save whatever it was doing at
the time the interrupt was received, and will then execute
an interrupt service routine. (The hardware mechanism
implemented on the 9900 and 99000 microprocessors for
interrupts and context switches is described in Chapter 8).
In a system containing an executive, the interrupt service
routine will probably signal a semaphore associated with the
interrupt received, and cause a rescheduling operation.
TI's Realtime Executive is event driven: that is, occurrence
of an external event (an interrupt) will cause the processor
to immediately reschedule its operations to deal with the
event. The event may cause a process that has been
suspended on the interrupt semaphore to reactivate, and this
in turn may signal other processes, so that an external
event may propagate a chain of activity throughout the
system.

Event driven scheduling is what is required in real time and
control situations, as it provides immediate response to
external happenings. The hardware interrupt priority scheme
may be used to prioritise the response to different external
events, if more than one occurs at once. The executive
provides a standard means of managing and controlling
interrupts, so that synchronization with external events is
handled in the same standard way as synchronization with
internal processes. It is also possible to write interrupt
service routines that execute outside the executive
environment, so that very fast response can be provided for
those signals which require it, without involving the
executive or other processes.

Texas Instruments 4-48 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.12 MAKING TEA

The tea making algorithm (Figure 4-2) can be updated to run
in a real time environment:

begin
filljcettle;
put__kettle__on;
put__tea__in_teapot;
wait (kettle_boiling);
fill_teapot;
delay (5*60*1000);
for number := 1 to_ cups_j:equired do

pour__cup
end

Figure 4-20 Real Time Algorithm

"kettle_bo.iling" is now a semaphore, and the process
containing this algorithm performs a "wait" on it. The
semaphore will be signalled, and the process will be
revived, by the external event of the kettle boiling. (A
steam sensor will probably be wired up to generate an
interrupt to the processor, which will signal the
semaphore). While this process is suspended, other
processes can be executed. If this is really a domestic
robot, it might have a table laying or washing up algorithm
which could be carried out. Similarly, a concurrent system
is likely to include a standard delay routine which will
suspend the process for the required time. The parameter
for this routine is assumed to be the number of milliseconds

delay required. The other operations (eg fill_kettle) can
be declared as procedures.

This algorithm now conforms to standard Pascal syntax and
can actually be compiled (omitting the underlines, which
Pascal does not require). Figure 4-21 shows the compilation
listing which was obtained from the Microprocessor Pascal
System. "fill__kettle" etc are declared as EXTERNAL
procedures, to be defined elsewhere.

Texas Instruments 4-49 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

DX Microprocessor Pascal System Compiler 3.0 10/23/81 11:41:52

0 PROGRAM make_tea;
0

0 VAR number, cups__required : integer;
4 kettle_boiling : semaphore;
6

0 PROCEDURE filljeettle; EXTERNAL;
0 PROCEDURE putJcettle_on; EXTERNAL;
0 PROCEDURE put__tea__in_teapot; EXTERNAL;
0 PROCEDURE fill_teapot; EXTERNAL;
0 PROCEDURE wait (sema : semaphore); EXTERNAL;
0 PROCEDURE delay (milliseconds : INTEGER); EXTERNAL;
0 PROCEDURE pour_cup; EXTERNAL;
0

1 BEGIN

1 filljeettle;
2 put_kettle_on;
3 put_tee_in_teapot;

**** j104

4 wait (kettle_boiling);
5 fill_teapot;
6 delay (5*60*1000);
7 FOR number := 1 TO cups_required DO
8 pour_cup
8 END.

Figure 4-21 Compilation Listing for the
Tea Making Algorithm

Error 104 is described in the Microprocessor Pascal System
User's Manual as "identifier not declared". The compiler is
pointing out that "put_tee_in_teapot" is misspelled. This
must be corrected in the final software design. A corrected
compilation, with the "(* MAP *)" option set to show the
actual variable storage allocated for the module, is
displayed in Figure 4-22.

Figure 4-23 shows the reverse assembled TMS9900 object code
that was output from the compiler. With a little more work,
this module could form part of a real system.

Texas Instruments 4-50 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

DX Microprocessor Pascal System Compiler
0 (* MAP *)

3.0 10/23/81 11:31: 7

0

0

0

4

6

0

0

0

0

0

0

0

0

1

1

2

3

4

5

6

7

8

8

PROGRAM make_tea;

VAR number, cups__required : integer;
kettleJ>oiling : semaphore;

PROCEDURE filljeettle; EXTERNAL;
PROCEDURE putJeettle__on; EXTERNAL;
PROCEDURE put_tea__in__teapot; EXTERNAL;
PROCEDURE fill_teapot; EXTERNAL;
PROCEDURE wait (sema : semaphore); EXTERNAL;
PROCEDURE delay (milliseconds : INTEGER); EXTERNAL;
PROCEDURE pour_cup; EXTERNAL;

BEGIN

f Illjeettle;
pu t Jee11 le_on;
put_tea_in_teapot;
wait (kettleJ>oiling);
fill_teapot;
delay (5*60*1000);
FOR number := 1 TO cups_required

pour__cup
END.

DO

PROGRAM MAKEJTEA;
STACK SIZE o 0006

VARIABLE DISP

NUMBER 0000

CUPS_REQ 0002
KETTLE B 0004

TYPE SIZE

INTEGER 2

INTEGER 2

SEMAPHORE 2

PROCEDURE FILLJCET

PROCEDURE PUTJCETT

PROCEDURE PUT_TEA_

PROCEDURE FILLJTEA

PROCEDURE WAIT

EXTERNAL;

EXTERNAL;

EXTERNAL;

EXTERNAL;

(SEMA SEMAPHORE); EXTERNAL;

PROCEDURE DELAY (MILLISEC:INTEGER); EXTERNAL;

PROCEDURE POUR__CUP; EXTERNAL;

MODULE - MAKEJTEA
R15 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0006
R14 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0008

* LITERAL CODE LENGTH = 000E, TOTAL CODE LENGTH = 0060

Figure 4-22 Corrected Compilation Listing

Texas Instruments 4-51 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

*

IDT 'MAKEJTEA'

*

DEF SYSTM$
REF FILL K

REF PUT KE

REF PUT TE

REF FILL T

REF WAIT

REF DELAY

REF POUR C

REF S$PRCS
REF E$PRCS

REF CALL$

*

REF

PSEG

EXIT$P

SYSTM$ EQU $
PR EQU 7 R7

CODE EQU 8 R8

LF EQU 9 R9

SP EQU 10 RIO

LO EQU $
DATA LOOOE-LO

DATA L0054-L0

DATA >0000

DATA >0000

D0008 DATA >0006

DOOOA DATA >0001

DOOOC
*

DATA >93E0

LOOOE EQU $
MOV @D0008-L0(CODE),*SP+
MOV @D000A-L0(CODE), *SP+
SETO *SP+

CLR *SP+

CLR *SP+

DATA CALL$,S$PRCS
DATA CALL$,FILL K
DATA CALL$,PUT KE
DATA CALL$,PUT TE

MOV @>0004(LF),*SP+
DATA CALL$,WAIT
DATA CALL$,FILL T

MOV @D000C-L0(CODE),*SP+
DATA CALL$,DELAY
LI R15,>0001
MOV @>0002(LF),R14

L0048 EQU $
C R15,R14
JGT L0054

DATA CALL$,POUR C
INC R15

Texas Instruments 4-52

SOFTWARE DESIGN

10/23/81 11:31:32

LC HEX CHAR

0004 0000

0006 0000

0008 0006

000A 0001

OOOC 93E0

LC WORD(S)

000E CEA8 0008

0012 CEA8 000A

0016 073A

0018 04FA

001A 04FA

001C

0020

0024

0028

002C CEA9 0004

0030

0034

0038 CEA8 OOOC

003C

0040 020F 0001

0044 C3A9 0002

0048 838F

004A 1504

004C

0050 058F

October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

L0054

JMP L0048 0052 10FA

EQU $
MOV @D000A-L0(CODE),*SP+ 0054 CEA8 000A
DATA CALL$,E$PRCS 0058

B @EXIT$P 005C 0460 0000
END

Figure 4-23 Reverse Assembled Object Code
for the Tea Making Algorithm

Texas Instruments 4-53 October 1981

SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.13 BIBLIOGRAPHY

The following publications develop and extend the ideas
presented in this chapter.

[1] Niklaus Wirth Algorithms + Data Structures = Programs

Prentice-Hall

[2] E W Dijkstra, 0-H Dahl and CAR Hoare

Structured Programming

Academic Press

[3] Peter Freeman and Anthony I. Wasserman

Tutorial on Software Design Techniques

IEEE Computer Society

[4] Michael Jackson Principles of Program Design

Academic Press

[5] Carol A Ogdin Software Design for Microcomputers

Prentice-Hall

Texas Instruments Publications:

Component Software Handbook (MP918)

Microprocessor Pascal System User's Manual (MP351)

Microprocessor Pascal Executive User's Manual (MP385)

Realtime Executive User's Manual (MP373)

Texas Instruments 4-54 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

CHAPTER 5

COMPONENT SOFTWARE

5.1 WHAT IS COMPONENT SOFTWARE ?

Component Software is a means of packaging software to
address what is perceived as the major problem of
microsystems development for the next decade - the "software
crisis".

Studies have shown that up to 90% of the development cost for
a typical system using programmable hardware will be spent on
software. Microprocessor hardware is cheap, but software
development is expensive. With software forming the major
investment for users, it is vital to manage software
development effectively, and to make the most effective use
of scarce software skills.

Where the product being developed is to be produced in large
quantities (tens or hundreds of thousands), development cost
is not significant - divided by a hundred thousand it does
not add much to the selling price. But for an increasing
number of microprocessor products that will be sold only in
tens, hundreds or thousands, development cost is all
important. For a 100-off product a single man-month of
software development (at around $6000) will add $60 to the
cost of each product - before any profit. A typical project
will involve at least 4-6 months of software development.

Component Software is a way of providing packaged functions
that are significantly more powerful than any currently
available, either in software or in hardware. These
functions consist of "encapsulated software" that can be
purchased ready written and tested, and "plugged in" to a
user's application. Unlike conventional applications
software, the Component Software environment allows packaging
of real time functions that can execute either concurrently
or in sequence with other functions in an application system.
This capability overcomes most of the restrictions of
sequential software for writing real time control systems,
and many other types of application. The framework ensures
complete security of function packages, so that functions
cannot interfere with one another.

Because of the flexible packaging of Component Software,
systems can be designed and constructed in terms of
meaningful application-oriented functions, rather than

Texas Instruments 5-1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

abstract software routines. Many of these functions can
purchased off the shelf, or reused from previous systems.

be

Component Software is the first step in a more radical
approach to systems design using programmable components.
Many functions first identified and packaged in this way will
eventually be "canned" in silicon, as dedicated hardware
functions.

s of software

floppy discs),
s are designed
suit individual

selecting the
supplied, and

cation program.
em designer a
can manipulate
environment),

opment tools.

Component Software is supplied as librarie
modules stored on magnetic media (such as
together with full documentation. The package
to be configurable in many different ways, to
application needs. Configuration involves
software modules required from the library
linking them together with the user's appli
This semi-automatic process gives the syst
higher level of programming capability (he
complete functional blocks in a real time
supplementing already available software devel

Software components

CONFIGURATION OF
SOFTWARE COMPONENTS

Component X End application

Figure 5-1 Configuration of Component Software Packages

Texas Instruments 5-2 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Individual features of the package can be selected or left
out, according to the needs of each application. Packages
are designed to permit several levels of access - from a high
level, trouble-free interface that requires minimum
knowledge, to a low level interface that gives direct control
over the workings of the package, but requires greater
expertise to use effectively. System designers can choose
whichever level is most appropriate for each particular
application.

A typical Component Software package can be used in different
ways in many different applications. A library of common
application functions can be built up, which can supply
component parts for new applications. Users can write their
own Component Software packages - the Component Software
Handbook, MP918, describes how to do this. Texas Instruments
(TI) encourages the production and sale of Component Software
packages by other companies.

It is expected that configuration from pre-compiled object
modules will supply most application needs, but TI also
supplies source code as standard for all routines. For those
applications which require it, functions can be customised at
the most detailed level using standard Microprocessor Pascal
and/or assembly language development tools.

5.1.1 The Functional Approach

Component Software makes possible a functional, application-
oriented approach to system design. First, an application is
analysed into the individual functions that are to be
performed. This functional analysis can be done in whatever
way is naturally appropriate for the application. Next, the
requirements for each function, and the interaction between
the separate functions, are unambiguously specified. A
precise algorithmic description of the operation of each
function will lead straightforwardly to a high level language
software implementation (which can be optimised in assembly
language if required). The structure of Component Software
means that separately developed, concurrent functions can be
connected together simply and with confidence. Testing can
be carried out on each function individually, and on the
system as a whole. Finally a choice of hardware can be made,
from a range of options, to provide the required cost,
performance and environmental suitability.

Traditional forms of system design rarely start with the
application - they usually require choosing a hardware
configuration, often with barely adequate information, at the
start; and then building up software on top of this to adapt
the hardware to the application requirements.

Texas Instruments 5-3 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

RAM

ROM CPU I/O

Hardware Software

Figure 5-2 The Traditional Approach

microprocessor hardware
lly involves major design
In addition, the design
le" rather than flexible,
s about a particular type
application requirements,
quirements usually means
software, and consequent

Bridging the gap between the chosen
and application requirements usua
effort, with skills that are rare,
produced is likely to be "britt
because built into it are assumption
of hardware and a particular set of
Incorporating new hardware or new re
major redesign of both hardware and
problems of testing and reliability.

The functional approach places
the development process. Both
determine how an application
(which determines price and
independently, with minimal eff
The constructs of Componen

flexible that systems can be
nature of the application, wha
shaped by the necessities of th
like this are both more

requirements in the first place
requirements alter.

few arbitrary restrictions on
the software algorithms (which

functions) and the hardware
performance) can be varied

ect on the rest of the design.

t Software are sufficiently
structured according to the
tever it is, rather than being
e technology. Systems built

responsive to application
, and easier to change if the

Texas Instruments 5-4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

PID

S/W

Process

Control

Board
HDLC
S/W

Communi

cations

Board

Hardware Function Bus

Software Function Bus

COMPONENT SOFTWARE

Video
Graphics

S/W

Video

Board

Tl FUNCTIONAL ARCHITECTURE

Figure 5-3 TI Functional Architecture

How to divide an application into functional parts for
separate development may be immediately obvious from the
nature of the application; or functional "packages" may be
chosen according to the division of available engineering
resource to implement them. Packages may also be chosen to
encapsulate areas of a system which may be reused, or areas
which are likely to change. In any case, the ability to
encapsulate real time functions (which may have a concurrent
structure - see below) can be used to advantage.

Systems can be upgraded incrementally by changing or
replacing separately developed functions. The Component
Software environment ensures that separate functions are
enclosed, so that changes will have no effect on other parts
of the system.

TI's microprocessor hardware provides a wide range of price,
performance and environment options (available either as
individual LSI and VLSI components, or in a range of
prepackaged board modules), all with a common software
interface. The 9900/99000 instruction set defines a low
level standard interface; the Realtime Executive (Rx) defines
a standard at a higher level of capability - the Software
Function Bus - that incorporates concurrency, standard
management of system resources, and all the features required
to implement Component Software. Versions of Rx will be
available to adapt the standard software interface to
multiple processors and various types of memory
configuration.

Texas Instruments 5-5 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

The functional approach can be seen as a generalisation of
the "Top Down" and "Structured Programming" approaches which
have been successful in achieving reliable software design.
Here, the approach is applied to system design, in particular
to the design of real time systems.

5.1.2 Function to Function Architecture

The functional approach of Component Software forms part of a
broader architectural scheme called Function-to-Function
Architecture, which integrates both hardware and software in
the service of useful functions. Function-to-Function
Architecture (FFA) defines a standard interconnect mechanism
between complex functions, however they are implemented - in
hardware, software, or a combination of both. It makes
possible early definition and implementation of functions in
the flexible medium of Component Software. Once the
usefulness and reliability of a function has been proved, it
can be migrated to progressively "harder" implementations.
Those functions which justify it will eventually end up as
custom VLSI silicon chips. The standard interconnect
mechanism means that systems will be upgraded gradually by
replacing individual functions to give improved cost,
performance or features, without having to redesign the whole
system.

Texas Instruments 5-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

5.2 THE COMPONENT SOFTWARE ENVIRONMENT

COMPONENT SOFTWARE

The Component Software Handbook, from which this chapter is
extracted, gives further information on the construction and
use of Component Software packages, and precise terminology.
This section provides an overview of the Component Software
environment. Terms such as "function", "program" etc are
used here in a general rather than a specific technical
sense, except where capitalised.

5.2.1 Concurrency

Component Software supports concurrency - i.e. simultaneous
execution of a number of different software programs.

Conventional programming environments only allow the user to
run one program at a time. However, a typical microprocessor
system may be required to perform a number of different
functions at once.

^^3
Non-concurrent

program

Sensor monitoring

Motor control

Display/operator interface

Concurrent program
'parallel' execution

CONCURRENCY

Figure 5-4 Concurrency

Texas Instruments 5-7 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

For example, a system controlling a group of manufacturing
machines may be required to monitor and control each machine,
continuously check safety conditions, select and record
information for costing each job as it appears, and still to
respond immediately to commands from its operator-

Reducing all of this to one sequential list of instructions
(a conventional program) is a very difficult task. The
result (if it turned out to be possible) would be a very
convoluted program that breaks off in the middle of doing one
thing to perform another, halts that to carry out a third,
and so on. Such programs are difficult to understand and
awkward to maintain. They are also nearly impossible to
test.

Conventional software is built on the assumption that
functions will be executed one at a time, in sequence. Each
function must start, execute and terminate before another
function can begin.

But the real world does not always (or even usually) behave
like this. A typical real time application system will need
to do several things "at once". Even though each individual
task may only require periodic attention, the system must
keep track of everything that is going on, carry out each
task when it is required, and must also respond immediately
and correctly if an unexpected event occurs. A control
function, for example, may need to check the status of a
machine or a chemical process continuously over a period of
hours. However, the check may only require a small
calculation every half second (say).

To dedicate a complete processor to this function would be
wasteful; yet conventional application software provides no
standard means of using the processor to perform another
function in the meantime, while ensuring that the check gets
made every half second, and that the two functions do not
interfere.

Demands on the system may occur not only at fixed time
intervals: from the system's point of view, it is completely
impossible to predict when an operator is going to press a
button, or when a temperature will exceed a safe margin - but
it is important to respond quickly and reliably, and without
disrupting the operation of the rest of the system.

For a specific application, it may be possible to solve these
problems in a sequential program. However, to do so would
require a great deal of effort, and would result in an ad hoc
solution, very specific to one application. With software
constructed in this way, it is not unknown for an apparently
simple change in the specification (say, the need to check
the status of a machine every quarter second rather than half
second) to require a complete redesign of the system.
Additional problems arise when trying to test such systems.

Texas Instruments 5-8 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

i

What is needed is a standard framework in which this class of
problem is handled automatically. The system designer can
then specify and write each individual function separately,
and evaluate and test it independently. Applications can be
built up by selecting the required functions and linking them
together (semi-automatically) to construct a complete system
- analogous to the process of connecting together ICs using a
printed circuit board. This standard framework is provided
by Component Software.

In the Component Software environment, functions are
considered to be independent, and may have a sequential
and/or a concurrent relationship with other functions. The
designer may specify that one function must wait for another
function to complete before it executes, but (unlike
conventional software environments) he can also specify that
the two functions should take place concurrently. For
example, a user's program can initiate an I/O request (such
as a read from floppy disc), but need not wait for it to
complete before going on to do something else. The system
will automatically complete the transfer, taking care of the
hardware timings and delays of the floppy disc controller and
the necessary format conversions, in a way that is completely
transparent to the rest of the software.

Explicit support for concurrency is an important element in
the framework. It makes possible the construction of systems
which perform real tasks, easily, cheaply and reliably, and
permits software to be structured in a natural way that
reflects the real world. It allows a functional approach (as
outlined above) to be applied to software - because the
natural analysis of an application will rarely result in
functions that have a simple sequential relationship.

5.2.1.1 Packaged Functions

Software libraries have existed before, but they have
generally been libraries of routines that only execute
sequentially. There is a limit to the type of function that
can be placed in a purely sequential package.

Sequential software is well suited to a restricted class of
operations - those operations that can be specified by a
single list of instructions. Unfortunately, by no means all
of the tasks to be performed in the real world can be
specified as simply as this. Microprocessors, by virtue of
their cheapness and effectiveness, are required to perform a
wide variety of tasks which mainframe computers were never
called upon to do. Consequently, a more powerful medium is
needed to program them effectively - a framework which
incorporates concurrency.

A "package" such as a process control function looks quite
different from a sequential software routine. The package

Texas Instruments 5-9 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

may include a piece of code to be executed automatically
every (say) half second, plus some routines callable by a
user's program to set up and change the control parameters,
obtain status information etc; and maybe some logging
routines, again executed automatically at fixed intervals, to
record selected data regularly on disc. The package contains
a number of functions which must be executed at different
times and in different ways - some automatically at fixed
time intervals, some on demand from the user's application
program (perhaps halting the flow of the user's program while
they execute, and perhaps not), and some on detecting a
particular out-of-range condition (say).

Component Software is designed to accomodate such complex
"packages" as this. Using the basic constructs provided by
the Software Function Bus, algorithms written in a high level
programming language (or in assembly language) can be
combined in a variety of sequential and concurrent
relationships to build a complete package implementing, say,
a file manager or a machine controller. The simplicity of
the basic constructs means that parts of any package can be
isolated and tested independently, using interactive
debugging tools.

The complete package (or such parts of it as are required)
can be incorporated in a larger system easily and quickly,
with the knowledge that it will not interfere with any other
function in the system.

5.2.1.2 Implementation of Concurrency

Functions which execute concurrently can be regarded as
taking place independently and simultaneously. Functional
design, and the Component Software environment, makes no
fundamental assumptions about how this concurrency is
implemented. The "simultaneity" may involve two or more
separate hardware processors, or may be simulated in software
with a single processor.

In a single processor environment, concurrency is implemented
by switching the processor between the different functions to
be performed, according to the demands of the system and
priorities set by the user. This switching is called
scheduling. More generally, scheduling can be regarded as
the allocation of available system resources to the different
functions competing for them. The statement that "a function
is separately scheduled" means that it competes independently
for system resources, according to priorities set by the
system designer. In a Component Software system, the
designer chooses which functions are actively independent,
and hence need to be separately scheduled. Generally,
functions which have independent timing requirements, or
which take place over long periods of time, should be
separately scheduled.

Texas Instruments 5-10 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Functions which are not separately scheduled can be regarded
as "passive", and only execute when called on by an "active"
function. The scheduling policy is designed to ensure that
the task being performed by the processor is always the most
urgent one, and in particular that external events (eg a
signal from a device connected to the system) are responded
to immediately. Scheduling is described in detail in the
Microprocessor Pascal System User's Manual (MP351) and the
Realtime Executive User's Manual (MP373).

With a single processor, concurrency provides the advantages
of increased clarity of system design (which means easier
maintenance, testing and upgrade), functional packaging, and
improved throughput (because the processor need never be
idle, waiting say for a slow output device to respond - it
can switch to performing some other function). Concurrency
means that the system has some degree of dynamic flexibility:
it can respond to changes in the demand for any function by
reallocating resources from less urgent functions.

With multiple processors, throughput will be further
increased because there is more than one active processing
element. Reliability may also be increased, because (with
appropriate design) the whole system need not collapse if one
processor fails. However, a multiple processor system is
likely to be more expensive. It is intended that Component
Software programs can be executed on the same processor or on
a distributed network of processors, with minimal impact on
the programs themselves or their interaction. The system
designer will then choose the hardware to implement his
functional design purely on the basis of cost and performance
tradeoffs. Adding another processor, say, to increase
throughput will no longer be a major design exercise.
Currently, multiple processor systems can be built in which
functions executing in different processors interact through
file level messages across standard communication links (eg
HDLC or EIA). Future versions of Rx will support more
closely coupled multiple processor systems.

5.2.1.3 Levels of Concurrency

The Component Software environment permits concurrency not
only between complete function packages, but within packages
themselves. This means that a complex function, such as the
HDLC Data Communications package, can be designed as a
collection of subfunctions that may execute sequentially
and/or concurrently.

Typically, a users program will pass a data record to the
HDLC subsystem, for transmission over the HDLC communications
network. The HDLC subsystem then performs all the work
needed to transmit the record to its destination. Within the

HDLC package are a number of concurrent functions which
manage the different levels of HDLC protocol, interact with

Texas Instruments 5-11 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

the physical data link, and check that receipt of correct
data is acknowledged within a specified time interval. If
acknowledgement is not received, or if an error is signalled,
the HDLC subsystem will retransmit the data. Efficient and
reliable implementation of this kind of "intelligent"
operation requires concurrency. The Component Software
environment permits such an intelligent function to be
encapsulated in a single package which has a simple interface
with the users program (for example, it can be accessed
through straightforward sequential procedure calls).

The internal structure of such a function package is
completely invisible to the user, unless he chooses to
interact with the package at that level of detail. The
package can be initialised automatically at power up, and
will perform throughout as an enclosed operation, complete in
itself.

5.2.2 Code, Data and Re-entrancy

Component Software is designed to make efficient use of the
memory space available in a microprocessor system, and to
maintain strict separation between program code and data.
Separation of code and data improves system integrity (making
accidental modification of code less likely), makes possible
re-entrancy (as described below), and permits easy
partitioning into read only and read/write memory (ROM and
RAM), which is often required in a microprocessor system.

The fundamental unit of instruction code in a Component
Software system is the routine. A routine is a sequence of
processor instructions that performs a particular operation.

Component Software provides a set of constructs that group
routines together, define which routines will have access to
which other routines, and determine how routines will
interact (sequentially or concurrently). The Component
Software Handbook describes the detailed structure of a

Component Software package, and how to construct one. Within
a separately compiled Component Software module (which will
probably include several routines), the rules of scope define
exactly which routines and which data structures are
accessible at each point in the software. (See the
Microprocessor Pascal System User's Manual for a complete
discussion of scope.) Between modules, explicit EXTERNAL
declarations in each module specify exactly what connections
are to be permitted with other modules.

The structure of a Component Software system is shown in
figure 5-5.

Texas Instruments 5-12 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Process 1.1

Process 1.2.1

Rx
Real-Time Executive

SYSTEM

1

PROGRAM V

Process 1.2

Process 1.2.2

I 3

I 2

1

PROGRAM

Additional
processes

Collections of
procedures,
functions

& statements

Figure 5-5 SYSTEMS, PROGRAMS and PROCESSes

For implementation as a Component Software package,
application functions must be implemented as groups of
PROGRAMS, PROCESSes, PROCEDURES, and FUNCTIONS. A SYSTEM is
likely to contain a number of independent, separately
scheduled PROGRAMS. However, a PROGRAM may also have a
hierarchy of dependent PROCESSes - separately scheduled, but
related. Strictly, the term PROGRAM applies only to the
single, "top level" routine in the group. The complete
structure of a PROGRAM with all subordinate PROCESSes (and
PROCEDURES and FUNCTIONS - see below) is referred to as a
PROGRAM family. Continuing the analogy, routines further up
the hierarchical tree are referred to as "ancestors"; those
lower down are "descendants". The PROGRAM family is a
convenient package for a complete, independent function
within a system.

PROGRAMS and PROCESSes are independent routines which are
separately scheduled; however the hierarchical relationship
makes it possible to isolate and develop separately not only
single routines, but also complete groups of concurrent
routines implementing a complex function.

PROGRAMS and PROCESSes are the "active" elements in a
Component Software system. "Passive" routines can also be
defined, which may be called on by an active PROGRAM or
PROCESS to perform a specific function. These are PROCEDURES
and FUNCTIONS. (NB "FUNCTION" capitalised has a precise
technical meaning, as distinct from the more general use of

Texas Instruments 5-13 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

"function").

A PROCEDURE or FUNCTION never competes directly for system
resources; it always executes under the wing of a PROGRAM or
PROCESS, and provides a particular "skill" that the PROGRAM
or PROCESS may need at the time. PROCEDURES and FUNCTIONS
can be used to encapsulate functions which are simple enough
not to require the power of the PROGRAM family construct to
implement them.

Depending on where a PROCEDURE or FUNCTION is defined, it may
be accessible to some or all of the routines in the system.
PROCEDURES and FUNCTIONS declared at the level of the SYSTEM
are available to any routine. They may also be declared at
some point in the hierarchy of a PROGRAM family, so that
access to the PROCEDURE or FUNCTION is restricted to that
PROGRAM family or part of that family.

The Microprocessor Pascal System User's Manual (MP351) and
the Realtime Executive User's Manual (MP373) give more
details about the structure of Component Software systems.

5.2.2.1 Memory Allocation

Before it is activated, a software system is simply a
collection of dormant instruction code, grouped into
routines, and probably stored in ROM. To perform any useful
work, a routine must be activated and allocated data space
with which to work. The stock of dormant routines can be
regarded as the "repertoire" of the system, which is called
upon as needed. The task of the system designer is, first,
to ensure that there are adequate functions in the
repertoire; second, to activate them as needed to perform the
task required. When a Component Software SYSTEM is powered
up, system data structures will be initialised, any I/O
subsystems (see below) will be initialised, and any user
defined initialisation will be performed. Typically, the
PROGRAM(s) present in the SYSTEM will then be started. All
action beyond this point is dependent on the system designer.
He may

1. design a system that is a single sequential PROGRAM

2. use two or more concurrent PROGRAMS, each of which
is sequential

3. within a PROGRAM, start more concurrent PROCESSes to
create a PROGRAM family

4. incorporate Component Software packages, of which he
he may or may not know the internal structure

Texas Instruments 5-14 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Each call to start a PROGRAM or PROCESS is said to activate a
new site of execution within the system, which executes
independently of every other site of execution. In the
following discussion, what is said about PROCESSes applies
also to PROGRAMS: a PROGRAM is a special case of a "top
level" PROCESS. Whenever a PROCESS is activated, it is
allocated by the executive an appropriate amount of data
memory from a pool (known as the heap). This allocated
memory is returned to the heap when the PROCESS terminates,
so that it can be allocated to other PROCESSes. Processor
time is allocated to each PROCESS according to demand and the
priority given to the PROCESS when it was started.

PROCEDURES and FUNCTIONS that are called by a PROCESS borrow
memory from that PROCESS'S allocation, and use processor time
scheduled to that PROCESS. The PROCESS gives its resource to
execute that PROCEDURE or FUNCTION, and cannot do anything
else until it is complete. Each PROGRAM or PROCESS can be
thought of as an independent, single "thread" of logic within
the system, with its own timing characteristics and separate
existence. PROCEDURES and FUNCTIONS provide a kind of
"stored logic" that can be inserted in the thread of a
PROGRAM or PROCESS at an appropriate time. PROCESSes may
request additional memory from the heap while they are
executing.

5.2.2.2 Multiple Activations

Because the instruction code for a PROCESS is completely
separate from its data space, and is never changed, it can be
activated more than once. For example, a factory may contain
several identical machines, all controlled by one system.
The control program for each machine is identical, and only
one copy of the instruction code need exist. However,
several activations of the control program may be present at
the same time, using the same instruction code but different
data spaces. There will be no conflict. The same applies to
PROCEDURES and FUNCTIONS: as the data space for executing
any PROCEDURE or FUNCTION is allocated from the data space of
the calling PROCESS, several PROCESSes may call a general
purpose PROCEDURE (a matrix multiplication routine, for
example) at the same time without problems. The routine code
need only exist once within the system. This property of
software is known as re-entrancy.

5.2.3 The Realtime Executive

The Realtime Executive (Rx) is the backbone and artery of a
Component Software system; it supports the other functions
and provides commonly needed services. Within Rx are the
routines that allocate system resources (processor time,
memory, I/O) between the different PROCESSes, according to

Texas Instruments 5-15 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

demand and priorities. Also within Rx are the standard
procedures that allow one routine to call or start another.
Finally, Rx contains the code that permits concurrent
PROCESSes to synchronise their operation with other PROCESSes
or external events, and allows PROCESSes to pass data to
other PROCESSes.

The most basic synchronisation is achieved using a low level
software mechanism called a semaphore. A semaphore allows
one PROCESS to signal occurrence of an event (eg
machine_operation_complete) to another.

It is Rx which sets up the Component Software environment,
and maintains it. Rx establishes a "Software Function Bus" -

a standard, concurrent interface into which Component
Software functions can be "plugged".

5.2.3.1 Channels and Interprocess Files

Data communication between PROCESSes can take place over
channels. A channel is simply a means of passing data from
one PROCESS to another in a way which ensures that the
integrity of the data is preserved (eg that one PROCESS does
not try to read data until the other has finished writing
it), and that the data is placed in an area of memory that
will be accessible to both PROCESSes. Channels can also be

used to provide a higher level of synchronisation.

A further method of communication is the interprocess file
mechanism. This allows a PROCESS to write to another PROCESS

exactly as if it were writing to an input/output device,
using the standard file I/O primitives (see below).

The hierarchical system structure defines a clear
relationship between the concurrent PROGRAMS and PROCESSes in
a Component Software application. However, this may not be
sufficient in all circumstances. The channel and

interprocess file mechanisms allow any PROGRAM or PROCESS to
connect to and exchange data with any other PROGRAM or
PROCESS in the system (provided both "ends" prepare for and
understand the exchange). These connections are made
dynamically while the system is running. Connections of this
kind can be "hard coded" into the routines when they are
written, in which case they cannot be altered. However, it
is also possible to write systems in which the connections
can be modified at run time, either by an operator or by a
piece of "intelligent" software, in response to changing
requirements, or perhaps in response to failure of part of
the system. With a system constructed using interprocess
files, connections can be rerouted from a local PROCESS to an
external device, or perhaps via a data link to a PROCESS in a
completely different computer system. Requests for dynamic
connections of this kind are made via executive routines

which ensure that system integrity is preserved in making the

Texas Instruments 5-16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

connection.

5.2.3.2 Rx vs Operating Systems

Many of the functions performed by the Realtime Executive
(Rx) would be handled in a mainframe computer by an Operating
System. Early computers suffered from the problems outlined
above In the section on concurrency - namely, how to adapt a
basically sequentially machine to a range of independent,
probably simultaneous requirements. However, the scale of
the problem for mainframe computers was different - requiring
solutions to problems typically within hours or days rather
than milliseconds. So human operators were introduced to
share out the resources of "mainframe" computers between
different users. Later, software Operating Systems (OSs)
were designed to partially automate the process.

For mainframe computers, the tasks of programming and
operating the computer remained very separate. Separate
disciplines evolved, and people were trained to perform one
job or the other.

A microsystem designer needs to have direct control over both
the programming of the functions to be performed, and the
operation of the system. Typically, operation of the system
(as regards controlling the execution of different functions)
needs to be completely automatic in the final system, but the
system designer should have a good measure of control over
how this operation takes place - that is, just how the
computer makes its millisecond-to-millisecond decisions on
what to do next.

The requirements of an Operating System for a large general
purpose computer, and an executive for a dedicated
microcomputer system, are very different.

Traditional Operating Systems were designed to maximise the
use of the computer's hardware resources - which at the time
represented a huge capital investment. With cheap,
distributed microcomputer power, the balance has shifted, and
other factors - such as development, support and maintenance
costs, and software correctness - are now more important than
keeping the processor occupied 100 per cent of the time. In
addition, a large, centralised general purpose computer has a
complete set of resources, hardware and software, on hand at
all times. There is no incentive for selecting the minimum
set of resources required to implement a particular
application. Where a product is to be produced in large
quantities, the tradeoffs are quite different.

Operating Systems can afford to be large, monolithic
structures that are always present for every application. An
executive needs to be small, and tailored for each
application (by configuring from a standard "kit of parts").

Texas Instruments 5-17 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Thus, although Rx draws on techniques learnt from the design
of operating systems, its structure is significantly
different in many respects.

An Operating System is usually pictured as a set of
concentric circles, centred on the (single) mainframe
processor.

Figure 5-6 Conventional Operating System Structure

This structure is large, monolithic, and difficult to get
inside (the shell is "hard"). An Operating System tends to
be a union of all possible system requirements, and is
difficult to split apart. Rx looks more like a "bus":

File
Manager

U

n
$

HDLC
CommunJcations

u

n
t

Software Function Bus

Application
Component

u

Figure 5-7 Software Function Bus

Texas Instruments 5-18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

The Rx Software Function Bus establishes a set of conventions

which are expected by the Component Software functions. This
set of conventions can be implemented on virtually any
hardware architecture. Versions of Rx will implement the
standard Software Function Bus across a range of different
single- and multiple-processor configurations, and memory
schemes. Different Component Software functions can be
"plugged into" the standard bus to expand the total
capability of the system.

The requirements that led to the adoption of Component
Software for application programs apply equally to systems
software. Rx is itself a Component Software package - a "kit
of parts" for constructing an executive customised to each
application.

The Rx executive is "built" for each particular application
by selecting (automatically) the functions actually used by
the application, from a library of executive functions.

5.2.4 File I/O Standards

The Component Software environment standardises input and
output so that systems can be built up using any combination
of I/O devices without danger of conflict. Systems can
incorporate a wide range of standard hardware and software,
and can also include custom I/O.

The concurrent nature of the Component Software environment
permits many asynchronous devices to be handled
simultaneously. An independent process is assigned to each
device, associated with an appropriate interrupt. The
execution of this device process is synchronised with the

device, and the process is activated according to the needs
of the device. I/O routines called by the user's process
will be synchronised with the user, and will respond to the
user's needs. The two will interact via channels. The

concurrent structure thus manages automatically the timing
and synchronisation between user program requests and
hardware I/O operations.

5.2.4.1 I/O Subsystems

I/O software is grouped into subsystems, each subsystem
handling a particular class of devices - rotating mass store
(magnetic discs), for example, or HDLC data communication
devices.

Texas Instruments 5-19 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

l/OSubsys 1

l/FMgr1.1

l/FMgr1.2

l/FMgr1.3

Process code 3

Process code 2

Process code 1

Pascal I/O
Primitive RTS

File I/O Decoder

l/OSubsys 2 I/O Subsys 3

l/FMgr^l
Mgr2li|l/FI

I
Synchronous
with caller code

l/FMgr3.1

Synchronous
with device
interface

Figure 5-8 I/O Subsystems

Many Component Software packages will take the form of a
complete I/O Subsystem. The I/O standards define a common
set of high level operations on files (read, write, open,
close etc), so that programs can be written without knowledge
of the particular type of device they will be using. In this
case, all device-dependent details will be hidden within the
I/O subsystem.

The I/O standards also specify lower levels of interface, so
that users can interface with I/O devices at a device
dependent level. This will reduce the code size of the final
application, but requires knowledge of the specific
characteristics of the device, and of course means that
application programs must be rewritten for use with a
different device. In all, 5 levels of I/O interface are
defined. Designers can choose to include as much or as
little of the I/O structure as required.

Texas Instruments 5-20 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

User's algorithm
and local proc's

Pascal I/O
Verbs

w

File I/O
Decoder

4—w

I/O
Subsystem 4—

Interface
Manager «—w

Interface
Handler

4—F

COMPONENT SOFTWARE

Traditional
Language Support

File-level, device
independent

File-level within
device

Asynchronous
Device Interface

Synchronized Data
Link

Figure 5-9 5 Levels of Interface to I/O Subsystems

The I/O standards provide for grouping of all hardware
related details (I/O addresses, interrupt levels etc) in one
system configuration module, for ease of system design. A
standard method is provided for initialising I/O subsystems
and for handling device interrupts. The I/O Standards and
I/O Subsystems are discussed in more detail in the Component
Software Handbook, MP918, and in the Device Indepedent File
I/O User's Manual, MP355.

Texas Instruments supplies standard Component Software I/O
subsystems for use with TM990 board modules and TMS99XX
peripheral components. The I/O subsystems supplied by Texas
Instruments are extensively documented and supplied with
source code (as are all TI Component Software packages), and
can be modified or used as templates to write I/O subsystems
for custom hardware devices.

5.2.5 Configuration

Microcomputer systems typically differ in two respects from
general purpose mainframe and mini computers. First, a
microcomputer application is likely to be more cost
sensitive. Second, a microcomputer system is likely to be
dedicated to a specific application or range of applications,
and will often be embedded in another piece of equipment.

Texas Instruments 5-21 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

These two requirements dictate the need for configuration. A
microcomputer system cannot afford to include features
(hardware or software) not actually used by the application.

A Component Software package is supplied as a library of
software functions and subfunctions stored on a magnetic
medium - such as a floppy disc. To build a system, the

designer will write an application program that makes use of
some of these functions, select the functions from the
Component Software Library, and then link them together with
his application program to build a target system. The
process of selection and linking is largely automatic, and is
called configuration.

o

COMPONENT

SOFTWARE

LIBRARIES

LINK

EDITOR

APPLICATION

LOAD

MODULE

Figure 5-10 Configuration

o

0

USER'S

APPLICATION

PROGRAM

o

o

CONFIG

MODULE

LINK

EDIT

CONTROL

FILE

Success of this approach depends on the division between
functions being well chosen, so that a designer is not faced
with having to include a software module only part of which
he wants to use. This must be a prime consideration in the
design of Component Software packages; the concurrent
structure makes it easier.

Texas Instruments 5-22 October 1981

SOFTWARE DEVELOPMENT HANDBOOK » COMPONENT SOFTWARE

5.2.6 Customisation

For the great majority of applications, configuration alone
will be sufficient to tailor Component Software packages to
particular needs. A range of different requirements have
been foreseen in developing each package, and comprehended in
the division of each package into functional modules.

However, for cases where configuration is insufficient,
source code is included in Component Software packages,
together with sufficient documentation to allow complete
customisation. For example, the device service routines
(DSR's) of an I/O subsystem package can be rewritten for non
standard devices, retaining the higher level routines.
Component Software is written in most cases in concurrent
Microprocessor Pascal, and supplied with documentation which
fully describes the structure of the package, so that
customisation is relatively easy.

5.2.7 Microprocessor Pascal

The Component Software environment supports TI's
Microprocessor Pascal. Pascal was designed as a high level,
application oriented language in which the sequence of steps
required to perform a particular task (an algorithm) can be
expressed easily and naturally. Writing a Pascal program
requires little more than a precise specification of what the
program is to do. This means that programs can be developed
easily, quickly and reliably. Complex programs can be
written much more quickly than in assembly language, and with
fewer errors. It also means that the program developed is
independent of any particular set of hardware.

TI's Microprocessor Pascal extends the original Pascal
definition by incorporating within the language the
constructs of Component Software. PROGRAMS, PROCESSes,
PROCEDURES and FUNCTIONS can be declared directly in the
language. Synchronisation and communication mechanisms (eg
semaphores) are also directly available. Microprocessor
Pascal extends the scope of the Pascal language to the area
of real time systems, retaining the original philosophy of
the language and developing it for the real time environment.

Using Microprocessor Pascal, results can be achieved more
quickly with less resource and less headaches. Management of
projects becomes simpler and more rewarding, because Pascal
programming is easier to schedule and control. These points
have been proved by software projects undertaken within Texas
Instruments (TI). TI has adopted Pascal as a corporate
standard language, and trained thousands of programmers to
use it. (Contact TI for details of courses on Microprocessor
Pascal programming, and other subjects.)

Texas Instruments 5-23 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Because Microprocessor Pascal can be "read" like English it
is partly self documenting. Comments can be inserted to
explain anything which is not made clear by the code itself.
With a well written program, paper documentation can be
reduced to a description of the program and data structures
and of the routine functions, and, where appropriate, a Users
Guide.

5.2.7.1 Code Efficiency

Use of a high level language inevitably produces code that is
larger than a custom, hand crafted assembly language
solution. However, the code produced by the Microprocessor
Pascal code generator is efficient (a great deal of
optimisation is performed automatically). Studies have shown
that the code is, typically, slightly less than 1.5 times the
size that would be expected from an experienced assembly
language programmer. The compiler may well produce better
(and certainly more reliable) code than an inexperienced
assembly language programmer. Design tradeoffs are such that
in most cases the extra memory cost, for all the systems that
will be produced, works out less than the extra man months of
software development time that would be needed in assembly
language. When the further considerations of reliability,
maintainability and development time are added, it is not
difficult to justify the use of high level language.

The Microprocessor Pascal system includes a reverse assembler
which turns the output of the code generator into assembly
language source code. This code can be hand optimised in
critical areas to squeeze the last ounce of performance from
the system. Where code size is critical, Microprocessor
Pascal programs can be executed interpretively instead of in
native machine code. Interpretive execution is slower, but
optimises use of memory.

5.2.7.2 Programming Support Environment

Microprocessor Pascal provides not only a language, but a
complete design system for the development of microprocessor
software. It provides a range of interlinked software tools,
including a syntax checking text editor and extensive testing
facilities within both host and target microcomputer systems.
These tools make up a Programming Support Environment which
guides software development from initial design through to
final implementation and testing.

Texas Instruments 5-24 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

Editor
Pascal
syntax

checker

Interactive
H/W and S/W

debug
viaAMPL

EPROM

Microprocessor
Pascal

compiler

Native
code

generator

Z
Link edit

Native code
execution in

target system

COMPONENT SOFTWARE

EPROM

Interpretive
execution

in
target system

Compiled code

Interpreted code

Interpretive
execution

on host

Interactive
H/W and S/W

debug
viaAMPL

Debug

THE MICROPROCESSOR PASCAL SYSTEM

Figure 5-11 The Microprocessor Pascal System

Texas Instruments 5-25 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

The Microprocessor Pascal system is available on a wide range
of single and multi-user, floppy and hard disc-based
development computers, according to the needs of each user.

5.2.7.3 Microprocessor Pascal and Component Software

Pre-written Component Software functions (sequential or
concurrent) can be accessed from within a user's
Microprocessor Pascal program simply by declaring them
EXTERNAL within the user's application program.

The Component Software packages themselves have been written
in Microprocessor Pascal, for reliability, ease of
understanding, and ease of customisation. A few have been
recoded in assembly language to optimise performance in
critical areas.

5.2.8 Other Languages

Although Component Software packages will generally be
written in Microprocessor Pascal, the Software Function Bus
(and hence the Component Software environment) is language
independent. The low level "housekeeping" functions provided
by Rx do not depend on any particular language. Application
programs, and Component Software packages, written in
assembly language interface directly with Rx. Microprocessor
Pascal programs interface with Rx through an intermediate set
of run time support functions. With the addition of suitable
run time support, the Software Function Bus is capable of
supporting any application language. Run time support
functions and development tools for other languages will be
added as the need becomes apparent.

Candidates for such addition may be not only the standard
programming languages, but also special purpose languages and
operator interfaces designed for specific application needs,
such as process control. A range of programming languages is
possible, permitting software development both "off line" in
a separate development system and "on line" in the
application microcomputer system itself.

5.2.9 Hardware

The Software Function Bus permits flexible selection of
hardware implementations. Rx will adapt a standard software
interface to a variety of hardware configurations, built from
board modules or LSI components. TI's adoption of a standard
instruction set for its 16-bit microprocessors (and
minicomputers) has made this much easier.

Texas Instruments 5-26 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

For several years now, a range of compatible 16-bit
microprocessors has been available from TI (the 9900 family).
These processors have been designed to meet a wide range of
price/performance goals. The recently announced 99000 family
shares the same instruction set, with a number of advanced
architectural features (such as storage of frequently used
software functions in on-chip macrostore). The Software
Function Bus provides a "cushion" against hardware changes,
and protects software investment against potentially
disastrous architectural changes.

The architecture of the 9900/99000 family is perfectly suited
to the Component Software environment. The fast "context
switch" efficiently implements both concurrency, and the
program modularity required by all modern high level
languages. Memory-to-memory architecture provides great
flexibility in implementing independent, cooperating software
functions.

At the board level, many special purpose Component Software
packages correspond exactly to prepackaged microcomputer
board modules. For example, the File Manager package
corresponds with the TM990/303 Floppy Disc controller board.
Matching software and hardware modules are designed to form
complete Electronic Function Packages (EFPs) that can be
incorporated directly in a system.

PID

S/W

Process

Control
Board

HDLC

S/W

Communi

cations

Board

Hardware Function Bus

Software Function Bus

Video

Graphics
S/W

Video

Board

Figure 5-12 Software/Hardware Correspondence

Texas Instruments 5-27 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

5.2.10 Component Software Products

The first Component Software packages supplied by TI provide
"system management" functions such as file storage and data
communication between different systems. Later products will
be designed for more specific application areas - process
control and video graphics output, for example.

The Realtime Executive is available separately for assembly
language users (it is supplied as a standard part of the
Microprocessor Pascal package). The Microprocessor Pascal
run time support functions will also be available as separate
Component Software packages (Data Pack, Maths Pack, and
Device Independent File I/O Pack). These functions can be
called from assembly language programs to provide features
such as floating point arithmetic, device independent files
and structured data types.

Component Software packages will be available from other
vendors as well as TI. The framework of Component Software
is available to any manufacturer or software house that
wishes to write and sell Component Software packages.

Contact Texas Instruments for a list of the Component
Software packages currently available.

5.2.11 Silicon Functions

Taking a wider perspective, Component Software can be
regarded as a development ground for functions which will
eventually find their way into VLSI silicon, as dedicated
hardware Microfunctions. VLSI integration will reduce the
cost and increase the performance of Electronic Function
Packages, so that future systems will be built from
distributed networks of silicon Microfunctions,
interconnected via a standard Function Bus.

This functional architecture is far more flexible than

conventional microcomputer architectures, based on the
mainframe model. Within a functional system, individual
function packages can be incorporated that have a specialised
architecture designed for particular needs.

Texas Instruments 5-28 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

PID

S/W

Process

Control

Process

Control

Board

Customer Defines
Application Functions

Data

Communications

Video

Graphics

TI Component Software
and Microsystems

HDLC
S/W

Communi

cations

Board

Hardware Function Bus

Software Function Bus

VLSI

TI Microfunctions

Function Bus

Video

Graphics
S/W

Video

Board

Figure 5-13 The Functional Approach

Texas Instruments 5-29 October 1981

SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Function-to-Function Architecture defines a standard set of
interconnection mechanisms for functions, hardware or

software. This will permit replacement of software functions
by their hardware equivalents, and vice versa. Software
provides flexibility and fast development, hardware gives
performance and cheapness (when it can be produced in
quantity). In future, it will be possible to choose whether
software or hardware (and what type of software or hardware)
is appropriate at each point in a system, and to use the
technology most exactly suited to the needs.

Component Software permits the development and tailoring of
new functions in a flexible medium, quickly and cheaply.
Such a development ground is needed if the potential of VLSI
is to be exploited effectively.

New functions will be initially provided as Component
Software libraries, permitting many different configurations
from a standard "kit of parts". TI will eventually "can"
particular configurations of these functions in silicon.

5.3 Bibliography

Texas Instruments Publications:

Component Software Handbook (MP918)

Device Independent File I/O User's Manual (MP386)

Microprocessor Pascal System User's Manual (MP351)

Microprocessor Pascal Executive User's Manual (MP385)

Realtime Executive User's Manual (MP373)

Texas Instruments 5-30 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.1 INTRODUCTION

CHAPTER 6

MICROPROCESSOR PASCAL

Pascal was originated in the early 1970's by Professor
Niklaus Wirth and Kathleen Jensen of ETH University, Zurich,
Switzerland (see reference [1] in the Bibliography). Like
the majority of modern programming languages, it is derived
from ALGOL (ALGOrithmic Language).

Previous 'high-level' languages, such as FORTRAN, were
designed to take advantage of a particular computer's
instruction set (FORTRAN was designed around the IBM 360)
and can more properly be regarded as high-level assemblers.
For example, standard FORTRAN makes certain restrictions on
the form of array subscripts, DO loop expressions, and so
on, because this makes the code particularly easy to
implement on the 360. However, these restrictions also made
the language difficult to remember (it has a lot of
'quirks'), and the restrictions quickly lost their
significance when the language was implemented on later
generations of computers with different instruction sets.

ALGOL was the first serious attempt to design a language
that was independent of any particular machine's instruction
set. The aim of the ALGOL designers was to construct a
language that would make it easy to write clear, correct and
maintainable programs. In this they largely succeeded.
However, while ALGOL became popular with academic users, it
was never very widely used in industry. This was partly
because the ALGOL designers were uncompromising in refusing
to consider implementation efficiency, and partly because
ALGOL did not gain strong backing from computer
manufacturers•

But ALGOL was the inspiration for a completely new
generation of languages, of which Pascal is probably' the
most successful.

Pascal corrects most of the failings of ALGOL, while still
retaining its ease of use. It leaves out some of the
little-used but expensive (in code and time) features of
ALGOL, and is designed with efficiency of implementation in
mind. Therefore it is possible to implement Pascal
efficiently on a small computer or a microcomputer. It is a
very practical language. Pascal was developed principally

Texas Instruments 6-1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

by one man so it has a coherence that some
committee-designed languages lack. Pascal is very regular
(orthogonal): it has few 'quirks', and so is easy to learn.
The features of Pascal make it equally suited for systems
and applications work, so that there is no need to use two
different languages.

Not only does Pascal have powerful program structures,
directly implementing the constructs described in Section
4.5, but it also has extremely flexible data structures
which are very necessary for manipulating complex
applications. In fact, the Pascal language is very close to
the design language described in Section 4.4 because they
both come from the same root. Turning a software design
into Pascal should involve little more than "tightening-up"
the syntax and turning English-language descriptions into
precise Pascal statements.

With rapidly decreasing hardware costs and increasing labor
costs, software has become the major investment in
developing a computer-based product. This cost trend has
led to the move from low-level to high-level languages,
necessitating standardization within high-level languages.
At least as important as the investment made in existing
software is the cost of retraining programmers to use a new
language, and to use it efficiently.

One of the greatest advances in Pascal is the data
structuring facilities that are an integral part of the
language. The concept of the data type has been greatly
expanded to allow not only the usual types (eg INTEGER,
REAL, CHAR, ARRAY, etc) but also more complex structures
based on these types (eg SET and RECORD). Further, the user
is able to define his own data types that totally satisfy
his own requirements.

To ensure that these data structuring facilities are
properly managed and controlled, the language encompasses a
feature that is known as strong type-checking. This means

that when a variable is defined it is declared to be of a

particular type. As variables are used, the compiler checks
that they are used correctly and consistently. This strong
type-checking increases program reliability.

Pascal provides a high-level standard that protects software
(and the programming skills to implement that software) from
future obsolescence due to the introduction of new

hardware. This form of standardization has now become more

important than standardization on a particular low-level
machine architecture.

Texas Instruments 6-2 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.2 TEXAS INSTRUMENTS' IMPLEMENTATIONS

Several years ago, Texas Instruments recognised that a
single programming language was required as as a corporate
standard for all software, whether for mainframes or
minicomputers. The selected language would be used to cover
the following areas:

o Systems programming

o Applications programming

o Industrial real-time control

This led to in an in depth study of the 20 most prominent
languages (including ALGOL68, BCPL, BLISS, C, CLU, Pascal,
PL/I, etc) to determine which, if any, could satisfy these
requirements.

After exhaustive tests, it was decided that a programming
language based on Pascal (which was designed primarily as a
teaching language) but having adequate extensions to operate
in a real-time environment most suited the requirements.
This resulted in Texas Instruments Pascal (TIP) which was
designed to compile and execute on large machines (the Texas
Instruments DS 990/10 and the IBM 370). TIP provides 'large
machine' features such as dynamic arrays and extended
precision reals. It also includes some extra compiler
options allowing, for example, optimization probes to be
inserted in the program to identify the most frequently
executed paths.

After the release of the TIP compiler, it soon became
apparent that the language would be extremely useful for
programming microprocessors for industrial and control
applications. For this reason, a variant called
Microprocessor Pascal was developed. This has fewer
extensions than TIP and is therefore more easily implemented
on small computers. In fact the compiler runs on a floppy
disc based system that uses the TMS9900 microprocessor as
its central processing unit.

The two languages are fundamentally the same, but provide
slightly different features to support their different areas
of application.

Because microcomputer systems usually have to operate in
real-time, concurrency is an integral part of the
Microprocessor Pascal language. A concurrent system
consists of a number of independent processes executing in a
single environment. Each process is a separate sequential

Texas Instruments 6-3 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

program, and the processes are written as if they were
executing simultaneously. In fact, the processor can only
do one thing at a time; the executive divides processing
time between the processes so that the effect is of
simultaneous execution. Using this approach, a programmer
can identify the various tasks that a real-time system has
to perform, with their inputs and outputs, and write a
separate process for each: the executive will do the rest.
This can greatly simplify a complex problem.
Synchronization of processes is accomplished by signalling
devices called semaphores. Higher level communication
between processes can be handled by interprocess files.
Further information on concurrency is presented in section

6.8 and also Section 5.2.1.

During the design of Microprocessor Pascal, it was
recognised that a language on its own (no matter how good)
is not enough. What is also required is what has become
known as a 'programming support environment' - that is a
collection of 'tools' that aid and simplify the design of
complex application systems. The Microprocessor Pascal
System (see section 6.4) was designed for this purpose.

6.3 MICROPROCESSOR PASCAL LANGUAGE OVERVIEW

6.3.1 Features

Microprocessor Pascal has structured statements which allow
the user to produce a readable, maintainable, and easily
checked program algorithm with mimimum effort. These
structures, if used as intended, automatically generate
hierarchical, nested code resulting in more easily
understood, and better, more reliable software.
Microprocessor Pascal's structured statements include IF,
CASE, FOR, WHILE and REPEAT: they are described in section
6.7.

Microprocessor Pascal provides extensive data structuring:
RECORD and ARRAY data structures can be combined and nested

to any level. The POINTER data type permits powerful
structures such as linked lists and trees. It also permits

dynamic storage allocation. These data structures are
described in section 6.6.

In addition to the standard data types, Microprocessor
Pascal allows the user to define his own data types, which
can have values represented by meaningful names. The type
concept was introduced in Section 4.6. Its implementation
in Microprocessor Pascal is described in section 6.6.

Data typing allows data to be grouped according to use. It

Texas Instruments 6-4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

can clarify the design of a program so that, for example, it
is easier to change at a late stage in development.
Compiler checks on type compatibility can reduce the risk of
undetected errors in program code.

Microprocessor Pascal allows the user to define meaningful
names for his identifiers (there are no arbitrary length
restrictions). By using these identifiers and standard
keywords (IF...THEN...ELSE) the programmer can create a
program that is largely self-documenting.

Microprocessor Pascal is a block structured language, which
means that procedures (and processes) can be nested to any
depth. It is therefore a natural language for writing
modular software. Block structure and scope rules are
described in section 6.3.6.

The concurrent structure of Microprocessor Pascal allow a
new approach to software design, particularly for
microcomputers. A real-time problem can now be divided into
separate parallel processes, each of which can be simply
specified and coded (a powerful extension of the concept of
modular software). Concurrency was designed into
Microprocessor Pascal from the start; all the development
tools that make up the Microprocessor Pascal System were
designed to support it. (However, if the user wishes to
develop a conventional sequential program in Microprocessor
Pascal, he can do so without incurring any extra overhead.)
The mechanisms involved in concurrency are described later
in more detail (see section 6.8) and also in Section 5.2.1.
Additional information can be obtained from the

Microprocessor Pascal System User's Manual.

6.3.2 Stack and Heap

Like the majority of modern high-level languages,
Microprocessor Pascal has a stack architecture. The stack
is an area of read/write memory from which sections (called
stack frames) are allocated to a routine (procedure or
function) at the time it is invoked. When the routine has
finished executing, its data storage area is returned to the
stack for use by other routines. The workspace register
concept of the 9900 (see Section 8.4.4) forms a natural
basis for implementing stack frames.

Data is completely separated from program code, so that
Microprocessor Pascal adapts naturally to the ROM/RAM
environment of a microcomputer. This means that
Microprocessor Pascal code is automatically re-entrant. If
a routine is simultaneously invoked from different parts of
a system (as can well happen in a concurrent system) both
invocations can use the same program code; it is only
necessary to create different stack frames.

Texas Instruments 6-5 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

When the target system is initially started, all available
RAM is in a common pool called the heap. As programs and
processes are activated they are allocated their stack space
from the heap. This is returned to the heap (for re-use)
when the program or process terminate.

In addition to the storage provided in the stack,
Microprocessor Pascal is able to dynamically allocate areas
of memory (known as heap packets), under program control,
from the heap. This is accomplished using the standard
procedures NEW and DISPOSE, and the pointer variable
described in section 6.6.13. (NEW and DISPOSE are described
in the Microprocessor Pascal System User's Manual.)

6.3.3 Systems and Programs

The largest unit in the Microprocessor Pascal language is a
SYSTEM. A system may contain a number of processes,
apparently executing in parallel. A Level 1 (highest level)
process is declared, in Microrprocessor Pascal, by the
keyword PROGRAM. A conventional sequential program can be
regarded as a special case of a system with only one
PROGRAM.

6.3.4 Processes and Procedures

Each PROGRAM can contain within it subordinate processes
that are declared by the keyword PROCESS. The keyword
PROGRAM is used at the highest level because processes at
this level have special properties. This also maintains
compatibility with standard Pascal.

A system, program or process can contain within it
procedures (and functions). Processes and procedures look
similar but, in practice, are quite different. A procedure
is, logically, a part of the sequential program that calls
it, whereas a process is a separate sequential task that
executes concurrently with all the other processes in the
system, including the one that calls, or STARTs it.

6.3.5 Declarations and Statements

For the programmer there are two principal parts to any
Microprocessor Pascal system, program, process, procedure,
or function: the declarations, and the statement body.

Declarations define identifiers that can later be referred

to by name (instead of by repeating the declaration). These

Texas Instruments 6-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

identifiers specify the data that the program is to work
with; the statements specify exactly what is to be done with
this data.

The statement body is a collection of Microprocessor Pascal
statements that is enclosed by a BEGIN...END compound
statement. '

PROGRAM factorial; (* PROGRAM DECLARATION

VAR i,j,n : INTEGER; (* VARIABLE DECLARATIONS
(* Declare variables named
(* I, J, N of type integer

BEGIN (* factorial *) (* PROGRAM BODY
Reset(INPUT);

(* Read in a value for N
(* Set I and J to 1

(* Use I and J to compute
(* factorial N

*)

*)
*)
*)

*)

*)
*)

*)
*)

Read(n);
i := 1; j := 1;
WHILE 1 <> n DO

BEGIN

1 := 1 + 1;

j := i * j
END;
Writeln(j)

END. (* factorial *)
(* Output value of factorial N *)

The declarations also specify any subordinate processes,
procedures, etc, and assign identifiers to them so that they
can be referred to in the statement body.

C

O

M

P

U

T

E

F

A

C

T

O

R

I

A

L

RESET(INPUT)
READ (N)

l: = 1

J: = 1

WHILE

K>N

WRITE LN (J)

l:=l+l

J:=lxJ

Figure 6-1 Program Structure Diagram

Texas Instruments 6-7 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Microprocessor Pascal programs are free format; the program
can be laid out in any manner on the page. Statements, for
example, need not start in a particular column; nor are they
restricted to one per line, though this is usually good
practice.

Microprocessor Pascal gives the programmer a free hand in
formatting his program. However, for readability, it is a
good idea to lay out the program to reflect its structure.
This can be done by using indentation. In the example
above, the statements within the BEGIN...END compound
statement following the WHILE clause are indented to show
that they are one level down in the program hierarchy. In
fact, the indentation reflects the appearance of the
structure diagram for the program (Figure 6-1). (See
Section 4.5 for a description of structure diagrams.)
Formatted in this way, the program is much more readable and
the structure can be seen at a glance.

6.3.6 Block Structure

One of the key features of Microprocessor Pascal is its
block structure. The basic ideas of block structuring are

discussed in Section 4.9.

A block is a self contained area of program that contains
both a statement body and the declarations (type, variable,
procedure, etc) relating to it. A Microprocessor Pascal
program consists of a hierarchy of blocks, nested one within
another. A system block, which is a complete Microprocessor
Pascal system, contains a number of program blocks, which in
turn can contain process blocks, procedure and function
blocks, etc. This hierarchy is displayed in Figure 6-2.
(The lexical hierarchy is shown in Figure 6-3, and the
corresponding concurrent structure in Figure 6-4.)

The declarations made at the start of a block apply to that
block and to any blocks nested within it. This is called
the scope of the declaration. Scope can be formally defined
as the range of system text over which the declaration is
valid. Identifiers cannot be referenced outside their
scope, ie outside the block in which they are declared. For
example, in the system of Figure 6-2, the declarations in
PROGRAM A cannot be referenced in PROGRAM B or PROCESS R,
but can be referenced in both PROCEDURE P and PROCEDURE Q.
The declarations in PROCEDURE P cannot be referenced in
PROCEDURE Q or in PROGRAM A.

If a reference is made to a declaration (variable, type,
procedure, etc) that is not in scope, the compiler will
generate an error message.

Texas Instruments 6-8 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

SYSTEM X;
<declarations> (* System X's declarations *)

PROGRAM A;
<declarations> (* Program A's declarations *)

PROCEDURE P;

<declarations> (* Procedure P's declarations *)
BEGIN

. (* Procedure body *)

END;

PROCEDURE Q;

<declarations>

BEGIN

(* Procedure Q's declarations *)

(* Procedure body *)

END;

BEGIN

(* Program body *)

END;

PROGRAM B;
Cdeclarations> (* Program B's declarations *)

PROCESS R;

<declarations> (* Process R's declarations *)
BEGIN

. (* Process body *)

END;

BEGIN

(* Program body *)

END;

BEGIN

(* System body

END.

Figure 6-2 System Structure

Block structure and scope rules are powerful tools for
managing program structure. Procedure P, for example, can
be written without worrying whether it will interfere with
procedure Q. A variable can even be declared in P with the

Texas Instruments 6-9 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

same name as a variable declared in Q: they will be
completely different variables because they are in different
areas of scope. If a variable is declared in P with the
same name as a variable declared in A, the compiler will
create a new variable with this name, and references to it
in P will always access this local definition. Where there
is a possible ambiguity, the compiler always chooses the
most local declaration.

SYSTEM X

PROGRAM A PROGRAM B

PROCEDUREP PROCEDUREQ PROCESS R

Figure 6-3 Lexical Hierarchy

SYSTEM X

PROGRAM A PROGRAM B

PROCESS R

Figure 6-4 Concurrent Structure

Note that in the example, both P and Q can access the
declarations made at the start of program A; the interaction
with data declared in higher level modules needs to be
clearly defined when writing a system. This should be part
of the module specification.

Texas Instruments 6-10 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

As well as assisting program structure, block structuring
(combined with Microprocessor Pascal's stack architecture)
can save memory space. Data area is not allocated to a
procedure from the stack frame until it is actually called.
This means that if, say, procedure P is called followed by
procedure Q, the space taken up by the variables of
procedure P is returned to the stack when it has finished
executing, and the same memory area can be used for the
variables of procedure Q. The system only allocates data
space to the routines currently executing.

A variable has an extent as well as a scope. Extent is the
time during system execution for which storage space is
allocated to the variable. Apart from dynamically allocated
variables, this extent is the duration of execution of the
block in which the variable is declared. In a concurrent
system, a variable's extent continues as long as any of the
processes declared in the same block are executing. The
reason for this is that the variable is in scope in such a
process and might be referenced.

6.4 MICROPROCESSOR PASCAL SYSTEM - PROGRAMMING SUPPORT
ENVIRONMENT

The Microprocessor Pascal System is a powerful integrated,
software development tool set that provides a development
environment for the design, coding, and debugging of
Microprocessor Pascal applications for microcomputers.

This system was designed from the start to execute
efficiently on the 'small' single-user floppy disc based
FS 990/4 and TMAM 9000 minicomputers. The system is also
supported on the much larger, hard disc multi-user DS 990/10
and /12 computers.

Currently there are four major components in the
Microprocessor Pascal System to assist in software
development:

o An 'intelligent', interactive, screen-based editor for
source preparation, with syntax-checking capability.

o A compiler that produces interpretive code.

o An interactive host debug interpreter.

o A code generator that transforms interpretive code
into TMS9900 native object code.

Two executives support the execution of the user's system on
a target microcomputer. One supports the interpretive code

Texas Instruments 6-11 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

produced by the compiler (MPIX - Microprocessor Pascal
Interpretive Executive); the other supports the object code
produced by the code generator (MPX - Microprocessor Pascal
Executive). These executives are functionally identical, so
that the user has a choice of running either interpreted or
compiled code on his target system.

6.4.1 Microprocessor Pascal Editor

The Microprocessor Pascal System features an interactive,
screen-based editor that allows the user to create and
modify Microprocessor Pascal source files. Some
'intelligence' has been built into this editor to allow it
to recognise certain Microprocessor Pascal language keywords
and to automatically indent the source text being entered
into easily distinguishable blocks of code that show the
program structure.

When editing, a page of text is displayed on a visual
display unit (VDU screen). The text may be modified simply
by positioning the cursor and typing new information.
Characters can be inserted and deleted anywhere on the
screen. The displayed page can be positioned anywhere
within the text file (page boundaries are not fixed).

Alternatively, the user can press the command (CMD) key and
enter a range of explicit edit commands, including find
string, replace string, etc.

When creating a source file, the editor assists line-by-line
program layout by automatically positioning the cursor for a
new line. The cursor can be moved forward or backward using
the TAB keys. This helps in indenting text to reflect the
program structure. The tab increment (number of columns for
each indentation) can be set by the user.

Most editors (even screen-based ones) use a line numbering
mechanism to access a particular source line within the
source file. The first line in the file is "line 1" (or 10
or 100), the second line is "line 2" (or 20 or 200) and so
on. Such mechanisms can be cumbersome to use, especially
when inserting source lines and also when going back to
perform modifications on an already partially modified
source file. To overcome these problems, the Microprocessor
Pascal system editor is completely cursor driven and does
not use a line numbering mechanism.

A number of edit commands (MOVE, COPY, DELETE and PUT)
operate on blocks of code. The required block is indicated
by:

o Positioning the cursor to the first line in the block
and press the function key F5.

Texas Instruments 6-12 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

o Positioning the cursor to the last line of the block
and press the function key F6.

o If a destination position is required (MOVE and COPY)
then reposition the cursor to the required source
line. (The block of code will be inserted into the
program immediately after this line.)

(The function keys are the grey keys, numbered Fl to F8,
that are located above the normal 'QWERTY' keyboard on the
911 VDU.)

The HELP command (press the CMD key and type the word HELP
followed by the return key) displays a full list of the
available edit commands, along with the meaning of each
function key.

After the program has been entered, the user can perform a
Microprocessor Pascal syntax check without leaving the
editor, by entering the CHECK command. The editor is not
equipped to detect semantic errors (such as undeclared
identifiers), but will perform a complete syntax check that
will find such errors as misspelled or missing keywords,
incorrect punctuation, invalid constructs, etc.

When the editor finds an error, it outputs an appropriate
English language error message to the screen, displays the
relevant area of text and positions the cursor over the
error so that the user can edit it immediately. When this
has been done, the CHECK command can be reentered and
checking will resume from the earliest point at which the
text was changed. (The syntax checker only 'backs up' as
much as is necessary; it does not need to restart from the
beginning of the file.)

The syntax checker speeds up and simplifies the process of
correcting syntax errors. It eliminates the need to exit
the editor, execute the compiler, print the listing, and
re-edit the source file for each mistake. The entire

process becomes a single interactive step.

The CHECK facility is entirely optional. The Microprocessor
Pascal System Editor can be used for text files other than
Microprocessor Pascal source.

The available edit commands are:

ABORT Exit the editor

INPUT Change the edit file
QUIT Save the edited file and ABORT
SAVE Save the edited file and INPUT

Texas Instruments 6-13 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

BOTTOM Position the cursor to the end-of-file

TOP Position the cursor to the top-of-file
+/- int Position the cursor up/down "int" lines

CHECK Check syntax of edit file
HELP Display edit commands available
INSERT Insert the specified file
SHOW Show the specified file

COPY Copy the specified block to current cursor posn
DELETE Delete the specified block
MOVE Move the specified block to current cursor posn
PUT Write the specified block to the specified file

FIND(tok,n)
REPLACE(tokl,tok2,n)
TAB(inc)

Find the "n"th occurrence of "tok"

Replace "tokl" by "tok2" "n" times
Set the tab increment to "inc"

The function key operations are:

Fl Roll down the file

F2 Roll up the file
F4 Duplicate this line
F5 Start block delimiter (< in cols 72 to
F6 End block delimiter (> in cols 72 to
F7 Compose/Edit
F8 Split line from the current cursor position
CMD Go into command mode (H h in cols 72 to

6.4.2 Microprocessor Pascal Compiler and Code Generator

80)
80)

80)

The Microprocessor Pascal Compiler generates interpretive
code from a Microprocessor Pascal source file. This code
can be executed directly using the interpretive debugger or
the Microprocessor Pascal Interpretive Executive (MPIX).
Passing this interpretive code through the Microprocessor
Pascal Code Generator produces native 9900 object code that
will run under the Microprocessor Pascal Executive (MPX).

Thus, Microprocessor Pascal gives the user a choice of
executing either interpretive or native code. Interpretive
code and native code for the same Microprocessor Pascal
source file will be functionally identical, apart from
considerations of speed and code size.

Interpretive code executes several (approximately five)
times slower than native code; but (beyond a certain size,
which accounts for the overhead of the interpreter) an
interpreted system is smaller. Interpretive code only takes
up about three quarters of the memory required by the
equivalent native code. Therefore, for a large application,
interpretive code can represent a great saving in memory.

Texas Instruments 6-14 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

COMPILED

INTERPRETIVE

CROSS OVER AROUND
1100 STATEMENTS

500 1000 1500 2000 2500

NO. OF MICROPRESSOR PASCAL (2.1) STATEMENTS

Figure 6-5 Interpretive vs Compiled Characteristics

3000

In selecting whether to use native or interpretive code, the
user can trade off speed against memory size. One example
of such a trade-off is the Microprocessor Pascal Compiler
itself. On the FS 990/4 floppy disc based system, the
compiler executes interpretively so that it will fit into
the available memory space (it still runs at an acceptable
speed, processing approximately 100 lines of source code per
minute). On the DS 990/10, where there are no memory
restrictions, it executes as native code to maximize the
speed.

Various compiler options are available. These options
include:

LIST Produce source listing
MAP Produce variable map
STATMAP Produce statement displacement map
DEBUG Include debug information in code
ASSERTS Generate code for ASSERTS statement checks

CKINDEX Generate code for array index checks
CKPTR Generate code for NIL pointer checks
CKSET Generate code for set expression checks
CKSUB Generate code for subrange assignment bounds

checks

The host debugger can be used to check the functionality of
the application program. When satisfied that the program
works correctly it can be transferred to the actual target
hardware where any hardware dependent parts of the program

Texas Instruments 6-15 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

can be verified using the AMPL in-circuit emulator. The
Microprocessor Pascal System is supplied with two sets of
AMPL procedures (one for MPIX, the other for MPX) that
present the same user interface as the host debugger. Any
necessary 'fine tuning' or customisation can also be
performed at this stage.

6.4.3 Microprocessor Pascal Host Debugger

The Microprocessor Pascal Host Debugger is an interactive
interpreter that allows the user to control and monitor
execution of a Microprocessor Pascal target application
system. This greatly simplifies the task of finding errors
in a system (debugging).

The debugger is designed for use with a concurrent (multiple
process) system. The user can monitor the execution of a
single process, or examine and control process scheduling
and communication. Debugging usually proceeds with one
aspect of a system at a time.

The user can set breakpoints at any Microprocessor Pascal
statement by specifying the routine and the statement number
(printed on the source listing). The system can be executed
in single-step mode (one Microprocessor Pascal statement at
a time), or continuously until a breakpoint is reached.
Three modes of tracing - trace process scheduling, trace
routine entry/exit and trace statement flow - are possible.

The contents of a routine's stack frame (data area), heap,
and common areas, can be displayed and modified. The
scheduling algorithm can be overridden by holding
(suspending) a particular process until an explicit release
command is given.

The user can also connect interprocess files (discussed in
section 6.8.5.4) using the Connect Input File and Connect
Output File commands. The new file that results can be sent
to an external file or to the terminal. The process
concerned will then input or output to the device
specified. If it is a terminal, the system will prompt for
input, and send a message identifying the source in the case
of output.

3

Interrupts can be simulated using the SIMulate Interrupts
command.

The system has three ways of dealing with CRU I/O (for a
description of the CRU see section 8.9). CRU statements can
be directly executed, ignored, or simulated by the user.
The "CRU" command is used to specify which option applies to
a particular process. When simulated I/O is specified, the
CRU address and value are displayed for output, and the user

Texas Instruments 6-16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

is prompted for input. This feature can be useful when
debugging software for a target system, which is likely to
have a different CRU configuration from the development
system.

The Microprocessor Pascal debugger is a very powerful
high-level tool for verifying the detailed execution of a
piece of software. It is designed to integrate closely with
the other components of Microprocessor Pascal and to form a
complete system in which designs can be smoothly carried
through to implementation.

6.5 MICROPROCESSOR PASCAL LANGUAGE

Before describing the major features of the Microprocessor
Pascal language (data types, control structures,
concurrency, etc) it is first necessary to explain some of
the basics of the language.

6.5.1 Basic Language Elements

A Microprocessor Pascal application program is made up of
symbols from a finite vocabulary. The vocabulary consists
of identifiers, numbers, strings, operators and keywords.
These in turn are composed of sequences of characters from
the underlying character set.

6.5.2 Character Set

The Microprocessor Pascal character set is:

the letters A-Z, a-z
the digits 0-9
and the special characters:

+ -*/".,;: = $'

6.5.3 Keywords

<>()[!{}#

Keywords are reserved words with a fixed meaning; they may
not be used as identifiers. Although they are written as a
sequence of letters, they are interpreted as a single
symbol. A full list of these keywords is given below.

Texas Instruments 6-17 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

ACCESS AND ANYFILE ARRAY

ASSERT BEGIN BOOLEAN CASE

CHAR COMMON CONST DIV

DO DOWNTO ELSE END

ESCAPE EXTERNAL FALSE FILE

FOR FORWARD FUNCTION GOTO

IF IN INPUT INTEGER

LABEL LONGINT MOD NIL

NOT OF OR OTHERWISE

OUTPUT PACKED PASCAL PROCEDURE

PROCESS PROGRAM RANDOM REAL

RECORD REPEAT SEMAPHORE SET

START SYSTEM TEXT THEN

TO TRUE TYPE UNTIL

VAR WHILE WITH

In program text, it is convient to write keywords in upper
case to distinguish then from user-defined identifiers in
lower case. Microprocessor Pascal does not require this
distinction, but it is helpful in making programs more
readable.

6.5.4 Identifiers

denoting user defined or predefined
consists of a letter or $ followed
of letters, digits, $ or '_'
se letter is treated as if it were

case letter. For example, the
the same as the identifier

on followed in this chapter is that
en in lower case when they appear

will be in upper case whenever they

Identifiers are names

entities. An identifier

by any combination
(underscore). A lower ca
the corresponding upper
identifier Data_Size is
DATA__SIZE. The convent!
all identifiers are writt

in examples, but they
appear in the text.

A maximum length is imposed by the restriction that
identifiers must not cross line boundaries, so that they may
not be more than 72 characters long. All characters in an
identifier are significant. Process, routine and common
names should be unique within the first 6 characters.

Legal Identifiers:
X

$VAR
LONG_IDENTIFIER
NUMBER_3
READ

Texas Instruments 6-18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Illegal Identifiers:
ARRAY (Reserved word)
_ROOT3 (Cannot start with __)
3RDVAL (Cannot start with number)
MAX VALUE (Cannot contain blank)
TOTAL-SUM (Cannot contain -)

Some identifiers are standard, that is they are predefined
with a given meaning. They can be redefined by the user, in
which case the standard meaning no longer applies. For
example, if the standard routine name READ is redefined, the
standard routine READ cannot be*, called.

6.5.5 Language Element Separators

At least one separator must occur between two constants,
identifiers, keywords or special symbols. No separators can
occur within these elements (except spaces within strings).
Separators include spaces, end of lines, comments or
remarks. For example, in the statement:

WHILE X<10

a space separates WHILE and X. This is not equivalent to:

WHILEX<10

as WHILEX could be a legal identifier. However, a space is
not necessary between X and '<' because '<' is not permitted
within an identifier and thus serves to delimit it.

6.5.6 Comments

A comment is any sequence of characters beginning with { or
(* and ending with } or *) (except within a string). A
remark is any sequence of characters beginning with " and
extending to the end of the line (except within a string).
Comments and remarks are ignored by the compiler, and can be
used to annotate program text.

6.5.7 Constants

Part of the declaration section for a program, process, etc,
consists of the <constant declaration part>. This allows an
identifier to be used as a synonym for a constant and can
make a program more readable. These constants are defined

by:

CONST <constant declaration list>

Texas Instruments 6-19 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

where <constant declaration list>

following:

<identifier> = <constant> ;

is one or more of the

where <constant> may be a signed real constant, string
constant, character constant, integer constant expression or
a previouly defined constant identifier. An integer
constant expression may consist of: integer constants and/or
constant identifiers along with any of the integer
arithmetic operators. For example:

CONST max = 500;
asterisk = '*';
one__half = 0.5;
half__max = max DIV 2;

"Application parameters" that are liable to change between
systems (eg the number of capstan lathes in an engineering
shop) are best handled by defining them as constants. Doing
this would mean changing only a few statements right at the
begining of the application program instead of having to
search the whole program for instances where the parameter
values are used (and possibly even missing some of them).

6.5.8 Variables

Variables are used to reference areas of storage within a
module. A variable declaration associates an identifier to
a location which can hold a value of a specified type. The
form of a variable declaration is:

VAR <variable declaration list>

where <variable declaration list> is one or more of the

following:

identifier list> : <type definition> ;

identifier list> is a list of identifiers separated by
commas. <type definition> (described in section 6.6) can be
a standard type (INTEGER, REAL, etc), the name of a type
defined in a type declaration statement, or a new type
definition which can take any of the forms allowed in a type
declaration. In the last case, the new type will not have
any name associated with it (the declaration of PROFIT below
is an instance of this). For example:

VAR nyears
amount,value,rate
ten__years
profit

Texas Instruments

INTEGER;

REAL;
vector;

ARRAY [1..10] OF BOOLEAN;

6-20 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

(Type VECTOR is defined in section 6.6.1.)

A variable can either be a simple identifier which
references the entire variable, or may be a qualified
variable which is used to reference part of a structured
variable - for example a record or an array.

6.5.9 Expressions

Expressions combine the values of variables and constants
using operators to generate new values. Expressions consist
of operands, operators and function calls.

6.5.9.1 Operands

Operands reference the values of constants or variables. An
operand may be one of the following:

<integer constant>
<real constant>

<string constant>
<character constant>

<constant identifier>

NIL

<set>

<variable>

<function call>

6.5.9.2 Operators

An operator specifies an operation that is to be performed
on one or two operands. An operator can only be applied to
two operands if their types are compatible. Some operators
accept mixed mode operands: if an INTEGER value is added to
a REAL, the INTEGER is first converted to REAL and then
added to give a REAL result.

Operators have a precedence, which specifies the order of
their evaluation in a complex expression.

The operators are:

Group 1: Multiplying operators:
* Multiplication; set intersection

/ Real division
DIV Integer division (divide and truncate)
MOD Modulus

Texas Instruments 6-21 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Group 2: Adding operators:
+ Addition; unary plus; set union
- Subtraction; unary minus; set difference

Group 3: Relational operators:
« Equal
<> Not equal
< Less than; proper set inclusion
> Greater than; proper set inclusion
<= Less than or equal; set inclusion
>= Greater than or equal; set inclusion
IN Set membership

Logical operators:
Group 4: NOT Negation
Group 5: AND Conjunction
Group 6: OR Disjunction

The list of operators is in order of precedence, with groups
of higher precedence listed first. In an expresssion,
operators of highest precedence are evaluated first;
operators of equal precedence are evaluated from left to
right within the expression. Parentheses may be used to
alter the order of evaluation.

Examples:

Expression Value
2 + 3*5 17

15 DIV 4*4 12

NOT (5 + 5 >= 20) TRUE
6+6 DIV 3 8

3 < 5 OR 2 >= 6 AND 1 > 2 TRUE

In a BOOLEAN expression of the form:
x AND y

if X is false, Y is not evaluated and the value of the
expression is FALSE. Similarly, in a BOOLEAN expression of
the form:

x OR y

if X is TRUE, Y is not evaluated and the value of the
expression is TRUE. This is called short circuit
evaluation.

6.5.9.3 Function Calls

A function is a subroutine that returns a single value of
specific type. It is invoked by a function call:

Texas Instruments 6-22 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

<function identifier> (<parameter list>)

eg sqrt(max)

where <function identifer> is the name of the function to be

called. <parameter list> is * one or more <parameter>s,
separated by commas, as specified by the function
definition. <parameter> may be any variable, constant or
expression so long as it matches the declared type.

6.5.10 Assignment Statement ,,

The assignment statement specifies an expression that is to
be evaluated and assigned to a variable. Its general form
is:

<variable> <expression>

eg x :» 5

The symbol ':=•' can be read 'becomes equal to'. The type of
<expression> must be compatible with the type of <variable>,
except that an INTEGER expression is automatically converted
to LONGINT or REAL, and a LONGINT expression is
automatically converted to INTEGER or REAL. Direct
assignments can be made to variables of any type (including
records, arrays, etc) except files and semaphores.

6.5.11 Routine Declaration

A PROCEDURE declaration packages a self contained sequence
of operations that performs some action, and also associates
this action with a particular identifier. This action can
then be performed from anywhere within the program (so long
as it is in scope - see section 6.3.6) by simply invoking
the appropriate procedure.

The general form for a PROCEDURE declaration is:

PROCEDURE <identifier> (<parameter list>) ;
<declarations>

BEGIN

END ;

where <parameter list> is one or more of the following:

VAR identifier list> : <type definition> ;

<identifier list> is one or more identifiers separated by

Texas Instruments 6-23 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

commas. <type definition> is described in section 6.6. If

no parameters are required then the "(" and ")" can be
omitted. VAR is optional (see below).

<declarations> can be one or more:

LABEL declaration

CONST declaration

TYPE declaration

VARS declaration

COMMON declaration

ACCESS declaration

PROCEDURE declaration

FUNCTION declaration

refer to manual

section 6.5.7

section 6.6

section 6.5.8

refer to manual

refer to manual

below

There

will

over t

parame

withou

in the

addres

passed

parame

parame

mechan

ods of parameter passing. Call by value
of the actual parameter's value to passed

rage location in the procedure. This
en be modified by the called procedure
the value of the actual parameter variable
ack. Call by reference will cause the
caller's actual parameter variable to be
procedure. Modifying a call by reference
the contents of the caller's actual

e. (More detail on the parameter passing
n in Section 4.10.1.)

are two meth

cause a copy

o a new sto

ter can th

t affecting
caller's st

s of the

over to the

ter modifies

ter variabl

isms is give

If a parameter is to be passed by reference then the keyword
VAR should be included before the appropriate
identifier list>:

PROCEDURE add__five_plus_inc (VAR update : INTEGER;
inc : INTEGER);

CONST five = 5;

BEGIN

{ Modify the caller's actual parameter by INC+5 }
update := update + five + inc;
{ Modify local variable INC - does not affect

the caller's actual parameter }
inc := inc +3

.

END;

<declarations> and the BEGIN ... END; can be replaced by the
keyword EXTERNAL, which informs the compiler that that
particular procedure is defined outside this program
module.

A FUNCTION declaration is similiar to a PROCEDURE

declaration. The only difference is that the first line is
of the form:

FUNCTION <identifier> (<parameter list>) :
<type definition> ;

Texas Instruments 6-24 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

The function's result is returned by assigning the required
value to the function identifier, ie:

FUNCTION return_6x (value : INTEGER) : INTEGER;

BEGIN

return__6x := value * 6
END;

Microprocessor Pascal implements additional structures that
can be used to package concurrent statement blocks (PROGRAMS
and PROCESSes). These are defined in a similiar way to
procedures and can have parameters in a similiar way (but
parameters must all be passed by value). However, programs
and processes are STARTed rather than called and once
started exist as separate concurrent "sites of execution"
within the system.

A PROGRAM or PROCESS declaration is Identical to a PROCEDURE

declaration, except that the first line is:

PROGRAM <identifier> (<parameter list>) ;

or

PROCESS <identifier> (<parameter list>) ;

The <declarations> can include other PROCESS declarations.

The <parameter list> cannot contain variable parameters (ie
the keyword VAR is not allowed In <parameter list>).

See sections 6.3.3 to 6.3.6, 6.9 and Section 5.2.2
concurrent structures of Microprocessor Pascal.

for the

6.6 DATA TYPES

A data type defines the set of values a variable of the type
specified may assume, and the set of operations that may be
performed on these values. Each variable is associated with
one and only one type.

In Microprocessor Pascal, data types can be split into three
distinct classes. These are:

Simple types

Structured types

Texas Instruments

INTEGER, LONGINT, REAL, CHAR,

BOOLEAN, SEMAPHORE, Subrange and
Enumeration

ARRAY, RECORD, SET, POINTER and
FILE

6-25 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

User defined types Specified by the TYPE statement

The symbol PACKED may precede a record or array type
definition. If a structure is declared to be PACKED,
several unstructured components of the structure, if
possible, are stored in one word. Packing may economize the
storage requirements of a data structure, at the expense of
efficiency of access of the components.

One example of a packed array is a string, which can be
defined as:

PACKED ARRAY [<index type>] OF CHAR

In this structure, characters are stored one per byte
instead of the usual one per word. <index type> is
described in section 6.6.9.

Details of the packing algorithm are given in the
Microprocessor Pascal System User's Manual.

6.6.1 User Defined Types

A type declaration introduces an identifier as the name of a
new data type. The identifier can later be used to refer to
that type; for example, to define variables, or to define
structured types in which that type is included. The form
of a type declaration is:

TYPE <type declaration list>

where <type declaration list> is one or more of the
following:

<identifier> = <type definition> ;

For example:

TYPE vector - ARRAY [1..10] OF REAL;
days * (mon,tue,wed,thu,fri,sat,sun);
digits » '0'..'9';
complex = RECORD

re,im : REAL
END;

The various forms of <type definition> are described in
subsequent sections.

The TYPE declaration does not declare any actual variables
(storage locations); this is performed by the variable (VAR)
declaration, as described above (section 6.5.8).

Texas Instruments 6-26 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.6.2 Integer and Longint Type

A value of type INTEGER is a whole number In the range
-32768 to 32767 (signed 16 bit quantity). A value of type
LONGINT ranges from -2147483648 to 2147483647 (signed 32 bit
quantity)•

The operators defined for INTEGER and LONGINT operands are:

+ Unary plus or add
- Negate or subtract
* Multiply
DIV Divide and truncate result

MOD Modulus [a MOD x = a - ((a DIV x) * x)]

The operator / (divide) can be applied to integers, but
always produces a REAL result. The relational operators =,
<>, <> >» <~> >~ can be applied to integers and produce a
BOOLEAN result. Standard functions applying to INTEGER and
LONGINT are described in section 6.13.6.

6.6.3 Boolean Type

A value of type BOOLEAN is one of the logical values TRUE or
FALSE. The following operators are defined for BOOLEAN
operands and yield BOOLEAN results:

NOT Logical negation
AND Logical conjunction
OR Logical disjunction

TRUE and FALSE are predeclared keywords such that FALSE is
less than TRUE. Thus the relational operators can be used
with BOOLEAN operands to provide additional operations. For
example:

= Equivalence
<> Exclusive OR

6.6.4 Char Type

Values of type CHAR are ordered according to their ASCII
value. A character constant can be written either as a

single character between single quotes, or by specifying its
hex value, preceded by #:

'A' ASCII character A

'#0D' ASCII character 'carriage return'

Texas Instruments 6-27 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.6.5 Enumeration Type

INTEGER, LONGINT, BOOLEAN and CHAR are special cases of the
enumeration type. An enumeration type is any simple type
except REAL. The characteristics of an enumeration type
are:

o There is a distinct set of values which a

variable of that type can take.

o The values have a unique linear order, in which
each value (except the first and last) has a
single predecessor and a single successor.

The integers

-32768, -32767, ... -1, 0, 1, ... 32766, 32767

clearly follow these rules; so do the characters, which have
a unique order (A, B, C, etc) defined by their ASCII
representation. However, the user can also define his own
enumeration types in a TYPE declaration, simply by
specifying a type name and an ordered set of values:

TYPE days = (mon,tue,wed,thu,fri,sat,sun);

The values are represented by identifiers (which must be
unique). These can be regarded as primitive values, just
like '7' or '125': it is not necessary to translate them
into bit patterns, or know how they are represented within
the computer, any more than it is necessary for most
purposes to work out the internal bit pattern used to
represent '125'. MON, TUE, etc are values in their own
right.

These user defined types are called scalar types. The
relational operators (>, <, etc) are defined for all
enumeration types. The BOOLEAN expression MON < WED is TRUE
because the values form an ordered set in which MON precedes
WED. However, the arithmetic operators (+, -, etc) are only
defined for the standard types INTEGER and LONGINT (and
REAL); it is meaningless to write MON + WED. The following
standard functions apply to enumeration types:

SUCC(x) Successor of X
PRED(x) Predecessor of X
ORD(x) Integer ordinal value of X within the set of

values (not defined for INTEGER or LONGINT)

eg SUCC(wed) = thu, PRED(wed) = tue, ORD(wed) = 3

Scalar types are useful for counting purposes. For example,

Texas Instruments 6-28 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

to index into an array or control the number of
of a FOR loop (see section 6.7.5):

iterations

FOR today := mon TO fri DO
total__takings := total_takings + takings [today];

The variable TODAY is declared to be of type DAYS; the array
TAKINGS is declared to be indexed by type DAYS.

6.6.6 Subrange Type

A type can be defined as a subrange of any previously
defined enumeration type by specifying the smallest and
largest values in the subrange:

TYPE weekdays = mon..fri;
array__index = 1..25;

This is a useful feature, because a compiler option can
insert runtime checks to ensure variables do not exceed

their specified subrange. This can be a great help in
debugging. Subrange types can also be used in declaring
array bounds, for example:

VAR table

sickdays

ARRAY [array__index] OF INTEGER;
ARRAY [days] OF BOOLEAN;

This performs the double function of specifying the size of
the array, and the type of the index variable. Constructs
such as this makes it easy to change the size of an array at
a late stage in development, simply by altering one or two
TYPE statements. (Arrays are discussed in section 6.6.9.)

6.6.7 Real Type

The type REAL can be used to represent real values with 6-7
decimal digits of precision. The range of absolute values
that can be represented is approximately 1.0E-78 through
1.0E75.

The following operators accept operands of type REAL and
yield a REAL result:

Unary plus or add
Negate or subtract
Multiply
Divide

The relational operators are defined for REAL operands and
yield a BOOLEAN result. The standard functions TRUNC,
ROUND, LTRUNC, LROUND will truncate or round a REAL value to

Texas Instruments 6-29 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

give an INTEGER or LONGINT result.

6.6.8 Semaphore Type

The type "semaphore" is used for process synchronisation and
communication (more about this later, see section 6.8).
Operations on variables of type semaphore are performed by
functions and procedures which must be declared EXTERNAL to
the program. Arithmetic operations are not valid for
semaphore variables.

6.6.9 Array Type

An array type consists of an ordered group of components
which are all of the same type. The form of an array type
definition is:

ARRAY [<index type list>] OF <component type>

<component type> can be any type except FILE. This means
that it is possible to have arrays of arrays, of records or
of any other structured type. <index type list> is a list
of <index type>s separated by commas. These can be either
explicit subrange definitions (such as 1..5) or the name of
a suitable enumeration type (such as DAYS). The number of
<index type>s in the declaration determines the number of
dimensions of the array. There is no limit to the number of
dimensions an array may have. Each <index type> definition
determines both the size of that dimension of the array, and
the type of the variable that will be used to index it. An
<index type> can be any enumeration type; the types of
different dimensions need not be the same. For example:

VAR holidays : ARRAY [1..52, days] OF BOOLEAN

An exactly equivalent definition is:

VAR holidays : ARRAY [1..52] OF
ARRAY [days] OF BOOLEAN

The assignment operator can be used between arrays of
compatible type. For example:

VAR a,b : ARRAY [1..20, 25..50, 1..2];

a := b;

This causes every element in the array A to be assigned the
value of the corresponding element in the array B.

Texas Instruments 6-30 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

An indexed variable is used to reference an element of an

array. Its form is:

<variable> [<expression> ,...., <expression>]

eg VECTOR F5]

The expressions are used to subscript into each of the n
declared dimensions. If an array variable is declared to
have n dimensions, then the indexed variable may have from 1
to n subscript expressions. For example, if an array is
declared

a : ARRAY [1..10, 1..20] OF INTEGER

then A [5] is a legal indexed variable; it is an

ARRAY [1..20] OF INTEGER

This array can itself be indexed, eg A [5] [6]

which is exactly equivalent to A [5, 6]

The type of the subscript expression must correspond exactly
with the declared <index type>. There is a compiler option
to check the value of a subscript to make sure it is within
the declared bounds,

6.6,10 Record Type

A record type consists of a group of components of possibly
different types called fields. Each field in a record type
is given a distinct name. A field of a record can be of any
type (including array, record, etc) except FILE. The form
of a record type definition is:

RECORD <field list> END

A <field list> is an arbitrary number of <record section>s
separated by semicolons. Each <record section> is of the
form:

<field identifier list> : <type>

<field identifier list> is a list of field identifiers

separated by commas. For example:

TYPE complex - RECORD
re, im : REAL

END;

Texas Instruments 6-31 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

date = RECORD

month : (jan,feb,mar,apr,may,jun,jul,
aug,sep,oct,nov,dec);

day : 1..31;
year : INTEGER

END;

The assignment operator (:=) can be applied to records of
exactly the same type.

A field of a record is referenced by specifying the name of
the record variable and the field name, separated by a
period. For example:

VAR start, finish : date;
cl, c2, c3 : complex;

start.day := 20;
finish.year := 1978;
cl.re := 3.4;
c3.im := 5.8;

and

start := finish;

which is equivalent to

start.month

start.day
start.year

= finish.month;
= finish.day;
= finish.year;

A record variable is used to reference a field within a
record. Its form is:

<variable> . <field identified

where <field identified is one of the fields declared in
the record type definition.

pump_one.grade
cl.re

start.day

Any record can be qualified; any array can be subscripted.
Since it is possible to construct arrays of records and
records containing arrays, variables such as

arr [5] . field [4]

are possible. Here,

arr is an array
arr [5] is a record
arr [5] . field is an array
arr [5] . field [4] is an element

Texas Instruments 6-32 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Very powerful and complex data structures can be built in
this way.

Pascal also allows record variants, which means that part of
a record can be interpreted in more than one way. This
would allow, for example, a personnel record for a college
to contain different Information (different fields)
according to whether It described a student or a member of
staff (see Section 4.7.4). Record variants are described in
detail in the Microprocessor Pascal System User's Manual.

6.6.11 Set Type

Pascal allows a set type, in which the possible values are
subsets of the base type, which can be any enumeration
type. For example, with the base type 1..5, possible values
of a set variable include:

[1,2,3]
[2,3,5]
[1,2,3,4,5]
[] (the empty set)

A full range of operators is defined for sets - union,
intersection, inclusion, etc.

6.6.12 File Type

A file type is a structure which consists of a sequence of
components (of unspecified length) which are all of the same
type. A file is usually associated with a mass storage
medium, such as tape or disc. However, this is not
necessarily the case as file variables can be used as a
means of communicating between concurrent processes. One
process can write information to a logical file and another
can read it. The MPX or MPIX executive performs the
transfer in internal memory without involving any external
storage devices.

The form of a file type definition is:

RANDOM FILE OF <component type>

or

FILE OF <component type>

or

TEXT

Texas Instruments 6-33 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

The component type of a file can be any type except pointer
or file. The number of components (ie the length of the
file) is not specified and can grow to any size, depending
on the storage medium with which the file is associated.

The prefix RANDOM denotes a random file in which components
are accessible by their component number. This numbering is
defined to be the natural ordering of the sequence of
components, with the first component being number zero.

A TEXT file is a sequential file of type CHAR which is
divided into lines by end-of-line markers. INPUT and OUTPUT
are standard predeclared TEXT files.

TYPE rec = RECORD

name

id__num
END;

PACKED ARRAY [1..15] OF CHAR;
INTEGER

VAR f

employee
temp

FILE OF INTEGER;
RANDOM FILE OF rec;
TEXT;

The following standard procedures and functions are
available for file manipulation:

CLOSE Close the file

EOF Check for EOF (end-of-file)
EOLN Check for EOL (end-of-line)
READ Read components of the file
READLN Read components from a text file until EOL
RESET Open file for input
REWRITE Open file for output
WRITE Write components to the file
WRITELN Write components and EOL to a text file

See the Microprocessor Pascal System User's Manual for
further details.

6.6.13 Pointer Type

Variables may be referenced indirectly by means of a
pointer, which can be thought of as the address of a
variable. The form of a pointer type definition is:

@ <type identifier>

read as "pointer to a <type identifier>".

A pointer variable can only point to the type for which it
is declared. This goes a long way to 'taming' the
potentially dangerous pointer type, which in languages such
as PL/I is allowed to roam freely throughout memory, and can

Texas Instruments 6-34 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

cause chaos if the programmer makes a small error in
manipulating it. (In Microprocessor Pascal it is always
possible to do such things using the type transfer function,
for instance, but the programmer is obliged to tell the
compiler that he is doing something risky.)

The <type identifier> need not be defined before the pointer
type is defined, provided it is declared later in the
declaration section. This is a forward type declaration,
which is only permitted with pointer types.

TYPE Ptr = fllist;
list = RECORD

value • REAL;
loc •

• 0..FF

END;

PTR is declared to "point to the type LIST" and variables of
type LIST can only be used to point to records of type
LIST.

A pointer variable is used to reference the variable pointed
to by a pointer type. Its form is:

<variable> @

where <variable> is a pointer type. The value of a pointer
variable is undefined until either a value is assigned to it
or a NEW is performed on it to allocate an area of dynamic
storage (see section 6.3.2). The constant NIL can be
assigned to any pointer variable, which means it points to
nothing at all. A compiler option (CKPTR) is available to
check if a reference is made to a NIL pointer.

{ Declare NEXT and TEMP as pointers to records of
type LIST }

VAR next,temp : ptr;
.

{ Set TEMP to point to the NIL record of type LIST }
temp@ := NIL;
{ Allocate new record of type LIST from the heap, and

set NEXT to point to it }
new(next);
{ Set VALUE field of record pointed to by NEXT to 2.5 }
next@.value := 2.5;

The operators that can be applied to pointer variables with
compatible types are:

:= Assignment
= Equal (TRUE if the operands point to the

same address)
<> Not equal

Pointers allow storage to be dynamically allocated from a

Texas Instruments 6-35 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

called the heap, using the standard procedure
s can also be used to construct "advanced" data

ee reference [2] in the Bibliography) such as
and binary trees, A linked list is easily

fining a record type which contains one field
pointer to the next record In the list,

binary tree of records can be constructed by
'right link' and 'left link' pointer within the

storage area

NEW. Pointer

structures (s
linked lists

created by de
that is a

Similarly, a
defining a

record.

6,6,14 Type Compatibility and Transfer

Microprocessor Pascal has strict rules for compatibility
between types. In general, incompatible types cannot appear
on opposite sides of an assignment statement, or as operands
of the same operator.

Two types are distinct if they are explicitly or implicitly
declared in different parts of the program. A type is
explicitly declared using a TYPE declaration. A type may be
implicitly declared in a VAR declaration or in other places
where a name is not associated with the type (eg in
specifying an array index type).

Two types are compatible if one of the following is true:

o They are identical types.

o Both are subranges of the same enumeration type.

o Both are string types with the same length.

o Both are pointer types which point to identical
types.

o Both are set types with compatible base types.

o Both are file types with compatible element
types.

Arrays or records are compatible only if they are declared
to be of the exact same type.

There is no implicit conversion of types except from INTEGER
and LONGINT to REAL and between INTEGER and LONGINT.

The strict compatibility rules give the programmer a means
of checking that he is not using a variable in the wrong
place (for example, using the wrong variable to index an
array, or specifying the indices of a multi-dimensional
array in the wrong order). It is possible to completely
ignore this facility by, for instance, not declaring any new
types and specifying all array indices as unnamed subranges

Texas Instruments 6-36 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

of integer. However, intelligent use of the TYPE concept
can greatly reduce the possibility of errors, and make a
program more readable and easier to change.

It is possible to override the compatibility check by using
the type transfer facility, which temporarily changes the
type of a variable. The form of a type transfer is:

<variable> :: <type identifier>

eg i := ptr::INTEGER

The variable is temporarily treated as if it were the type
specified after the double colon. No conversion is
performed; only the apparent type of the variable is
altered. Use of this facility transfers responsibility from
the compiler to the programmer; therefore he needs to be
sure he knows what he is doing.

It is also possible to override the type structure by using
variants in record structures without checking the tag
fields (see the Microprocessor Pascal System User's
Manual)•

6.7 CONTROL STRUCTURES

This section is primarily concerned with the Microprocessor
Pascal statements that implement the control structures
which were introduced in Chapter 4 of this book (Section
4.5).

6.7.1 Procedure Statement

The procedure declaration (see section 6.5.11) defines a
subprogram which can be called up simply by writing its name
in a procedure statement. A procedure statement corresponds
to one of the terminal boxes on the right hand side of a
structure diagram (see Figure 4-14), which is expanded as a
separate algorithm in the procedure declaration (Figure
4-15).

The general form of a procedure statement is:

<procedure name) (<parameter list>)

eg calculate__mean (a, 5, 4*x)

Parameters must match in number and type with those declared
with the procedure. If the procedure has no parameters then
only <procedure name) is required.

Texas Instruments 6-37 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.7.2 Compound Statement

A compound statement is a sequence of statements enclosed by
the keywords BEGIN and END. A compound statement is treated
as a single statement in all higher level constructs.

BEGIN <statement list> END

<statement list> is a list of Microprocessor Pascal
statements, simple or structured, separated by semicolons.
The statements making up the list are executed one by one in
the order that they appear, but the entire list is treated
as a single statement.

BEGIN

exchange := xl;
xl := x2;
x2 := exchange

END

The semicolon is used to separate Microprocessor Pascal
statements and is not part of any individual statement.
Therefore a semicolon is not needed following the last
statement in the list. If one does occur, the compiler
simply assumes that there is an empty statement between the
semicolon and END.

The empty statement is quite legal and can occur in many
places without causing any harm. However, the presence of
an extra semicolon can sometimes change the meaning of a
statement:

IF A = B THEN x := 1;
ESLE y :=1

The IF statement is terminated prematurely by the semicolon;
ELSE is treated as a new statement and will be flagged as an
error (because there is no statement beginning with the
keyword ELSE).

This particular error is easy to find because it will be
picked up by the compiler. Other cases of extra or missing
semicolons may be more subtle: code may be generated that is
logically wrong but syntactically correct, so that the
compiler will not find it. Therefore it is as well to know
exactly where semicolons are needed, and why.

The compound statement implements the sequence construct
described in Section 4.5.1.

Texas Instruments 6-38 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.7.3 IF Statement

The IF statement specifies execution of one of two
alternative statements, depending on a condition. The
second alternative may be the empty statement. The form of
the IF statement is:

IF <expression> THEN <statement>

or

IF <expression> THEN <stateraent> ELSE <statement>

where <expression> must be of type BOOLEAN.

If the expression evaluates to TRUE the first <statement>
alternative, the THEN clause, is executed; otherwise the
second <statement> alternative, the ELSE clause, is executed
if it is present. The <statement>s can be any
Microprocessor Pascal statement, including compound
statements and further IF statements.

Examples:

IF count >= 0 AND count <= length THEN read(x[i]);

IF x < y THEN max := y
ELSE max := x;

In nested IF statements, there is a possible ambiguity with
regard to ELSE clauses. This is resolved by always
associated an ELSE with the most recent unmatched THEN.

IF a > b THEN IF b > c THEN min := c

ELSE min := b;

is equivalent to:

IF a > b THEN

BEGIN

IF b > c THEN min := c

ELSE min := b

END;

In cases such as this, it is wise always to use explicit
BEGIN...ENDs to make the logical structure perfectly clear,

6.7.4 CASE Statement

The CASE statement is an extension of the IF statement to

Texas Instruments 6-39 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

allow more than two choices. A CASE statement allows a
statement to be selected for execution depending on the
evaluation of an expression at run time. The form of a CASE
statement is:

CASE <expression> OF
<case label list> : <statement> ;

...

<case label list> : <statement>

OTHERWISE <statement list>

END

<expression> must be of an enumeration type.
<case label list> is a list of one or more (case label>s
separated by commas. The <case label list> : <statement>
combination may be repeated any number of times within the
CASE statement; each occurence must be separated from the
previous one by a semicolon. The OTHERWISE clause is
optional.

A (case label> is either a constant value or a subrange
value of the same enumeration type as the (expression).
Each (case label list) specifies the list of values of
(expression) for which the corresponding (statement)
alternative will be executed.

The value of (expression) at run time is used as the
selector into the CASE statement. If the (case labels
indicated by the selector is present in the CASE statement
the corresponding (statement) is executed; otherwise the
(statement list) following the OTHERWISE clause is
executed. If the selected (case label) is not present and
there is no OTHERWISE clause, a run time error will occur.

Examples:

CASE num OF

0..3,8 : total := total + num;
4,6,7 : total := total - num;
5,9 : total := total DIV 2

END;

CASE alfa OF

'A'..'M' : ch := SUCC(alfa);
'N'..'Z' : ch := PRED(alfa)

OTHERWISE

writeln('not in alphabet');
int := ORD(alfa)

END;

The IF and CASE statements implement the selection construct
described in Section 4.5.2.

Texas Instruments 6-40 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.7.5 FOR Statement

The FOR statement provides for the repeated execution of a
given statement for a progression of values which are
assigned to the control variable of the FOR statement. This
statement should be used if the number of repetitions
required is known before the statement is executed. The
form of the FOR statement is one of the following:

FOR (identifier) := (initial value) TO (final value)
DO (statement)

or

FOR (identifier) := (initial value) DOWNTO (final value)
DO (statement)

where (identifier) is the control variable, and
(initial value) and (final value) are of the same
enumeration type, which may not be a set type.

The control variable is implicitly declared by its
appearance in the FOR statement, and therefore may only be
referenced within the FOR statement. If a variable of the
same name has previously been declared, that variable will
be temporarily inaccessible within the FOR statement. The
value of the control variable may not be changed within the
FOR statement.

The control variable is assigned the (initial value) prior
to the first execution of the (statement). If the
(initial value) is greater (less) than the final value in
the TO (DOWNTO) clause, the (statement) is never executed.
Otherwise after each execution of the (statement) the
control variable is incremented (decremented) by one until
the value of the control variable is greater (less) than the
(final value). Both (initial value) and (final value) are
only evaluated once, on entering the FOR statement, so that
the total number of repetitions is determined at this time.

Examples:

FOR i := n DOWNTO 1 DO

sum := sum + a[i];

FOR day := mon TO fri DO
BEGIN

read(hrs, rate);
payfday] := rate * hrs

END;

Texas Instruments 6-41 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.7.6 WHILE Statement

The WHILE statement allows for the repeated execution of a
given statement as long as a specified condition remains
true. The form of the WHILE statement is:

WHILE (expression) DO (statement)

where (expression) is of type BOOLEAN.

(expression) is evaluated before each execution of
(statement). If (expression) is false initially,
(statement) is not executed at all; otherwise it is executed
repeatedly as long as (expression) evaluates to true.

The WHILE statement is used where the number of repetitions
cannot easily be predicted in advance. For example,
(expression) might represent the state of an external
input.

Example:

i := 1;
WHILE i (= max DO

BEGIN

value := amt[i] + tax[i+2];
i := i + 1

END;

There is an alternative form of WHILE statement called the

REPEAT...UNTIL:

REPEAT

(statement list)

UNTIL (expression)

where (expression) is BOOLEAN.

The difference is that (expression) is evaluated after each
execution of (statement list), so that even if it is false
(statement list) is always executed at least once.

It is a good idea to standardize either on WHILE or REPEAT
to avoid confusion on what happens when (expression) is
false initially. In general, the WHILE construct is more
flexible because it includes the important special case of
zero iterations. REPEAT....UNTIL can then be used as an

optimization technique for the rare cases when an action
must always be performed at least once.

The structure diagram iteration symbol (see Section 4.5.5)
is intended to be a WHILE (or a FOR), and is best kept as

Texas Instruments 6-42 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

such. A REPEAT....UNTIL construct can then be written
explicitly as:

-TH
Figure 6-6 Repeat Until Construct

This is often a truer reflection of the situation, because
in a case like this there is usually something special
associated with the first iteration.

With the sequence, selection and Iteration constructs
described, Microprocessor Pascal programs can be written
directly from the software design:

WHILE

COND1

E

— F

—Tg

Figure 6-7 A Sample Program

Texas Instruments 6-43

BEGIN

A;

WHILE COND 1 DO

BEGIN

IF COND 2

THENB

ELSE C ;

D;

IF COND 3

THENE

ELSE

BEGIN

F;

G

END

END

END

October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

If the Microprocessor Pascal code is indented to reflect the
structure, there is a strong visual resemblance between the
program and the structure diagram, which can be used as a
check.

When the control structures are used in conjunction with the
data typing features it is possible to produce a program
that is clear, uncomplicated (but never the less complex)
and largely self-documenting. Although the following
program lines are a little whimiscal, they do illustrate the
point.

CONST number__of__people = 50;
expected__number__of_legs = number_of__people DIV 2;

VAR animal : (lion, tiger, cat, dog, rhino);

BEGIN

CASE animal OF

dog: pat__it__on__the__head;
cat: stroke_its_back;

OTHERWISE

IF life_is__not_worth_living THEN hang_around
ELSE run_for_it

END

END;

6.7.7 ESCAPE Statement

The ESCAPE statement is a 'structured jump'. It is used for
premature termination of a structured statement, procedure,
program or process. It allows an orderly exit to be made
through the normal exit point of the structure. Its form
is:

ESCAPE (identifier)

where (identifier) may be an escape label, procedure name,
program or process name.

An escape label, followed by a colon, may prefix any
structured statement. (The structured statements are:
compound statement, IF, CASE, FOR, WHILE and REPEAT
statements.) Each escape label is implicitly declared by
its appearance in the program, and can only be referenced
within the structured statement it precedes. Unlike GOTO
labels (see below), ESCAPE labels need not be declared at
the start of the program.

Texas Instruments 6-44 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

loop: WHILE i (= n DO
BEGIN

IF eof THEN ESCAPE loop;
read (val);
sum := sum + val;
i := i + 1

END;

MICROPROCESSOR PASCAL

6.7.8 GOTO Statement

The GOTO statement is an unstructured jump:

GOTO (label)

It transfers system execution directly to the statement
having the specified label,

A statement label is an unsigned integer which must be
declared in a LABEL declaration at the start of the block in
which it is used.

PROGRAM sample;
LABEL 2;

BEGIN

2 : i := i + 1;
IF vector [i] (100 THEN GOTO 2;

END,

GOTO statements should be used as little as possible, if at
all, because they tend to lead to 'spaghetti code' which is
difficult to follow and prone to error. In some languages
(eg FORTRAN), GOTOs are necessary because the constructs
necessary to implement control structures directly are not
available. This is not the case in Microprocessor Pascal,
which has a complete set of sequence, selection and
iteration constructs that are sufficient to implement any
program algorithm. In almost every case where a GOTO might
be used, an ESCAPE statement can be used instead, or the
program can be restructured to eliminate the need for any
jump at all. This will result in clearer code.

Although the GOTO statement has been included in
Microprocessor Pascal it has deliberately not been made easy
to use. All labels used must be declared in advance.

Texas Instruments 6-45 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.8 CONCURRENCY

Concurrency is an integral part of the Microprocessor Pascal
language and an understanding of this concept is built into
the Microprocessor Pascal System tools (in particular, the
compiler and the host and target debuggers). In a target
environment, concurrent execution of a multiple process
system is supported by the MPX and MPIX executives.

Concurrency is the simultaneous execution of a number of
different software programs, or processes. Further
information on concurrency is given in Section 5.2.1.

This section describes some of the functions performed by
the executive, and also the mechanisms provided for
synchronization and communication between processes.

6.8.1 Processes

The term "process" as used in this section applies to all
concurrent units in Microprocessor Pascal (implemented using
the keywords SYSTEM, PROGRAM or PROCESS - see section 6.3.3
and section 6.9).

When a SYSTEM is first executed, the (system body) Is
automatically started. However, all other processes, must
be explicitly activated using the START statement. The
(system body) should only contain the code to initialise the
system, which will typically consist of a series of START
statements.

On process activation, stack space is allocated to the
process from the heap. The amount of stack space to be
allocated to a process is set using the concurrent
characteristic:

{# STACKSIZE = required__stack__size }

which is part of the process declaration.

A process can be in one of three states:

o Ready - the process is able to run (but there is
a higher priority processes currently
executing)•

o Active - the process is being executed. Under
Microprocessor Pascal, the active process (there
can only be one) is always the ready process with
the highest priority.

Texas Instruments 6-46 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

o Blocked - the process is suspended (waiting for
an event from another process to occur) and
unable to run until the event has occurred.

6.8.2 Process Record

Each process has a unique process record. This is used by
the executive to access information particular to a given
process (where its stack is located, its identity, its
priority, etc). The process record is also used for storing
a process's volatile environment: display, program counter
(PC), workspace pointer (WP), and status register (ST).
(For an explanation of PC, WP and ST see section 8.4.3.)

The display is a 16-word area containing addresses of the
stack frames which can be accessed by the currently
executing routine (ie data areas of other blocks which are
in scope). The display is a 'short cut' means of access to
remote stack frames that is quicker than tracing back
through the stack frame linkage.

6.8.3 Process Scheduling

The executive Run-Time Support (RTS) determines which of
several concurrent processes is to be executed next based on
process readiness and process priority. The scheduling
policy used is known as pre-emptive priority scheduling.

Every process in a SYSTEM has a priority in the range 0
(highest or most urgent) to 32766 (lowest or least urgent).
This is specified by the concurrent characteristic:

{# PRIORITY = required_priority_level }

which is part of the process declaration. Priorities 0 to
15 are reserved for interrupt device handling processes.

Through the process records, the executive maintains two
queues: one is a circular list of all the processes known in
the system; the other, the ready queue, is a priority
ordered queue of processes that are in the ready state. The
scheduling algorithm takes the first process in the ready
queue and makes that the active process. This process is
allowed to continue its execution until either it

terminates, it becomes blocked, or a higher priority process
that was blocked becomes ready.

When a process becomes blocked, it is removed from the ready
queue and the active process becomes the next process in the
ready queue. If a process's state is changed form blocked

Texas Instruments 6-47 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

queue according to
ed into the ready
iority. Interrupt
o the queue before
process which has

dy queue in front
is pre-empted and

to ready, it is inserted into the ready
its priority. (The process will be insert
queue after processes with the same pr
device handling processes are inserted int
processes with the same priority.) If the
just become ready is inserted into the rea
of the active process, then the processor
the new process becomes the active process

To ensure that there is always at least one process in the
ready state, the executive RTS automatically creates the
'idle process' (with the lowest priority possible - 32767)
on system initialisation.

6.8.4 Process Synchronization

Processes are independent but it is often necessary for them
to synchronize their actions. The simplest way of doing
this is via the semaphore and its primitive operations wait
and signal. Although these operations are implemented as
routines (ie a collection of instructions) they must be
executed as though they are single machine instructions.
Until the routines have completed, nothing must access the
semaphore, the queues operated on, or the wait and signal
operations themselves. This indivisibility is assured by
setting the interrupt mask to zero on entry to the routines,
and then resetting it back to its previous value on exiting
them. The basic idea of a semaphore is described in Section

4.11.1.

6.8.4.1 Semaphores

The semaphore is considered to be so fundamental to process
synchronization that it is a predefined Microprocessor
Pascal type (like an INTEGER or REAL). Although the
compiler recognises the type semaphore (and allocates one
word for each semaphore variable), a semaphore variable is,
in fact, a pointer to a structure that is allocated from the
heap at run-time by the INITSEMAPHORE procedure.

The required Microprocessor Pascal statements to create a
semaphore are:

PROCEDURE initsemaphore(VAR sema : SEMAPHORE;
value : INTEGER); EXTERNAL;

VAR semaphore_name : SEMAPHORE;

initsemaphore(semaphore__name,initial_value);

After executing the INITSEMAPHORE routine, the variable
SEMAPHORE NAME will reference the newly created semaphore,

Texas Instruments 6-48 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

which will have its counter component set to INITIAL_VALUE.
For most applications INITIAL_VALUE will be set to zero.

A semaphore consists of three elements:

o A non-negative counter of unserviced events.

o A queue (possibly empty) of suspended
processes. This queue uses First In First Out
(FIFO) ordering.

o A check word that allows the executive to ensure

that semaphore operations are actually being
performed on semaphores.

The Microprocessor Pascal RTS gives greater flexibility in
handling semaphores by providing routines in addition to the
basic WAIT and SIGNAL operations (a full list of these can
be found in section 6.13.9.3).

6.8.4.2 Wait Operation

A WAIT operation decrements the semaphore's non-negative
counter if it is non-zero, otherwise the issuing process
(the active process) is put into the blocked state. (The
process is removed from the scheduling ready queue and
inserted into the semaphore queue.)

6.8.4.3 Signal Operation

A SIGNAL operation increments the semaphore's non-negative
counter if the semaphore queue is empty, otherwise the first
process in the queue is put into the ready state. (The
process is removed from the semaphore queue and reinserted
into the scheduling ready queue.)

The classic producer/consumer situation is an obvious
example of process synchronisation. In this, one process
produces an item (eg a buffer full of text) while another
one consumes it. A simplified version of this is shown
below.

PROCESS producer

• { make item }

signal(done)

Texas Instruments 6-49

PROCESS consumer

wait(done)

• { use item }

October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

CONSUMER must WAIT for ITEM to be made before it attempts to
use it. If PRODUCER has already made ITEM, the semaphore
DONE (initialised to zero) is SIGNALed and CONSUMER will be
able to continue. Otherwise CONSUMER will be suspended
which will allow PRODUCER to make ITEM. When ITEM has been

made, the SIGNAL will cause CONSUMER to be removed from the
semaphore queue and inserted back into the scheduling ready
queue.

If the CONSUMER and PRODUCER processes are cyclic, then the
above example cannot be relied upon as there is no guarantee
that CONSUMER has finished with ITEM before PRODUCER

replaces it with a new one. A more complete example is:

PROCESS producer
BEGIN

WHILE TRUE DO

BEGIN

wait(available);
.

• { make item }

signal(done)
END

END;

PROCESS consumer

BEGIN

WHILE TRUE DO

BEGIN

wait(done);

{ use item }

signal(available)
END

END;

The semaphore AVAILABLE is initialised to one so that on the
first time around the loop, PRODUCER does not get
suspended.

When semaphores are used to ensure exclusive access to two
or more resources, extreme caution must be exercised to
prevent a condition known as deadlock. This takes place
when two or more processes are suspended, awaiting a
condition that can not happen because there is no active
process to cause the needed event to occur.

For example, if two simultaneously executing processes (A
and B) both require exclusive access to resources (X and Y),
the following sequence may result:

A gets X
B gets Y

A requests Y
B requests X

neither A nor B will ever resume

11 be waiting for Y (which B has) and B
(which A has). One possible way to

s not happen is to force both processes
ces in the same order. However, in

s might not be practical or efficient.
processes must check the availability

rces and, if unavailable, release those

In the above example,
execution, as A wi
will be waiting for X
ensure that this doe

to request the resour
some situations thi

Here either (or both)
of succeeding resou
already acquired.

Texas Instruments 6-50 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.8,5 Interprocess Communication

To implement a practical function it is usually necessary
for a process to be able to communicate with other processes
in the system. Microprocessor Pascal supports four
mechanisms for interprocess communication. These are
described below.

6,8.5.1 Shared Variables

The simplest form of interprocess communication is
accomplished through the sharing of variables. A nested
process can access all its parent's variables. (Heap
variables can also be accessed since it is possible to pass
pointers as parameters to a process.)

However, it is essential that only a single process is
allowed to operate on any shared variable at a time. This
can be achieved by representing the shared variable as a
record structure containing a mutual exclusion semaphore
(the semaphore is initialised to one), and enclosing any
code sections referencing the variable with wait and signal
operations on the semaphore. For example:

VAR b: RECORD

mu tex: SEMAPHORE;
shared__yariable: any_type;

END;

WITH b DO

BEGIN

wait(mutex);
{ access/modify shared__variable }

signal(mutex);
END;

The WITH statement above is used to simplify references to
components of a record structure. This allows B.MUTEX and
B.SHARED_VARIABLE to be referred to by the identifiers MUTEX
and SHARED VARIABLE respectively.

6.8,5.2 Message Buffers

A message buffer is a shared data structure through which
interprocess communication is possible. It allows a process
to send messages to another process without the sender
having to wait until the receiver is ready for the message
(ie the messages are buffered). In this context a "message"
is any structure which can be copied from one process to
another.

Texas Instruments 6-51 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

A message buffer is of the form:

CONST max__messages = .•.. (* some number *)
TYPE message__index = 1. ,max_messages;

message ° some__user_defined_structure;
VAR message__buffer:

RECORD

mutex,not_empty,not_full: SEMAPHORE;
next__in,next_out: message_JLndex;
buffer: ARRAY [message_index] OF message;

END;

mutex - Ensures mutual exclusion (initialized to 1)

not_empty - Indicates how many messages are in the buffer
(initialized to 0)

not__full - Indicates how many vacant elements in the buffer
(initialized to max__messages)

next__in - Where the next message is to be stored
next__out - Where the next message is to be taken from

Initially, NEXT__IN and NEXT_OUT are set to zero.

To deposit a message into the buffer

WITH message_buffer DO
BEGIN

wait(not_full);
wait(mutex);
buffer[next_in]:=message_in;
next__in: =next_in MOD max__messages +1;
signal(mutex);
signal(not_empty)

END;

To remove a message from the buffer

WITH message_buffer DO
BEGIN

wait(not__empty);
wait(mutex);
message_out:=buffer[next_out];
next__out :=next_out MOD max_messages +1;
signal(mutex);
signal(not__full)

END;

Note: Deadlock could result if the order of the wait

operations is reversed in either routine.

Updating the buffer element pointers, NEXT_IN and NEXT_0UT,
by MODing them with MAX_MESSAGES and then adding one allows
the message buffer to be used in a circular fashion (a

Texas Instruments 6-52 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

buffer managed in this way is known as a circular or
ring buffer)•

Note: MESSAGE__IN and MESSAGE_OUT must be variables of type
MESSAGE.

6.8.5.3 Channels

The channel mechanism permits communication between any two
(or more) concurrent routines (PROGRAMS or PROCESSes) in a
system. Channel data structures are not pre-defined in the
program code, but are allocated dynamically from the system
heap as required. Channels provide a standard, pre-written
set of routines for exchanging messages.

Channels also provide more flexibility. The two previous
mechanisms do not allow communication between PROGRAMS, or
between PROCESSes defined within different PROGRAMS (as
variables cannot be defined at the SYSTEM level).

SENDER

PROCESS

CHANNELX CHANNEL \CHANNEL X
H DATA I — •

STRUCTURE

Figure 6-8 Channel Mechanism

RECEIVER

PROCESS

Channels are referenced by channel names (in fact, channel
names are 16 bit numbers). There is a system-wide directory
of channel names, maintained by the executive, which is
referenced whenever a PROCESS or PROGRAM wishes to "connect"
to a channel. It is also possible to allocate channels
which are specific to an individual software package (for
example, the Interprocess File Subsystem makes use of a
locally defined set of channels for internal operations).

In order to use the channel mechanism:

o All participating concurrent routines must agree
on the channel name to be used. This is

hard-coded into the routines.

o Each participating routine requests the
executive to allocate and initialise the data
structures for a particular channel name using

Texas Instruments 6-53 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

the C$INIT procedure.

o A routine that wants to send data along the
channel allocates a message buffer using
C$ALLOCATE. The required message is written
into the appropriate fields of the message
buffer which is then "transmitted" using
C$SEND. A call to C$WAIT ensures that the
transmitting routine does not access the message
buffer until the receiving routine has finished
processing it. When processing has completed,
the message buffer can either be re-used or
returned to the system heap using C$DISPOSE.

o A routine that wishes to receive data calls the
procedure C$RECEIVE. This routine will wait
until a message has been sent, if one is not
already available. When the message has been
processed, C$ACKNOWLEDGE is used to inform the
sending routine that the message buffer is no
longer being used.

A typical data declaration sequence is:

CONST channel__no = any__user__required number;
TYPE msg_buffer__ptr = @msg_buffer;

msg_buffer = RECORD
{ Any required structure }

END;
channel__id_ptr = @INTEGER;

VAR buffer : msg_buffer__ptr;
channel__id : channel__id_ptr;

The sending routine is:

{ Allocate channel CHANNEL__NO from
the heap and reference it through
the variable CHANNEL_ID }

C$INIT(channeI__no,channeled);
{ Allocate a message buffer and refer

ence it through the variable BUFFER }
C$ALLOCATE(size(buffer),buffer);

a

• { Fill the message buffer }
.

{ Send the filled message buffer
referenced by BUFFER }

C$SEND(channelJLd,buffer);
{ Wait for the receiver to finish

processing the message buffer }
C$WAIT(buffer);

{ Return the "used" message buffer
back to the system heap }

C$DISPOSE(buffer);

Texas Instruments 6-54 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

The receiving routine is:

{ Allocate channel CHANNEL__NO from
the system heap and reference it
through the variable CHANNEL__ID }

C$INIT(channel_no,channel_id);
{ Wait for the next message buffer
sent via the channel CHANNEL_NO
and reference it through the }
variable BUFFER

C$RECEIVE(channeled,buffer);
.

• { Process the message }
.

{ Inform the sender that the message
buffer is no longer in use }

C$ACKNOWLEDGE(buffer);

A concurrent routine can "disconnect" Itself from a channel

by calling C$TERM. When all routines have been disconnected
from a channel then the channel data structures will be

returned to the system heap.

Other channel procedures available include C$NOTIFY (signal
the calling process whenever a message arrives on the
specified channel), C$CRECEIVE (check to see if a message
has arrived but do not wait if none has), and C$CWAIT (check
if the message has been processed but do not wait if it has
not).

6.8.5.4 Interprocess Files

The fourth communication mechanism is implemented using file
variables (see section 6.6.12) that communicate through
interprocess files. Interprocess files allow concurrent
routines to write to other concurrent routines exactly as if
they were writing to external devices. However, the
communication mechanism is handled entirely in internal
memory (by the Interprocess File Subsystem). The standard
file I/O procedures (READ, WRITE, etc) are used in exactly
the same way as for external files.

Each interprocess file has a character string name which is
identical to the names of all file variables connected to

it.

A file variable has a character string name. Initially this
is the same as the variable's identifier, but it can be
changed using the procedure SETNAME.

Texas Instruments 6-55 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

*• FILENAME
FILE

VARIABLE

WRITE .

PROCESS

READ FILE

VARIABLE

PROCESS

Figure 6-9 Interprocess File Mechanism

Files must be opened by calling the procedure REWRITE for
write operations and RESET for read operations, before any
I/O can be performed. (If the file is already open then it
is automatically closed before It is reopened in the
appropriate mode.) This also causes the file variable to be
connected to a file channel with the same name as the file

variable. If no file channel exists by that name, one is
created and given the appropriate characteristics.

Closing an open file (using the procedure CLOSE, or by
exiting a routine in which a file variable is declared) also
disconnects the file variable from the file channel. A file

channel is normally destroyed when all file variables have
been disconnected from it.

The following allows processes A and B to communicate with
each other via the interprocess file TRANSFER. Process A
opens the interprocess file TRANSFER for writing, while
process B opens it for reading.

PROCESS a();
VAR transfer: TEXT;
.

rewrite(transfer);
writeln(transfer,...);

PROCESS b();
VAR transfer: TEXT;
•

reset(transfer);
readln(transfer,...);

A similar effect would be produced by:

PROCESS a(OUTPUT:TEXT;...); PROCESS b(INPUT:TEXT;...);

writeln();
reset(input);
readln();

where these two processes are activated by

START a(filenamed('transfer'),...);
START b(filenamed('transfer'),...);

Texas Instruments 6-56 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

The function FILENAMED results in a file with the initial

name equal to the specified string.

It is not necessary to perform a REWRITE operation in the
second example for process A as this is automatically
performed on the default output text file OUTPUT.

6.9 MODULARITY

One of the most important features not addressed by Wirth's
original definition of Pascal is that of modularity.
Modularity allows a problem to be defined in terms of a
number of separate, self-contained, sub-problems (each of
which has a clearly defined interface). A sub-problem can,
in turn, be broken down into further sub-problems.
Typically, this decomposition continues until each
sub-problem is of a manageable size.

In Microprocessor Pascal, the language constructs SYSTEM,
PROGRAM and PROCESS enforce a modular approach to program
development. This hierarchical concurrent structure permits
the construction of complex concurrent functions which can
be encapsulated in a single package.

The fundamental unit of modularity is the PROGRAM; this
represents an independent function which has its own unique
"site of execution". Although functions execute
concurrently with each other (with no possibility that one
will interfere with another), the code that the function
consists of typically executes sequentially.

However, in a complex function, it may be necessary to
create the function from a number of independent concurrent

sub-functions. This situation is catered for by the PROCESS
construct. Like PROGRAMS, PROCESSes are separate "sites of
execution" which are activated by being STARTed; they are
not simply "called" like PROCEDURES and FUNCTIONS.

The complete structure of a PROGRAM with all subordinate
PROCESSes (and PROCEDURES and FUNCTIONS) is referred to as a
PROGRAM family. The PROGRAM family is a convient package
for a complete, independent function within a system. The
concurrent structure is described in Section 5.2.2.

If, for example, a function was to be designed to control a
lathe, sub-functions required might be 'monitor the chuck
speed', 'control the cutting depth' and 'control the cutter
position'.

Texas Instruments 6-57 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

PROGRAM Control__lathe;
declarations;

PROCESS Monitor_chuck_speed;
declarations;
BEGIN { Monitor__chuck_speed }

END; { Monitor_chuck_speed }

PROCESS Control_cutter_depth;
declarations;
BEGIN { ControI__cutter__depth }

END; { Control__cutter__depth }

PROCESS Control__cutter_position;
declarations;
BEGIN { Control__cutter_position }

END; { Control__cutter_position }

BEGIN { Control__lathe }
START Monitor__chuck_speed;
START Control_cutter_depth;
START Control_cutter_position

END; { Control__lathe }

As each function, and sub-function, are separate "sites of
execution" and, once STARTed, execute totally independently
of the system, the user is able to specify the concurrent
characteristics (heapsize, stacksize and priority) to be
used for each. These are defined by:

BEGIN { program or process body }
{# STACKSIZE = amount_of_stack;

HEAPSIZE = amount_of_heap;
PRIORITY « program_or_process_j>riority }

END; { program or process body }

Under Microprocessor Pascal, an application is put together
from functions to form a system. A SYSTEM consists of a
number of declarations (constants, types, commons, PROGRAMS,
procedures and functions) and a <system body>. The
<system body> contains the instructions that are first
executed when the system is initialized; it also specifies
the concurrent characteristics to be used while this

initialization is being performed.

Texas Instruments 6-58 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

SYSTEM Look_after__shop__floor;
CONST declarations;
TYPE declarations;
COMMON declarations;

PROGRAM Control_lathe;
declarations;
BEGIN { Control__lathe }

END; { Control__lathe }

PROGRAM Control_miller;
declarations;
BEGIN { Control_miller }

END; { Controljniller }

BEGIN { Look_after_shop_floor }
{# system concurrent characteristics }

START Control__lathe; { system body }
START Control_miller;

END. { Look__after__shop_floor }

Modularity is further enhanced by allowing the user to
develop and compile modules in complete isolation from each
other and to link them together into a consistent system at
"configuration time". These modules may contain PROCEDURE,
FUNCTION and/or PROGRAM definitions (along with any
necessary data declarations). In this case, only one module
must have a real system body. The others must have a "null
system body", declared by:

SYSTEM System_dummy__name;
declarations;

PROCEDURE definitions;
FUNCTION definitions;
PROGRAM definitions;

BEGIN { System__dummy__name }
{$ nullbody }

END. { System_dummy__name }

When the modules are linked together to form the system,
there will be only one <system body>. PROCEDURES,
FUNCTIONS, PROGRAMS or PROCESSes that are not defined in a
module but are used within it are accessed by declaring them
as EXTERNAL.

Further development of this modular approach, to encompass
hardware as well as software, leads to a functional approach
(see Section 5.1.1).

Texas Instruments 6-59 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Note: "FUNCTION" capitalised has a precise technical
meaning, as distinct from the more general use of
"function".

6.10 INTERRUPTS

The 990 range of processors recognize 16 distinct interrupt
levels, numbered 0 (highest priority interrupt) to 15
(lowest priority interrupt). A full description of the 990
interrupt structure is given in section 8.10.

A device process is a process that has been written to
service a particular interrupt level. These processes are
identified by their priorities. All processes in a
Microprocessor Pascal system are assigned a priority, in the
range 0 to 32,766. The first 16 priorities, 0 to 15, are
reserved for use by device processes.

A process with a priority of (eg) 5 may service level 5
through level 15 interrupts. A process's priority is set
using the concurrent characteristic:

{# PRIORITY = interrupt_level }

If a number of devices all use the same interrupt level,
then that level's device process must first determine which
device actually caused the interrupt before it can start
servicing it.

All interrupts except the level 0 interrupt (RESET) are
disabled by calling the procedure MASK. The procedure
UNMASK enables interrupts which are more urgent than the
priority of the calling process.

The procedure EXTERNALEVENT is used to associate a semaphore
with a particular interrupt level. A device process
executes a WAIT on the semaphore associated with its

interrupt level. When an Interrupt occurs, the executive
performs a SIGNAL on the semaphore associated with the
interrupt level, thus activating the suspended device
process.

The procedure ALTEXTERNALEVENT allows the user to specify an
alternative process that will be executed if the primary
process is not suspended on the interrupt's semaphore (eg if
it has not finished processing the last Interrupt). This
procedure is Intended to be used to service unexpected or
spurious interrupts.

The correspondence between a semaphore and an interrupt
level can be broken using the NOEXTERNALEVENT procedure,
while the alternative process correspondence can be broken

Texas Instruments 6-60 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

by the NOALTEXTERNALEVENT procedure.

PROGRAM level_7_handler(....);
VAR level__7_sem,spurious_JLevel_7: SEMAPHORE;

PROCESS interrupt_7(level: SEMAPHORE);
•

BEGIN { interrupt__7 }
{# priority=7; };
WHILE TRUE DO

BEGIN { do forever }
wait(level);
{ process interrupt level 7 }

END { forever loop }
END; { interrupt^ }

PROCESS spurious__7(level: SEMAPHORE);
•

BEGIN { spuriou8_7 }
{# priority=7; };
wait(level);
{ process spurious interrupt }

END; { spurious__7 }

BEGIN { level__7__handler }
•

initsemaphore(level_7__sem,0) ;
initsemaphore(spurious__level_7,0);
externalevent(level_7_sem,7);
altexternalevent(spurious__level__7,7);
START interrupt_7(level__7_sem);
START spurious__7(spurious__level__7)

END; { level_JMiandler }

If a fast device is incorporated into the system, the
Microprocessor Pascal interrupt handling mechanism may be
too slow and it may be necessary to write an assembly
language interrupt handler. To cover this eventuality, the
user can "hook" the assembly language routine into the
system in two ways.

o Using the ASSEMBLYEVENT procedure.

o Setting the appropriate interrupt vector (in the
"RXINIT" module) to reference the assembly
language routine and its workspace. In this
case the interrupt is handled totally outside
the Microprocessor Pascal run-time environment.

The ASSEMBLYEVENT procedure is used as follows:

Texas Instruments 6-61 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

CONST level = required__interrupt__level value;

TYPE workspace » ARRAY [1..16] OF INTEGER;

VAR asm_wp : workspace;

PROCEDURE assemblyevent(VAR wp : workspace;
entry point : INTEGER;

level : INTEGER); EXTERNAL;
PROCEDURE asm_jLdt; EXTERNAL;

assemblyevent(asm_wp, location(asm_idt), level);

where ASM__IDT is the entry point label of the assembly
language interrupt handler. LOCATION returns the address of
ASMJEDT.

Note: The host debugger does not support assembly language
routines.

6.11 INPUT/OUTPUT

6.11.1 CRU Operations

Microprocessor Pascal supports direct 9900 CRU operations
(for those unfamiliar with the CRU concept see Section 8.9)
via the following standard procedures:

CRUBASE (base)
LDCR (width, value)
SBO (disp)
SBZ (disp)
STCR (width, value)

and the BOOLEAN function:

TB (disp)

Although these are written as procedure calls, the
Microprocessor Pascal compiler actually transforms the calls
inta in-line code.

6.11.2 Memory-Mapped I/O

Communication to a memory-mapped device is performed by:

o Describing the structure of the device's
dedicated memory space in a type declaration (if

Texas Instruments 6-62 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

the device has a control register it will be
necessary to describe the individual control
flags in a packed record structure). In the
example below, this is the type identifier
CNTL_REG.

o Declaring a pointer variable that points to this
type (CNTL_REG__PTR below).

o Initialising this pointer variable to point to
the actual address of the memory-mapped device
via a "type transfer" (see section 6.6.14).

Having done this, assigning a value to the pointer variable
(or the appropriate field of it, if it is a packed record)
causes the value to be "written" to the device.

Referencing the variable on the right hand side of an
assignment statement, or anywhere an expression is required,
will cause the device to be "read".

For example: If an 8 bit digital to analogue converter is
located at hex address >FC06, then the following
Microprocessor Pascal statements will cause the value 127 to
be written to the device.

CONST address_of__the_device =» #FC06;
value__to_be__output = 127;

TYPE cntl_reg_ptr = @cntl__reg;
cntl__reg = INTEGER;

VAR dac : cntl_reg_ptr;

dac::INTEGER := address__of_the_device;

dac@ := value_to_be_output;

As the D/A only has an 8 bit resolution, CNTL_REG could be
defined as:

TYPE cntl__reg =
PACKED RECORD

fill : 0..255; "8 unused bits
output : 0..255 "8 bit output value

END;

The output operation now becomes;

dac@. output := value__to_be__output;

If a sequence of operations is to be performed on the
memory-mapped device then the Microprocessor Pascal keywprd
WITH can be used to "shorten" the variable name (see section
6.8.5.1).

Texas Instruments 6-63 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

For a 12 bit analogue to digital converter, located at hex
address COIA, the following Microprocessor Pascal statements
will cause the device to be read.

TYPE bitsl2 = 0..#FFF;
a__to_d__cn t l_re g__p t r = @a__t o_d__cn t l_reg;
a__to_d__cn t l__reg =

PACKED RECORD

•

start_conversion_flag : BOOLEAN;
end__of_conversion_flag : BOOLEAN;
.

input_bits : bitsl2;

END;

VAR a__to_d : a__to_d__cntl_reg__ptr;
input_reading : bits 12;

a_to_d::INTEGER := #C01A; { Set a__to__d address }

WITH a_to_d DO
BEGIN

{ If another reading is available then get it,
then initialise the A/D for the next reading }

IF end_of_conversion_flag THEN
BEGIN

input__reading := input_bits;
start_conversion := TRUE; { Set start conversion }
start__conversion := FALSE { pulse }

END;

•

END;

6.11.3 Files

The standard procedures READ and WRITE are provided for
input from and output to files. In addition, the procedures
READLN and WRITELN (read and write line) apply to text
files. File types are described in section 6.6.12 above,and
in the Microprocessor Pascal System User's Manual.

Texas Instruments 6-64 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.12 DIGITAL VOLTMETER (DVM) EXAMPLE

This example consists of four independent "do forever"
processes that synchronise their actions via semaphores.

The system structure for this example is shown below:

SYSTEM dvm;

•

PROGRAM initialise__and_.go;

PROCESS display;

PROCESS analog;

PROCESS keyboard;

PROCESS clock;

Figure 6-10 DVM Example - Lexical Hierarchy

PROCESS

DISPLAY

SYSTEM

DEMO

PROGRAM

INITIALISE-

AND-GO

CLOCK
INTERRUPT

PROCESS
ANALOG

PROCESS

CLOCK
PROCESS

KEYBOARD

SIGNAL (A-D-COUNT)/ SIGNAL (STROBE-KEYBOARD)

SIGNAL (STROBE-DISPLAY)

Figure 6-11 DVM Example - Concurrent Structure

Texas Instruments 6-65 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

* *

* Microprocessor Pascal Concurrency Demonstration Program *
* *

* Dave Wollen, EMTC, Bedford *
* *

* 15 Oct 1979 *
* *

* DESCRIPTION *

* The program implements a simple digital voltmeter *
* using a special demonstration box. The main *
* purpose is to illustrate Microprocessor Pascal, *
* especially concurrent processing, and for this *
* reason the system has been implemented as a number *
* of separate processes synchronized by semaphores. *
* *

* The H/W used includes a strobed keyboard, strobed *
* LED display (with decoders) and a Texas Instruments *
* TL505 A/D converter. The system will run on a *
* Texas Instruments TM990 microprocessor module with *
* at least >2AF0 bytes of program memory. The on- *
* board TMS9901 is used to provide clock interrupts. *
* *

* The H/W is set up in such a way that the keyboard *
* may not be used when the analogue input switch is *
* in the ON position. *
* *

* OPERATION *

* When the analogue input switch is "OFF" a threshold *
* voltage can be keyed in (hundredths of a volt), with *
* the system accepting only the last four digits *
* keyed. To start converting, key "GO" and turn on *
* the analogue input switch. The input voltage will *
* be constantly monitored and displayed; if it rises
* above the entered threshold the display will show *
* 9999 until it falls below threshold once more. To *

* alter the threshold, turn off analogue input, key *
* "STOP" and enter new value. *
* *

SYSTEM demo; {$debug}
TYPE non_neg = 0..32767;

interrupt = 0..15;

PROCEDURE initsemaphore(VAR sema: SEMAPHORE;
count: non_neg); EXTERNAL;

PROCEDURE externalevent(sema: SEMAPHORE;
level: interrupt); EXTERNAL;

PROCEDURE wait(sema: SEMAPHORE); EXTERNAL;

PROCEDURE signal(sema: SEMAPHORE); EXTERNAL;

PROGRAM initialise and go;

*

Texas Instruments 6-66 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

CONST interrupt_level = 3;
VAR threshold, analog__value: ARRAY [0..3] of 0..9;

converting: BOOLEAN;
time: SEMAPHORE;
time__to_strobe__display: SEMAPHORE;
time_for__a_d_count: SEMAPHORE;
time__to__strobe_keyboard: SEMAPHORE;

PROCESS clock;

CONST clockjnode = 0; enable_clock__interrupt » 3;
tlmer_on_9901 = #100; period__for_58hz = #65D;

{This process synchronises all others. It initialises
the 9901 clock register and waits for each level 3
interrupt, after which it signals to other processes
that they can resume. If the period between
interrupts is made too short, other processes will
not run to completion; for the sake of brevity no
attempt is made to cope with this.}

BEGIN {clock}
{# STACKSIZE=50; HEAPSIZE=0; PRIORITY=interrupt_level}
crubase(timer__on_9901);
ldcr(15, period_for__58hz);
WHILE TRUE DO

BEGIN

sbz(clock__mode);
sbo(enable__clock__interrupt);
wait(time);
signal(time__to__strobe__display);
signa1(time_for_a__d__count) ;
signal(time_to_strobe_keyboard)

END

END; {clock}

PROCESS display;
CONST num__of_bits = 9; display_base = 288;

high_byte = #100; low_byte = 0;
VAR dig_ptr: 0..3;

byte_selector: 0..#100;
display__output: 0..#199;

{This process strobes and updates the display when
it has been signalled to do so. It simply converts
the appropriate two digits of threshold or analog_
value (depending on the current mode) to a bit
pattern (including the strobe bit) and outputs this
pattern to the CRU.}

BEGIN {display}
{# STACKSIZE=50; HEAPSIZE=0; PRI0RITY=16}
dig__ptr :=» 2;
crubase(display__base);
WHILE TRUE DO

BEGIN

Texas Instruments 6-67 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

wait(time__to_strobe__display);
IF dig_ptr = 2 THEN

BEGIN

dig__ptr := 0;
byte_selector := low_byte

END

ELSE

BEGIN

dig_ptr := 2;
byte_selector := high_byte

END;
IF converting THEN

display_output := analog__value[dig_ptr]
+ analog_value[dig_j>tr + 1]*16
+ byte__selector

ELSE

display__output := threshold[dig__ptr]
+ threshold[dig_ptr + 11*16
+ byte_selector;

ldcr(num_of__bits, display_output)
END {while}

END; {display}

PROCESS analog__to_digital_converter;
CONST a_d_base - 308; comparator_on_505 = 4;

A_input__to__505 = 0; B_input__to_505 - 1;
tO - 25; tl » 25;
Vref » 250; ratio « Vref DIV tl;
max__count = 32767 DIV ratio;

TYPE conversion_period = (pre_con, in_t0, in__tl, in__t2);
VAR count: 0. .max__count;

when: conversion__period;
limit, millivolts: INTEGER;

{This process implements all the A/D conversion. The
TL505 requires a specific sequence of events to occur
for conversion, and the final representation of the
analog value is the value held in a S/W counter, which
may then be scaled etc as required. The symbols used
in this process correspond to those used in the 505
data sheet, to which further reference should be made.
If the current mode is "not converting" then the 505
control lines are kept high.}

BEGIN {analog__to_digital__converter}
{# STACKSIZE=50; HEAPSIZE=0; PRI0RITY=16}
crubase(a_d__base);
WHILE TRUE DO

BEGIN

wait(time_for__a__d__count) ;
IF converting THEN

BEGIN

count := count + 1;
CASE when OF

pre con : BEGIN

Texas Instruments 6-68 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

sbz(A_input__to__505);
sbz(B_input_to__505);
when :« in__t0;
count := 0

END;
in__tO : IF count = tO THEN

BEGIN

sbo(A_input_to_505);
sbo(B__input_to_505) ;
when := in_tl;
count := 0

END;

in_tl : IF count » tl THEN
BEGIN

sbz(A__input_to_505);
when :» in__t2;
count := 0

END;

in__t2 : IF tb(comparator_on_505) THEN
BEGIN

sbz(B_JLnput__to__505):
when := in_t0;
millivolts :=» ratio * count;
count :• 0;

limit := threshold[3]*1000
+ threshold[2]*100
+ threshold[l]*10
+ threshold[0J;

IF millivolts > limit THEN

millivolts := 9999;
FOR i :=» 0 TO 3 DO

BEGIN

analog_value[i] := millivolts MOD 10;
millivolts := millivolts DIV 10

END

END {if tb}
END {case}

END {if converting}
ELSE

BEGIN

when := pre__con;
sbo(A__input__to_505);
sbo(B__input_to_505)

END

END {while}
END; {analog__to_digital__converter}

PROCESS keyboard_input;
CONST width » 4; strobe = 0;

key_input = 312; nothing » #F;
VAR row: 306..312;

key__push, last_jpush: 0..15;
updated: BOOLEAN;

PROCEDURE update_inputs;

Texas Instruments 6-69 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

VAR key: 0..12;

PROCEDURE change_threshold;

{This procedure shift threshold and accept most
recent key into least significant position}

BEGIN {change_threshold}
FOR i := 3 DOWNTO 1 DO thresholdfi] :=» threshold[i-1];
threshold[0] := key

END; {change threshold}

{This procedure decode the keyboard and take appropriate
action. The keyboard is arranged as follows:

LSB.•• ...MSB

310 1 2 3 4

308 5 6 7 8

306 9 0 go stop }

BEGIN {update__inputs}
CASE key__push OF

#E : key := 1;
#C, #D : key := 2;
8..#B : key := 3;
0..7 : key := 4

END;
key := key + 4*abs((row - 310) DIV 2);
CASE key OF

10 : key := 0;
11 : IF NOT converting THEN converting :« TRUE;
12 : converting := FALSE;

OTHERWISE

END;

IF NOT converting AND key < 11 THEN change_threshold;
END; {update_inputs}

{This process strobes the keyboard and debounces
and decodes any input when signalled to do so. If
the mode is "converting", the only key of interest
is "stop". Keys are active when low.}

BEGIN {keyboard__input}
{# STACKSIZE=50; HEAPSIZE=0; PRI0RITY=16}
row := 306;
key__push := nothing;
last__push := nothing;
updated := FALSE;
WHILE TRUE DO

BEGIN

wait(time_to__strobe__keyboard);
crubase(row);

Texas Instruments 6-70 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

sbz(strobe);
crubase(key__input);
stcr(width, key_push);
crubase(row);
sbo(strobe);
IF key__push = nothing THEN

BEGIN

updated := false;
row := row + 2;

IF converting OR row =312 THEN row :« 306;
END

ELSE

IF key_push = last_push AND NOT updated THEN
BEGIN

update__inputs;
updated := TRUE

END;

last__push := key__push
END

END; {keyboard input}

{This program.is used to initialise all the semaphores,
zero the threshold and analog__value arrays and start
all the other processes}

BEGIN {initialise__and__go}
{# STACKSIZE=300; HEAPSIZE=800; PRI0RITY-16}
initsemaphore(time__to__strobe__display, 0) ;
initsemaphore(time_for_a_d__count, 0);
initsemaphore(time_to_strobe_keyboard, 0);
initsemaphore(tirae, 0);
externalevent(time, interrupt_level);
converting := FALSE;
FOR i := 0 TO 3 DO

BEGIN

threshold[il := 0;
analog_value[i] := 0

END;
START display;
START analog__to__digital_converter;
START keyboard_input;
START clock

END; {initialise_and_go}

BEGIN {demo}
{# STACKSIZE=300; HEAPSIZE=0; PRI0RITY=16}
START initialise_and_go

END. {demo}

Texas Instruments 6-71 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

6.13 REFERENCE SECTION

6.13.1 System Commands

Compile a Microprocessor Pascal
program in background

Generate native code

Collect MPIX run-time support
Compile a Microprocessor Pascal

program

Copy text files
Copy text files
Debug a compiled Microprocessor

Pascal program
Delete temporary files
Create/edit a file
Execute a compiled Microprocessor

Pascal program
Generate routine map

Print a stored file

Delete synonyms used
Reverse assemble object code
Save an edited file

Execute SCI command

Display a stored file
Separate object modules
Terminate a Microprocessor Pascal

session

File utility program
Wait for background task to finish

MICROPROCESSOR PASCAL

* BATCH

CODEGEN

COLLECT

COMPILE

COPY

* COPYSRC

DEBUG

* DELETE

EDIT

EXECUTE

GENMAP

* PRINT

* PURGE

RASS

SAVE

* SCI

SHOW

SPLIT

QUIT

UTILITY

* WAIT

* Only for DX990 users
Only for FS990 and TMAM9000 users

6.13.2 Utility Commands (990/4 and TMAM9000 only)

Create a file

Compress a file
Change file name
Change file protection
Delete file

Change listing file/device
Receive file across data link
Transmit file across data link

Map disc
Display time and date
Terminate program execution

Texas Instruments 6-72

CF,file name
CM,file name
CM,old file name,new file name
CP.file name,<U or W or D>
DF,file name
DO,file or device name
DR,file name
DT,file name
MD,disc name
Tl

TE

October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.13.3 Edit Commands

Help

Edit/compose mode
Syntax check
Terminate and save edit

Terminate without saving
Change editing files
Save the edited file

Scroll file down

Scroll file up
New line

Tab

Back tab

Set tab increment

Move cursor up
Move cursor down

Move cursor right
Move cursor left

Move to home position
Find [nth occurrence of]

specified pattern
Relative positioning
Move to top of file
Move to bottom of file

Insert line before

Duplicate line
Delete line

Skip to next tab setting
Insert character

Delete character

Clear line

Replace strings [n times]

Split line

CMD HELP

F7 key
CMD CHECK

CMD QUIT

CMD ABORT

CMD INPUT

CMD SAVE

Fl key
F2 key
RETURN key
SHIFT TAB SKIP key
FIELD key

CMD TAB(character count)
Up-arrow key
Down-arrow key
Right-arrow key
Left-arrow key
HOME key
CMD FIND(pattern,

[occurence number])
CMD [+ or -] line count
CMD TOP

CMD BOTTOM

Unlabelled grey key
F4 key
ERASE INPUT key
TAB SKIP key
INS CHAR key
DEL CHAR key
ERASE FIELD key
CMD REPLACE(original pattern,

new pattern,[repeat count])
F8 key

NOTES

CMD HELP

Strike the CMD key and then type in the word HELP.

[exp]

Indicates that item EXP is optional. Optional items may be
omitted (they default to 1) along with any preceding comma.

pattern

Is either an identifier or a string of characters enclosed
within double quotes.

Texas Instruments 6-73 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

6.13.4 Debug Commands

Getting Started/Finished
Resume execution

Terminate DEBUG session

Help
Load saved program
Copy commands from file
Show unresolved externals

Status Displays
Display process
Display all processes

Breakpoints/Single Step
Assign breakpoint
Delete breakpoint
Delete all breakpoints
List breakpoints

Select single step mode

Showing/Modifying Data
Show stack frame

Show heap packet
Show common area

Show indirect variable value

Show absolute memory location

Modify stack frame value
Modify heap value
Modify common value
Modify indirect variable
Modify memory

Tracing Execution

Trace process execution
Trace routine entry/exit
Trace statement flow

Monitor Process Scheduling

Select default process
DEBUG the process
Assign breakpoint to process
Delete breakpoint from process
Hold process

Release process

Interprocess File Simulation
Connect input file
Connect output file

Interrupt Simulation
Simulate interrupt

Selection of CRU Mode

Select CRU mode

MICROPROCESSOR PASCAL

GO

QUIT
HELP(command)
LOAD ("pathname")
COPY ("pathname")
SE

DP([process])
DAP

AB(routine,[statement number])
DB(routine,[statement number])
DAB(process)
LB([process])
SS([process],[flag])

SF([routine],[disp],[length])
SH([routine],[disp],[length])
SC(common name,[disp],[length]
SI(routine,disp,[length])
SM(address,[length])
MF(routine,[disp],[ver], value
MH(routine,[disp],[ver],value)
MC(routine,[disp],[ver],value)
MI(routine,disp,[ver],value)
MM(routine,[ver],value)

TP([process],[flag])
TR([process],[flag])
TS([process],[flag])

SDP(process)
DEBUG(process,[flag])
ABP(process)
DBP(process)
HP(process)
RP(process)

CIF(filel,[file2])
COF(filel,[file2])

SIMI(level)

CRU([process],cru mode)

)

Texas Instruments 6-74 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

NOTES

[x]

Indicates that the item X is optional. Parenthesis may be
omitted if all the parameters are optional or defaulted.

process

If omitted it defaults to that set by SDP. It may be either
a name (youngest instance of the PROCESS) or an integer
constant (older instance of a particular PROCESS), found
using DAP.

routine

May be either a name (most recent activation of the ROUTINE)
or an integer constant (earlier activation), found using DP.
Optionally it specifies the process which activated it by
preceding ROUTINE with PROCESS (this is followed by '.').

flag

Is an identifier that is either TRUE or FALSE: if TRUE the
command is enabled; if FALSE the command is disabled.

disp

Is the byte displacement.

ver

Is the old value of the variable being modified, if it does
not match the actual value an error occurs.

filel

An 8 character Microprocessor Pascal file name identifier
enclosed in double quotes.

file2

A file pathname enclosed in double quotes. If omitted it
defaults to the user's terminal.

cru mode

One of the following:

EXECUTE Execute all CRU instructions
OFF Ignore all CRU instructions
DEBUG Default - All CRU I/O is user-simulated

Texas Instruments 6-75 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.13.5 File Manipulation Routines

CLOSE(f)
Place file F in closed state.

DECODE(s,n,stat,q)
Convert string S, starting at the Nth component of S, into a
form compatible with the read variable Q (see NOTE 2) and
store in Q. Status of the operation is returned in STAT.

ENCODE(s,n,stat,p)
Convert the write parameter P (see NOTE 1) into character
format and store the result in S, starting at the Nth comp
onent. The status of the operations is returned in STAT.

EOF(f) : BOOLEAN FUNCTION
Returns a value of TRUE if the file F is not open for input
or is in the end-of-file state.

EOLN(f) : BOOLEAN FUNCTION
Returns a value of TRUE if the last character of the current
line in the file F has been read.

FILENAMED(S) : ANYFILE FUNCTION
Connects the file variable of type ANYFILE to the file with
the name S (S is a string constant).

MESSAGE(x)
Write the string X to the system message file.

READ(f,vl,..,vn)
READ(vl,..,vn) > READ(INPUT,vl,.. ,vn)
READ(f,recnum,vl,.•,vn)
Read the components of a sequential, text
into the specified variables Vi (see NOTE 2)
argument is not a file variable F, the file
For Random files the second argument specifi
record number RECNUM, starting from zero,
and Random files, the remaining arguments mu
with the particular file components.

Sequential
Text

Random

or random file

. If the first

INPUT is used,

es the logical
For Sequential

st be compatible

READLN(f,vl,..,vn)
READLN(vl,..,vn) > READLN(INPUT,vl,..vn)
READLN(INPUT)
Read the components of a text file into the specified
variables then carry on reading until the next end-of-line
marker has been read.

RESET(f)
Opens a file F for input and positions it to its first comp
onent. If a Sequential or Text file is empty then EOF(f) is
true, otherwise it is false.

Texas Instruments 6-76 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

REWRITE(f)
Marks a file F as empty and then opens it for output. For a
Sequential or Text file EOF(f) becomes true. This is auto
matically performed for OUTPUT.

SETNAME(f,name)
Associate logical channel F to the physical file NAME. NAME
may not be the file OUTPUT.

WRITE(f,vl,..,vn) Sequential
WRITE(vl,..,vn) > WRITE(INPUT,vl,..,vn) Text
WRITE(f,recnum,vl,..,vn) Random
Write the components to a Sequential, Text or Random file
from the specified variables VI..Vn (see NOTE 2). If the
first argument is not a file variable F, the file OUTPUT is
used. For Random files the second argument specifies the
logical record number RECNUM, starting from zero. For
Sequential and RANDOM files, the remaining arguments must
be compatible with the particular file components.

WRITELN(f,vl,..,vn)
WRITELN(vl,..,vn) > WRITELN(OUTPUT,vl,..vn)
WRITELN(OUTPUT)
Write the components to a text file F from the specified
variables VI..Vn (see NOTE 1) and then write an end-of-line
marker.

NOTE 1: WRITE variables for Text files may be of the form

E or E:M or E:M:N

E is an expression of type CHAR, INTEGER, LONGINT, REAL,
BOOLEAN, or a string.

M (INTEGER expression) is the minimum field width. If
omitted and E is REAL, floating point format is used.

N (INTEGER expression) specifies that the real number E
will be output in fixed point format with N digits
after the decimal point.

If E is INTEGER or LONGINT then the value may be written as
a string of hex digits (not preceded by #) in the form:

E hex number or E:M hex number

If E is BOOLEAN then the identifier FALSE or TRUE is written

preceded by M-5 blanks. If M<5 then the character T or F is
written.

If E is a string (PACKED ARRAY of characters) then the whole
string is output.

Texas Instruments 6-77 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Default field widths for WRITE operations are:

INTEGER 10 LONGINT 15 REAL

BOOLEAN 5 CHAR 1 Hex

String length of string

15

10

NOTE 2: READ variables for TEXT files

V is a variable to be assigned the value read and must be
either CHAR, INTEGER, LONGINT, BOOLEAN, REAL or a string.

V is a CHAR - next character is read.

V is a string (length L) - next L characters are read.

V is BOOLEAN - either the character T or F is read or the

identifier TRUE or FALSE.

V is INTEGER, LONGINT or REAL - a sequence of characters
that makes up the number is read. The sequence may be
terminated by any character that is not part of the
number. Preceding blanks and end-of-line markers are
skipped. If the field is blank the value read is zero.

6.13.6 Arithmetic Routines

All 'routines' preceded by '*' must be declared EXTERNAL.

ABS(x: INTEGER or LONGINT or REAL) : as arg
Returns the absolute value of X.

* ARCTAN(x: REAL) : REAL
Returns the arc tangent of the value X.

* COS(x: REAL) : REAL

Returns the cosine of the value X.

* EXP(x: REAL) : REAL
Returns the exponential value of the value X.

FL0AT(x: INTEGER or LONGINT) : REAL
Converts the value X into a real number.

* LN(x: REAL) : REAL
Returns the natural logarithm of the value X.

LINT(x: INTEGER or LONGINT or REAL) : LONGINT
Converts the value X into a long integer number.

LR0UND(x: REAL) : LONGINT
Converts and rounds the value X into a long integer

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

number.

Texas Instruments 6-78 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

LTRUNC(x: LONGINT or REAL) : LONGINT FUNCTION
Truncate the value X into a long integer number.

ODD(x: INTEGER or LONGINT) : BOOLEAN FUNCTION
Returns TRUE if the value of X is odd; FALSE otherwise.

ROUND(x: REAL) : INTEGER FUNCTION
Converts and rounds the value X into an integer number.

* SIN(x: REAL) : REAL FUNCTION
Returns the sin of the value X.

SQR(x: INTEGER or LONGINT or REAL) : as arg FUNCTION
Returns the squared value of X.

* SQRT(x: REAL) : REAL FUNCTION
Returns the square root of the value X.

TRUNC(x: LONGINT or REAL) : INTEGER FUNCTION
Truncate the value X into an integer number.

6.13.7 CRU Routines

The CRU 'routines'are expanded in-line by the comiler.

TYPE base-range = 0..#1FFE;
TYPE width-range = 1..16;
TYPE displacement-range = -128..127;

CRUBASE(base: base__range)
Set the CRU base address for subsequent CRU operations.

LDCR(width: width_range; out__value: INTEGER)
Output WIDTH number of bits from the value OUT__VALUE to the
CRU lines, starting from the CRU base address.

SBO(disp: displacement_range)
Set the specified bit (DISP + CRU base address) to a '1'.

SBZ(disp: displacement__range)
Set the specified bit (DISP + CRU base address) to a '0'.

STCR(width: width_range; VAR in_value: INTEGER)
Input WIDTH number of bits from the CRU, starting from the
CRU base address, to the variable IN__VALUE.

TB(disp: displacement__range) : BOOLEAN FUNCTION
Returns TRUE if the specified bit (DISP + CRU base address)
is a '1' and FALSE if it is '0'.

Texas Instruments 6-79 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.13.8 Miscellaneous Routines

CHR(x: BOOLEAN or INTEGER or scalar) : INTEGER FUNCTION
Returns the character with the ordinal value X.

LOCATION(x: module or unpacked type) : INTEGER FUNCTION
Returns the address of X.

ORD(x: BOOLEAN or CHAR or scalar) : INTEGER FUNCTION
Returns the ordinal value of X.

PACK(a: packed array; i: INTEGER; z: unpacked array)
Pack the components of array A into the packed array Z,
starting at the Ith element of A.

PRED(x: enumeration) : enumeration FUNCTION
Returns the predecessor of X in the enumeration list.

SIZE(x: type or variable) : INTEGER FUNCTION
Returns the size (in bytes) of X.

SUCC(x: enumeration) : enumeration FUNCTION
Returns the successor of X in the enumeration list.

UNPACK(z: packed array; a: unpacked array; i: INTEGER)
Unpack the components of the packed array Z into the array A
starting at the Ith element of A.

6.13.9 Rx Routines

All Rx procedures/functions called directly must be declared
EXTERNAL.

6.13.9.1 Processor Management (Scheduling) Routines

TYPE non_device_priority = 16..32766;

SETPRIORITY(VAR oldvalue: non_device_priority;
newvalue: non__device_priority)

Changes the priority of the first non-device process in the
scheduling queue.

SWAP

Removes the first non-device process from the scheduling
queue and inserts it behind the last process with the same
priority.

6.13.9.2 Semaphore Routines

TYPE nonneg = 0..32766;
TYPE semaphorestate = (awaited, zero, signaled);

Texas Instruments 6-80 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

CKSEMAPHORE(sema: semaphore) : BOOLEAN FUNCTION
Returns TRUE if SEMA is a valid semaphore.

CSIGNAL(sema: semaphore; VAR waiter: BOOLEAN)
Performs a conditional signal operation on SEMA. If a
waiter exists on this semaphore, a SIGNAL operation is
performed on it and WAITER is set to true.

CWAIT(sema: semaphore; VAR received: BOOLEAN)
Performs a conditional wait operation on SEMA. If it has
been SIGNALed, a WAIT operation is performed on it and
RECEIVED is set to true.

INITSEMAPHORE (VAR sema: semaphore; count: nonneg)
Allocates and initializes the semaphore SEMA to COUNT and
sets the queue management to FIFO.

SEMASTATE(sema: semaphore) : semaphorestate FUNCTION
Returns the state of the semaphore SEMA.

SEMAVALUE(sema: semaphore) : INTEGER FUNCTION
Returns the count of SEMA's initial value plus the total
number SIGNALS performed on it minus the total number of
WAITs performed on it.

SIGNAL(sema: semaphore)
Performs a SIGNAL operation on SEMA.

TERMSEMAPHORE(VAR sema: semaphore)
Returns the space occupied by the semaphore SEMA to Rx.

WAIT(sema: semaphore)
Performs a WAIT operation on SEMA.

WAITSIGNAL(wait_for, signal_the: semaphore)
Performs a WAIT operation on WAIT_FOR and a SIGNAL operation
on SIGNAL THE in an indivisible manner.

6.13.9.3 Semaphore Attribute Routines

TYPE interrupt_level = 0..15;

ALTEXTERNALEVENT(sema: semaphore; level: interrupt__level)
Attaches the semaphore SEMA to the interrupt LEVEL as the
alternative receiver of an interrupt.

EXTERNALEVENT(sema: semaphore; level: interrupt_level)
Attaches the semaphore SEMA to the interrupt LEVEL as the
primary receiver of an interrupt.

NOALTEXTERNALEVENT(level: interrupt_level)
Detaches any semaphore which has been designated the altern
ative receiver of the interrupt LEVEL.

Texas Instruments 6-81 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

NOEXTERNALEVENT(level: interr.upt_level)
Detaches any semaphore which has been designated the primary
receiver of the interrupt LEVEL.

6.13.9.4 Interrupt Routines

TYPE interrupt_result = -1..15;
TYPE wordl6 = ARRAY [0..15] OF INTEGERS;
TYPE wp = @wordl6;

ASSEMBLYEVENT(VAR interruptjwp: wp; interrupt_pc: INTEGER;
level: interrupt_level)

Assign the assembly language routine whose entry point is
INTERRUPT_PC to the interrupt LEVEL. INTERRUPTJWP is the
workspace to be used by this routine.

INTLEVEL : interrupt_result FUNCTION
Returns the interrupt level of the interrupt currently being
serviced (0 to 15) or -1 if no interrupt is being serviced.

MASK

Disables all interrupts except for interrupt level 0.

NOASSEMBLYEVENT(level: interruptJLevel)
De-assign the assembly language routine for interrupt LEVEL.

SETMASK(new_mask: interrupt_level;
VAR old__mask: interrupt__level)

Sets the interrupt mask to NEW_MASK (all interrupts less
urgent than this value are disabled). The original value of
the interrupt mask is saved in 0LD_MASK.

UNMASK

Enables all interrupts which have a higher priority than the
calling process.

6.13.9.5 Process Management Routines

TYPE processid = @processid;

MY$PROCESS : processid FUNCTION
Returns the process identification of the calling process.

P$AB0RT(p: processid)
Causes process P to be marked for termination. P is aborted
when it is next active; after it has returned from all Rx
routines and is out of all user-defined critical regions.

P$LASTPROCESS(p: processid) : processid FUNCTION
Returns the identification of the last process started by P,
or NIL if the last attempted start was unsuccessful.

Texas Instruments 6-82 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

P$SUCCESSFUL(p: processid) : BOOLEAN FUNCTION
Returns the status of the last process management operation
performed by process P.

START$TERM(VAR oldvalue: BOOLEAN; newvalue: BOOLEAN)
Specifies the exception handling mode when processes can not
be successfully started. If NEWVALUE is TRUE (default), an
unsuccessful START causes the calling process to fail; else
an unsuccessful START is ignored. The original value of the
exception handling flag is preserved in OLDVALUE.

6.13.9.6 Heap Management Routines

TYPE pointer = @INTEGER; { @any_structure }
TYPE byte_length = 0..32767;

DISP0SE(VAR p: pointer) Translated to FREE$ by compiler
Deallocate the heap packet specified by P and set P to NIL.

FREE$(VAR ptr: pointer)
Returns the area referenced by PTR to the heap, PTR is set
to NIL.

HEAP$TERM(VAR oldvalue: BOOLEAN; newvalue: BOOLEAN)
Allows the user to specify what action heap overflow causes:
error termination of the process calling NEW, or NEW$; or to
ignored the condition. If NEWVALUE is TRUE (default) then
error termination. The original value of the heap overflow
flag is saved in OLDVALUE.

NEW(VAR p: pointer) Translated to NEW$ by compiler
Allocate a heap packet of, at least, the required size and
return the address of this packet in P.

NEW$(VAR ptr: pointer; length: byte__length)
Allocates, at least, LENGTH bytes of contiguous memory from
the heap (if available). PTR is set to the address of this
memory area.

6.13.9.7 Channel I/O Routines

TYPE cid = ©INTEGER;
TYPE msg__record = RECORD

{ application defined record }
END;

TYPE msg__ptr = @msg_record;

C$ACKNOWLEDGE(msg: msg_ptr)
The reclever acknowledges the receipt of the message refer
enced by MSG.

Texas Instruments 6-83 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

C$ALLOCATE(msg_size: INTEGER; VAR msg: msg_ptr)
Allocates a heap packet which will contain the message to be
sent. The heap packet will be in two parts: a fixed length
header (used by the channel routines to synchronise inter
process communication) and a message of length MSG_SIZE.
The address of this heap packet is returned in MSG.

C$CRECEIVE(c: cid; VAR msg: msg_ptr)
Checks to see if a message has been sent to channel C. If a
message is present, its address is returned in MSG. Other
wise MSG is set to NIL. (No waiting is performed.)

C$CWAIT(msg: msg__ptr; VAR received: BOOLEAN)
Conditionally waits for a message to be processed. If the
message referenced by MSG has been processed, RECEIVED is
set to TRUE. Otherwise it is set to FALSE.

C$DISPOSE(VAR msg: msg_ptr)
Return the heap packet specified by MSG to the heap and set
MSG to NIL.

C$INIT(name: integer; VAR c: cid)
Allows the calling process to gain access to channel NAME,
and returns the "address" of this channel in C. All sub

sequent calls to channel routines should reference this
channel by C.

C$NOTIFY(c: cid; sema: semaphore)
Associate the semaphore SEMA to the channel C. Whenever a
message is sent to this channel, the semaphore is signalled.

C$RECEIVE(c: cid; VAR msg: msg_ptr)
Waits for a message to be sent to channel C. The address of
this message is returned in MSG.

C$SEND(c: cid; msg: msg_ptr)
Sends the message referenced by MSG to channel C.

C$TERM(VAR c: cid)
Disconnects the calling process from channel C. When all
processes are disconnected from the channel, the structures
associated with the channel are returned to the heap.

C$WAIT(msg: msg_ptr)
Waits for the message referenced by MSG to be processed.

6.13.9.8 Interprocess File Transfer Routines

F$CHABORT(VAR f: ANYFILE)
Aborts all file channels with the same name as F. All

connected files are disconnected. Any subsequent I/O trans
fers to the file causes an exception to be raised. Any
files suspended on the file channel are activated with an
exception

Texas Instruments 6-84 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

F$CHBUFFERS(VAR f: ANYFILE; n: INTEGER)
Ensures that any file channels associated with file F have
the capability of buffering at least N components before
any producers are suspended.

F$CLENGTH(VAR f: ANYFILE) : INTEGER FUNCTION
Returns the component length of the file F.

F$CONDITIONAL(VAR f: ANYFILE; flag: BOOLEAN)
Causes the conditional attribute for file F to be reset to

FLAG. This attribute defaults to FALSE (READs and WRITEs
wait for buffers).

F$EOC(VAR f: ANYFILE) : BOOLEAN FUNCTION
Indicates whether 'end-of-consumption' has been set on the
file channel associated with the file F.

F$LASTSUCCESSFUL(VAR f: ANYFILE) : BOOLEAN FUNCTION
Indicates whether the last file channel transfer made by
file F was successful or not.

F$STEOC(VAR f: ANYFILE)
Sets 'end-of-consumption' on the file channel associated
with file F. When all reading files disconnect, no files
are allowed to connect to the file channel until all

connected writing files close.

F$STLENGTH(VAR f: ANYFILE; length: INTEGER)
Allows the first text file to connect to a file channel to

set the file channel component length (defaults to 80
characters)•

6.13.9.9 Exception Handling Routines

ERR$CLASS : INTEGER FUNCTION

Returns the exception condition's class code.

ERR$REASON : INTEGER FUNCTION
Returns the exception condition's reason code.

ERR$RSET

Clears the current process' exception codes.

EXCEPTION(class_code, reason_code: INTEGER)
Forces a routine to fail with the specified exception codes.

0NEXCEPTI0N(exception_hndlr: INTEGER)
Specifies the address of the routine (EXCEPTI0N__HNDLR) to be
invoked when an exception condition occurs. The address of
the routine can be found using the LOCATION function.

RE$START
Causes the entire system to be restarted.

Texas Instruments 6-85 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.13.9.10 Critical Transaction Routines

CT$ENTER
Indicates entry into a critical transaction.

CT$EXIT

Indicates exit from a critical transaction.

6.13.9.11 Rx Error and Exception Codes

System Crash Codes
Unable to boot system = 1
No exception handler = 2
No interrupt handler = 3
Illegal interrupt or XOP = 4
Scheduling queue in error = 5
ROM/RAM partition error = 6
Process list is in error = 7

Invalid heap pointer = 8

Class Codes

Run-time support error = 0
User error = 1

Scheduling error = 2
Semaphore error = 3
Interrupt error = 4
Process management error = 5
Exception error = 6

Memory management error = 7
File error = 8

Text file error = 9

Channel error = 10

I/O decoder error = 11
Interprocess communication error = 12

Reason Codes (Run-Time Error)
Stack overflow = 2

Division by zero = 4
Floating point error = 5
Set element out of bounds = 6

Assert error = 7

Missing OTHERWISE in CASE = 8
Array index error = 9
Pointer equals NIL = 10
Subrange assignment error =11
LONGINT array index error = 12
LONGINT subrange error = 13
Halt called = 20

Texas Instruments 6-86 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Reason Codes (Scheduling Error)
Scheduling queue invalid = 1
Scheduling queue priority error = 2

Reason Codes (Semaphore Error)
Semaphore invalid = 1

Semaphore count error = 2
Semaphore operation error = 3
Semaphore count overflow = 4
Semaphore in handler priority error = 5

Reason Codes (Interrupt Error)
Interrupt invalid = 1
Interrupt level invalid = 2
Interrupt semaphore invalid = 3

Interrupt not handled = 4
Interrupt incorrect trap vector = 5
Interrupt handler priority error = 6

Reason Codes (Exception Error)
Exception handler not established from process = 1
Exception handler cannot have parameters = 2
Exception handler cannot be in assembly language = 3
Exception handler local variables too large for stack = 4

Reason Codes (Process Management Error)
Not a process

Aborted

Not started -

Not started -

Not started -

Not started -

Not started -

Not started -

Not started -

Not started -

invalid priority
negative stacksize
negative heapsize
process is in assembly language
no memory for semaphore
no memory for process heap
no memory for process stack
no memory for process frame

Reason Codes (Memory Management Error)
Heap invalid = 1
Heap overflow error = 2
Heap packet error = 3
Invalid packet error = 4

Reason Codes (File Error)
File is not open for reading = 1
File is not open for writing = 2
Sequential read past end-of-file = 3
Open error = 4
Read error = 5

Write error = 6

No memory for file descriptor = 7
No memory for pathname = 8
File not closed = 9

Invalid parameter passed to F$STLENGTH = 10
Not a text file = 11

Texas Instruments 6-87

1

2

3

4

5

6

7

8

9

10

October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

Reason Codes (Text File Error)
Text conversion - parameter out of range = 1
Text conversion - field width too large = 2
Text conversion - incomplete data = 3

Text conversion - invalid character in text field = 4

Text conversion - value too large = 5
Text read past end of file = 6

Text field exceeds record size = 7

Reason Codes (Channel Error)
No memory for buffers = 1
No memory for semaphores = 2
No memory for channels = 3

Reason Codes (I/O Decoder Error)
Empty file identifier list = 1
File identifier not found = 2

File identifier not released = 3

Reason Codes (Interprocess Communication Error)
No heap for pathname record = 1
No heap for name field = 2
No heap for file variable record = 3

No heap for port variables = 4

Texas Instruments 6-88 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.13.10 Backus-Naur Form (BNF) Syntax Definitions

::= "Is defined to be"

< > For enclosing non-terminal symbols (ie entities
defined by a production rule)

[] For enclosing optional entities
{ } For enclosing entities that may be repeated zero

or more times

| For representing alternatives
"[" Indicates symbol [is to appear in the text

6.13.10.1 Compiler Options

<option control comment>::= "{" $ <option list> "}"

<option list>::= <option> { , <option> }

<option>::= [NO] <option identifier> |
[RESUME] <option identified

where <option identifier> is one of the following:

COL72 Default=TRUE

Only scans the first 72 columns, when turned off the whole
source line is scanned.

ASSERTS Default=TRUE

Generates object code for ASSERT statements.

CKINDEX Default=FALSE

Enables run-time checks for array bounds.

CKPTR Default=FALSE

Enables run-time checks for pointers equal to NIL.

CKSET Default=FALSE

Enables run-time checks for set element expressions.

CKSUB Default=FALSE

Enables run-time checks for subrange assignments in bounds.

DEBUG Default=FALSE

Statement numbers are incorporated into the code for use by

LIST Default=TRUE

Enables printing of source listing, error lines are always
listed.

MAP Default=FALSE

Prints a map of the routine's variables and common areas
after listing the routine.

NULLBODY Default=FALSE
No code is to be generated for the empty system body.

Texas Instruments 6-89 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

PAGE Default=FALSE

Continues printing at the top of a new page.

STATMAP Default=FALSE

A map of displacements for each statement in the object
module is to be generated by the code generator.

6.13.10.2 Concurrent Characteristics

These may only appear immediately following the initial
BEGIN of a system, program or process declaration.

<concurrent characteristics^:=

"{" # Concurrent characteristic list> "}"

<concurrent characteristic list>::=
<concurrent character> { ; Concurrent character> }

(concurrent character>::=
(concurrent character keyword> = (parameter identifier> |
(concurrent character keyword> = (integer constant>

(concurrent character keyword>::= HEAPSIZE | PRIORITY | STACKSIZE

6.13.10.3 System Declaration

For a single program with no processes the syntax is:

(system>::= PROGRAM (identifier> ; (program block> •

The general syntax for a system is:

(system>::= SYSTEM (identifier> ; (system block> .

(system block>::= (label declaration part>
(constant declaration part>
(type declaration part>
(common declaration part>
(access declaration part>
(system routines>
(body>

(label declaration part>::= (empty> |
LABEL (statement label> { , (statement label> } ;

(empty>::=

(statement label>::= (digit> { (digit> }

(constant declaration part>::= (empty> |
CONST (constant declaration> { ; (constant declaration> } ;

Texas Instruments 6-90 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

(constant declaration)::= (identifier> = (constant) ; |
(identifier) = (integer constant expression) ;

(type declaration part>::= (empty) |
TYPE (type declaration) { (type declaration) }

(type declaration)::= (identifier) = (type) ;

(variable declaration part>::= (empty) |
VAR (variable declaration) { (variable declaration) }

(variable declaration)::= (identifier list) : (type) ;

(identifier list>::= (identifier) { , (identifier) }

(common declaration part>::= (empty) |
COMMON (variable declaration) { (variable declaration) }

(access declaration part>::= ACCESS (identifier list) ; | (empty)

(system routines)::= { (system routine) }

(system routine)::= (program declaration) |
(procedure declarations |
(function declaration)

(program declaration)::= (program header) (program block) ; |
(program header) FORWARD ; |
(program header) EXTERNAL [PASCAL] ;

(program header)::=
PROGRAM (identififier) [(program parameter list)] ;

(program parameter list>::=
((program parameter) { ; (program parameter) })

(program parameter)::= (identifier list) : (type identifier)

(program block)::= (label declaration part)
(constant declaration part)
(type declaration part)
(variable declaration part)
(common declaration part)
(access declaration part)
(program routines)
(body)

(program routines)::= { (program routine) }

(program routine)::= (process declaration) |
(procedure declaration) |

(function declaration)

Texas Instruments 6-91 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

(procedure declaration)::= (procedure header) (block) ; |
(procedure header) FORWARD ; |
(procedure header) EXTERNAL [PASCAL]

(procedure header)::= PROCEDURE (identifier) [(parameter list)]

(parameter list>::= ((any parameter) { ; (any parameter) })

(any parameter)::= [VAR] (identifier list) : (type identifier)

(block)::= (label declaration part)
(constant declaration part)
(type declaration part)
(variable declaration part)
(common declaration part)
(access declaration part)

(routines)

(body)

(routines)::= { (routine) }

(routine)::= (procedure declaration) | (function declaration)

(function declaration)::= (function header) (block) ; |
(function header) FORWARD ; |
(function header) EXTERNAL [PASCAL] ;

(function header)::=

FUNCTION (identifier) [(parameter list)] : (result type) ;

(process declaration): := (process headerXprogram block) ; |
(process header) FORWARD ; |
(process header) EXTERNAL [Pascal] ;

(process header)::=
PROCESS (identifier) [(program parameter list)] ;

(body>::= (compound statement)

6.13.10.4 Type Syntax

(type>::= (simple type) | (structured type)

(simple type>::= (scalar type) | (subrange type) |
(type identifier)

(type identifier)::= (identifier) | ANYFILE | SEMAPHORE | TEXT |
REAL | INTEGER | LONGINT | BOOLEAN | CHAR

(scalar type>::=
((scalar identifier) { , (scalar identifier) })

(subrange type>::=
(enumeration constant) .. (enumeration constant)

Texas Instruments 6-92 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

(enumeration constant)::= (character constant) | (boolean constant) |
(integer constant) | (scalar identifier)

(scalar identifier)::= (identifier)

(structured type>::= [PACKED] (unpacked structure type) |
(pointer type) | (file type) | (set type)

(unpacked structure type>::= (array type) | (record type)

(array type)::=
ARRAY "[" (index type) { , (index type) } "]" OF (type)

(index type>::= BOOLEAN | CHAR | (scalar type) | (identifier) |
(subrange type)

(record type>::= RECORD (field list) END

(field list>::= (fixed part) | (fixed part) ; (variant part) |
(variant part)

(fixed part>::= (record section) { ; (record section) }

(record section)::=

(field identifier) { , (field identifier) } : (type) 1
(empty)

(field identifier)::= (identifier)

(variant part>::=
CASE [(tagfield)] (tagfield type) OF (variant) { ; (variant) }

(tagfield type>::= BOOLEAN | CHAR | INTEGER | LONGINT | (identifier)

(tagfield)::= (identifier) :

(variant)::= (variant label list) : ((field list)) | (empty)

(variant label list>::= (variant label) { , (variant label) }

(variant label)::= (enumeration constant) |
(enumeration constant) •• (enumeration constant)

(set type>::= SET OF (simple type)

(pointer type>::= @ (type identifier)

(file type>::= [RANDON] FILE OF (type)

(result type>::= BOOLEAN | CHAR | INTEGER | LONGINT | REAL |
SEMAPHORE | (identifier)

Texas Instruments 6-93 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.13.10.5 Statement Syntax

(statement)::= [(statement label) :] (simple statement) |
[(statement label) :] [(escape label) :]
(structured statement)

(simple statement)::= (empty statement) | (assignment statement) |
(procedure statement) | (escape statement) |
(assert statement) | (goto statement) |
(start statement)

(empty statement)::= (empty)

(assignment statement)::= (variable) := (expression)

(procedure statement)::=
(procedure identifier) [(actual parameter list)]

(procedure identifier)::= (identifier)

(actual parameter list>::=
((actual parameter) { , (actual parameter) })

(actual parameter)::= (expression) | (variable)

(start statement): :=

START (process identifier) [(actual parameter list)]

(escape statement)::= ESCAPE (escape label) |
ESCAPE (routine identifier)

(escape label)::= (identifier)

(routine identifier)::= (program identifier) | (process identifier) |
(procedure identifier) | (function identifier)

(goto statement)::= GOTO (statement label)

(assert statement)::= ASSERT (expression)

(structured statement)::= (compound statement) |
(conditional statement) |

(repetitive statement) |
(with statement)

(compound statement)::= BEGIN (statement) { ; (statement) } END

(conditional statement)::= (if statement) | (case statement)

(if statement)::= IF (expression) THEN (statement)
[ELSE (statement)]

Texas Instruments 6-94 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

(case statement)::=

CASE (expression) OF (case element) { ; (case element) }
[OTHERWISE (statement) { ; (statement) }]
END

(case element)::= (case label list) : (statement) | (empty)

(case label list>::= (case label) { , (case label) }

(case label)::= (enumeration constant) |

(enumeration constant) .. (enumeration constant)

(repetitive statement)::= (for statement) | (while statement) |
(repeat statement)

(for statement)::=

FOR (control variable) (generator) DO (statement)

(control variable)::= (identifier)

(generator)::= := (initial value) TO (final value) |
:= (initial value) DOWNTO (final value)

(initial value)::= (expression)

(final value)::= (expression)

(while statement)::= WHILE (expression) DO (statement)

(repeat statement)::= REPEAT (statement) { ; (statement) }
UNTIL (expression)

(with statement)::= WITH (with variable list) DO (statement)

(with variable list>::= (with variable) { , (with variable) }

(with variable)::= (record variable) |
(identifier) «• (record variable)

6.13.10.6 Expression Syntax

(expression)::= (boolean term) | (expression) OR (boolean term)

(boolean term>::= (boolean factor) |

(boolean term) AND (boolean factor)

(boolean factor)::= [NOT] (boolean primary)

(boolean primary)::= (simple expression) |
(boolean primary) (relational operator) (simple expression)

(relational operator): := = | (> | (| (=» | > | >= | IN

Texas Instruments 6-95 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

(simple expression)::= (term) | (adding operator) (term) |
(simple expression) (adding operator) (term)

(adding operator)::= + | -

(term>::= (factor) | (terra) (multiplying operator) (factor)

(multiplying operator)::= * I / I DIV | MOD

(factor)::= ((expression)) | (set) | (unsigned constant) |
(variable) |
(function identifier) [(actual parameter list)]

(function identifier)::= (identifier)

(set>::= "[" (element list) "]"

(element list>::= (element) { , (element) }

(element)::= (expression) | (expression) •• (expression)

(unsigned constant)::= (constant identifier) | (boolean constant)
(scalar identifier) | (character constant)

(string constant) | (integer constant) |
NIL | (real constant)

(constant identifier)::= (identifier)

6.13.10.7 Variable Syntax

(variable)::= (variable identifier) | (component variable) |
(type-transferred variable)

(variable identifier)::= (identifier)

(component variable)::= (indexed variable) | (field designator) |
(referenced variable)

(indexed variable)::=

(array variable) "[" (expression) { , (expression) } "]"

(array variable)::= (variable)

(field designator)::= (record variable) • (field identifier)

(record variable)::= (variable)

(field identifier)::= (identifier)

(referenced variable)::= (pointer variable) @

(pointer variable)::= (variable)

(type-transferred variable)::= (variable) :: (type identifier)

Texas Instruments 6-96 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.13.10.8 Constant Expression Syntax

(integer constant expression)::= (integer constant term) |
(adding operator) (integer constant term) |
(integer constant expression) (adding operator)
(integer constant term)

(integer constant term>::= (integer constant factor) |
(integer constant term) (intmult operator)
(integer constant factor)

(intmult operator)::= * | DIV | MOD

(integer constant factor)::= ((integer constant expression)) |
(integer constant identifier) |
(integer constant)

(integer constant identifier)::= (identifier)

6.13.10.9 Lanugauge Element Syntax

(symbol)::= (special symbol) | (keyword symbol) | (identifier) |
(constant)

(constant)::= (enumeration constant) | (real constant) |
(string constant) | (constant identifier)

(separator)::= (space) | (end of logical source record) | (comment) |
(remark)

(comment)::= (open comment) (any sequence of graphic characters
not containing (close comment) > (close comment)

(open comment)::= "{" | (*

(close comment)::= "}" | *)

(remark)::= " (any sequence of graphic characters extending
to the end of the logical source record)

(special symbol)::= +|-|*|/|=|(|>|(|)|.|,|;|
: I @ I "[" I "]" I "{" I "}" I (= I >= I (> I
.. I := I :: I

Note : The following substitutions may be used.

(* —> "{" , *) —> "}" , (. —> "[" ,
.) —> "]" , @ —>

Texas Instruments 6-97 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

(keyword symbol)::= ACCESS | AND | ANYFILE |ARRAY | ASSERT | BEGIN |
BOOLEAN | CASE | CHAR | COMMON | CONST | DIV |
DO | DOWNTO | ELSE | END | ESCAPE | EXTERNAL |

FALSE | FILE | FOR | FORWARD | FUNCTION | GOTO |
IF | IN | INPUT | INTEGER | LABEL | LONGINT |
MOD | NIL | NOT | OF | OR | OTHERWISE | OUTPUT |
PACKED | PASCAL | PROCEDURE | PROCESS | PROGRAM |

RANDOM | REAL | RECORD | REPEAT | SEMAPHORE |

SET | START | SYSTEM | TEXT | THEN | TO | TRUE |
TYPE | UNTIL | VAR | WHILE | WITH

(identifier)::= (letter) { (letter) | _ | (digit) }

(letter)::= A|B|C|D|E|F|H|I|J|K|L|M|N|0|
P|Q|R|S|T|U|V|W|X|Y|Z|$

(digit)::= 0|1|2|3|4|5|6|7|8|9

(boolean constant)::= FALSE | TRUE

(character constant)::= ' (character) '

(string constant)::= ' (character) (character) { (character) } '

(character): := (graphic character) | # (hexdigitXhexdigit)

(graphic character)::= (special character) | (letter) | (digit) |
(space) | (nonstandard character)

(special character)::= +|-|*|/|=|(|>|(l)|.|,l;l
: | (? | " | " | ## | _ | "[" | "]" | "{" | "}"

(space)::= " "

(nonstandard character)::= (any other character available on a
particular system or device)

(hexdigit>::= (digit) |.A|B|C|D|E|F

(integer constant)::= (digits) [L] |
(hexdigit) { (hexdigit) } [L]

(digits)::= (digit) { (digit) }

(real constant)::= (digits) • (digits) |
(digits) . (digits) E (scale factor) |
(digits) E (scale factor)

(scale factor)::= [(sign)] (digits)

(sign)::= + | -

Texas Instruments 6-98 October 1981

SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

6.14 BIBLIOGRAPHY

[1] Kathleen Jensen and Niklaus Wlrth

Pascal User Manual and Report

Springer-Verlag

[2] Niklaus Wirth Algorithms + Data Structures = Programs

Prentice-Hall

Tl Publications

Microprocessor Pascal System User's Manual (MP351)
Microprocessor Pascal Executive User's Manual (MP385)
Realtime Executive User's Manual (MP373)
Component Software Handbook (MP918)
Microprocessor Pascal Euroboard Application Report (MP814)

Texas Instruments 6-99 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.1 INTRODUCTION

CHAPTER 7

POWER BASIC

BASIC (Beginner's All Purpose Symbolic Instruction Code) is
a high-level interpreted language. Although it does not
support the full block structured approach of the Algol
based languages (Algol 68, Pascal, etc), the BASIC language
is easy to learn and supports a variety of useful features.

In an interpreted language, no machine code is produced.
Instead, as each source line is entered, it is checked for
syntax errors (does the source line conform to the language
specifications?) and, if valid, is stored in a condensed and
encoded form called interpretive code. This is not directly
executable. Because interpreted languages are normally used
in an interactive mode, syntax errors are immediately
reported to the user. Before the next source lines can be
entered, the line containing the error(s) must be
corrected. The stored code can be 'executed' at any time
(it is not necessary to wait until the whole program has
been entered) by issuing the RUN command. At this time, the
interpreter examines each statement in the interpretive code
and calls in a machine language subroutine (which is part of
the interpreter) to carry out the desired operation.

Semantic errors (non-existent variables and arrays,
incorrectly referenced arrays, etc) and run-time errors
(incorrect program logic) simply require that the line(s)
containing the errors be revised before the program can be
rerun. With a compiled language, the whole program must be
recompiled after modifications are made. It may also be
necessary to link edit the compiled program should it
contain any external references.

The advantages of using an interpretive language are:

o Because the interpreter calls in complete
assembly language subroutines to perform each
function, each statement in the interpretive
code can specify a complex operation. This
results in compact, memory efficient code.

o There is no need to go through separate
compilation and link edit steps to produce
executable code. As part of the edit step, each

Texas Instruments 7-1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

source statement is translated into 'executable'

interpretive code as it is entered.

o Each source line is checked for errors as it is

entered; it is impossible to enter a
syntactically incorrect statement.

o Interpretive programs are usually developed
interactively. As a result, it is only
necessary to retype the relevant line(s) and
rerun the routine in order to change the
program. The user is able to see the result of
his change immediately. Also, the interpreter
provides excellent error diagnostics and good
recovery techniques.

o Because the interpreter is in control the whole
time, it is more difficult for the programmer to
find himself in irrecoverable error situations.

o To transport a program to another machine it is
only necessary to provide a version of the
interpreter written in the new machine's
instruction code. Any program written in the
interpretive code can then be run on the new
machine.

Because of the extra work done by the interpreter in reading
interpretive code, calling subroutines, etc, interpretive
code executes several times slower than compiled code. This
is the principal disadvantage to using interpretive code.
In addition, BASIC was designed as a simple language, and
does not provide the powerful program and data structuring
techniques of, say, Pascal. As such, it is probably not a
suitable language for developing large or complex
applications. However, for small to medium sized
applications, and for experimental work demanding speed in
program development, BASIC is very acceptable.

7.2 POWER BASIC

Power BASIC is a family of software products designed for
the industrial user. It provides all of the facilities of
BASIC plus specially designed features to support real-time
industrial control applications. At the time of writing,
three members of the Power BASIC family are available:
Evaluation Power BASIC, Development Power BASIC, and
Configurable Power BASIC. New members may be added to
satisfy particular requirements.

Power BASIC is designed to run on the TM990 range of
microcomputer modules (it can also be adapted to run on

Texas Instruments 7-2 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

other systems). It is possible to set up a Power BASIC
development system with a minimum of capital outlay. A
chasis containing two or three microcomputer modules from
the TM990 board range, a 743 KSR terminal, a single audio
cassette recorder and a PROM programmer, provide all the
facilities necessary to develop a Power BASIC application
program and store it in Programmable Read Only Memory
(PROM). The floppy disc based FS990/4 system provides more
sophisticated features, which allow a Power BASIC program to
be tailored for arty application to achieve minimum code
size.

7.2.1 Evaluation Power BASIC

Evaluation Power BASIC is a four-EPROM package that resides
on either a TM990/100M or a /101M CPU module. Additional
RAM in the form of TM990/201 or /206 memory expansion boards
may be configured into the system as necessary.

Apart from the standard features of BASIC, Evaluation Power
BASIC allows the user to access control equipment in
real-time (timing is provided by the TIC function) by either
memory-mapped I/O (MEM function) or via TI's standard
bitwise Communications Register Unit (BASE statement, CRB
and CRF functions). It also allows the user to load a
program from (LOAD command) and save a program to (SAVE
command) digital cassettes.

Evaluation Power BASIC is intended for users to try out the
features of Power BASIC. It was not designed for serious
development work, apart from experimental applications.

Used with the /101M CPU board, Evaluation Power BASIC
supports the following execution environments:

o Single-user, single-partition

o Single-user, two-partition

o Two-user, two-partition

The appropriate environment is selected via the 5-pole DIP
on the /101M CPU board. Section 2.9 of the TM990 Power
BASIC Reference Manual describes this feature in greater
detail.

Communication between partitions is made possible by the
system defined common array: COM(O) to C0M(9). This enables
Evaluation Power BASIC to be used to control two separate
tasks, the execution of each being synchronised using the
COM array. For example, one partition can be used to
control an industrial process while the other collects
control data (from a terminal, say).

Texas Instruments 7-3 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

In the following code, partition #1 gathers input from the
terminal and passes it across to partition #2 via the COM
array. COM(O) is used to synchronise the data transfer;
mutual exclusion is guaranteed by allowing #1 to access the
array only when COM(0)=0; when C0M(0)=1 only #2 can access
it. After loading the array, #2 is informed that fresh data
is ready by setting COM(O) to 1. This also prevents #1 from
modifying the array contents until #2 has copied them. Once
the contents have been copied, #1 is given exclusive control
of the array by setting COM(O) to 0.

PARTITION #1 PARTITION #2

10 REM GATHER DATA 10 REM CONTROL PROCESS

20 COM(0)=0 20 'initialise' VI,...,V9
30 INPUT VI,...,V9 30 IF COM(0)=0 THEN GOTO 120
40 IF COM(0)<>0 THEN GOTO 40 40 V1=C0M(1)::V2=C0M(2)
50 C0M(1)=V1::COM(2)=V2

... ...

110 COM(0)=0
90 C0M(0)=1 120 'use' V1,...,V9
100 GOTO 30 130 GOTO 30

In a single-user, two-partition environment, CTRL T
(pressing the T key while holding down the CTRL key) will
transfer control from one partition to the other.

7.2.2 Development Power BASIC

Development Power BASIC is a six-EPROM package that resides
on either a TM990/100M or a /101M CPU board plus either a
TM990/302 Software Development Board or a TM990/201 memory
expansion board. Additional memory expansion boards can be
included if required.

In Development Power BASIC, the two-partition feature is
removed to allow the inclusion of additional features. With

the CALL statement, Development Power BASIC allows the user
to access assembly language routines that have been burnt
into EPROM. Development Power BASIC also allows the user to
write interrupt service routines in the Power BASIC language
and to associate each of these routines to a particular
interrupt level (using the TRAP, IMASK, and IRTN
statements). Development Power BASIC also provides full
character handling facilities (character search, match and
conversion functions), better control structures (including
the ELSE, ON and ERROR statements) and more varied print
formatting (hexadecimal formatting and direct output of hex
ASCII codes).

In addition, when the TM990/302 Software Development Board

Texas Instruments 7-4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

is configured into the system, there is a two-EPROM
Enhancement Software Package that can be used to extend the
capabilities provided by Development Power BASIC. This
package allows the user to LOAD and SAVE a Power BASIC
program on low cost audio cassettes. The PROgram command
gives the ability to 'burn' a Power BASIC application into
TMS2716 EPROMs. The enhancement package also provides
decimal print formatting and complete error message
reporting.

7.2.3 Configurable Power BASIC

Configurable Power BASIC is a floppy disc based development
package that is designed to run on a 990/4 minicomputer
under the TX990 operating system (version 2.3 or later). It
allows the user to generate an application target system of
minimum size by deleting the Power BASIC editor along with
any parts of the interpreter that are not used.

Configurable Power BASIC consists of 3 parts: a host
interpreter, a configurator and an object library. This
library is a collection of routines, each of which
implements a specific Power BASIC statement or function.

The configurator determines what Power BASIC features are
required by the user's application program and creates the
following files:

o A link editor control file containing an INCLUDE
statement for each object routine (from the
object library) that is required by the
application program. If the application program
contains any CALL statements, the user supplied
assembly language routines are also INCLUDEd.

o A "root" module containing the Power BASIC
application program in its encoded internal
form.

o A "map" file containing a summary of all Power
BASIC statements and functions used by the
application. Any errors encountered are
immediately reported to the user and are also
recorded in this file.

The TX990 Link Editor (TXSLNK) takes the link editor control
file and uses the object library and the "root" module to
produce a customised Power BASIC run-time module. This
run-time module is then programmed into TMS2716 EPROMs.
Inserting these EPROMs into a CPU board (like the
TMS990/101M board), starting at address 0, and toggling the
reset switch causes the Power BASIC application program to
be activated.

Texas Instruments 7-5 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

The internal code used in the "root" module is compatible
with the internal code used by Development Power BASIC.
This means that the "root" module can be programmed into
TMS2716 EPROMs on its own and these can then be inserted
into a board system containing Development Power BASIC.
When the EPROMs are inserted at address >3000 the
application program is automatically executed whenever the
reset switch is toggled. However, if the EPROMs are
inserted elsewhere then the following command must be issued
to execute the program

LOAD <address>

where <address> is the start address of the first pair of
the "root" module's EPROMs.

Note: Due to features that have been added (eg the memory
word, MWD, function) to the Configurable Power BASIC host
interpreter and to Development Power BASIC there are
differences between releases. A "root" module generated
with Configurable Power BASIC.C.1.4 should use Development
Power BASIC D.1.6; Configurable Power BASIC C.1.6 should use
Development Power BASIC D.1.10.

The host interpreter provides all the features of
Development Power BASIC and the Enhancement Software
Package, plus a number of other features.

Configurable Power BASIC supports a comprehensive file
management package that allows the user to create, access
and delete files (either sequential or random access) on the
990/4's floppy disc units. In accordance with 990
philosophy, all file and device I/O operations are performed
via conceptual links called logical unit numbers or lunos.
The physical connection between a luno and a specific file
or device is made (opened) by the BOPEN statement and is
broken (closed) by the BCLOSE statement. The RESET
statement closes all lunos that are open at the time the
statement is executed. Files can be created by either the
BDEFS (define sequential file) or the BDEFR (define random
file) statements, and deleted by the BDEL statement. The
COPY statement allows the user to copy a file to another
file or to a device: this can be used to backup a file, to
concatenate several files together, or to print a file.
Reading from and writing to files or devices can be
performed by the "BINARY" statement:

BINARY <exp>

where <exp> specifies the required I/O operation. BINARY 1
lets the user specify how many bytes are to be involved in
subsequent I/O operations to a particular file or device
(the default is 6 bytes). BINARY 2 is a write operation.
BINARY 3 is a read operation. BINARY 4 allows the user to

Texas Instruments 7-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

access a particular byte within a specified record (this is
for relative record, random, files only).

The '(?' operator has been added to the PRINT statement to
give the user complete cursor control. With this the user
can specify an exact starting position for output on the
screen (911 or 913 VDU) by either supplying the 'x' and 'y'
co-ordinates or using the following positioning commands:

B Move cursor to begining of line
C Clear screen and move cursor to HOME position
D Move cursor down

H Move cursor to HOME position
L Move cursor to left

R Move cursor to right

For example; To clear the screen and print the message
'INPUT NAME' on the VDU screen, starting on the fifth line
at the twelfth character position, either of the following
commands is required.

or

PRINT @"C5D12R";"INPUT NAME"
PRINT @"C";(?(4,11);"INPUT NAME"

Note: The column values range from 0 to 79 (80 characters).
The row values range from 0 to 23 (24 lines) for the 911 and
from 0 to 11 (12 lines) for the 913.

Other features of Configurable Power BASIC include:

BYE Terminate a Configurable Power BASIC session.
DIGITS Specify the number of digits to be printed in

free format.

EQUATE Specify an alternate name for a variable or an
array element.

NUMBER Set the initial and increment values for the
automatic line numbering facility.

PURGE Delete the specified lines.
SOURCE Show how much memory the program will occupy

when saved.

SPOOL Specify the secondary output device controlled
by the UNIT statement.

STACK Interrogate the GOSUB stack.

The following diagram (Figure 7-1) illustrates how
Configurable Power BASIC minimises an application program's
memory requirements.

Texas Instruments 7-7 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

R

0

M

EDITOR

R

0

M

EDITOR R

0

M

CUSTOMISED

INTERPRETER

INTERPRETER INTERPRETER
USER'S

PROGRAM

USER'S

PROGRAM

R

A

M

USER'S

PROGRAM

USER'S

VARIABLES

R

A

M

USER'S

VARIABLES

R

A

M

USER'S

VARIABLES

AFTER PROGRAM
IS DEVELOPED

AFTER PROM
PROGRAMMER

AFTER CONFIGURATOR

AND PROM PROGRAMMER

Figure 7-1 Code Minimisation

7.3 BASIC LANGUAGE OVERVIEW

Power BASIC is an uncomplicated, easy to learn language that
is based upon a few simple concepts. A Power BASIC program
consists of a series of numbered statement lines that are
executed in ascending numerical order. A line normally
contains one Power BASIC statement, although the statement
separator operator (::) can be used to write more than
one statement on a line. One of the simplest statements,
the assignment statement, is used to assign the value of an
expression to a variable:

A2 = 5 + 7

When the above line is executed, the variable A2 will be
assigned the value of the arithmetic expression '5+7' (the
integer 12).

There is no variable declaration; a variable is implicitly
declared by its first appearance in one of the following:

o on the left-hand side of an assignment statement

o in an INPUT statement

o in a READ statement

Texas Instruments 7-8 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

Variable names are restricted to one to three letters or a

combination of a letter and a number in the range 0 to 127.
There is no typing of data. Variables can have integer,
real or character string values, depending on the context.
The only data structure provided is the array, which can
have one or more dimensions.

Each statement in a Power BASIC program has a line number:

10 A = 5 * B

20 PRINT A

etc

The line numbers specify the order in which the program
statements are to be executed (ie its sequence).

The principal device for structuring a program is the GOTO
statement, which transfers execution directly to a statement
number. The IF..THEN statement implements selection (see
section 7.6.1.2); it must be combined with the GOTO
statement if the alternatives will not fit on one line. The

FOR..NEXT statement implements iteration (see section
7.6.1.4). In general, programming constructs (see Section
4.5) have to be built by the programmer using IFs, FORs and
GOTOs.

Subroutines or procedures (see section 7.6.2) can be called
using the GOSUB statement, which simply places the address
of the statement following the GOSUB on a last-in-first-out
stack, from where it is retrieved when a RETURN is
executed. Subroutines are not declared separately from the
main program. The GOSUB simply specifies a statement
number; the statements between that number and the next
RETURN are treated as a subroutine. Scope rules are
simple. Once a variable has been introduced, it can be
referenced anywhere in the program. Subroutines can be
nested (up to 10 deep), but the programmer needs to check
that the GOSUBs and RETURNS match (the interpreter does not
perform this check). Subroutine parameters are not
allowed.

The main attraction of Power BASIC is its simplicity.
Programs can be entered and executed easily even by users
who are not skilled programmers. Power BASIC is a high
level language, and as such automatically handles such
details as storage allocation (to which the assembly
language programmer devotes a lot of attention). The
development environment provided by Power BASIC is
particularly simple and easy to use; even novices can learn
to develop a Power BASIC program in a matter of hours.
Power BASIC is ideal for the rapid development of relatively
simple applications.

However, it does have limitations. Because of its
simplicity, BASIC performs very few checks on the integrity

Texas Instruments 7-9 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

of program and data (such as are performed automatically by
the Pascal compiler, for instance). It is quite legal, for
example, to assign an integer value to a character string
variable (this may be valuable in some circumstances).
However, Power BASIC supplies no warning if it is done by
mistake. In addition, the structuring and self-documenting
features of Pascal are missing. For a complex application,
Pascal is probably a better alternative.

7.4 POWER BASIC OPERATION

7.4.1 Operating Modes

Power BASIC has two operating modes: Keyboard mode and
Execution mode.

Keyboard Mode is automatically entered when Power BASIC is
initialised. In this mode, entering a numbered line causes
that line to be stored in the appropriate place in the
program space. Entering an unnumbered line causes the
statement(s) to be immediately executed and keyboard mode to
be re-entered as soon as the necessary processing has been
performed.

Execution Mode is entered by issuing either a RUN, a CONT or
a GOTO statement. This causes the Power BASIC interpreter
to execute the previously stored program. RUN starts at the
lowest line number in the program; CONT continues from the
last line that was previously interpreted; GOTO proceeds
from the line specified. This mode is terminated by any one
of the following conditions:

o Error condition arising

o STOP or END statement executed

o Pressing the ESCape key on the terminal

Note: There are a number of statements which can only be

issued in keyboard mode (these are referred to as
commands). A full list of these commands is given in
section 7.8.5.

7.4.2 Editing Source Statements

The simplest way to modify (or edit) a line is to re-type
the whole line. However, Power BASIC also supports a simple
editor that allows the user to easily modify previously
entered source statements. The available edit commands are:

Texas Instruments 7-10 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

ESC

RUBOUT

CR or LF

Ctrl H

Ctrl F

<ln> Ctrl E

Cancel input line
Backspace and remove character
Enter the edited line

Backspace the cursor one character
Forward space the cursor one character
Display the line <ln> for editing

An attempt to forward space past the last character entered,
or to backspace beyond the first character in the line will
only cause the bell on the terminal to be rung.

Development Power BASIC supports two additional commands
that are not available in Evaluation Power BASIC:

Ctrl I <n>

Ctrl D <n>
Insert <n> blanks

Delete <n> characters

'Ctrl E' strike the E key while holding down the CTRL key.
'Ctrl I <n>' hold down the CTRL key while striking the I
key, then strike the numeric key corresponding to the value
<n>.

When the carriage return (CR) or linefeed (LF) key is
pressed, all characters displayed are entered, regardless of
the position of the cursor.

Entering just
specified line

a line number (and nothing else) causes the
to be deleted from the stored program.

Entering a statement with a line number that already exists
causes the original statement to be replaced by the new
one.

The editor is automatically invoked when the interpreter
encounters a syntax error in a line being entered via the
terminal. However, if the program is being loaded from
cassette or floppy diskette (using the LOAD command) and a
syntax error is encountered, the interpreter will display
the number of the line containing the error. The whole line
is ignored (it can not be stored correctly) and the load
operation will continue.

7.4.3 Automatic Line Numbering

The automatic line numbering facility is invoked by
terminating an input line with a linefeed instead of a
carriage return. This causes the interpreter to output the
incremented line number and keyboard mode to be re-entered.
The incremented line number is 10 greater than the last line
number entered. Entering a line containing just a linefeed
initialises the line number to 10. Terminating a line with
a carriage return disables this facility.

Texas Instruments 7-11 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.4.4 System Initialisation

Toggling the reset switch on the /100M or /101M CPU board
causes Power BASIC to clear and scan the system RAM area to
determine how much memory is present. This operation begins
at location >FFDC and continues on down through contiguous
memory to location >4000 or until a read/write mismatch is
encountered. If a mismatch occurs between addresses >FBFE

and >F000 then Power BASIC assumes that a /100M CPU board is
being used; any memory that was found between these
addresses is ignored and autosizing continues from address
>EFFE. (A fully populated /100M microcomputer board only
holds IK of RAM. This is addressed from >FC00 to >FFFF.)

The Power BASIC interpreter then performs the auto-baud
sequence. This initialises the serial I/O interface for
terminal communication. After the user has struck the A (or
carriage return) key on the terminal, the interpreter
measures the time of the start bit and determines the baud
rate of the terminal. The onboard TMS9902 Asynchronous
Communications Controller is then set to this baud rate (all
terminal I/O is performed through the 9902). All output is
then directed to Port A on the microcomputer board.

When all Power BASIC pointers have been initialised, the
following message is output:

TM990 BASIC REV X.n.m

*READY

where X = language level
n = release number

m = revision number

At this stage, Power BASIC is in keyboard mode waiting for
user input.

Refer to the Power BASIC Reference Manual for instructions

on setting up the hardware configuration.

7.5 VARIABLES

A Power BASIC variable can be used to store either an

integer number, a real number, or a character string
depending on the context in which the variable is used.
Thus, although a variable may contain a number (integer or
real) it can be used as though it contained a character
string, and vice versa. All variables, whatever their type,
occupy the same amount of storage (4 bytes for Evaluation

Texas Instruments 7-12 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

Power BASIC, 6 bytes in Development Power BASIC)

7.5.1 Variable Names

A variable name is either an alphabetic character followed
by a number in the range 0 to 127 (eg Z100) or an alphabetic
string up to three characters long (eg A, ST, and LST). The
variable name can not be identical to a Power BASIC keyword,
nor can it form the beginning of a keyword. The following
variable names are not valid:

LIS Begining of LIST (a Power BASIC command)
MEM A Power BASIC function

TOT First 2 letters are the Power BASIC keyword TO
12B First character is not alphabetic
ABCD More than 3 characters

1130 Number greater than 127
A.B ' ' not allowed in variable names

Note: There is a maximum of 140 different variable names

any one Power BASIC program.

7.5.2 Variable Declarations

in

Variables are not explicitly declared in BASIC. Instead a
variable is implicitly declared by assigning a value to a
valid variable name. For example, to declare the variable
TST and assign it the value 100 the following statement can
be used:

TST=100

A value can be assigned to a variable by either a READ (read
a value from a DATA statement), an INPUT (accept input from
the terminal) or a LET statement. The statement 'TST=100'
is an implied LET, as are statements of the form:

<variable>=<expression>

where <expression> may contain function calls:

FRD=SIN(PI*NUM)

The above statement assumes that the variables PI and NUM

have already been declared (assigned a value). An attempt
to use a variable that has not been declared will result in

error 40 (UNDEFINED VARIABLE).

Texas Instruments 7-13 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.5.3 Numeric Representation

If a number can be represented in a 16-bit twos complement
form, it is stored in integer format, otherwise it will be
stored in floating point format.

7.5.3.1 Integer Variables

An integer variable can store a value in the range -32768 to
+32767.

7.5.3.2 Floating Point Variables

Floating point format allows a real number in the range
10E-75 to 10E+74 to be stored. ('E' represents the
multiplier 10, the integer number following is the power to
which 10 is raised.) This representation provides
approximately 7 digits of accuracy for Evaluation Power
BASIC and approximately 11 digits of accuracy for
Development Power BASIC.

7.5.4 Character String Variables

A character string is a string of characters enclosed within
single or double quotes. Paired double quotes can be used
to enclose single quotes and vice versa.

A variable is specified as containing a character string by
preceeding the variable name with a dollar sign ($). In
this form, a variable should be used to store up to 3
characters for Evaluation Power BASIC, or 5 characters for
Development Power BASIC. The last byte is used to terminate
the string and contains the null character (zero).

In Development Power BASIC, non-printable characters may be
included in a character string by writing their hexadecimal
ASCII representation enclosed in angle brackets (<>). The
angle brackets are stored along with the character string
and are only interpreted when the string is being input from
a terminal, read from a DATA statement, or when the string
is being printed. Note: Attempting to use the character
sequence '<>' in a string via an INPUT, READ or PRINT
statement will cause problems. If these characters are
required then the sequence '<3CX3E>' should be used.

Texas Instruments 7-14 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.5.5 Array Variables

An array is a number of variables (stored consecutively in
memory) that is referenced by a single variable name.
Individual variables (or array elements) are accessed by
following the variable name with a number that identifies
the position of the variable within the array. The number
(this is known as an array subscript) is enclosed in
parentheses or square brackets (internally the parentheses
are converted into and stored as square brackets).

To allocate the array STR with 10 elements the following
statement is required:

DIM STR(9)

The elements are referenced by

STR(O), STR(l), STR(9).

The size parameter supplied to the DIMension statement is
one less than might be expected as Power BASIC automatically
allocates space starting from element zero.

Although an array may be used to hold character strings, it
is declared (in the DIMension statement) without the dollar
sign.

Power BASIC allows an array to be declared with any number
of dimensions. However, for most practical applications, a
two dimensional array is usually sufficient.

Note: The variable A and the array variable A(0) refer to
two completely different variables.

7.6 POWER BASIC PROGRAM

A Power BASIC program consists of a number of statements,
each with a line number. Statements may either perform some
action, such as adding two variables together and assigning
the sum to a third variable ('A=B+C'), or may be control
statements (GOSUB 1000), that change the execution flow of
the system. A full list of Power BASIC statements is given
in section 7.8.6.

Power BASIC allows the user to write a number of statements

on one line with each statement being executed in turn. The
general syntax for an input line is:

Texas Instruments 7-15 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

{ line number } statement [:: statement] { ! comment }

where { } indicates optional items
[] indicates that the item is repeated as many

times as required - 0,1,....

Exceptions:

o A NEXT statement should be the first statement

on a line, otherwise it may not be located to
terminate its corresponding FOR loop.

o A DATA statement should be the only statement on

a line.

o A REM statement takes the remainder of a line as

comment.

7.6.1 Control Statements

Power BASIC statements are normally executed in ascending
line number order. However, it is not usually possible to
write an effective applications program in a straightforward
sequential manner. For this reason, Power BASIC supports a
number of control statements that allow the user to dictate
the order in which program statements are executed.

7.6.1.1 GOTO Statement

The first of these control statements is the GOTO. This

provides a simple, yet very powerful, mechanism for changing
program flow. The syntax for this statement is:

GOTO <ln>

This causes control to be transferred to line <ln>.

Restraint must be exercised with this statement; too liberal
a usage will lead to an unintelligible and unnecessarily
complex program. Possibly the best use of this statement is
in building constructs that are not included in Power BASIC
(the WHILE, DO FOREVER and REPEAT UNTIL loops; more about
these later).

7.6.1.2 IF THEN Statement

Often it is necessary to perform some specific action only
if a certain condition is met. For example, the only time
the telephone should be answered is if it is ringing. To
provide for this situation, Power BASIC provides the IF THEN

Texas Instruments 7-16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

statement. The above operation can now be expressed as 'IF
the phone is ringing THEN answer it'. The syntax for this
is:

IF <condition> THEN <sequence>

The Power BASIC statements in <sequence> are only executed
if <condition> proves to be true. Statements in <sequence>
must be separated from each other by the statement separator
(::). <condition> may be any valid expression that yields a
value of true or false.

Note: The statement separator does not delimit the IF THEN
statement, it only separates the statements in <sequence>
from each other.

100 IF <condl> THEN <stmtl>::IF <cond2> THEN <stmt2>

Is not the same as:

100 IF <condl> THEN <stmtl>

101 IF <cond2> THEN <stmt2>

In the first case, <stmt2> is only executed if both <condl>
and <cond2> are true. In the second case, <stmt2> is
executed if <cond2> is true, regardless of <condl>.

The number of statements in <sequence> is limited by the
length of the input line. This can be overcome using the
following:

IF N0T(<condl>) THEN GOTO 150
.

. Sequence of statements to be performed
• when <condl> = true

.

150 REM end the IF THEN clause

If <condl> is false, N0T(<condl>) is true and program
control is passed to the REM statement following the
sequence. The REM statement is a remark (comment), and is
ignored by the interpreter.

A WHILE loop can be built up as follows:

10 IF N0T(<condl>) THEN GOTO 200
.

. Sequence to be performed

. WHILE <condl> = true

.

GOTO 10

200 REM <condl> = false

Texas Instruments 7-17 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

A DO FOREVER loop can be expressed as:

50 REM start forever loop

• Sequence to be performed continuously

GOTO 50

A REPEAT UNTIL loop is:

145 REM start repeat loop

• Sequence to be performed
. UNTIL <condl> = true

.

IF NOT(<condl>) THEN GOTO 145
REM drop through to here when <condl> = true

An IF THEN ELSE construct can be implemented as:

IF N0T(<condl>) THEN GOTO 100
.

• Sequence to be performed
• when <condl> = true

.

GOTO 200

100 REM start ELSE part
•

• Sequence to be peformed
• when <condl> = false

200 REM end IF THEN ELSE

This can be easily expanded to allow an ELSEIF:

IF N0T(<condl>) THEN GOTO 192
.

• Sequence to be performed
• when <condl> = true

.

GOTO 475

192 IF N0T(<cond2>) THEN GOTO 320
.

• Sequence to be performed
. when <cond2> = true and <condl> = false
.

GOTO 475

320 REM start ELSE part
.

• Sequence to be performed
. when <condl> = <cond2> = false
.

475 REM end IF THEN ELSEIF ELSE

NOT is a recognised Development Power BASIC boolean

Texas Instruments 7-18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

primitive that returns a value of TRUE if its argument
evaluates to FALSE; otherwise it returns a value of FALSE.
Although it is not supported by Evaluation Power BASIC it is
simple to effect the NOT function. All conditions can be
written in the form:

<expl><relop><exp2>

using this, the NOT function is implemented by taking the
complement of the relational operator (<relop>):

<exp l><relop*Xexp2>

where <relop*> is the complement of <relop> and is derived
from the following table.

Relationship <relop> <relop*>

Equal to = <>

Greater than > <=

Less than < >=

Greater than or equal to >= <

Less than or equal to <= >

Not equal to <> =

For example:

NOT(a > b) becomes (a <= b)
NOT(p = q) becomes (p <> q)

An expression is considered to have a truth value of TRUE if
it evaluates to a non-zero value, otherwise it is considered
FALSE. The statement:

IF <expression> THEN <statement(s)>

is shorthand for

IF <expression> <>0 THEN <statement(s)>

7.6.1.3 ELSE Statement

Development Power BASIC supports the ELSE statement. This
is normally used in conjunction with the IF THEN statement.
The syntax for this is:

ELSE <sequence>

where the statements in <sequence> are separated from each
other by the statement separator (::).

The ELSE statement uses the ELSE flag (set or reset by the

Texas Instruments 7-19 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

last IF THEN statement depending on whether the condition is
true or false) to determine whether the statement(s)
following the ELSE keyword are to be executed. Several ELSE
statements may appear between IF THEN statements. Each will
be executed if the condition proved to be false, otherwise
they will be skipped.

Typically, this statement will be used as:

100 IF <condl> THEN <seql>
110 ELSE <seq2>
120 REM end IF THEN ELSE

In the above, <seql> is only executed if <condl> is true; if
<condl> is false then <seq2> is executed. After executing
the appropriate sequence, control is passed to the REM
statement (line 120).

<seq2> may itself consist of an IF THEN ELSE:

100 IF <condl> THEN <seql>
110 ELSE IF <cond2> THEN <seq2>
120 ELSE <seq3>
130 REM end IF THEN ELSEIF

Here <seq3> is executed only if both <condl> and <cond2> are
false; <seq2> if <condl> is false and <cond2> is true; and
<seql> if <condl> is true.

7.6.1.4 FOR NEXT Statement

A simple loop construct (perform a sequence of statements a
known number of times) can be implemented as follows.

90 num=int

100 IF num>lst THEN GOTO 350 ! IF NOT(num<=lst)
.

• Sequence to be performed
• while num<=lst

.

Num=num+1 ! increment loop count
GOTO 100

350 REM end iterative loop

where INT is the initial value, LST is the final value and
NUM is the loop counter. ! is another form of comment;
anything after the ! is ignored.

The above loop is performed until the final value is
exceeded.

To implement a count-down loop, the test and increment
statements would have to be changed to:

Texas Instruments 7-20 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

100 IF num<lst THEN GOTO 350 ! IF NOT(num>=lst)
num=num-l ! decrement loop counter

These simple loop constructs can be made more powerful by
modifying the increment (decrement for the count-down loop)
statement to:

num=num+stp

where STP is the required increment/decrement.

As this type of loop is frequently used, Power BASIC
provides its own loop construct in the form of the FOR NEXT
statement. The syntax of this is:

FOR <var> = <start> TO <final> STEP <increment>

• Sequence to be performed

NEXT <var>

The <start>, <final> and <increment> values can be any valid
numeric expression. If the value of <increment> is one, it
and the STEP keyword may be omitted. The variable <var>
specified by NEXT must coincide with that used by the FOR.

The FOR statement opens the loop and the NEXT statement
closes it. If the condition:

(increment)*(start value) > (increment)*(final value)

is true when the FOR statement is first encountered, the
loop will not be executed. But if this condition is false,
the FOR variable is set to the value of <start> and the

sequence of statements between the FOR and NEXT statements
are executed. When the NEXT statement is encountered the

FOR variable is updated by the value of <increment>.
Control is passed back to the FOR statement and while the
condition:

(increment)*(F0R variable) <= (increment)*(final value)

remains true the loop will be executed. When execution of
the loop is finished, control is transferred to the
statement following the NEXT.

FOR NEXT loops can be nested (contained within one
another). There is a maximum nesting depth of 5 for
Evaluation Power BASIC and 10 for Development Power BASIC.

Texas Instruments 7-21 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

100 FOR K=l TO 100

200 FOR J=9 TO 0 STEP -1

Correct nesting

1—275 NEXT J

490 NEXT K

No overlapping is allowed; inner loops must be closed before
closing outer loops. Nested FOR NEXT loops must have
different FOR variables; they cannot share control
variables. Otherwise, loop boundaries will not be clearly
defined.

-100 FOR K=l TO 100 —.

I—200 FOR K=90 TO 160

-387 NEXT K

-480 NEXT K

I—100 FOR K=l TO 100 STEP 3

200 FOR J=9 TO 0 -

-300 NEXT K

400 NEXT J

Incorrect nesting

Control variable

shared; unclear
loop boundaries

Incorrect nesting

Overlapping loop
boundaries

Within the loop, the control variable can not be modified.
It can, however, be used to access the elements of an array
(for example).

While control can be transferred from within a loop to a
statement outside, it is not possible to transfer control
from outside to the inside.

A FOR NEXT loop can be written on a single line with '::'
separating each statement:

100 FOR 1=0 TO 10 :: sequence :: NEXT I

This effectively disables the ESCape key on the terminal
while the loop is being executed (until the loop has
completed it is not possible to interrupt program execution
and return Power BASIC to keyboard mode). This is because
Power BASIC only scans the keyboard looking for an 'escape'

Texas Instruments 7-22 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

character when a statement line has been completed. Also,
if the initial check indicates that the loop is not to be
executed, error 31 (FOR W/0 NEXT) will result as the NEXT
statement will not be found.

7.6.2 Subroutines

As previously stated, statements are normally executed in a
straightforward sequential manner. A subroutine represents
a method of executing a number of statements outside the
normal sequence.

Pictorally, subroutine execution is:

Main

-•Subroutine start

Subroutine end

If a subroutine is only used once, there is little point in
separating the subroutine code from the calling routine. No
benefit is derived apart from (perhaps) clarifying the
program structure. However, there is a benefit when a
subroutine is used to replace a number of statements that
appear in several different places in a program. For
example:

SEQA

SEQA

SEQA

Texas Instruments 7-23

Call to SEQA

Call to SEQA

Call to SEQA

SEQA

October 1981

SOFTWARE DEVELOPMENT HANDBOOK

Program execution would become:

Main

• Subroutine start

— Subroutine end

-•Subroutine start

— Subroutine end

••Subroutine start

— Subroutine end

POWER BASIC

If the subroutine is large, or it is called from a number of
different places, there can be a considerable saving
realised in program storage against a small overhead in
calling and in returning from the subroutine.

A Power BASIC subroutine is simply a sequence of statements
that is entered via the GOSUB statement and exited via a

RETURN statement. A subroutine can have multiple exit
points (each distinguished by a RETURN statement), but this
is usually considered bad programming practice. The syntax
for these statements are:

GOSUB <ln>

RETURN

A subroutine is identified by its starting
(<ln>), rather than by a name. For example:

100 GOSUB 2000

110 REM return to here

2000 REM start of subroutine-*-!

— 2300 RETURN ! exit subroutine

line number

A GOSUB statement causes the address of the statement
immediately following it to be pushed onto the GOSUB stack
and then passes control to the specified line. In the
above, the address of line 110 is pushed onto the top of the
stack before control is passed over to line 2000. If the

Texas Instruments 7-24 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

GOSUB 2000 had been followed by (eg) '::FLG=9' then the
address of this statement would have been pushed onto the
GOSUB stack.

The RETURN statement transfers program control back from a
subroutine to the statement following the last GOSUB
executed, by popping the top item off the GOSUB stack. In
the above, the last entry to the stack (address of line 110)
is popped, allowing control to be passed back to line 110.

If a subroutine is exited by any way other than a RETURN
statement, program flow can become unpredictable. Power
BASIC performs no check that a subroutine has been exited
(via a RETURN statement). Executing a RETURN statement when
a subroutine has not been invoked will result in error 12

(STACK UNDERFLOW).

Subroutine calls may be nested (a subroutine may call
another subroutine) up to a maximum of 10 levels for
Evaluation Power BASIC and 20 levels for Development Power
BASIC (there can be a maximum of 10 outstanding RETURNS at
any one time). An attempt to exceed this number will result
in error 11 (STACK OVERFLOW).

A program with nested subroutine calls is shown below:

55 GOSUB 200

—• 60 REM return to here from S/Rl

200 REM start of S/Rl

270 GOSUB 1000

280 REM return to here from S/R2

400 RETURN ! exit S/Rl

1000 REM start of S/R2

1—1200 RETURN ! exit S/R2

Pictorally, program execution becomes

Texas Instruments 7-25 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

Master

GOSUB Subroutine 1

GOSUB

•*+

•RETURN

-•Subroutine 2

U RETURN

POWER BASIC

As a Power BASIC subroutine has complete access to all
variables defined in a program, no parameter passing
mechanism is supplied (nor is one really necessary). Power
BASIC is not a block structured language, and so the
programmer must make his own checks that variables are not
accessed incorrectly (inadvertently modified by a
subroutine). If a subroutine can overwrite critical data,
it is necessary to use temporary variables for storage of
this data and the programmer must ensure that the subroutine

only accesses this data through the temporary variables.

7.6.3 ON Statement

The ON statement is a type of 'computed' GOTO. The syntax
for this is:

ON <expression> THEN GOSUB/GOTO <11>,<12>,...,<ln>

A branch is made to line , depending on the value of
<expression>, via a GOTO or GOSUB statement. This statement
is equivalent to:

IF <expression>=l THEN GOTO/GOSUB <11>
ELSE IF <expression>=2 THEN GOTO/GOSUB <12>

ELSE IF <expression>=n THEN GOTO/GOSUB <ln>

If a GOSUB is used, on returning from the subroutine,
control passes to the statement following the ON statement.

If the expression evaluates to less than one or greater than
<n>, no transfer is made and execution continues from the
statement following the ON.

Texas Instruments 7-26 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.6.4 ERROR Statement

The ERROR statement allows the user to specify a Power BASIC
routine that is to be executed when an error occurs. The

syntax for this is:

ERROR <ln>

When an error condition arises, control is passed to line
<ln> via a GOSUB statement. The address of the statement

line following the one in which the error occurred is
preserved on the GOSUB stack.

When the error handling routine has been invoked, the system
function SYS can be interrogated to find the cause of the
error. SYS(l) will return the error code number, and SYS(2)
the number of the statement in which the error occurred.

10 ERROR 1000

1000 REM error handling routine
1010 IF SYS(1)<>23 THEN PRINT "ERR0R= ",SYS(1):: STOP
1020 RESTOR

1030 RETURN

When an error occurs, control is transferred to statement
1000. If the error was not due to "READ OUT OF DATA" (error
23), the message "ERR0R=" and the error code are output to
the terminal and program execution STOPs. Otherwise the
error is corrected by resetting the READ pointer to the
first DATA statement in the program and a return is made to

the line immediately following the read statement that
caused the error. Obviously this "error routine" is not
particularly useful (as the contents of the "read variables"
can not be relied upon), however it does serve to illustrate
the use of the ERROR statement.

If the sequence of read operations is of the form:

100 READ

200 READ

300 READ

.

Then replacing line 1030 by:

1030 POP:: ON SYS(2)/100 THEN GOTO 100,200,300,...

allows the "error routine" to be more useful. The POP

Texas Instruments 7-27 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

statement simply removes the top address from the GOSUB
stack (in this case, the address of the line following the
READ statement that caused the error).

Once an error has been trapped using this statement, no
future errors will be trapped until another ERROR statement
is executed.

Note: Use of the ERROR statement suppresses the automatic
printing of error code/message.

7.6.5 CRU Operations

The 9900 supplies a bit-oriented method of I/O called the
Communications Register Unit (CRU). Under Power BASIC the
CRU is accessed using the BASE statement and the CRB and CRF
functions. For full details of the CRU and its operation
refer to Section 8.9.

7.6.5.1 BASE Statement

CRU operations are performed on a signed displacement (in
the range -128 to +127 bits) from a base address. This base
address is set using the BASE statement. The syntax for
this statement is:

BASE <exp>

where <exp> is any valid arithmetic expression.

Note: The base address is a 12 bit address that is stored in

bits 3 to 14 of workspace register 12. Because of this, the
value of <exp> (known as the software base address) must be
twice that of the hardware CRU base address desired. For

example; to access a device that has a CRU base address of

32, <exp> must evaluate to 64.

7.6.5.2 CRB Function

Single-bit I/O is performed using the CRB function.
Depending on the context in which it is used, this function
either reads or writes to the specified bit.

When reading, the function returns one if the specified bit
is set, and zero if it is not set.

Example: Execute the sequence <seql> if the 15th bit from
the base address is a '1'.

IF CRB(15) THEN <seql>

Texas Instruments 7-28 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

When writing, the selected bit is set to '1' if the assigned
value is non-zero, and to '0' if the assigned value is
zero.

Example: Set the 100th bit from the base address to '1'.

CRB(100)=200

7.6.5.3 CRF Function

The specified number of bits are written to or read from the
CRU starting at the address set by the BASE statement. The
number of bits to be transferred must be in the range 0 to
15. If the number is zero, all 16 bits are transferred.

Example: Transfer the 16 bit value minus one (hex >FFFF) to
the CRU address specified by the BASE statement.

CRF(0)=-1

Example: Read an 8 bit value from the CRU base address and
store the result in VAL.

VAL=CRF(8)

VAL will be in integer format with the value occupying the
least significant byte of the integer word.

7.6.6 Memory Operations

The Power BASIC functions MWD and MEM allow the user to read

or write to an individual word or byte in memory. However,
care must be exercised when using these functions to ensure
that no Power BASIC system variables are inadvertently
corrupted.

These functions can also be used to directly interface to
memory mapped I/O devices.

7.6.6.1 MEM Function

This function allows the user to read from or write to the

specified memory byte location.

Example: Output the character 'A' to the device data
register located at memory address >AE00.

MEM(0AE00H)=65 !DEC 65=ASCII 'A'
or MEM(0AE00H)=ASC('A')

ASC returns the decimal ASCII code of the character

Texas Instruments 7-29 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

argument.

Example: Pick up the character in the device data register
located at memory address >B000.

$CIN=%MEM(0B000H)%0

The single character string is terminated by the '%0'.

7.6.6.2 MWD Function

This function allows the user to read from or write to the

specified memory word location. This function is
particularly useful for loading small assembly language
routines into memory. (The area of memory used must be
outside the Power BASIC environment.)

Example: Load the assembly language program into memory
starting from address >7000.

MWD(07000H) = •

MWD(07XXXH)=045BH

ILoad 1st instruction

!Load RT instruction

For large routines the above approach is not really
suitable. An easier method is:

100 DATA start address,

DATA 045BH, term600

1000

1010

1020

1030

READ str !Get start address

READ ope !Get next instruction
IF ope = trm THEN STOP
MWD(str)=opc :: str=str+2 :: GOTO 1010

The first item to be read from the DATA statement is the

actual address in memory where the program is to be loaded.
The only other addition to the routine is some way of
indicating when the end of the routine has been reached. In
the above code, this is indicated by TRM (this is a unique
value that does not appear anywhere within the routine to be
loaded). It could, just as easily, have been indicated by
including the length of the routine as the second item in
the DATA statment at line 100. If this had been the case

then a simple FOR NEXT loop could have been used.

Example: Check memory address >6000 to see if a particular
EPROM set has been installed and if so, execute the assembly

language routine located there. (This EPROM set is
identified by the contents of its first word, it should be
>1234.)

IF MWD(06000H)=01234H THEN CALL "routine",06002H

Texas Instruments 7-30 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.6.7 Assembly Language Routines

Although Power BASIC is one of the fastest BASIC
interpreters commercially available, there are some
situations where it may be advantageous, or even necessary,
to write a routine in assembly language. Perhaps a complex
operation has already been written in assembly language and
it would certainly be easier, and simpler, to use this
without having to recode it in the Power BASIC language. Or
perhaps, to look after a high-speed device where timing is
critical and a response is required in a matter of a few
tens of microseconds. (At 3MHz and no memory wait states,
the TMS9900 microprocessor executes an interrupt context
switch in 7.3us; a MOV instruction takes between 4.7us and
lOus depending upon the addressing mode used.)

With Development, and Configurable, Power BASIC, this sort
of situation is provided for by the CALL statement. It
allows the programmer to invoke an assembly language routine
from within a Power BASIC program. The syntax for this
statement is:

CALL <name>,<address>,<varl>,<var2>,<var3>,<var4>

where the string <name> is the assembly language routine's
IDT. <address> is the address of the routine in memory.
<varl>, <var2>, <var3> and <var4> are the routine's
parameters (these parameters are optional and can be
omitted, along with their preceeding commas, if they are not
required)•

When running under either Development Power BASIC or the
Configurable Power BASIC host interpreter, the <name>
operand is not checked (but it must be present) and the
<address> operand is used as the routine's entry point.
However, a customised Power BASIC target interpreter
(derived from Configurable Power BASIC) uses the <name>
operand to generate the routine's entry point and the
<address> operand is not checked (but it must be present).

The assembly language routine is entered by a BL
instruction, which stores the return address in register
11. A return to the Power BASIC interpreter is made by an
RT pseudo-instruction (this is equivalent to a B *R11
instruction).

The parameters are passed across to the assembly language
routine in registers 4, 5, 6 and 7 of the Power BASIC
workspace. When a Power BASIC variable is a parameter, its
contents are converted into a 16 bit twos complement integer
value before being loaded into the appropriate register.
Enclosing the variable name in parentheses causes the

Texas Instruments 7-31 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

address of the variable to be passed over. (The formats
employed by the Power BASIC interpreter are given in section
7.7.1.) The routine can modify these four registers as
necessary. If, however, more than four registers are
required, the assembly language routine should be provided
with its own workspace as modifying any of the other
registers could cause the interpreter's execution.to become
unpredictable.

Example: Invoke the assembly language routine (IDT of TEST)
located at memory address >8446, with parameters 10 and the
address of the Power BASIC variable INC.

CALL nTEST",08446H,10,(INC)

On entry to the routine, R4 will contain 10 and R5 will
contain the address of INC.

With the Configurable Power BASIC host interpreter, the user
must first load the object program from either cassette or a
floppy disk file. Details on how to do this are given in
the Assembly Language Support for Power BASIC Application
Report (MP719), available from TI. (A small assembly
language routine can be 'loaded' using the mechanism
described in section 7.6.6.2.)

7.6.8 Interrupts

Development Power BASIC allows the user to perform interrupt
handling via a Power BASIC subroutine. This is achieved
using the Power BASIC interrrupt statements IMASK, TRAP and
IRTN.

With the TM990/100M and /101M microcomputer modules, all
interrupt lines are connected to the onboard TMS9901
Programmable Systems Interface. It is this device that
informs the 9900 microprocessor when an interrupt has been
generated.

The 9901 is accessed via CRU instructions using a hardware
base address of >80; this address needs to be doubled (ie
MOO) when used in the BASE statement to set the base
address of the 9901. For an interrupt to be recognised by
the 9901 (and subsequently by the 9900), its level must be
enabled. This is performed by setting the appropriate mask
bit in the 9901's CRU address space to '1' (for details on
the operation of this device refer to the TMS9901
Programmable Systems Interface Data Manual).

To program the 9901 to enable an interrupt level it is
necessary to:

1) Select interrupt mode.

Texas Instruments 7-32 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

2) Write a '1' to the appropriate mask bit.

For example: To enable interrupt level 7:

BASE 100H !set base address of 9901
CRB(0)=0 !set control bit=interrupt mode
CRB(7)=1 lenable mask 7

If a '0' is written (instead of a '1') to the mask bit then
the interrupt level is disabled. For example: To disable
interrupt level 12:

CRB(0)=0 !select control bit=interrupt mode
CRB(12)=0 Idisable mask 12

The above example assumes that the base address of the 9901
has already been set.

An 'open/close window' mechanism is used to recognise
interrupts. This mechanism was chosen because it guarantees
the integrity of the Power BASIC environment. Interrupts
are only recognised after a Power BASIC statement has been
executed. As the Power BASIC interpreter is not re-entrant
(see Sections 8.13.7 to 8.13.9 inclusive), this is necessary
to ensure that temporary/partial results and even Power
BASIC system variables are not corrupted by executing a
Power BASIC interrupt handler while the interpreter is in
the middle of a statement.

After a statement has been executed, the interpreter sets
the status register's interrupt mask to the 'open' value
(this allows the processor to ' take the highest priority
pending interrupt). If there is a pending interrupt, its
priority level is stored in an internal 'flag register'.
The interrupt mask is then reset to the 'close' value. If
the 'flag register' is unchanged, the next Power BASIC
statement is executed. Otherwise the 'open' value and the
address of the next instruction to be executed are stacked.
The 'open' value is reset to the incoming interrupt level
minus one (this disables interrupts of an equal or lower
priority) and the appropriate Power BASIC interrupt routine
is then invoked. (On completion of the interrupt routine,
both the 'open' value and the address of the next
instruction to be executed are restored and the above
sequence is then repeated.)

The 'open' and 'close' values are determined during system
initialisation. This is performed by scanning the interrupt
vectors (starting from interrupt level 15 and working down
towards level 3) to find the lowest priority interrupt that
is not handled by Power BASIC. Both 'open' and 'close' are
set to the value of this interrupt level (if all interrupts
are handled by Power BASIC, these two values are set to 3).
This allows all enabled interrupts that are handled by

Texas Instruments 7-33 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

assembly language routines to be taken immediately they are
recognised by the processor, no matter what the Power BASIC
interpreter is doing. However, this means that all
interrupt levels below the 'open' value must be handled by
assembly language routines. If, for example, Interrupt
level 7 is handled by an assembly language routine, the
Power BASIC interrupt statements can only be used in
conjunction with levels 8 to 15.

Additional information on interrupts is contained in Section

8.10.

7.6.8.1 IMASK Statement

The IMASK statement is used to control the TMS9900
microprocessors's interrupt mask (bits 12 to 15 of the
status register).

The 9900 recognises 16 distinct interrupt levels, level 0 is
the highest priority interrupt and level 15, the lowest.

With the /100M and the /101M microcomputer modules,
interrupt level 0 is reserved for the RESET function and
interrupt level 3 for the real-time clock. Apart from these
two, all other interrupt levels may be used by external
devices. Several devices may even share the same interrupt
level (if system considerations require it). If this is the
case, the programmer must determine which device caused the
interrupt by polling the devices' status registers.

An interrupt can only be recognised by the TMS9900 when the
incoming interrupt has an equal or higher priority (equal or
lower numerical level value) than that specified in the
interrupt mask. If, for example, the interrupt mask is set
to 5, then only interrupt levels 0 to 5 will be recognised
by the processor. The interrupt mask can be changed using
the IMASK statement. The syntax for this statement is:

IMASK <exp>

where <exp> is an expression in the range 0 to 15.

Note: Care must be taken when using the IMASK statement as
this causes the 'open' and 'close' values to be changed.
('Close' is set to the IMASK value. 'Open' is also set to
this value if it is numerically lower than the current
'open' value.)

7.6.8.2 TRAP Statement

The TRAP statement is used to define a Power BASIC
subroutine that is to be executed when an interrupt of the
specified level occurs. The syntax for this statement is:

Texas Instruments 7-34 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

TRAP <exp> TO <ln>

where <exp> is the interrupt level and <ln> is the line
number of the first statement of the interrupt routine.

7.6.8.3 IRTN Statement

The last statement of an interrupt subroutine must be an
IRTN. When this statement is executed, the interpreter
recognises that the interrupt has been serviced and that it
should continue program execution from where it left off.
The syntax for this statement is:

IRTN

Before this statement is executed, the device that generates
the interrupt signal must be reset. If this is not done
then as soon as the IRTN statement has been executed the
interrupt subroutine will be Immediately re-entered (as the
interrupt signal will still be present).

7.7 POWER BASIC STORAGE ALLOCATION

The paragraphs that follow discuss variable storage and the
system memory map. This information is not necessary in
order to write Power BASIC programs, but may be of interest
to users.

7.7.1 Variable Storage

As a variable is allocated the same amount of memory no
matter what it contains (4 bytes in Evaluation Power BASIC
and 6 bytes in Development Power BASIC), swapping a
variable's contents between integer, floating point or
character string formats as the context requires presents no
problem.

The memory space for variable storage starts in high memory
and builds down towards low memory as each new variable is
declared. Suppose variable storage starts at memory address
>FE00. The first variable used will be allocated space as
follows:

Texas Instruments 7-35 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

>FEOO

>FDFC

3RD BYTE 4THBYTE

1ST BYTE 2ND BYTE

EVALUATION POWER BASIC

>FEOO

>FDFA

POWER BASIC

5TH BYTE 6THBYTE

3RD BYTE 4THBYTE

1ST BYTE 2ND BYTE

DEVELOPMENT POWER BASIC

Figure 7-2 First Variable Allocation

The next variable will be allocated space as follows:

>FEOO

>FDFC

>FDFB

3RD BYTE 4THBYTE

1ST BYTE 2ND BYTE

3RD BYTE 4THBYTE

1ST BYTE 2ND BYTE

EVALUATION POWER BASIC

" 1ST

VARIABLE

2ND
VARIABLE

\

>FEOO

>FDFA

>FDFH

5THBYTE 6THBYTE

3RD BYTE 4THBYTE

1ST BYTE 2ND BYTE

5THBYTE 6THBYTE

3RD BYTE 4THBYTE

1ST BYTE 2ND BYTE

DEVELOPMENT POWER BASIC
Figure 7-3 Second Variable Allocation

7.7.1.1 Integer Format

Integer numbers are stored as:

0 1516 31

ALL ZEROS TWOS COMPLEMENT

EVALUATION POWER BASIC

0 15.16 31 32 47

ALL ZEROS TWOS COMPLEMENT ALL ZEROS

DEVELOPMENT POWER BASIC

Figure 7-4 Integer Format

Texas Instruments 7-36 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

The first word (bits 0 to 15) is set to zero indicating an
integer number. The second word (bits 16 to 31) contains
the twos complement integer value. For Development Power
BASIC the third word (bits 32 to 47) also contain zero.

7.7.1.2 Floating Point Format

A floating point number is represented internally as a
fraction multiplied by a power of 16 (this power is known as
the characteristic) and is stored as:

SIGN

SIGN-

0 1 7 8 31

EXPONENT MANTISSA

EVALUATION POWER BASIC

01 7 8

EXPONENT MANTISSA

DEVELOPMENT POWER BASIC

Figure 7-5 Floating Point Format

the sign of the
negative. Bits

ss 64 notation

this gives the
senting a true
ing bits (24 for
t Power BASIC)
sa is normalised

Bit 0 is the sign
floating point number:
1 to 7 hold the charact

(the true character
characteristic a range
exponent range of -64
Evaluation Power BASIC

contain the normalised

if its first hex digit

bit and represents
0 for positive, 1 for
eristic coded in Exce

istic plus 64;
of 0 to 127 repre
to +63). The remain

and 40 for Developmen
mantissa (the mantis

is non-zero).

Negative fractions are stored in true form with the sign bit
set to one and not in twos complement notation.

The conversion of a decimal real number into its approximate
binary equivalent is described in Sections 8.13.2.3 and
8.13.2.4.

7.7.1.3 Character String Format

A character string is stored as follows:

Texas Instruments 7-37 October 1981

47

SOFTWARE DEVELOPMENT HANDBOOK

0 78 1516 23 24 31

BYTE1 BYTE 2 BYTE 3 0

EVALUATION POWER BASIC

POWER BASIC

78 1516 2324 3132 39 40 47

BYTE1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 0

DEVELOPMENT POWER BASIC

Figure 7-6 Character String Format

Suppose the two variables A and B, defined in that order,
occupy successive memory locations. The statements:

$A='ABC :: $B='MN0'

would cause these strings to be stored as follows:

HIGH MEMORY

I
'C •0'

A 'A' »B'

'0' '0'

n 'M' 'N'

'0' '0'

'C •0'

'A' 'B'

•0' •0'

'0' '0'

'M' 'N'B

LOW MEMORY

EVALUATION POWER BASIC DEVELOPMENT POWER BASIC

Figure 7-7 Character String Storage Example

When a character string is too long to be held in a
variable, an array should be used.

7.7.1.4 Array Storage

An array is referenced by its array header. This contains
information such as the size of each dimension and its
stride (the stride is the number of bytes between successive
elements of a dimension). For a one dimensional array the

Texas Instruments 7-38 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

stride is 4 for Evaluation Power BASIC and 6 for Development
Power BASIC.

The memory address of any element in a one dimensional array
is calculated (in bytes) as:

start address + n * subscript

where start address = address of array header + 4
n = 4 for Evaluation Power BASIC

6 for Development Power BASIC

If the array header is located at >EFF0, the 9th element of
the array, array name(8), starts at memory address:

>EFF0 + 4 + n * 8

For Evaluation Power BASIC = >EFF4 +4*8 = >F014
For Development Power BASIC = >EFF4 +6*8 = >F024

To allocate a ten-element array (STR) and store the
character string 'ABCDEFGHIJ' into it, the following
statements are required.

DIM STR(9)
$ STR(0) ='ABCDEFGHIJ'

This string would be stored as:

HIGH MEMORY

• i i

0 0

T 'J'

'G' 'H'

'E' 'F

'C 'D'

'A' 'B'

ELEMENT

STR (2)

ELEMENT

STR(1)

ELEMENT

STR(O)

ARRAY HEADER

FOR STR

• > «

0 0

T 'J'

G' 'H'

JE* 'F'

'C 'D'

'A' 'B'

LOW MEMORY

EVALUATION POWER BASIC DEVELOPMENT POWER BASIC

Figure 7-8 Array Storage

Texas Instruments 7-39 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

The statements:

PRINT $STR(0)
PRINT $STR(1)
PRINT $STR(2)

would produce the following output:

ABCDEFGHIJ ABCDEFGHIJ

EFGHIJ GHIJ

IJ

Evaluation Power BASIC Development Power BASIC

Individual bytes of an array containing a character string
can be accessed by following the array subscript with a
semicolon (;) and the number of the required byte. For
example: $STR(1;3) references the letter 'G' (the letter 'I'
in Development Power BASIC).

The statement:

DIM LST(25,9)

allocates space for a two dimensional array, which can be
thought of as 26 one dimensional arrays each containing 10
elements. The stride for the first index will be 40 for
Evaluation Power BASIC and 60 for Development Power BASIC;
the stride for the second will be 4 for Evaluation Power
BASIC and 6 for Development Power BASIC.

The memory address of any element in a two dimensional array
is calculated (in bytes) as:

start address + n * (subscriptl * multiplier + subscript2)

where start address = address of array header + 4 * m
m = number of dimensions

multiplier = maximum value of subscript2 + 1
n = 4 for Evaluation Power BASIC

6 for Development Power BASIC

If the array header for LST is located at >E4DC then the
element LST(16,4) is at memory address:

>E4DC + 4*2 + n*(16*10 + 4) = >E4E4 + n * 164

For Evaluation Power BASIC = >E4E4 + 4 * 164 = >E774
For Development Power BASIC = >E4E4 + 6 * 164 = >E8BC

7.7.2 System Memory Map

Any additional RAM to that supplied with the TM990/101M and
/100M CPU boards must be configured to be contiguous and to

Texas Instruments 7-40 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

end at address >EFFF. For full details on how to do this,
refer to Section 3 of the TM990/201 and TM990/206 Memory
Expansion Boards Data Manual.

The lower limit of RAM is determined at system
initialisation time by autosizing. This can be altered by:

NEW <exp>

where <exp> is the address of the first byte of RAM to be
used by the system. (The first few bytes of RAM are
reserved for system use.)

Once the system has been initialised, the memory map will
look like this:

SYSTEM STACKS

AND WORKSPACES

HIGH MEM

SYSTEM PTRS

GOSUB, FUNCTION

ANDFOR NEXT

STACKS

I/O BUFFER

VDT

VISIT

SLT

USERPROGRAM

SYSTEM

END OF USER STORAGE (EUS)

VARIABLE DEFINITION TABLE

VARIABLE NAME TABLE

STATEMENT LOCATION TABLE

BEGINING OF USER STORAGE (BUS)

ROM BASED

POWER BASIC

INTERPRETER LOW MEMORY

Figure 7-9 System Memory Map

Texas Instruments 7-41 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

When a Power BASIC statement is entered, it is checked for
syntax errors. Syntactically correct statements are encoded
to minimise storage space. The encoded statement is stored
in the program space in ascending line number order.
Program space starts at BUS and builds up in memory towards
EUS. Line numbers are stripped off the statements as they
are encoded and are stored in the Statement Location Table

(SLT) along with the statement's position in the program
space. (This allows statements that are entered out of
sequence to be stored in their correct position in the
program space.)

As the program grows the system tables (VNT, VDT and SLT)
are moved up in memory in order to increase the size of each
table and to expand the program space.

When a variable is first encountered, its name is encoded
and entered into the Variable Name Table (VNT). As a
statement is being encoded, all variable names present are
replaced by their position within the VNT. This position
number is then incremented by >74 to signify that an entry
in the VNT is being referenced. For example, the statement:

LET AJ=SIN (PI*RAD)

will initially be converted into something like:

LET <77>=SIN(<76>,<75>)

The angle brackets are used to indicate a two digit hex
number. <77> signifies the fourth entry in the VNT, <76>
the third entry and <75> the second entry.

At run time, space is allocated to each variable as they are
declared in the program; the address of this space is
recorded in the Variable Definition Table (VDT). Variable
storage is allocated from below the I/O buffer down towards
BUS. If insufficient space exists, the run will terminate
with error 10 (STORAGE OVERFLOW).

Texas Instruments 7-42 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8 REFERENCE SECTION

An item preceded by an asterisk (*) denotes a feature that
is not supported by Evaluation Power BASIC.

7.8.1 Character Set

1) Upper and lower case alphabet.
2) Digits 0 to 9.
3) Special characters

! " # $ % A '(!])*:--+;,.?/< >

* Non-printable characters may be specified by enclosing
the character's hex representation with angle brackets.

Character Use

:s Statement separator or THEN keyword
! Tail remark indicator

; Equivalent to PRINT

7.8.2 Hexadecimal Constants

A hexadecimal integer constant is one to four hex digits
followed by the letter H. A hex constant beglning with one
of the letters A - F must be preceded by a zero.

7.8.3 Variable Names

A variable name starts with an alphabetic character
optionally followed by up to two additional alphabetic
characters or a number in the range 0 to 127. The variable
name may not be the same as a Power BASIC keyword; nor can
it form the beglning of a keyword.

7.8.4 Edit Commands

CR Enter line into program source
LF Enter line into program source and enable

the auto-numbering facility
ESC Cancel input line, return to keyboard mode
DEL/RUBOUT Backspace and delete character

* Ctrl D <n> Delete <n> characters

* Ctrl I <n> Insert <n> blanks

Ctrl H Backspace 1 chaaracter
Ctrl F Forwardspace 1 character

<ln> Ctrl E Display line <ln> for editing

Texas Instruments 7-43 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.5 Power BASIC Commands

Power BASIC commands may not appear within a program.

Command Function

CONtinue

<ln> LISt

LOAd <exp>

NEW <exp>

PROgram

RUN

SAVe <exp>

SIZe

* Continue execution from last break

List currebt program from specified line
<ln>=Null, Line=First line number
<ln>^Null, Line=<ln>

Load BASIC program from specified device
<exp>=Null, Device=733 digital cassette

* <exp>=0, Device=733 digital cassette
* <exp>=l or 2, Device=Audio cassette
* <exp>=Address, Device=2716 EPROM

Clear system for new program
<exp>=Null, RAM limit set by autosizing

* <exp>^Null, RAM limit=<exp>

* Burn current program into 2716 EPROM

Clears all variable space, pointers, and
stacks and executes current program from
first line number

Save current program on specified device
<exp>=Null, Device=733 digital cassette

* <exp>=0, Device=733 digital cassette
* <exp>=l or 2, Device=Audio cassette

Display size of current program

Texas Instruments 7-44 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.6 Power BASIC Statements

Power BASIC program lines are of the form:

{ line number } statement [:: statement] { ! comment }

where { } indicates optional items
[] indicates that the item is repeated as many

times as required - 0,1,....

Exceptions:

DATA should be the only statement on a line
NEXT should not be preceded by '::statement(s)'
REM should not be followed by '::statement(s)'

* BAUD <expl> , <exp2>
Sets the baud rate of the serial I/O port(s) of the TMS9902
Asynchronous Communications Controller.

<expl>=0, port=A (CRU address >80)
<expl>^0, port=B (CRU address >180)
<exp2>=0, baud rate=19200
<exp2>=l, baud rate=9600
<exp2>=2, baud rate=4800
<exp2>=3, baud rate=2400
<exp2>=4, baud rate=1200
<exp2>=5, baud rate=300
<exp2>=6, baud rate=110

BASE <exp>
Sets CRU base address

operations.
to <exp> for subsequent CRU

* CALL <name> , <add> { , <parm> }
Transfers control to the assembly language subroutine <name>
located at <add>. Up to 4 parameters, <parm>, are allowed
in the statement (each separated by commas); these are
passed to the subroutine in R4, R5, R6 and R7. (If a
variable is contained in parenthesis, the address of the
variable is passed.) The return address is contained in
Rll.

DATA <item> [, <item>]
Defines an internal data block for access by READ,
is either an expression or a string.

<item>

* DEF FN<i> { (<arg>) } = statement
Defines a single line arithmetic statement containing a
maximum of 3, single letter, dummy variables <arg> (each
separated by commas). <i> is the single alphabetic
character function identifier. When calling FN<i> the dummy
arguments are replaced by the actual parameters, which may
be any Power BASIC variable, array element or expression.

Texas Instruments 7-45 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

DIM <var> (<num> [, <num>])
Allocates user space for the dimensioned array <var>. <num>
is the number of elements in a dimension; each dimension
starts at element 0.

* ELSE statement [:: statement]
When the most recently executed IF THEN statement is false,
all subsequent ELSE statements are executed; otherwise they
are ignored.

END

Terminates program execution and returns to keyboard mode.

* ERROR <ln>

Specifies a Power BASIC subroutine, starting at line <ln>,
that is to be executed via a 60SUB statement when an error

occurs.

* ESCAPE

Enables the ESCape key to interrupt program execution.

FOR <var> = <expl> TO <exp2> { STEP <exp3> }
The FOR statement is used with the NEXT statement to open
and close a program loop. Both identify the same FOR
variable <var>. <expl> is the start value, <exp2> is the
end value and <exp3> is the stepsize. If STEP is omitted, a
stepsize of 1 is assumed.

GOSUB <ln>

Transfers control to a Power BASIC subroutine starting at
line <ln>. The address of the statement following the GOSUB
statement is stored on the GOSUB stack.

GOTO <ln>

Transfers control to line <ln>.

IF <cond> THEN statement [:: statement]
The statement(s) following the THEN keyword are executed if
the condition <cond> is true.

* IMASK <exp>
Sets the interrupt mask of the TMS9900 microprocessor to
allow interrupts of higher or equal priority to <exp> (in
the range 0 to 15).

INPUT <var> [, <var>]
Take input (numeric or string) from the terminal and store
it into next variable <var> in the INPUT list. Input is
prompted with a question mark (?) for numeric data and a
colon (:) for character data. A double question mark (??)
signifies an illegal number. See section 7.8.14 for more
details.

Texas Instruments 7-46 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

* IRTN

Is used to return from an interrupt routine; it restores the
program environment existing prior to taking the interrupt.

{ LET } <var> = <exp>
Evaluate <exp> and store the result in the variable, string
variable or array element <var>.

NEXT <var>

Delimits a FOR loop. The variable <var> must match the FOR
variable.

* NOESC

Disables ESCape key on the terminal.

GOSUB

* ON <exp> THEN GOTO <ln> [, <ln>]
Transfer control, via a GOSUB or a GOTO statement, to the
line specified by the value of the expression (when <exp>=i
use the ith <ln> in the list). If <exp> is outside the
specified range (less than 1 or greater than the number of
<ln>s in the list) then drop through to the next statement
line.

* POP /

Removes the top item from the GOSUB stack.

PRINT <exp> [, <exp>]
Prints (without formatting) the value of <exp>. See section
7.8.15 for more details.

* RANDOM <exp>
Sets the seed for the random number generator to the value
of <exp>.

READ <var> [, <var>]
Takes input from the internal DATA block and stores it in
the next <var> in the READ list.

REM <text>

Inserts comment lines (REMarks) into a user program. The
whole line is taken as a comment.

RESTOR { <ln> }
Resets the DATA pointer to the specified DATA line <ln>. If
<ln> is not present, the pointer is set to the first DATA
statement in the program.

RETURN

Return from a Power BASIC subroutine, the return address is
the last entry in the GOSUB stack.

STOP

Terminates program execution and returns to keyboard mode.

Texas Instruments 7-47 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

TIME { <item> }
Interrogate/set the 24 hour time of day clock.

<item>=Null - Output time in HR:MN:SD format
<item>=$<var> - Store time in string variable <var>
<item>=<expl>,<exp2>,<exp3> - Set clock to specified

time (<expl>=hours; <exp2>=mins; <exp3>=secs)

* TRAP <exp> TO <ln>
Defines the entry point, <ln>, of a Power BASIC interrupt
subroutine for interrupt level <exp>. Level 0 (RESET) and
level 3 (CLOCK) are reserved and can not be serviced by the
TRAP statement.

* UNIT <exp>
Designates the device(s) to receive all printed output.

<exp>=l, I/O port=A
<exp>=2, I/O port=B
<exp>=3, I/O ports A and B

Texas Instruments 7-48 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.7 Operators

7.8.7.1 Arithmetic Operators

A=B Assignment
A-B Subtraction

A+B Addition

A*B Multiplication
A/B Division
A~B Exponentiation
-A Unary minus
+A Unary plus

7.8.7.2 Relational Operators

Return values of '1' (TRUE) or '0' (false).

A=B TRUE if equal, else FALSE
A==B * TRUE if approximately equal (+/- 9.5E-7),

else FALSE

A<B TRUE if less than, else FALSE
A<=B TRUE if less than or equal, else FALSE
A>B TRUE if greater than, else FALSE
A>=B TRUE if greater than or equal, else FALSE
AOB TRUE if not equal, else FALSE

7*.8.7.3 Boolean Operators

Return values of ' V (TRUE) or '0' (FALSE). A non-zero
value variable is considered TRUE; a zero-valued variable is
considered FALSE.

NOT A * TRUE if FALSE (zero), else FALSE
A AND B * TRUE if both TRUE (non-zero), else FALSE
A OR B * TRUE if either TRUE (non-zero), else FALSE

7.8.7.4 Logical Operators

Perform bitwise operations on the operand(s). Operand(s)
are converted into 16 bit integers before the operation.

LNOT A * Is complement

A LAND B * Bitwise AND

A LOR B * Bitwise OR

A LXOR B * Bitwise exclusive OR

Texas Instruments 7-49 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

7.8.7.5 Operator Precedence

1]1 Expressions in parentheses
2:) Exponentiation and negation
3:) *,/
4]) +,-
5:) <=,<>
6:) >=,<
7:> =,>
8:> ==,LXOR

9:) NOT,LNOT
10:) AND,LAND

11]) OR,LOR
12]1 Assignment (=)

7.8.8 Arithmetic Functions

POWER BASIC

Function | Explanation

* ABS <[<exp>) | Absolute value of <exp>
ATN ([<exp>) | Arctangent of <exp>, <exp> in radians
COS ([<exp>) | Cosine of <exp>, <exp> in radians

* EXP <[<exp>) | Raise E to the power of <exp>
INP ([<exp>) | Signed integer part of <exp>

* LOG <[<exp>) | Natural logarithm of <exp>
RND <[<exp>) | Random number between 0 and 1

SIN ([<exp>) | Sine of <exp>, <exp> in radians
SQR <[<exp>) | Square root of <exp>

Texas Instruments 7-50 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.9 CRU Operations

To use the following CRU functions it is first necessary to
set the CRU base address via the BASE statement. (The value
supplied to the BASE statement is twice the actual hardware
base address.)

7.8.9.1 CRB Function

CRB (<exp>)
Read the CRU bit specified by the CRU hardware base address
plus <exp>. <exp> is valid over the range -128 to +127.

CRB (<expl>) = <exp2>
Set/reset the CRU bit specified by the CRU base address plus
<expl>. If <exp2>=0 then reset ('0') the selected bit,
otherwise set ('1') the bit. <expl> is valid over the range
-128 to +127.

7.8.9.2 CRF Functions

CRF (<exp>)
Read <exp> CRU bits from the CRU hardware base address.
<exp> is valid over the range 0 to 15. If <exp>=0 then 16
bits will be read.

CRF (<expl>) = <exp2>
Output <expl> bits of the value <exp2> to the CRU lines
starting at the CRU hardware base address. <expl> is valid
over the range 0 to 15. If <expl>=0 then 16 bits will be
output.

Texas Instruments 7-51 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.10 Memory Functions

7.8.10.1 BIT Function

* BIT (<var> , <exp>)
Read the <exp>th bit of the variable <var>.

* BIT (<var> , <expl>) = <exp2>
Modify the <expl>th bit of the variable <var>. The selected
bit is set to '1' if <exp2> is non-zero, otherwise it is set
to '0'.

7.8.10.2 MEM Functions

MEM (<exp>)
Read the memory byte specified by <exp>.

MEM (<expl>) = <exp2>
Set the memory byte specified by <expl> to the value
<exp2>.

7.8.10.3 MWD Functions

* MWD (<exp>)
Read the memory word specified by <exp>.

* MWD (<expl>) = <exp2>
Set the memory word specified by <expl> to the value
<exp2>.

'exas Instruments 7-52 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.11 Miscellaneous Functions

7.8.11.1 NKY Function

NKY (<exp>)
Samples the keyboard in run-time mode. If <exp>=0 then
return the decimal value of the last key struck. (Zero is
returned if no key was struck.) If <exp>j£0 then compare the
last key struck with the decimal value of <exp> and return a
value of 1 (they are the same) or 0 (they are not the
same).

7.8.11.2 SYS Function

* SYS (<exp>)
Obtain system parameters
execution.

generated during program

<exp>=0, parameter=input control character
<exp>-l, parameter=error code number
<exp>=2, parameter=error line number

7.8.11.3 TIC Function

TIC (<exp>)
Samples the real time clock and returns the current TIC
value minus the value of <exp>. One TIC equals 40
milliseconds. TIC(O) obtains the current value.

Texas Instruments 7-53 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.12 String Operations

<$var> denotes either a literal string, enclosed in
quotes, or a string variable

$<var> denotes a string variable

A variable is specified as being a string variable by
preceeding the variable name by a dollar sign ($).

An individual byte within a dimensioned string variable can
be accessed by following the last array subscript with a
semicolon (;) and the byte position.

$<var> - <$var>
Character Assignment: Copy characters into the string
variable until a null (zero) byte is found.

$<var> = <$var> , <exp>
Character Pick: Copy <exp> characters into the string
variable and then terminate the string with a null byte.

$<var> = <$var> + <$var> [+ <$var>]
Character Concatenation: Concatenate the strings into the
string variable (in the specified order) and terminate the
completed string with a null byte.

$<var> = <$var> ; <exp>
Character Replacement: Copy <exp> characters into the string
variable (do not add the null byte).

* $<var> = / <$var>
Character Insertion: Insert the characters into the string
variable.

* $<var> = / <exp>
Character Deletion: Delete <exp> characters from the string
variable.

$<var>= % <exp> [% <exp>]
Byte Replacement: Replace the specified byte by the
character equivalent of <exp>.

IF <$var><relop><$var> { , <exp> } THEN <sequence>
String Comparison: Where <relop> is a relational operator.
If the second string is followed by a comma, <exp> indicates
the number of characters to be compared.

* <varl> = <$var> , <var2>
Convert from ASCII to Binary: Convert the character string
into its binary equivalent. The number delimiting character
is stored in the first byte of <var2>.

Texas Instruments 7-54 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

* $<var> = <exp>
Convert from Binary to ASCII: Convert the number <exp> into
an ASCII character string. The string is automatically
terminated with a null character.

$<var>= # <$var> , <exp>
Formatted conversions can be made by preceding <exp> with
the formatting operator (#) and a string.

7.8.13 String Functions

* ASC ($<var>)
Returns the ASCII decimal value of the first character in
the specified string.

* LEN ($<var>)

Returns the length of the specified string. Zero is
returned if the string is the null string.

* MCH ($<varl> , $<var2>)
Return the number of characters that are the same in the two
strings. A zero is returned if no match is found.

* SRH ($<varl> , $<var2>)
Return the character position of where the first string is
located in the second. A zero is returned if the search is
unsuccessful.

Texas Instruments 7-55 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.14 INPUT Options

INPUT <feature> <item> [<feature> <item>]

<item> Either a variable, a string variable, or an
array element

 Explanation

, Delimit <item>s in the INPUT list
; Delimit <item>s in the INPUT list. Suppress

<CR> <LF> if at the end of the statement line

<feature> Explanation

<string> Prompt with <string> then get input
? <ln> * Upon an invalid input or control charcater, a

GOSUB to the line <ln> is executed

% <exp> * Requires entry of exactly <exp> characters
<exp> A maximum of <exp> characters to be entered

; Suppress prompting
null Prompt (? for numeric, : for character) and

and then get input

Texas Instruments 7-56 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.15 PRINT Options

PRINT <feature> <item> [<feature> <item>]

<item> Either a variable, an expression, a string
variable, a string, or an array element

 Explanation

, Delimit <item>s in the PRINT list and TAB to
the next print field

; Delimit <item>s in the PRINT list. Suppress
<CR> <LF> if at the end of the statement line

<feature> Explanation

<string> * Output <string>
TAB (<exp>) TAB to column specified by <exp>
<exp> * Print <exp> in hex free format
// , <exp> * Print <exp> in hex (word)
; <exp> * Print <exp> in hex (byte)
<string> * Decimal formatting - (In Enhancement Software

Package and Configurable Power BASIC).
<string> can be
9 Digit holder
0 Digit holder or force 0
$ Digit holder and floats $
S Digit holder and floats sign
< Digit holder before decimal and floats on

negative number
> Appears after decimal if negative
E Sign holder after decimal
• Decimal point specifier
, Comma in output - suppressed if before

significant digit
Translated to decimal point on output

Texas Instruments 7-57 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.16 Floating Point XOP Package

For use with assembly language routines.

FORMAT XOP ga , op

where GA - General memory address operand
OP - XOP number

FPAC - Floating Point Accumulator

XOP no. Function

0 LOAD FPAC with 6 byte number addressed by GA
1 STORE FPAC in 6 byte number addressed by GA
2 ADD 6 byte number addressed by GA to FPAC, store

result in FPAC

3 SUBTRACT 6 byte number addressed by GA to FPAC,
store result in FPAC

4 MULTIPLY FPAC by 6 byte number addressed by GA,
store result in FPAC

5 DIVIDE FPAC by 6 byte number addressed by GA,
store result in FPAC

6 SCALE adjusts FPAC's exponent to value of byte
addressed by GA

7 NORMALISE FPAC - 1st hex digit of mantissa is
non-zero. Operand not used

8 CLEAR FPAC. Operand not used
9 NEGATE FPAC - change 1st bit. If FPAC=0 then no

change. Operand not used
10 FLOAT FPAC's 2nd word - 16 bit twos complement

number to floating point. Operand not used

Converting Integer- to Floating Point

1) Set words 1 and 3 of 6-byte reserved area to zero.
2) Store integer number in 2nd word of area.
3) LOAD this 6-byte number into FPAC.
4) FLOAT FPAC.
5) STORE FPAC in 6 byte area.

DECNO BSS 6

FLPT BSS 6

•

CLR @DECN0

CLR @DECN0+4

LI R0,NUM

MOV R0,@DECN0+2
XOP @DECNO,0
XOP 0,10
XOP @FLPT,1

Texas Instruments 7-58 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.17 Variable Storage

A variable occupies 4 consecutive bytes in Evaluation Power
BASIC and 6 in Development Power BASIC. Variable storage is
allocated down through memory (from high memory to low).
The variable is referenced by the address of the lowest byte
it occupies.

Character String Format

0 7 8 15 16 23 24 31
, , , , ,

| Byte 1 | Byte 2 | Byte 3 | 0 |
, , , , ,

Evaluation Power BASIC

0 7 8 15 16 23 24 31 32 39 40 47
, , , , , ,

| Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | 0
, , , , , ,

Development Power BASIC

Integer Format

0 15 16 31
, , ,

| All zeros | Twos complement|
, , ,

Evaluation Power BASIC

0 15 16 31 32 47
, , ,

I All zeros | Twos complement| All zeros
, , ,

Development Power BASIC

Floating Point Format

0 17 8 31
,_, , 1

|S| Exp | Mantissa |
,_, , 1

Evaluation Power BASIC

0 17 8 47
,_, , ,

|S| Exp | Mantissa
,_, ,

Development Power BASIC

Texas Instruments 7-59 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.18 ASCII Character Set

CHAR HEX CHAR HEX CHAR HEX

V 56

W 57

X 58

Y 59

Z 5A

[5B
\ 5C
] 5D

5E

__ 5F
60

a 61

b 62

c 63

d 64

e 65

f 66

8 67
h 68

1 69

j 6A
k 6B

1 6C

m 6D

n 6E

0 6F

p 70

q 71
r 72

s 73

t 74

u 75

v 76

w 77

x 78

y 79
z 7A

{ 7B
1 7C

} 7D
7E

DEL 7F

NUL 00

SOH 01

STX 02

ETX 03

EOT 04

ENQ 05

ACK 06

BEL 07

BS 08

HT 09

LF OA

VT OB

FF OC

CR OD

SO OE

SI OF

DLE 10

DC1 11

DC2 12

DC3 13

DC4 14

NAK 15

SYN 16

ETB 17

CAN 18

EM 19

SUB 1A

ESC IB

FS 1C

GS ID

RS IE

US IF

Space 20

! 21
it

22

23

$ 24

% 25

& 26
/

27

(28

) 29
* 2A

CHAR HEX

+ 2B

> 2C

- 2D

. 2E

/ 2F

0 30

1 31

2 32

3 33

4 34

5 35

6 36

7 37

8 38

9 39
• 3A
•

9 3B

< 3C

= 3D

> 3E
? 3F

e 40

A 41

B 42

C 43

D 44

E 45

F 46

G 47

H 48

I 49

J 4A

K 4B

L 4C

M 4D

N 4E

0 4F

P 50

Q 51

R 52

S 53

T 54

U 55

Texas Instruments 7-60 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.19 Hex-Decimal Table

Even Byte Odd Byte

Hex Dec Hex Dec Hex Dec Hex Dec

0 0 ! 0 0 0 0 0 0

1 4,096 1 256 1 16 I 1 1

2 8,192 2 512 2 32 1 2 2

3 12,288 3 768 3 48 1 3 3

4 16,384 4 1,024 4 64 1 4 4

5 20,480 I 5 1,280 5 80 I 5 5

6 24,576 6 1,536 6 96 1 6 6

7 28,672 7 1,792 7 112 I 7 7

8 32,768 8 2,048 8 128 8 8

9 36,864 9 2,304 9 144 1 9 (9
A 40,960 A 2,560 A 160 A 10

B 45,056 B 2,816 B 176 B 11

C 49,152 C 3,072 C 192 C 12

D 53,248 D 3,328 D 208 D 13

E 57,344 E 3,584 E 224 E 14

F 61,440 F 3,840 F 240 F 15

Texas Instruments 7-61 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.8.20 Error Codes

Code Error message

1 Syntax error
2 Unmatched parenthesis
3 Invalid line number

4 Illegal variable name
5 Too many variables
6 Illegal character
7 Expecting operator
8 Illegal function name
9 Illegal function argument

10 Storage overflow
11 Stack overflow

12 Stack underflow

13 No such line number

14 Expecting string variable
15 Invalid screen command

16 Expecting dimensioned variable
17 Subscript out of range
18 Too few subscripts
19 Too many subscripts
20 Expecting simple variable
21 Digits out of range (0< no. digits >12)
22 Expecting variable
23 Read out of data

24 Read type differs from data type
25 Square root of negative number
26 Log of non-positive number
27 Expression too complex
28 Division by zero
29 Floating point overflow
30 Fix error

31 FOR without NEXT

32 NEXT without FOR

33 Exp function has invalid argument
34 Unnormalised number

35 Parameter error

36 Missing assignment operator
37 Illegal delimiter
38 Undefined function

39 Undimensioned variable

40 Undefined variable

41 Expansion EPROM not installed
42 Interrupt without TRAP
43 Invalid baud rate

44 Tape read error
45 EPROM verify error
46 Invalid device number

Texas Instruments 7-62 October 1981

SOFTWARE DEVELOPMENT HANDBOOK POWER BASIC

7.9 BIBLIOGRAPHY

TI Publications

Power BASIC Reference Manual (MP308)

Configurable Power BASIC Reference Manual (MP318)

TMS9901 Programmable Systems Interface (MP003)

TM990/100M Microcomputer User's Manual (MP321)

TM990/101M Microcomputer User's Manual (MP337)

TM990/201 and TM990/206 Memory Expansion Boards (MP334)

TM990/302 Software Development Board User's Guide (MP343)

Assembly Language Support For Power BASIC Application
Report (MP719)

Texas Instruments 7-63 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

8.1 INTRODUCTION

CHAPTER 8

ASSEMBLY LANGUAGE

ASSEMBLY LANGUAGE

The relationship between assembly language and the computer
it was designed to support is displayed below. Assembly
language provides the interface between the hardware
operation and the high-level language specifying the
problem. Assembly language is therefore machine dependent
and thus it has the capability to access all low-level
features of the machine (memory, hardware registers, etc).

Problem (Real Word)

Figure 8-1 Assembly Language and the Computer

Due to its low-level nature, assembly language does not have
the programming aids that are built into high-level
languages. For example, high-level languages automatically
provide the necessary data mappings and addressing
mechanisms used to access declared variables, while the
assembly language programmer must perform this housekeeping
for himself.

Assembly language is useful when tight control must be
maintained over the use of resources (for example where
particularly compact or efficient code is required). The
disadvantage is that skill and a lot of time is needed to
realize this compactness and efficiency. Using high-level

Texas Instruments 8-1 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

languages can speed up program production considerably and
the program will be less prone to errors. Also, an assembly
language program becomes more and more difficult to manage
as its size increases.

However, assembly language is ideal for short, frequently
executed program segments such as I/O routines and for
high-volume applications where savings on code (and
hardware) outweigh the extra development effort.

The machine instruction is a hardware defined operation and
is the basic unit, of processing. The complete range of
hardware instructions designed into a particular processor
forms the instruction set. (Sixty-nine instructions make ,up
the TMS9900 instruction set.)

Every program written for the 9900 (or any other processor)
will eventually be broken down into a sequence of these
basic instructions. Each instruction is actually stored in

program memory as a number (a string of '0's and 'l's). In
this state the instruction is usually referred to as a

machine code instruction-

While programming at the machine code level is possible, it
is not very practical. Moreover, understanding the function
of a machine code program is difficult and requires very
careful study.

Assembly language allows programming directly in the
machine's instruction set using mnemonics instead of
numbers. Further, most assembly languages allow symbolic
referencing: using a name to reference a data item or a code
segment (the assembler translates these references into
their actual memory addresses).

Consider the following example. A value is stored at
address >4E70 (symbolic location START). This value is to
be transferred to address >5630 (symbolic location NEW).
The assembly language instruction

MOV @START,@NEW

will do this. The machine code equivalent is:

>C820 >AE70 >5630

The symbol '>' indicates that the number that follows is a
hexadecimal number (the hexadecimal number system is
described in section 8.13.2.1).

Before an assembly language program can be executed, it must
first be converted into a form the processor can handle
(machine code). This conversion is performed by an
assembler on a one-for-one basis. (A single assembly
language instruction generates one machine code

Texas Instruments 8-2 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

instruction.)

Instructions can be one, two or three words long. The
length of an instruction depends on the number of operands
contained and the type of addressing allowed. The MOV
instruction above has two memory address operands (START and
NEW) and thus requires three words of storage. If one of
these operands had been a register only two words would be
needed. Had both operands been registers one word would be
sufficient.

8.2 INSTRUCTION FORMAT

An instruction consists of four fields, each separated from
the other by at least one space. Several examples follow.
The asterisk (*) in the first column indicates a comment
line.

Op-

Label code Operand(s)

RESET CI R4,>100
*

Comments

Contents of R4= MOO?

* operands - 1 workspace register, 1 immediate value

R2,R3 Contents of R2=R3?

* operands - both workspace registers

B (3RESET Branch to RESET

* operands - 1 symbolic memory location
*

RSET

* operands - none
*

Reset the 9900

The instruction fields are:

1) Label field - An optional field; when used the
user supplied name is assigned the current
value of the location counter (the address in
memory where the instruction will be stored).
This field starts in column one. An asterisk
in column one indicates that the whole line is
a comment.

2) Opcode field - The operation code, or mnemonic,
specifies what the instruction does (eg MOV).
Assembler directives, assembly language
instructions and pseudo-instructions are

Texas Instruments 8-3 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

covered by this term.

3) Operand field - This field specifies the
opcode's argument(s); eg, where the data is to
be taken from (source) and/or where the data is
to be stored (destination).

4) Comment field - An optional field ignored by
the assembler and used for documentation

purposes. Although comments have no effect on
the code produced, they are extremely useful.
They allow the programmer to describe exactly
what is done at the point in the code where the
action is performed. If used properly,
comments can make a program completely self-
documenting.

The assembler places no restrictions on the position of any
field in the line, except for the label field. However, it
is advantageous for the programmer to adopt some
convention. The recommended convention is:

o LABEL field Starts in column 1

o OPCODE field Starts in column 8

o OPERAND field Starts in column 13

o COMMENT field Starts in column 31

8.3 INSTRUCTION FORMAT RESTRICTIONS

Restrictions to instruction formats are listed below.

1) If a label is present it must start in column
one; otherwise column one must be left blank.

2) A label consists of up to six alphanumeric
characters, the first of which must be
alphabetic.

3) All fields are separated by one or more
spaces.

4) Operands, if more than one is required, are
separated by commas.

Texas Instruments 8-4 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.4 MEMORY ORGANIZATION

Computer memory is sequential and consists of a large number
of storage cells or locations. Each location has a unique
address. Using this address, the processor is able to
directly reference a particular location.

Memory is used for storing patterns of bits that may be
interpreted as either:

1) Programs - lists of instructions that tell the
processor what to do.

or 2) Program Data - patterns of bits that can be
used to represent numbers, status of switches,
etc (anything that the computer is programmed
to deal with).

8.4.1 Byte

A byte is a group of eight binary digits (bits). The most
significant bit (MSB) is designated bit zero and the least
significant bit (LSB) as bit seven. The contents of a byte
can be represented by two hex digits (>00 to >FF).

MSB-

I I
3 4

J L_L
LSB

Bit Position

Figure 8-2 A Byte

8.4.2 Word

A memory word, on the 9900, occupies 16 bits (2 bytes). A
word's MSB is designated bit 0 and its LSB as bit 15. The
contents of a word can be represented by four hex dieits
O0000 to >FFFF).

MSB-

. Most Significant
Byte

i i i i
4 5 6 7 8 9 10 11 12 13

Figure 8-3 A Word

Least Significant
Byte

J I I L_L
-LSB

15 Bit Position

The architecture of the TMS9900 is based on words. However,

Texas Instruments 8-5 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

semi-conductor memory is usually organized in bytes.
Therefore, although the word is the basic unit, byte
addressing is used. This means that the addresses of
consecutive words in storage are n, n+2, n+4, etc. The
first byte of a word (the most significant byte) must be on
an even numbered address.

^ -VVOra ^

•^

0 1

2 3

4
5

Figure 8-4 Memory Organisation

Storing a single byte's worth of data in a memory word is
not very efficient. The 9900 instruction set provides a
number of instructions for byte operations (eg MOVB, CB, AB,
SB, etc). Using these instructions, it is possible to
individually access/manipulate each of the bytes within a
word.

8.4.3 Registers

Most computers provide a number of general purpose hardware
registers that are accessible to the assembly language
programmer. All operations are centred around these
registers. To add the contents of two memory locations (A
and B) together and store the result in the first location
(A), these steps are necessary:

o Load the contents of one of the locations into a

register.

o Add the contents of the other location into the

register.

o Store the contents of the register into memory

location A.

The register oriented instruction evolved because of the
great differences in operation speeds between hardware
registers and ferrite core memory.

The introduction of semi-conductor memory (considerably
faster than ferrite core) into computer systems has
eliminated the need for such registers. With the TMS9900
microprocessor, direct memory-to-memory operations are
possible. The above example can now be performed in a

Texas Instruments 8-6 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

single instruction.

The 9900 has only three dedicated hardware registers:

1) Program Counter (PC) - contains the address of
the next instruction to be executed.

2) Workspace Pointer (WP) - contains the address
of the first word of the current workspace.

3) Status Register (ST) - contains the processor's
status flags (bits 0 to 6) and the current
interrupt mask (bits 12 to 15). Bits 7 to 11
are reserved for future use.

8.4.4 Workspace Registers

The TMS9900 does not provide a unique set of hardware
implemented registers. Instead any contiguous 16-word area
of read/write memory (RAM) may be defined as the 16-word
workspace. The 16 workspace registers (R0 to R15) may be
used exactly as if they were implemented in hardware.
However, the location of the workspace may be changed during
program execution to give 16 completely new registers. This
is called a context switch and occurs automatically during
an interrupt, when a BLWP instruction is used to call a
subroutine, or when an XOP instruction is executed. The
workspace can also be changed using the Load Workspace
Pointer Immediate instruction (LWPI).

Although the registers can be located anywhere in memory,
only 4 bits are needed to completely specify any register
within the workspace. This allows a register operand to be
incorporated into the instruction word without having to set
aside another word for the address.

The BSS (Block Starting with Symbol) assembler directive
allows the user to reserve an area of data storage for use
as a workspace. The following lines of code reserve a 16
word area starting at address >2000. The LWPI instruction
causes this value to be loaded into the WP. When this
instruction has been executed, R0 references address >2000,
Rl references address >2002, etc.

WKSP

AORG

BSS

>2000

32

LWPI WKSP

Reserve 16 word area

Set WP= >2000

The benefit of this approach is realized when it is
necessary to save the contents of the registers (for

Texas Instruments 8-7 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

example, on interrupt). With the traditional approach, the
content of every register has to be copied into reserved
memory locations. With the 9900, only the three dedicated
registers need to be saved and the WP loaded with the
address of another workspace. This is handled automatically
when an Interrupt occurs.

8.4.5 Register Functions

In general, when a register is required as an operand for an
instruction, any of the 16 workspace registers can be used.
However, for certain operations (in particular the context
switch) some of the registers have specially designated
functions, as follows:

R0 If the count operand to a shift instruction
is zero, the shift count is taken from bits
12 to 15 of R0. If these 4 bits are all
zeros, the shift count is set to 16.

Rll Branch and Link instruction uses Rll to store
its return address. Also the XOP instruction

uses Rll to store the effective address of

the source operand.

R12 Bits 3 to 14 of R12 contain the hardware base

for CRU instructions.

R13 When a context switch occurs, R13 is used to
store the old WP.

R14 When a context switch occurs, R14 is used to
store the old PC.

R15 When a context switch occurs, R15 is used to
store the old ST.

Note: The MPY and DIV instructions use two consecutive
registers. The first is supplied as an operand to the
instruction (eg if R2 is the register operand, R2 and R3 are
both used). If R15 is the specified register, the word
following the workspace is used to store either the
remainder for DIV or the least significant half of the
result for MPY.

8.4.6 Context Switch

When a context switch occurs, the WP and PC registers are
loaded with new values. The old contents of the WP, PC and
ST registers are then stored in the new workspace registers
13, 14 and 15 respectively. The old registers can be

Texas Instruments 8-8 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

accessed using the indexed mode of addressing (see
Addressing Modes, section 8.4.7.4) on the new register 13.

Hardware interrupts, XOP instructions and the BLWP
instruction cause a context switch to take place. For an
interrupt and an XOP instruction, the WP and PC are taken
from the interrupt's or XOP's vector. The BLWP instruction
requires the address of a two word area, containing the new
WP and PC, as its operand. This two word area is known as a
BLWP vector.

Executing a BLWP instruction does not affect the ST
register. An XOP instruction causes the ST register's bit 6
to be set to a one. The hardware interrupt only changes the
ST register's interrupt mask (bits 12 to 15); this is set to
one less than the incoming interrupt level (a level six
interrupt resets this mask to five).

A context switch provides a completely fresh environment, or
context, for program execution and results in program
control being transferred to a new routine. The last
instruction in this routine must be an RTWP. This restores

the environment existing prior to the context switch.

Consider the following code:

Address Label Instruction

AORG >200

0200 MAINWP BSS 32

0220 SUBWP BSS 32

0240 SUBPTR DATA SUBWP

0242 DATA SUB

MAIN EQU

LWPI MAINWP

Comment

Define MAIN's WP

Define SUB's WP

Ref SUB's workspace
Ref SUB's entry point

Entry point for MAIN
Load WP with >200

1000 BLWP @SUBPTR Execute subroutine SUB

1200 SUB EQU Entry point for SUB

1300 RTWP Exit from SUB

The context switch is shown diagrammatically in Figures 8-5,
8-6 and 8-7.

Texas Instruments 8-9 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

WP

PC

MAIN WP

RO

R13

R14

R15

>O20O

>1004

Figure 8-5 Before Executing the BLWP Instruction

SUBWP MAIN WP

>0200

>1004

RO

R13

R14

R15

WP >0240

PC >1200

Figure 8-6 After Executing the BLWP Instruction

MAIN WP

RO

R13

R14

R15

WP >O20O

PC >1004

Figure 8-7 After Executing the RTWP Instruction

8.4.7 Addressing Modes

Often a programmer wants to use an instruction in slightly
different ways. For example: At one point he may want an
operand to be a workspace register. Later, he may want the
operand to be a specified memory location, or he may want it
to be a memory location the address of which is contained in

Texas Instruments 8-10 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

a workspace register.

Implementing these different ways of accessing operands by
way of a different instruction for each method is wasteful,
and can easily lead to confusion. If, instead, a part of
the instruction is reserved for specifying which method is
to be used, a compact, but very powerful, instruction set is
produced. (The method of accessing an operand is usually
referred to as the addressing mode.)

The 9900 microprocessor provides five distinct addressing
modes for instructions that specify a general address as an
operand. Full details on these modes are available in
Section 3 of the TMS9900 Assembly Language Programmer's
Guide. A simplified description of each of these modes is
presented below.

8.4.7.1 Register Addressing

A workspace register contains the operand.

* Copy the contents of R4 into RIO

MOV R4,R10

Before

>0100 >09E6

R4 RIO

>0100

R4

After

>0100

RIO

8.4.7.2 Register Indirect Addressing

A workspace register contains the address of the operand.
To identify this mode the workspace register is preceded by
an asterisk (*).

* Copy the contents of the address in R7 to R9

MOV *R7,R9

Before After

>0100

R7

Location

-•1000

>09E6

R9

Contents

4E76

Texas Instruments 8-11

>0100

R7

Location

-•1000

>4E76

R9

Contents

4E76

October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.4.7.3 Symbolic Memory Addressing

A memory address contains the operand. To identify this
mode, the memory address is preceded by an at sign (@).
(If a symbolic name such as TABLE is used, the name must be
defined somewhere in the program.)

* Copy the contents of the word at symbolic address TABLE
* into address >7C
*

MOV @TABLE,@>7C

Before

Location Contents

007C 0471

TABLE 6483

After

Location Contents

007C 6483

TABLE 6483

8.4.7.4 Indexed Memory Addressing

A memory address contains the operand. The address is the
sum of the contents of a workspace register and a symbolic
address. This mode is written as an address preceded by an
at sign (@) and followed by a workspace register enclosed in
parentheses (the index register). Register 0 can not be
used as an index register.

* Copy the contents of word at location (2 + contents of R7)
* into location (address of TABLE + contents of RIO)

MOV @2(R7),@TABLE(R10)

Before

>1000 >0006

R7 RIO

Location Contents

1000 4849

1002 2041

TABLE 454D

. 5443

. 2052

. 5546

Texas Instruments 8-12

After

>1000 >0006

R7 RIO

cation Contents

1000 4849

1002 2041

TABLE 454D

. 5443

. 2052

. 2041

October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.4.7.5 Register Indirect Autoincrement Addressing

This is similar to the register indirect addressing mode
except that after obtaining the address from the workspace
register, the register is incremented (by one for byte
operations and two for word operations). To identify this
mode the register is preceded by an asterisk (*) and
followed by a plus sign (+)•

*

* Copy the contents of the word at the address in R3 into
* the word at the address in R2. Increment R3 by 2

MOV *R3+,*R2

Before

>0480 >7F96

R3 R2

Location Contents

FF90

372C

^ U'HJU

0482

.

After

>0482

R3

Location

0480

-•0482

7F96-

>7F96

R2

Contents

FF90

372C

.

FF90

This mode is very useful for working with structures such as
tables, where a succession of memory locations must be
accessed in sequence.

8.4.8 Specialized Addressing Modes

The preceding addressing modes are all used to address
variables (data) and can be used with any instruction that
specifies a general memory address as its operand(s). The
following three modes have more specialized applications.

8.4.8.1 Immediate Addressing

This is used by immediate instructions; the word immediately
following the instruction contains the operand (the operand
is contained in the program code). Immediate instructions
that require two operands have a workspace register
preceding the immediate value.

LWPI >FE70

LI R5,1000

Texas Instruments

Set WP= >FE70

Set R5= 1000

8-13 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.4.8.2 CRU Bit Addressing

This is used by CRU bit instructions for performing bit
I/O. The operand is a signed displacement in the range -128
to +127 bits from the CRU base address which is stored in

workspace register 12. (Only bits 3 to 14 are actually
used.) When the CRU is addressed the least significant bit
(bit 15) of this register is not transferred onto the
address bus. Because of this it is necessary to store the
doubled base address in the register. Thus, if register 12
contains >80, the actual base address of the hardware
accessed is only >40. For full details on the operation of
the CRU, refer to section 8.9.

SBO 8 Sets the CRU bit, 8 greater then the base
address, to one. If R12 contains >20 then
CRU bit 24 will be set to one by this
instruction

SBZ DTR Sets the CRU bit to zero. If DTR has the

value 10, and R12 contains >40, then this
instruction sets CRU bit 42 to zero

8.4.8.3 Program Counter Relative Addressing

This is used by the jump instructions. The operand for this
mode is a symbolic address (not preceded by an at sign) or a
signed displacement. This addressing mode can only be used
to transfer control to a location within the range of -128
to +127 words from the current location. For jumps outside
this range, the branch instruction must be used
(B (^location).

When a symbolic address is given, the assembler performs the
following:

o Subtracts the value of the incremented PC

(address of the next instruction) from the
symbolic address.

o Halves the difference to arrive at the

displacement in words.

To jump to symbolic location THERE, the instruction

JMP THERE

is required. If THERE was at location >2090 and the jump
instruction is at location >2060, then

JMP $+>30 >30 byte jump from here

Texas Instruments 8-14 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

would perform the same operation. The symbol '$' is used to
represent the current value of the location counter (the
address at which the instruction will be stored in memory).

8.5 SUBROUTINES

In a low-level language a subroutine, or procedure, is
simply a sequence of assembly language instructions preceded
by a symbolic name (a label) and terminated by a return
statement.

The subroutine CLOSE can be defined by:

CLOSE 1st instruction

Another way of defining this subroutine is:

CLOSE EQU $

.... 1st instruction

Although both approaches produce the same machine code, the
second clearly indicates a subroutine's entry point and thus
aids program documentation.

Care must be exercised when using the second approach to
ensure that the assembler's location counter is on an even
address (ie a word boundary) when the subroutine name (CLOSE
above) is defined. The only time this location counter
might have an odd address is when the assembler has just
allocated some space via the BYTE or TEXT directive. If
this is the case then it is necessary to follow the
directive by an EVEN directive. EVEN tells the assembler to
increment its location counter by one if it contains an odd
address (ie a byte boundary), otherwise it is ignored.

BOD BYTE >0D or MSG TEXT 'ENTER COMMAND'

EVEN

CLOSE EQU $

Note that this is not strictly necessary with the first
approach as the assembler automatically forces its location
counter to a word boundary when assembling instructions.

The Branch and Link instruction (BL) causes the address of
the instruction following the BL to be stored in workspace
register 11, and then passes control to the specified
routine. The operand for this instruction is the address

(or the name if the symbolic memory addressing mode is used)
of the required subroutine. For example, If subroutine
RESET is located at memory address >2000, then either of the
following may be used. (The first is much clearer.)

Texas Instruments 8-15 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

BL PRESET or BL @>2000

The BL instruction provides a 'short linkage' which is best
used for a small subroutine that is local to the area of the

program from which it is called. A subroutine called with a
BL uses the same workspace as the calling program, and so
the subroutine is able to directly access the calling

routine's registers.

The Branch and Load Workspace Pointer instruction (BLWP)
causes a context switch to take place and then transfers
control to the specified subroutine. The operand for this
instruction is the address of a two word area that contains

the addresses of the new workspace and of the subroutine to
be executed. (When a context switch takes place the address
of the instruction following the BLWP is stored in register
14 of the new workspace.)

SUB DATA SUBWP SUB's workspace
DATA SUBPC SUB's entry point

BLWP @SUB

If SUB is at address >1000 then 'BLWP @>1000' can be used.

A BLWP establishes a completely new context that is separate
from the calling program, thus, a BLWP subroutine can be
written separately from the calling program without any
danger that it will inadvertently corrupt the caller's
registers. The registers of the calling program can be
accessed using the indexed addressing mode on register 13 of
the new workspace. When the context switch is performed,
register 13 of the new workspace automatically contains the
address of the old workspace. Register 5, for example, of
the old workspace can be referenced by using '@10(R13)' as
the operand of an instruction. The indexed address is
obtained by adding ten bytes to the contents of register
13. As register 13 contains the address of the old
workspace, adding ten bytes (or five words) to this address
means that the sixth word of the old workspace (or the old
register 5) is accessed. (The first word, or old register
0, is accessed by adding zero to register 13; the second, or
old register 1, by adding two; etc.)

The BLWP instruction is a very useful instruction for
implementing modular software in assembly language (see
Section 4.3).

Control is returned from a subroutine by either an RTWP
instruction (if the subroutine was invoked by a BLWP
instruction) or the RT pseudo-instruction (if the subroutine
was invoked by the BL instruction).

Texas Instruments 8-16 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

An RTWP instruction restores the context (PC, WP and ST) of
the calling program from registers 13, 14 and 15 of the new
workspace.

The RT pseudo-instruction translates into 'B *R11', which
is a branch to the address contained in Rll (the register
used by the BL instruction to store the return address).

8.6 PARAMETER PASSING

All high-level languages have a built in parameter passing
mechanism. When using subroutines (or procedures, in the
more modern languages) the programmer must conform to their
conventions.

Low-level languages, on the other hand, impose no such
restrictions as all parameter passing mechanisms must be
explicitly implemented by the programmer. To avoid
confusion, it is important that the programmer chooses his
own convention and sticks to it.

However, when low-level language routines are to be
incorporated into a high-level language program, it is
necessary that these routines use the conventions of the
host language. *

The three main methods of parameter passing and their
implementation in 9900 assembly language are given below.

1) The parameter is stored in a register.

a) Subroutine invoked by BL Instruction:

* Called routine has direct access to all the

* calling routine's registers

b) Subroutine invoked by BLWP instruction:

* Copy the contents of calling routine's workspace
* space register N into TEMP

MOV @2*n(Rl3),temp

Texas Instruments 8-17 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

RO

R13

RO

Rn

Subroutine's
Workspace

Calling routine's
Workspace

Figure 8-8 Parameter Passing 1

Note: The register number is doubled as byte addressing is
used on the 9900.

2) The parameter is stored in an area of memory that is
referenced by a register. (Parameter numbering starts from
zero.)

a) Subroutine invoked by BL instruction:

* Copy contents of the Mth word (Mth parameter) of
* the parameter block into TEMP
*

MOV @2*m(Rn),temp '

Calling routine's
Workspace

1st Word

mth Word

Parameter Block

Figure 8-9 Parameter Passing 2

b) Subroutine invoked by BLWP instruction:

* Copy address in the calling routine's workspace
* register N into register S
*

MOV @2*n(R13),Rs

* Now copy contents of Mth word of parameter block
* into TEMP

*

MOV @2*m(Rs),temp

Texas Instruments 8-18 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

RO

R13

RO

Rn

1st Word

mth Word

parameter diock

Sub routine's
Workspace

Calling Routine's
Workspace

Figure 8-10 Parameter Passing 3

3) This is a variation on the previous method in that the
parameter block appears in-line (it immediately follows the
call). With this approach the subroutine must ensure that
the return address (where control is transferred to when the
subroutine is exited) is updated to skip over the parameter
block and pick up the instruction after the call. This can
be done using the Indirect autoincrement addressing mode on
Rll for the BL instruction and R14 for the BLWP

instruction.

a) Subroutine invoked by BL instruction:

BL @SUBR

DATA

Call SUBR

Parameter block

SUBR MOV *Rll+,temp Get 1st parameter in TEMP,
update return address in Rll

RT Return

b) Subroutine invoked by BLWP instruction:

SUBADD DATA SUBWP

DATA SUBR

SUB's workspace
SUB's entry point

BLWP @SUBADD Call SUB

DATA Parameter block

SUBR MOV *R14+,temp Get 1st parameter in TEMP,
update return address in R14

RTWP Return

This in-line approach should only be used when the

Texas Instruments 8-19 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

data to be passed to the subroutine is constant
(its value is known when the program is
assembled), since program code is likely to be
placed in ROM.

Note: Invoking a subroutine is faster using the BL
instruction as no context switch takes place, but there is a
risk that data might be inadvertently lost when any of the
calling routine's registers are used for temporary storage
purposes.

8.7 STRUCTURING

With a high-level language, structuring presents no
problem. High-level languages were designed with this in
mind; structuring constructs are an integral part of the
language.

However, assembly (or low-level) languages are designed
around the hardware and are not considered to be problem
oriented languages. The programmer must provide the
necessary structures. Turning a software design into an
executable program is considerably more difficult in
assembly language because problem oriented design constructs
must be translated accurately into groups of low-level
machine instructions. The information that follows

describes assembly language implementation of the sequence,
selection and iteration constructs used in software design.
The sequence, selection and iteration constructs (and the
notation used here) are described in Section 4.5.

In writing an assembly language program, it is effective to
produce a software design before writing the code; this
enables the programmer to design the application's logic
before worrying about the implementation details (which, in
assembly language, are considerable). This approach has
been shown to lead to better and more correct software, and
has been used very successfully for internal TI projects.

8.7.1 Selection

Normally the action taken at a specific point in a program
depends on a number of factors or conditions. If one of the

conditions changes, the action to be performed changes.
This choice of action is represented by the selection
construct displayed below.

Texas Instruments 8-20 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

ACTION 1

ACTION 2

ACTION N

Figure 8-11 General Selection Construct

8.7.1.1 Condition Codes

Implementing the selection construct at the assembly
language level requires an understanding of the condition
codes (or status flags). These are stored in the processor
status word (on the 9900 this is a special hardware register
called the status register - ST), with each flag occupying
one bit.

L> A> EO OV OP

0 12 3 4 5 6

Figure 8-12 Condition Codes for the TMS9900 Status Register

LOGICAL GREATER THAN (L>) contains the result of a
comparison of words/bytes as unsigned binary numbers; as the
sign bit is interpreted as part of the number, a negative
number is logically greater than a positive one.

ARITHMETIC GREATER THAN (A>) holds the result of a
comparison of words/bytes as signed binary numbers.

EQUAL (EQ) is set when the words/bytes being compared are
equal. Also contains the TB CRU bit.

CARRY (C) is set by a carry out of the most significant bit
of a word/byte during arithmetic operations. This bit is
also used by the shift instructions to hold the last bit
shifted out of the specified workspace register.

OVERFLOW (0V) is set when the result of an arithmetic
operation is too large or too small to be correctly stored
in 16 bits.

ODD PARITY (OP) is set when the result of a byte operation
has odd parity (when the number of bits in a byte having a
value of '1' is odd).

Texas Instruments 8-21 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

EXTENDED OPERATION (X) is set when an extended operation
instruction is performed by software.

The processor automatically sets (or resets) the appropriate
status flags once it has executed an instruction. Only
certain instructions affect certain flags, for example, the
'X' flag is only set by an extended operation instruction.
Full details on which flags are affected by a given
instruction are given in the reference section of this
chapter.

8.7.1.2 Jump Instructions

Perhaps the most important members of a machine's
instruction set are the jump instructions. These transfer
control (unconditonally or conditionally according to the
state of one or more status flags) from one point in a
program to another, without affecting the flags. The jump
instructions available are listed below:

JMP JOC JEQ JGT JHE

JLT JH JL JNE JLE

JNC JNO JOP

The conditional jump instructions (all those listed above
except JMP) can be used to implement the selection
construct.

Example: Depending on the contents of R2 (>10, =10, or <10)
execute the sequence ACT1, ACT2 or ACT3 respectively. Then
execute the sequence ACT4.

The structure diagram for this is:

Figure 8-13 A Three Way Selection Example

This can be coded as:

Texas Instruments 8-22 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

ACTO

ACT3

ACT1

ACT2

ACT4

EQU $
CI R2,10
JGT ACT1

JEQ ACT2
EQU $

.

Code for ACT3

JMP

EQU
ACT4

$

Code for ACT1

JMP

EQU
ACT4

$

Code for ACT2

a

EQU $

.

Code for ACT4

Compare R2 with 10
To ACT1 if R2 > 10

To ACT2 If R2 = 10

To here if R2 < 10

To ACT4

To ACT4

Note: If R2 contains 10 then after executing the code for
ACT2, program control drops through to the code for VACT4.

For a simple two-way selection:

Figure 8-14 A Two Way Selection Example

This can be coded as:

ACTO EQU $
'test'

JNE ACT2 To ACT2 if condition false

ACT1 EQU $
.

Code for ACT1

.

JMP ACT3 To ACT3

Texas Instruments 8-23 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

ACT2 EQU $

Code for ACT2

ACT3 EQU $

Code for ACT3

8.7.2 Iteration

ASSEMBLY LANGUAGE

Quite often it is necessary for a sequence of instructions
to be executed a number of times. One way of implementing
this repetition is to code the sequence the required number
of times. However, if either the sequence to be coded
and/or the repetition number is large, a large amount of
memory will be used. Further, if the sequence is to be
repeated until a particular condition arises, the repetition
number is unknown. The use of the iteration construct

overcomes these problems.

Example: A sequence (SEQl) must be repeated N times (where N
is a variable supplied by a previous stage) followed by the
execution of SEQ2.

The structure diagram illustrating this follows:

Figure 8-15 An Iteration Example (REPEAT)

This can be coded as:

SEQA EQU $
MOV @n,R0 Copy count into R0,sets flags

SEQAST JEQ SEQ2 To SEQ2 if RO = 0
SEQl EQU $

.

Code for SEQl

.

DEC RO Decrement repetition count

JMP SEQAST To SEQAST

Texas Instruments 8-24 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

SEQ2 EQU $

Code for SEQ2

.

If N is a constant (eg 20) then:

LI R0,20 Set RO to 20
SEQl EQU $

.

Code for SEQl

.

DEC RO Decrement repetition count

JNE SEQl To SEQl if RO > 0
SEQ2 EQU $ To here if RO = 0

.

Code for SEQ2

Example: While KEY=0 perform SEQl. When KEY is changed
perform SEQ2.

The structure diagram for this is:

SEQA

/ W
\ K

HILE \
SEQ1EY=Q y

SEQ2

Figure 8-16 An Iteration Example (WHILE)

This can be coded as:

SEQA EQU $
CI @key,0 Compare KEY with 0
JNE SEQ2 To SEQ2 if KEY^O

SEQl EQU $ To here if KEY = 0
•

Code for SEQl

.

JMP SEQA To SEQA
SEQ2 EQU $

.

Code for SEQ2

Texas Instruments 8-25 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.7.3 Sequence

On the surface, the sequence is the simplest construct to
implement, as it merely involves executing one instruction
after another. Unfortunately, with assembly languages there
is a great temptation to write programs in an unsequenced
fashion with program flow jumping backwards and forwards in
an irregular manner. This usually leads to 'spaghetti
code'; code so convoluted and complex (often much more
complicated than is actually necessary) that it is difficult
to follow or understand and almost impossible to maintain.

The sequence represents a number of elements that are
executed one after the other. At the single instruction
level, assembly language programs are naturally sequential.
However, when writing a program with a complex structure,
some additional thought is needed to ensure that the logical
flow of the program is always sequential and from top to
bottom.

Probably the best way to do this is to exactly follow the
order in which blocks of code appear on the structure
diagram (see Section 4.5.1). Further, it is important that
a single block on the structure diagram be implemented as a
single block of code.

This is, in fact, the simplest and the most natural way
write programs; it is certainly the easiest to follow.

Consider this structure diagram:

\ TRUE
A

B

Figure 8-17 A Sequence Example

This can be coded in (at least) three ways:

to

Texas Instruments 8-26 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

B

'test'

JNE B

EQU $

Code for A

.

JMP C

EQU $

.

Code for B

EQU $

Code for C

EQU $

Code for D

D

'test'

JNE B

EQU $

Code for A

EQU $

Code for C

EQU $

Code for D

B EQU $

Code for B

JMP C

ASSEMBLY LANGUAGE

'test'

JNE B

EQU $

Code for A

EQU $

Code for C

.

JMP D

EQU $

.

Code for B

.

JMP C

EQU $
.

Code for D

Of the three sets of code listed above, only the first is
structured according to the diagram. The other two are both
less clear and less compact than the first.

When a program is not sequential, it is easy to omit a
branch instruction, or even branch to the wrong location.
With a more complex structure diagram (see below), the
probability of producing an incorrect program increases
dramatically. This can be reduced by exactly following the
diagram when writing the code.

Figure 8-18 A Complex Structure

Texas Instruments 8-27 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

The code for this is:

SEQl 'test'

JNE SEQ2

Code for A

SEQ2
JMP G

EQU $
'test'

JNE SEQ3

Code for B

SEQ3

C

.

JMP

EQU

LI

EQU

F

$
R0,20

$

Code for C

D

DEC RO

JNE C

'test'

JNE E

EQU $

Code for D

E

JMP

EQU

F

$

Code for E

F EQU $

Code for F

G EQU $

Code for G

To SEQ2 if false

To G

To SEQ3 if false

To F

Set loop count to 20

Decrement loop count
To C if count > 0

To here if count = 0

To E if false

To here if true

To F

8.8 PROGRAMMING FOR RX AND COMPONENT SOFTWARE

When writing a software system as a single unit, any method
can be adopted for the use of memory, way of calling
subroutines, etc, provided the system is internally
consistent.

Texas Instruments 8-28 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

However, there is often a requirement for writing software
that can:

a) Make use of existing pieces of software.

or b) Be used by other pieces of software.

or c) Be reliably updated at a later date, perhaps by
someone other than the person who wrote it.

All these requirements dictate the use of standard
conventions: a set of rules which are known to be complete

and consistent, and can be written down.

Pieces of software developed according to such conventions
will work together. (Of course, if one piece of software
wishes to make use of another piece, it must know what
functions are available in the second piece of software and
how to access them.) Conventions make it possible both to
write pieces of software that will not conflict, and to
'package' them in standard ways. Software packages can be
stored in libraries, then selected and connected together to
form a new system.

TI's Component Software provides a framework of standard
conventions within which pieces of software can be written
separately to perform independent tasks. The pieces can
then be 'plugged together' to build a system. The parts
plugged together may have been written by the user, or they
may have been bought 'off the shelf from TI or other
vendors.

TI's Realtime Executive (Rx) is the means of welding these
separate parts together to make a complete, coherent
system. Component programs call Rx routines to perform
commonly needed operations (such as calling other routines,
requesting additional memory space, etc). Rx manages all
the resources of the system so that conflicts do not occur.

This is an extension of the program modularity described
above (in relation to sequence, iteration, etc). Rx
provides 'time modularity' too: it allows independent
application functions to be written as separate programs
with different demands on the time of the processor (some
functions may need to be executed every 5ms, say; others
only when an operator presses a key, or a particular device
interrupts).

When building an application system, these functions are
linked together, in a semi-automatic process know as
configuration.

Rx provides a standard mechanism for handling interrupts,
standard ways of dealing with file I/O, and standard methods
for calling other routines (whether written in assembly

Texas Instruments 8-29 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

language, Pascal or other languages).

The benefits of this 'component' approach are:

o Systems can make use of existing Component
Software packages.

o Software modules written according to Component
Software standards can be used again, in other
systems.

o Reliability is improved, because each task in a
real time system can be programmed and tested
separately, and then linked with the other parts
to form the system.

o Systems can be upgraded easily, because the
component parts can be separated out and
replaced, changed or added to as necessary.

o Because of the above, systems can be developed
more quickly and for less cost.

The conventions that must be followed mainly relate to calls
between routines and the access to registers and memory.

In a high-level language, many of these requirements are
taken care of automatically by the compiler. The assembly
language programmer must himself ensure that the conventions
are followed when writing the program.

The standards are set out in the Component Software Handbook
and the Realtime Executive User's Manual. Adherence to

these standards (which are not too restrictive) means that
programs written can be used with other Component Software
routines, whether written in Microprocessor Pascal or
assembly language. See Chapter 5.

Routines to be used with Component Software should be
written according to the Rx standards from the start. This
is much easier than converting routines already written.

8.9 COMMUNICATIONS REGISTER UNIT

The 9900 supplies a bit-oriented method of I/O called the
Communications Register Unit (CRU). This provides a maximum
of 4096 bits of read space and 4096 bits of write space.
Each bit (or line) is individually addressable. Although
the CRU uses the address bus to access its read and write

spaces, these are totally independent from the memory
address space.

Texas Instruments 8-30 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

The CRU transfers data along a separate three-wire bus (the
wires are known as CRUIN, CRUOUT and CRUCLK).

Using the CRU, it is possible to test, set or reset a single
bit anywhere in the 4096 bit address space, using a single
instruction. Instructions are also provided to read and
write to any group of from 1 to 16 bits.

This 'bit-picking' I/O is particularly useful for control
applications, where input and output is typically single
bits (sensors, switches, warning lights, relays, valves,
etc) all of which are either on or off.

The CRU was developed from Texas Instruments' experience in
designing minicomputers for process control applications.
It grew out of the method of I/O used on the 960
minicomputer. As the majority of microprocessor
applications involve some kind of control, this feature is
very valuable.

The 9900 is the only major microprocessor to have a bit
oriented I/O structure, as well as the byte and word
oriented techniques such as memory mapping.

The five CRU instructions operate from a base address, which
must be stored in workspace register 12 (R12). The contents
of this register are known as the software base address.
(In fact only bits 3 to 14 of this register are used to
generate the address, the other bits are ignored. The value
of these 12 bits is referred to as the hardware base

address. The keywords 'hardware' and 'software' are used to
avoid confusion when specifying the base address. The
software base address is twice the hardware base address.)

The three single bit CRU instructions use a signed
displacement, from the base address, to reference a
particular line. This displacement allows the instructions
to access any CRU bit within a range of -128 to +127 bits
from the base address.

Suppose a number of CRU operations are required around CRU
line MOO and a particular instruction needs to access CRU
line >120. To do this, set the hardware base address to
MOO (a software base address of >200) and use a signed
displacement of +32 (>20). The CRU bits required to control
a particular device should be grouped together. If a system
has several identical devices the same piece of code
(structured as a subroutine) can be used for each. It is
only necessary to set the CRU base address for the
appropriate machine and call the subroutine.

With the two multiple bit CRU instructions, the base-address
must reference the first CRU line that the instruction is to

access. For example, if the transfer is to start at CRU
line >50 then the hardware base address must be >50. (This

Texas Instruments 8-31 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

is equivalent to a software base address of >A0.)

8.9.1 Single-Bit CRU Instructions

The operand of a single bit CRU instruction is a signed
displacement (in the range -128 to +127) from the base
address. This specifies the particular line to be
accessed.

Diagrammatically this can be shown as:

SOFTWARE BASE ADDRESS-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X

I
X X

I I I I I I

•HARDWARE BASE ADDRESS-

+

SIGN EXTENDED
7 8 9 10 11 12 13 14

~i—i—i—i—i—i—r~

SIGNED DISP FROM BASE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0

I

0

I I I

X - BIT IS IGNORED

O-BIT SET TO'O*

CRU BIT ADDRESS

ADDRESS BUS

Figure 8-19 CRU Bit Addressing

SBO ; Set Bit to One. This sets the specified CRU output

line to a logical one.

Assume a control device is connected to CRU output line
>10F. This device turns on a motor when its CRU line is set
to a one. If the hardware base address is set to MOO (this
corresponds to a software base address of >200) then a
displacement of +15 is required. The instructions to active
this motor are:

LI R12,>200 Set software base address
SBO 15 Set CRU bit MOF to 1

Texas Instruments 8-32 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

SBZ : Set Bit to Zero. This sets the specified CRU output
line to a logical zero.

Assume that a control device is connected to CRU output line
>80. This device closes a valve when its CRU line is set to
zero. Also assume that workspace register 12 contains
>140. To access CRU output line >80 a displacement of ->20
is required. The instruction to close the valve is:

SBZ ->20 Set CRU bit >80 to 0

TB : Test Bit. This instruction reads the digital input
and sets the equal status flag (bit 2) to the value of the
bit.

Assume that workspace register 12 contains >140 (this is a
hardware base address of >A0). The following lines will
test the input on CRU input line >A4 and either execute the
code at location RUN (if input is a '1') or WAIT (if input
is a '0').

TB 4 Test CRU input line >A4
JEQ RUN If on, go to RUN

WAIT . If off, contine
•

RUN EQU $

8.9.2 Multiple-Bit CRU Instructions

The operands of a multiple bit CRU operation are:

1) A general memory address. For a 'read'
operation this address specifies where the
input is to be stored, and for a 'write'
operation from where the output is to be
taken.

2) A count of the number of bits (in the range 0
to 15) to be transferred.

These instructions transfer from 1 to 16 bits. A 16 bit

transfer is specified by setting the count to zero.

Unless otherwise explicitly stated, when less than nine bits
of data is being transferred, the processor uses the most
significant byte of a word for the operation. (This can be
overridden by using the indirect addressing mode to
reference the required byte.)

The base address for the operation is the CRU address of the
first CRU line to be accessed.

Texas Instruments 8-33 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

For a transfer of more than 8 bits

CRU INPUT BITS INPUT CRU OUTPUT BITS

N

N+1

N

r
N+1

1

i

r0 1 14 151
II II

EFFECTIVE MEMORY ADDRESS

i

N+15 OUTPUT

N=BIT SPECIFIED BY CRU BASE REGISTER

N+15

Figure 8-20 CRU Transfer Of More Than 8 Bits

For example, in a transfer involving 10 bits, the data Is
taken from, or stored in, bits 15 to 6.

For a transfer of 8 bits or less:

CRU INPUT BITS CRU OUTPUT BITS

NN

N+7 N+7

Figure 8-21 CRU Transfer Of 8 Bits Or Less

For example, in a transfer involving only 5 bits, the data
is taken from, or stored in, bits 7 to 3.

LDCR : Load Communications Register. This instruction
transfers ('writes') the specified number of bits from the
source operand into the CRU.

To write 9 data bits from symbolic location OUT to the CRU
starting at CRU output line >40, the necessary instructions
are:

LI R12,>80
ldcr Gout,9

Texas Instruments

Set software base address

Output 9 bits

8-34 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

LOCATION OUT

J LINES0111 | 7| 8| 114 Il71 CRl
11 te

> 40

> 41

> 42

> 43

> 44

> 45

> > 46

^ > 47

> 48

Figure 8-22 CRU Output Example

STCR : Store Communications Register. This instruction
transfers ('reads') the specified number of bits from the
CRU input lines into the specified memory location.

To read 7 bits, starting from CRU input line >60, into the
memory location addressed by workspace register 2, the
necessary instructions are:

LI

STCR

R12,>C0
*R2,7

WORD REFERENCED BY R2

-Li

I

Set software base address
Read in 7 bits

| 14 | 15 CRU LINES

> 60

> 61

> 62

> 63

> 64

> 65

> 66

Figure 8-23 CRU Input Example

Note: If workspace register 2 had contained an odd address
(ie if it referenced a word's least significant byte) then
the input would have been stored in bits 15 to 9.

8.10 INTERRUPTS

In a real-time system, there are two mechanisms for
determining when an external event has occured (for example,
when a device connected to the computer needs to be

Texas Instruments 8-35 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

serviced): Polling and Interrupts.

In the polling mechanism, the program polls, or tests every
device known to it in a cyclic fashion. When a ready device
is found, the device is immediately serviced, and the
program continues its polling cycle.

Although the program immediately services a device when it
is found to be ready, there can be a considerable delay
between the time when the device indicates that it is ready
and the time when the program actually discovers that it is
ready. Because of this, polling is only practical on a
simple system, or when response time is not critical.

With the interrupt mechanism, the device signals the
processor when it is ready to perform the next operation.
This signal is known as an interrupt.

With a more complex system (one that contains a number of
devices) the processor is able to perform some other
operation while waiting for an interrupt. As soon as an
interrupt occurs, the processor stops what it was doing and
services the device that caused the interrupt. When the
device has been serviced, the processor continues the action
it was performing prior to the interrupt.

8.10.1 Interrupt Structure

The 9900 supports up to 16 interrupt levels, numbered from 0
to 15. Level 0 has the highest priority; 15 the lowest.
The interrupt mask, bits 12 to 15 of the status register,
determine which interrupts are to be recognised by the
processor.

A device with a lower priority (higher level number) than
that contained in the interrupt mask is not allowed to
interrupt the processor.

For example, if the interrupt mask contains '0011', only
devices with an interrupt level of 0 to 3 are allowed to
interrupt the processor. An interrupt from a device with a
lower priority is ignored until the interrupt mask is reset
to a value that is greater than or equal to the device's
interrupt level.

Often, instead of being coupled directly to the 9900
microprocessor, interrupt lines are connected to a TMS9901
Programmable Systems Interface. The 9901 decides whether
the interrupting device is allowed to generate interrupts
and, if so, passes the interrupt to the 9900. A device that
is allowed to generate interrupts is said to be enabled. An
interrupt is enabled by setting the 9901's control bit to
'0' (select interrupt mode) and then writing a '1' to the

Texas Instruments 8-36 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

appropriate mask bit. Full details of the operation of this
device are given in the TMS9901 Programmable Systems
Interface Data Manual.

Interrupt Mask

Bits

12 13 14 15

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Levels

Allowed

0

0, 1

0 — 2

0 — 3

0 — 4

0 — 5

0 — 6

0 — 7

0 — 8

0 — 9

0 — 10

0 — 11

0 — 12

0 — 13

0 — 14

0 — 15

Level setting Mask

0,1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

High priority

Low priority

Table 8-1 Interrupt Mask Table

Note: The 9901 is a CRU-driven device; before it can be
accessed (using CRU instructions) its base address must be
stored in workspace register 12. Further, this base address
is dependent on the hardware configuration.

8.10.2 Interrupt Vectors

Every interrupt level has a two word dedicated area (known
as the interrupt vector) containing:

1) The address of the workspace that is to be used
by the interrupt service routine.

2) The address of the service routine's entry
point.

Low order memory, address >00 to >3F, is reserved for these
transfer vectors (see Table 8-2).

A particular interrupt vector (for interrupt level 8, say)
can be assigned the appropriate values by:

A0RG >20 Interrupt level 8 vector at >20
DATA INT8WP Workspace for interrupt level 8
DATA INT8PC Entry point for level 8 handler

Texas Instruments 8-37 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Address Level

0000 0

0002 0

0004 1

0006 1

0008 2

000A 2

000C 3

000E 3

0010 4

0012 4

0014 5

0016 5

0018 6

001A 6

001C 7

001E 7

0020 8

0022 8

0024 9

0026 9

0028 10

002A 10

002C 11

002E 11

0030 12

0032 12

0034 13

0036 13

0038 14

003A 14

003C 15

003E 15

Vector contents

WP address for level 0

PC address for level 0

WP address for level 1

PC address for level 1

WP address for level 2

PC address for level 2

WP address for level 3

PC address for level 3

WP address for level 4

PC address for level 4

WP address for level 5

PC address for level 5

WP address for level 6

PC address for level 6

WP address for level 7

PC address for level 7

WP address for level 8

PC address for level 8

WP address for level 9

PC address for level 9

WP address for level 10

PC address for level 10

WP address for level 11

PC address for level 11

WP address for level 12

PC address for level 12

WP address for level 13

PC address for level 13

WP address for level 14

PC address for level 14

WP address for level 15

PC address for level 15

Table 8-2 Interrupt Vector Table

8.10.3 Interrupt Sequence

The level of the highest priority pending interrupt request
is continually compared with the contents of the interrupt
mask. When the interrupt level of the pending request is
equal to or less than the mask contents, the interrupt is
taken after the currently executing instruction has
completed. (Note: The level 0 interrupt, the RESET
interrupt, will always be taken and can not be masked out.)

For example, if the processor is servicing a level 4
interrupt, only interrupts of level 3 and higher (ie levels
0 to 3) will be recognized.

To process an interrupt, a context switch takes place. The
contents of the interrupt vector's first word is stored in

Texas Instruments 8-38 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

the WP register and those of the second word in the PC
register. The old contents of the WP, PC and ST registers
are stored in the new workspace registers 13, 14 and 15
respectively.

After storing the contents of the ST register, the processor
decrements the incoming interrupt level by one and stores
the result in the interrupt mask. This disables the current
interrupt level, leaving only higher levels enabled. (This
does not happen with level 0 interrupts.)

WP

PC

ST

INTERRUPT
8 VECTOR

> 0780

> 1024

> xxx F

INTERRUPT MASK -F

ADDRESS

0020
0022

CONTENTS

> 0270
> 0290

0270 INTERRUPT 8 WP

0290 INTERRUPT 8 ROUTINE

0780 PROGRAM'S WP

0800 PROGRAM DATA

1022

1024

EXECUTIVE PROGRAM

INCR1

Figure 8-24 State Prior to a Level 8 Interrupt

No additional interrupt is taken until the first instruction
of the service routine has been executed. If the first
instruction is a 'LIMI 0' (Load Interrupt Mask Immediate
with zero) then further interrupts will be inhibited.

The last instruction in the service routine must be an
RTWP. This causes the processor to restore the contents of
the WP, PC and ST registers from workspace registers 13, 14
and 15 respectively (ie it restores the original
environment). Control then returns to the point where the
interrupt was taken.

Several interrupt lines may be combined at one level. It
then becomes the programmer's responsibility to determine
which device generated the interrupt by polling the devices
and then executing the appropriate service routine.

Texas Instruments 8-39 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

WP

PC

ST

ADDRESS

INTERRUPT

8 VECTOR

>0270

>0290

>xxx7

INTERRUPT MASK - 7

>0020
>0022

-*• 0270

-• 0290

ASSEMBLY LANGUAGE

R13

R14

R15

Figure 8-25 State After a Level 8 Interrupt

Any interrupt request must remain active until it is reset
by the interrupt service routine. Interrupts that just
disappear (without being reset) can cause program execution
to become unpredictable; the interrupt level presented to
the processor could become corrupted and subsequently the
wrong interrupt service routine would be invoked. Failure
to reset an interrupt will cause the processor to re-take
the interrupt as soon as the service routine has completed.

8.10.4 Fault Tolerant Interrupt Systems

In an interrupt-driven control environment it is almost
impossible to guarantee that only valid interrupt signals
are going to be generated. This is especially true in
electrically noisy environments (for example when switching
on a motor). The system designer must be aware of the
possiblity of receiving false interrupt signals and should
be able to recognise the situations where these may occur.
Further, part of the system design goal(s) should be
concerned with overcoming this problem.

It is also a good idea to build a certain amount of fault
tolerance into the system. Obviously the more that is built
into the system the more reliable the system is going to
be. However, this does increase the complexity and hence
the cost of the system. Some systems may not require much
(if any) fault tolerance; it may be sufficient to simply
power down all the equipment in some ordered sequence. In
others, a large amount may be needed, especially if the
system is expected to recover from the fault. The actual

Texas Instruments 8-40 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

amount of fault tolerance built into a system depends on the
design criteria (speed, simplicity, recoverability,
reliability, cost, etc).

A classic example of including fault tolerance in a system
is the overflow pipe in a domestic water supply, in
particular, in the cistern. In normal operation, no
overflow pipe is required; the ball-cock floats on top of
the water and determines how much more water is needed,
opening or closing the water inlet value as necessary.
However, what happens if the ball-cock loses its buoyancy or
the inlet value sticks open? It would mean water running
down the walls, damaging carpets, furniture, etc. Typically
this doesn't happen as the overflow pipe is included to
cater for this problem. The system tolerates this type of
fault: water overflows, but not on the carpet.

In an interrupt-driven environment, a simple piece of fault
tolerance is to "tie" all unused interrupt levels to a
common interrupt service routine (this is often referred to
as a 'spurious interrupt handler'). What this handler
actually does is entirely up to the user; it may be nothing
more than an RTWP instruction or it may, for example,
provide the user with some form of statistics on false
interrupts. If the handler does anything other than the
RTWP it will be necessary to either perform the 'LIMI 0'
instruction or to allocate some memory to be used as a
workspace (not necessarily a whole workspace, but at least
three words for R13, R14 and R15) for each unused interrupt
level.

Although this doesn't stop any false interrupt signals from
being generated, it does ensure that a false interrupt on an
unused interrupt level will not have disastrous side
effects. How to cope with false interrupt signals on a used
interrupt level is another problem. It may be possible to
investigate the "interrupting" device and to determine
whether it actually interrupted or not. Or it' may be
possible to state that a particular device can only
interrupt when some specific set of conditions prevail; if
all the coditions are met then assume that it was a true

interrupt, otherwise it could be treated in a similar
fashion to an unused interrupt level.

8.11 EXTENDED OPERATION INSTRUCTIONS

Extended operation instructions (XOPs) enable the user to
extend the existing instruction set by defining additional
"instructions" that are implemented by software routines.
XOPs provide a kind of "fast subroutine call" for often
performed operations. The 9900 supports 16 extended
operation instructions, numbered 0 to 15.

Texas Instruments 8-41 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

If the program is running under an operating system, XOP
instructions are often predefined by the system. They are
used as a method of calling operating system routines that
perform specific functions. These functions, in particular
input/output operations, are provided by the system as it is
not safe to allow a user to implement them (they could, too
easily, affect other users). The XOP mechanism isolates the
user from the internal workings of the operating system.
Extended operation instructions, used in this manner are
also known as extracodes or supervisor calls (SVCs).

This type of instruction is often referred to as a software
interrupt. Software interrupts differ from hardware
generated interrupts in that software interrupts have no
priority sequencing. (There is no waiting to be recognized
by the processor, an extended operation instruction is taken
as soon as it is issued). Also, the XOP instruction
requires an operand; this allows a parameter to be passed
over to the service routine.

One potential problem with XOPs is that there is only one
set of XOPs in each system. Where a system can execute
multiple programs, there is a potential conflict over use of
XOPs, as different programs may wish to use the same XOP
number for different operations.

8.11.1 Defining Extended Operation Instructions

XOP is a valid assembly language mnemonic; unfortunately, it
does not convey any information about the operation a
particular XOP performs. However, it is possible to assign
a more meaningful mnemonic to an extended operation
instruction using the Define Extended Operation (DXOP)
directive. DXOP has 2 operands:

1) The mnemonic by which the XOP is to be known.

2) The number of the XOP involved.

This directive associates the mnemonic with a particular XOP
(it does not generate any code). When the mnemonic appears
as an instruction opcode, the assembler generates the
machine code to execute the appropriate XOP routine. (It
translates the mnemonic into the correct XOP instruction and
then assembles that.) For example:

DXOP CALL,4

CALL 0FRED

Texas Instruments 8-42 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

The first instruction associates the mnemonic CALL to XOP
4. The second is an example of an XOP instruction (although
it doesn't look like it). The effect of these two
instructions is to execute the XOP 4 instruction with the
symbolic address FRED as its parameter.

8.11.2 Extended Operation Instruction Vectors

Like a hardware interrupt, an extended operation instruction
has a two word dedicated vector containing:

1) The address of the workspace to be used by the
XOP.

2) The address of the XOP routine's entry point.

These vectors are located at memory addresses >40 to >7F
(see Table 8-3).

Before an extended operation instruction is executed, its
vector must contain the appropriate values. For the CALL
extended operation above:

AORG >50 CALL'S vector at >50
DATA CALLWP Workspace for CALL
DATA CALLPC Entry point for CALL

8.11.3 Extended Operation Instruction Execution

When an extended operation instruction Is executed, the
processor performs the following sequence:

1) Locates the XOP's vector (4 times the XOP
number plus >40) and then loads the WP and PC
registers with the values contained there.

2) Performs a context switch.

3) Sets bit 6 of the status register to 1 (this
indicates that an extended operation
instruction is being executed) if it is
implemented in software.

4) Places the effective address of the
instruction's operand into the new workspace
register 11.

5) Passes control to the routine's entry point.

Return from an extended operation instruction is via the
RTWP instruction. This restores the program environment

Texas Instruments 8-43 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

existing before the instruction was executed.

Address XOP Number Vector Contents

0040 0 WP address for XOP 0

0042 0 PC address for XOP 0

0044 1 WP address for XOP 1

0046 1 PC address for XOP 1

0048 2 WP address for XOP 2

004A 2 PC address for XOP 2

004C 3 WP address for XOP 3

004E 3 PC address for XOP 3

0050 4 WP address for XOP 4

0052 4 PC address for XOP 4

0054 5 WP address for XOP 5

0056 5 PC address for XOP 5

0058 6 WP address for XOP 6

005A 6 PC address for XOP 6

005C 7 WP address for XOP 7

005E 7 PC address for XOP 7

0060 8 WP address for XOP 8

0062 8 PC address for XOP 8

0064 9 WP address for XOP 9

0066 9 PC address for XOP 9

0068 10 WP address for XOP 10

006A 10 PC address for XOP 10

006C 11 WP address for XOP 11

006E 11 PC address for XOP 11

0070 12 WP address for XOP 12

0072 12 PC address for XOP 12

0074 13 WP address for XOP 13

0076 13 PC address for XOP 13

0078 14 WP address for XOP 14

007A 14 PC address for XOP 14

007C 15 WP address for XOP 15

007E 15 PC address for XOP 15

Table 8-3 XOP Vector Table

Note: Extended operation instructions can also be called
using the XOP instruction. This requires two operands:

1) Source operand, as above for CALL

2) XOP number

The extended operation instruction shown earlier

CALL @FRED can be written as XOP @FRED,4

The latter does not require the DXOP directive to be used.
However, it is recommended that the first approach be
adopted as the mnemonic can indicate what the routine
actually does and thus aids program readability.

Texas Instruments 8-44 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

WP

PC

ST

XOP2 VECTOR

> 0700

> 0890

ADDRESS

0048
004A

CONTENTS

> 0220

> 0240

0220 XOP2 WP

0240 XOP2 ROUTINE

0700 PROGRAM WP

0800

890

892

EXECUTING PROGRAM

XOP *1.2

Figure 8-26 State Before Executing the XOP 2 Instruction

XOP 2 VECTOR

WP > 0220

PC > 0240

ST

ADDRESS

0048
004A

-•t)220

-•0240

STATUS BIT e»*r

Figure 8-27 State After Executing the XOP 2 Instruction

Texas Instruments 8-45

CONTENTS

> 0220
> 0240

XOP2 WP

>xxxx

>0700
>0892

XOP2 ROUTINE

RTWP

R11

R12

R13

R14

R15

October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.12 9900/99000 FAMILY

The 9900/99000 family of microprocessors gives a choice of
different cost/performance/environment options using the
same software. Because of the nature of some of the options

(eg the 9995 is designed for use as a microcontroller) there
are small differences in architecture which are outlined

below.

Modifications to assembly language software to run on a
different processor in the family are usually quite
straightforward. For high level language (eg Pascal)
programs the differences will be taken care of within the Rx
executive.

8.12.1 TMS9900

o NM0S technology

o 16 bit data bus

o 3MHz

o 3 power rails (+5V, -5V and +12V)
o 4 phase clock
o 64 pin package
o Up to 64K byte address space
o 16 prioritized interrupts
o Memory-to-meraory architecture
o 3 dedicated registers - PC, WP and ST
o 16 general registers - R0 to R15
o Workspace register set - any 32 byte block of RAM
o 5 workspace register addressing modes
o 16 extended operation instructions (XOPs)
o Serial 1/0 via CRU - up to 4K bits
o 3 single bit and 2 multiple bit CRU instructions
o Automatic context switch for interrupts, XOPs and

subroutines

o 69 instructions, includes hardware multiply (MPY)
and divide (DIV)

o DMA capability
o 5 external instructions

8.12.2 SBP9900A

o Integrated injection logic (I2L) technology
o Fully static operation
o Single phase clock
o Up to 3MHz at 500mA injector current
o Approved to MIL standard 883B and BS9000

Texas Instruments 8-46 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

o Single power rail
o 64 pin package

8.12.3 TMS9980A

o 8 bit data bus

o Up to 16K byte address space
o 4 prioritized interrupts
o On chip 4 phase clock generator
o 40 pin package

8.12.4 TMS9981

As for the 9980A except:

o No -5v rail required
o On chip crystal oscillator

Note: The TMS9981 has a different pin out to the TMS9980A.

8.12.5 TMS9995

o 8 bit data bus

o On chip oscillator and clock generator
o Single +5V power rail
o 40 pin package
o Optional automatic first wait state generation
o 12MHz (internally divided by 4)
o On chip RAM (256 bytes) organised as 16 bit words
o On chip decrementer/event counter
o 5 prioritized interrupts
o Macro Instruction Detect feature

o Arithmetic overflow interrupt
o Up to 32K bits of serial I/O via CRU
o Minimum memory cycle time of 333ns
o Instruction pre-fetch
o CRU flag register (16 bits)
o Signed multiply (MPYS) and divide (DIVS)
o Load WP and ST from register (LWP and LST)

8.12.5.1 Macro Instruction Detect

The Macro Instruction Detect (MID) feature enables the user
to extend the instruction set in a similar way to the XOP
instructions.

An XOP instruction, which is a valid 9900 assembly language
instruction, occupies a range of opcodes: for example, the

Texas Instruments 8-47 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

'XOP 0' instruction uses opcodes >2C00 to >2C3F; the
'XOP 1' instruction uses >2C40 to >2C7F; etc. When the
processor encounters an XOP instruction it evaluates the
address of the XOP instruction's vector, uses the least
significant 7 bits of the Instruction to determine the
address of the source operand, stores this address in the
XOP's workspace register 11, and performs a context switch
to the appropriate routine. (Full details on XOPs is given
in section 8.11.)

With the MID feature, the user can implement some, one, or
all, of the undefined instruction opcodes (such as the
opcodes >0000 to >007F) in software. When an undefined
opcode (a MID opcode) is encountered by the 9995 processor,
a non-maskable level 2 interrupt is generated. This causes
the processor to perform a context switch using the
Interrupt level 2 vector. The level 2 interrupt handler
must identify which software routine actually implements the
particular opcode and then pass control to that routine. A
routine may implement a single opcode, or a range of opcodes
(like the XOP instruction). This is totally up to the user
to decide when designing the level 2 interrupt handler and
its callable routines. The MID opcode instruction can be
accessed by:

MOV (?-2(Rl4),temp Copy opcode into TEMP

As the processor stores the incremented program counter when
the context switch takes place, a simple RTWP instruction
returns control to the interrupted program at the
instruction following the MID opcode.

If any MID opcode instructions are executed in the level 2
interrupt handler itself then care must be taken to ensure
that the original program context is not lost, and also that
the handler does not cycle endlessly.

8.12.5.2 Arithmetic Overflow

The user can cause the processor to generate an arithmetic
overflow interrupt (a level 2 interrupt) whenever an
instruction sets the arithmetic overflow status bit (status
bit 4). This is done by setting the arithmetic overflow
interrupt enable status bit (status bit 10) to a '1' and
enabling level 2 interrupts via the processor's interrupt
mask. Both of these operations can be performed using the
'LST register' instruction.

8.12.5.3 Test for MID or Arithmetic Overflow

The MID interrupt and the arithmetic overflow interrupt both
generate level 2 interrupts (they share the same interrupt
vector). Thus, when a level 2 interrupt is taken by the

Texas Instruments 8-48 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

processor, the level 2 interrupt handler must determine what
actually caused the interrupt. Was it a MID? Or was it an
arithmetic overflow? When this has been decided the
appropriate routine can be invoked. (Note: Before control
is returned to the interrupted program, the interrupt must
be reset, otherwise the level 2 interrupt handler will be
Immediately re-taken.)

If the MID flag (at on chip CRU software base address >1FDA)
is a '1' then a MID caused the interrupt (this is reset by
writing a '0' to the MID flag) otherwise it was an
arithmetic overflow (this is reset by masking the arithmetic
overflow status bit to a '0').

8.12.5.4 On Chip CRU Flag Register

The CRU flag register consists of 16 read/write CRU bits
(named FLAGO, FLAG1, ..., FLAGF) starting at a CRU software
base address of >1EE0. The first 5 of these flags (FLAGO to
FLAG4) are used internally, but the remaining 11 are user
definable.

8.12.5.5 On Chip Decrementer/Event Counter

The decrementer can be configured as either a timer or an
event counter using FLAGO, and enabled/disabled using
FLAG1. When FLAGO is set to '0', the decrementer functions
as a timer, and when it is set to '1' it is an event counter
(the level 4 interrupt line is used as the input for the
event counter). If FLAG1 is set to '0', the decrementer is
disabled, but if it is a '1', the decrementer is enabled to
generate a level 3 interrupt.

The decrementer is configured by:

o Set FLAGO to the required mode.

o Load the required 16 bit start count into the
decrementer register (this is located at memory
address >FFFA). In timer mode, the count is
decremented every fourth CLKOUT cycle (every
1.333us). (A count of >3A98 gives a 'delay' of
20ms, while a count of zero disables the
decrementer.) When the count reaches zero, a
level 3 interrupt is generated, the original
count is reloaded and decrementing continues.

o Enable the decrementer by setting FLAG1 to '1'.

o Enable level 3 interrupts by setting the
Interrupt mask to 3 or higher.

Texas Instruments 8-49 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Note: The 256 bytes of internal RAM is distributed as 252
bytes from address >F000 to >F0FB, and 4 bytes from >FFFC to
>FFFF. (These last 4 bytes are the two-word LOAD vector.)
This RAM can not be switched out of the address map. The
Internal RAM is automatically selected when any of the above
addresses are referenced, regardless of what is located at
these addresses off chip.

8.12.6 SBP9989

o Integrated injection logic (I2L) technology
o Fully static operation
o Single phase clock
o Up to 4.4MHz at 500mA injector current
o Conforms to MIL standard 883B

o Single power rail
o 64 pin package and chip-carrier 68 pin
o Multiprocessor interlock signal (MPILCK)
o Extended instr. processor present signal (XIPP)
o Interrupt acknowledge signal (INTACK)
o Arithmetic overflow interrupt
o Memory map enable signal (MPEN)

- to drive TIM99610 memory mapper chip
- as an extra address bit for 2 * 64K byte pages

o Signed multiply (MPYS) and divide (DIVS)
o Load WP and ST from register (LWP and LST)

8.12.6.1 MPILCK

In an environment consisting of a number of microprocessors,
where some sharing of the system memory is necessary (if
only for the microprocessors to communicate with each other)
there is a possible software memory contention problem: one,
or more, processors are attempting to read the contents of a
piece of memory while another processor is attempting to
modify it. While the piece of memory is being read from, no
processor should be allowed to modify it. Similiarly, while
the memory is being written to, no processor should be
allowed to read it.

This problem is more acute if the memory location in
question is used to allow or inhibit access to another piece
of memory (in software, such a memory location is known as a
semaphore)•

What is required is some mechanism that implements a 'test
and set' operation in an indivisible manner while also
inhibiting access to the semaphore. This is performed via
the MPILCK (multiprocessor interlock) signal, which is
generated whenever the ABS instruction is executed. If the
semaphore is initially set to >FFFF to indicate that it is
not in use, exclusive access to the piece of memory can be

Texas Instruments 8-50 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

guaranteed by:

test ABS semaphore Is the semaphore in use?
JGT test +ve - semaphore in use

The ABS instruction 'converts' a negative value into a
positive value and sets the status bits according to the
original value. If the semaphore is not in use (contains
the negative value -1), the ABS instruction resets the
semaphore value to 1 and resets the arithmetic greater than
status bit to '0'; program control will 'drop through' the
JGT instruction. When the semaphore is in use (contains the
positive value 1), the ABS instruction simply sets the
arithmetic greater than status bit to '1'; program control
will be sent back to the 'test instruction'.

When a processor has finished with the piece of memory, the
semaphore is reset to >FFFF (the semaphore is not in use).

8.12.6.2 XIPP

The extended instruction processor present (XIPP) signal is
the same as the attached processor present signal used in
the 99000 family processors. It works in a similar manner
to an attached processor using the MID feature (except that
the 9989 does not have a macrostore). This is defined below
in sections 8.12.7.1 and 8.12.7.2.

8.12.6.3 INTACK

The interrupt acknowledge (INTACK) signal allows the 9989 to
acknowledge the presence of an interrupt during times when
it has handed over control of the system bus to an extended
instruction processor.

8.12.7 TMS99000 Family

o Scaled NMOS (SMOS) technology
o Multiplexed 16 bit address and data bus
o Single +5V power rail
o Up to 24MHz (internally divided by 4)
o 40 pin package
o On chip oscillator and clock generator
o Minimum memory cycle time of 167ns
o Instruction pre-fetch
o Privileged mode
o Bus status codes to identify processor activity
o Multiprocessor interlock signal (MPILCK) via bus

status codes

o Multiprocessor support instructions - test memory
bit (TMB), test and clear memory bit (TCMB), and

Texas Instruments 8-51 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

test and set memory bit (TSMB)
o Macrostore emulation of user defined instructions
o Attached processor present signal (APP) - with

access to PC, WP and ST registers
o Macro Instruction Detect feature

o Arithmetic overflow interrupt
o Interrupt acknowledge signal (INTA)
o Up to 16K bits of serial I/O via CRU
o Up to 16K bits of parallel I/O via CRU
o Optional automatic first wait state generation
o Memory map enable signal (ST8) to drive TIM99610

memory mapper chip
o Memory expansion instructions via macrostore -

load map file (LMF), long distance source (LDS),
and long distance destination (LDD)

o Signed multiply (MPYS) and divide (DIVS)
o Load WP and ST from register (LWP and LST)
o Stack support instructions - branch and push link

to stack (BLSK), and branch indirect (BIND)
o Double precision 32 bit instructions - add double

(AM), subtract double (SM), shift left arithmetic
double (SLAM) and shift right arithmetic double
(SRAM)

8.12.7.1 Macrostore

In the 99000 family, the concept behind the MID (the ability
to define 'new Instructions' that are implemented in
software) has been extended to allow these routines to be
stored in a high-speed memory that is addressed
independently of main memory. This high-speed memory
(minimum cycle time of 167ns) is known as macrostore.

When a MID opcode is detected by the processor, program
control is transferred to the macrostore.

The first few words of the macrostore contain a specially
ordered table. Each entry in this table defines the
macrostore address of the routine that implements a
particular group of MID opcodes. This address table is used
to determine whether the MID opcode is, in fact, implemented
by a macrostore routine. If so, program control is passed
to the appropriate routine. If not, a level 2 interrupt is
generated. Although a special internal, 16 word, workspace
(this is known as macrostore RAM, or MRAM) is used when the
processor is executing out of macrostore, it is a simple
matter to access data in the user's main memory. When the
macrostore routine has completed, an exit is made from the
macrostore (program control is returned to the user's
program) via an RTWP instruction.

If the user defined instruction allows the standard
addressing modes (register, register indirect, symbolic,
etc) for the source and/or the destination operand then the

xas Instruments 8-52 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

appropriate MID routine must calculate the operand's actual
address. (This is automatically performed by the microcode
for the standard instructions.) To save the overhead of
having to do this calculation in software, the 99000 family
of processors provide the EVAD (evaluate address) macrostore
instruction.

Internal to the 99000 family processors is a IK byte
macrostore ROM (MROM) which can be expanded to 61K bytes
using off chip high-speed ROM, PROM, or even RAM.

MRAM

ROM RAM

I
SYSTEM BUS

i

y

PROCESSOR

EXPANSION
MROM

New instructions defined as Software Routines in high-speed on or off chip macrostore.

Figure 8-28 Macrostore

The macrostore can be addressed in three different modes

o Standard mode - The on chip MROM and MRAM are
both enabled. This allows the software routines

in MROM to be used.

o Prototyping mode - The MROM is disabled but the
MRAM is enabled. This allows the user to

re-configure the system so that a Ik byte block
of the off chip macrostore is used as though it
was the MROM. This enables the user to try out
and test the macrostore routines before

committing them to mask.

o Baseline mode - All macrostore is disabled.

Only the baseline 99000 instruction set can be
executed; with the exception of the parallel CRU
instructions this is identical to that of the

9995.

8.12.7.2 Attached Processors

To increase system throughput, some of the macrostore
routines can be taken out of the macrostore and implemented
in an attached processor (a specially designed unit to

Texas Instruments 8-53 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

handle a particular function) which is attached to the
system via a special interface. If these routines are
frequently used, or relatively slow and complicated (such as
floating point arithmetic routines), then a considerable
speed improvement will be noticed. (Floating point
routines, for example, could be replaced by a high-speed
floating point processor.)

When the system processor encounters a MID opcode it outputs
a MID bus status code. Any attached processor that
recognises the MID opcode can then inform the system
processor that it is prepared to execute the opcode (using
the attached processor present signal). If this happens,
the system processor relinquishes the bus to the attached
processor and waits until the attached processor signals
that it has finished.

Before giving up the bus, the system processor copies its
internal WP, PC and ST registers into RAM. When it regains
control of the bus these hardware registers are reloaded
from RAM. This allows the attached processor to access the
user's workspace, to access any multiple word operands
(updating the PC to skip over these operands as necessary)
and to return status information.

ROM RAM

SYSTEM BUS

i

1

k

1

k

PROCESSOR
ATTACHED
PROCESSOR

CPU must block and relinquish the BUS while the attached processor executes.

Figure 8-29 Attached Processor

Unfortunately, attached processors can not simply be
attached to a high-speed bus without limit. They are not
completely self-contained computing systems as they require
the services of the system bus (to access memory, for
example), and they operate by suspending (or blocking)
execution of the main program until they have completed
their operation. Even so, an attached processor can
increase the system throughput for specific operations by 10
to 100 times.

Texas Instruments 8-54 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.12.7.3 Attached Computers

Attached computers, on the other hand, only require the
services of the system bus infrequently (when the macrostore
instruction invokes them with the required parameters, for
some hand-shaking signals and for completion signaling).

ROM RAM

i k

f

ik

SYSTEM BUS.

J

1

k

f

ik

PROCESSOR ATTACHED
COMPUTER

Once paramaters have been passed, the CPU can continue to execute in parallel
with the attached computer (the attached computer has its own BUS).

Figure 8-30 Attached Computer

ROM

RAM

As attached computers are totally self-contained systems, no
blocking action is necessary, which means that they can
execute in a true parallel fashion. An attached computer
can increase the system throughput for particular operations
up to 1000 times.

The complete procedure when a MID opcode is encountered by
the processor is shown in Figure 8-31.

8.12.7.4 Interrupts

All interrupts (except RESET) are inhibited while executing
from macrostore. However, there are two instructions that
allow the user to test for any pending interrupts while
executing a routine in macrostore. Using these, MID opcodes
requiring long execution times can be written so that they
can be interrupted and resumed after the interrupt has been
serviced. If the MID opcode is being handled by an attached
processor when a pending interrupt is detected, the attached
processor can temporarily return control to the system
processor to handle the interrupt. Upon completion of the
interrupt servicing, the system processor returns control
back to the attached processor. (When the interrupt is

Texas Instruments 8-55 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

taken by the system processor it automatically outputs the
interrupt acknowledge bus status code, INTA, which can be
used to reset the interrupting device.)

^S^ Standard >.
n. Institution ^^

Tno

y^ Attached^V..
S. Computer ^^

I No

y^ Attached^v^
"^"s^^ Processor ^^

Xno

^^"^Macrostore^^v^
^>_ Defined ^?

\ ?̂ ^
INo

Yes Process in
CPU microcode

Yes Invoke Attached

Computer and continue

Yes Invoke Attached
Processor and wait

Yes Invoke Macrostore
routine

Yes

Level 2
Interrupt

yS*^ Software ^v.^
<V^ Defined ^^

|No

Invoke main memory
routine

Operating system
handles violation

Figure 8-31 Full TMS99000 Instruction Sequence

8.12.7.5 MPILCK

In a multiprocessor environment where communication is
performed via shared memory it is necessary to have a
mechanism that allows a portion of memory to be exclusively
'owned', so that while one processor is accessing that
portion every other processor in the system is physically
inhibited from accessing it. This is guaranteed via the
multiprocessor interlock (MPILCK) bus status code and the
multiprocessor support instructions (TMB, TCMB and TSMB);
the ABS instruction can also be used.

8.12.7.6 CRU Operations

On the 99000 family of processors, CRU operations use bits 0
to 14 of register 12 (instead of just bits 3 to 14 with the
TMS9900). This expands possible CRU I/O operations from the

Texas Instruments 8-56 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

previous maximum of 4K bits (with the TMS9900) to a new
maximum of 32K bits. The 32K bits is split into two 16K bit
blocks; the first block (0 to 16K) is used for serial I/O
transfers, and the second block (16K to 32K) is used for
parallel I/O transfers. (If the most significant bit of
register 12 is set to a '1' then a parallel transfer is
indicated otherwise it is a serial transfer.)

For parallel CRU operations, the count supplied to the LDCR
and the STCR instructions is used to select either an 8 or a

16 bit transfer and also to specify whether or not the CRU
base address is to be incremented by 2 after the transfer
has been performed. (With serial CRU operations, the count
is used to specify how many bits are to be transferred.)
The possible valid values for the count, using parallel CRU,
are shown below:

Binary Count

Byte transfer
0010 R12 not altered

0011 R12 post incremented by 2

Word transfer

1010 R12 not altered

1011 R12 post incremented by 2

All other values for count are reserved for future expansion
of the parallel CRU capability and should not be used.

When operating in user mode (status bit 7 is set to '1'), an
attempt to execute an LDCR or an STCR instruction using a
CRU base address in the range >1C00 to >7FFE or >9C00 to
>FFFE is flagged as a privileged opcode violation. (This
condition generates a level 2 interrupt request and also
inhibits transfer of the remaining bits.)

Note: The SBO, SBZ and TB instructions should be used with
caution when an access is made within the parallel CRU
address space. SBO and SBZ will set/reset the CRUOUT line
(the same line as data bit D15), while the other 15 bits (DO
to D14) will be undefined. TB takes its value from the
CRUIN line (the same line as data bit DO).

There will be different versions of the 99000, each
supporting an extended instruction set, implemented in the
macrostore. These instruction sets will be tailored to

particular requirements, eg:

99105 Baseline version, instruction set as 9995,
no macrostore

99110 High performance floating point package
99120 Realtime executive (Rx) kernel

Texas Instruments 8-57 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.13 ALGORITHMS AND TECHNIQUES

The paragraphs that follow provide information about
algorithms and techniques that are applicable to 9900
assembly language programming.

8.13.1 Invoking the 9900 Family of Assemblers

The 9900 family of assemblers are upward compatible.
However, there are restrictions on the use of certain

instructions. The first three instructions below are only
valid on the 990/10 or /12 minicomputers with map option.
The remaining five instructions (external instructions)
perform specific functions on the /10, /12 and the /4 mini
computers. Although they are not illegal for the TMS9900
microprocessor, the functions they actually perform are
dependent upon the external hardware.

Long distance destination LDD
Long distance source LDS
Load memory map file LMF
Clock off CK0F

Clock on CKON

Idle IDLE

Load ROM and execute LREX

Reset 1/0 RSET

8.13.1.1 LBLA

The Line-By-Line Assembler is a two-EPROM package that is
used in conjunction with the TIBUG monitor supplied with the
TM990/101 and /100 microprocessor boards. With these two
additional EPROMs correctly installed, the Line-By-Line
assembler is entered by the following sequence:

? R

w=xxxx space

P=XXXX 9E8

? E

return (9E6 in some versions)

TIBUG Monitor

Prompts and Replies

User Replies

This initializes the workspace, sets the program counter to
the entry point of the assembler and begins execution.

The assembler prints the address of the first word of memory
into which the subsequent program will be stored and waits
for instructions to be entered. To exit from the assembler

and return to TIBUG press the escape key (ESC).

Texas Instruments 8-58 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Once the program has been entered, it can be executed by
performing the same sequence of commands used for entering
the assembler. However, P should be set to the program's
entry point instead of 9E8.

For further details refer to the TM990/402 Line-By-Line
Assembler User's Guide.

8.13.1.2 SYMBOLIC

SYMBOLIC is a ROM resident two-pass assembler (see footnote)
that is supplied with the TM990/302 Software Development
Board. It takes source statements stored on audio cassette

(created via the resident text editor) and produces absolute
(not relocatable) machine code. The first instruction in
the program should be an AORG directive that sets the
location counter to the absolute start address of the

program. Before executing the symbolic assembler, the
cassette containing the source statements must be positioned
to the begining of the program. The assembler is invoked
by:

.SA <devl>,<dev2>,<dev3> return

where <devl> is the device number of the cassette containing
the source statements. <dev2> is the device number of the
cassette where the object code is to be stored; and <dev3>
is the device number of the listing device.

After the first pass, the assembler responds with:

** REWIND TAPE

** HIT 'CR' TO GO

If <devl> and <dev2> are the same, the assembler responds
with these messages following the second pass:

** SWAP TAPES

** HIT 'CR' TO GO

If the program is too large to fit into the assembler's
buffer at one time, more steps will be involved.

Having stored the object code on cassette, the next step is
to invoke the Relocating Loader to load the absolute program
into the board's user memory.

A two-pass assembler reads the source program twice. On the
first pass it builds a symbol table containing the name of
every symbol used in the program and the address where it
was defined. During the second pass the machine code is
produced using the instruction opcodes and the completed
symbol table.

Texas Instruments 8-59 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

This is performed by:

.RL <dev> return

where <dev> is the device number of the cassette containing

the object code.

The loader requires information to determine where the
program is to be loaded into memory, how much of the program
is to be loaded, etc. When the loader is ready for this
information, it informs the user by prompting '?'.

Once loaded, the assembled program is executed by invoking
the Debugger Utility (the DP command), setting the program
counter, workspace pointer and status register to the appro
priate values using the IR command, and then issuing the EX
command.

See the TM990/302 Software Develpoment Board User's Guide
for further details.

8.13.1.3 TXMIRA

TXMIRA is a two-pass assembler that runs on a 990/4 mini
computer under the floppy disc based TXDS Control Program.
The assembler is invoked by replying to the Control Program
prompts as follows:

PROGRAM:

INPUT:

OUTPUT:

OPTIONS:

TXDS Control

Program Prompts

DSCX:TXMIRA/SYS
DSCX:NAME/ASM
DSCX:NAME/OBJ,DSCX:NAME/LST

User Replies

DSCX:NAME/EXT is the full pathname of the file
containing the program to be assembled.

return

return

return

return

(or device)

During output, if a file does not exist, it will be
created. The second output parameter specifies where the
listing is to be sent. This is usually a device such as the
line printer (LP). If this parameter is missing, the system
default printer will be used.

For a full list of the available options refer to Section
5.4 of the Model 990 Computer Terminal Executive Development
System (TXDS) Programmer's Guide.

The TXDS Linking Utility Program (TXLINK or TXSLNK) must be
used to resolve any external references (REFs) contained in
the program.

If the program has been written to run on a TM board based

Texas Instruments 8-60 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

system then It may be possible to test and debug It using
TIBUG or the Software Development Board. However, the AMPL
in-circuit emulator (If one is available) could make the
testing a lot easier, simpler, quicker and less painful.

If the program has been written to run on a /4 then there
are two options available. If it doesn't use any operating
system facilities then the EX or RU commands of the TXDS
Standalone Debug Monitor (TXDBUG) can be used. If it does
use operating system facilities and if the Operator
Communications Package (OCP) has been included in the
generation of the /4 operating system (using GENTX) then OCP
may be used.

For a program to run on the /4 the first three words of the
program must contain (in the following order):

1) The address of the initial workspace.

2) The address of the program's entry point.

3) The address of the error handling routine to be
invoked when the operating system detects a
non-fatal error. If this address is less than

15 then it is assumed that an error handler is

not included in the program.

As the 990/4 minicomputer is based around the TMS9900
microprocessor it is possible to use the AMPL in-ciruit
emulator to debug a /4 based program. Note: there can be
timing problems with the host cpu.

8.13.1.4 SDSMAC

SDSMAC (Software Development System Macro Assembler) is a
multipass macro assembler that runs on a 990/10 or /12
minicomputer under the hard disc based DX10 operating
system. This assembler is invoked by issuing an XMA command
to the SCI (System Command Interpreter) prompt and then
supplying the relevant information to the XMA prompts.

[] XMA return

SCI prompt

EXECUTE MACRO ASSEMBLER

SOURCE ACCESS NAME:

OBJECT ACCESS NAME:

LISTING ACCESS NAME:

ERROR ACCESS NAME:

OPTIONS:

MACRO LIBRARY PATHNAME:

XMA Command Prompts

Texas Instruments 8-61

DISC.SOURCENAME

DISC.OBJECTNAME

DISC.LISTNAME

DISC.ERRORNAME

DISC.LIBRARYNAME

User Replies

return

return

return

return

return

return

October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

DISC specifies the name of the (installed) disc on which the
file resides. If the file does not exist prior to the
command for the listing, object, and error access name
prompts, it will be created on the specified disc with the
name given.

DISC.xxxxNAME is the full pathname of the file (or device)
to be used.

When creating a program on the /10 or /12 it is a good idea
to create a directory (using the CFDIR command) through
which all files related to that particular program are
referenced. This allows the replies to the XMA prompts to
be of the form:

DISC.PROGNAME.EXT

where PROGNAME is the directory name for the program files,
and EXT is one of ASM, OBJ, LST, ERR, MACRO.

When the assembly is complete it may be necessary to execute
the Link Editor (XLE command) or even the TX Link Editor
(TXXLE command) to resolve all external references in the
assembled program.

For a TM board based or for a 990/4 based program refer to
the relevant comments under TXMIRA above.

For a 990/10 or /12 minicomputer the fully linked (if
necessary) program must be installed as either a procedure,
task or overlay (using the IP, IT or 10 commands). (For
most applications the program is usually installed as a
task.) This can then be executed using the XT (execute
task) command, or debugged using the XD (execute debug)
command and the SCI debugger commands.

The first three words of the 990/10 or /12 based program
must contain task information; this is the same as for a
990/4 based program and is described under TXMIRA.

8.13.2 Number Representations

The information in this subsection discusses how numbers are

formed and how they are stored internally. Note: The
TMS9900 performs all arithmetic using twos complement
notation; it does not contain any instructions that directly
manipulate fractional, floating point or binary coded
decimal numbers. If a program needs to use these types of
number systems, then the user must supply the routines to
actually perform the required arithmetic operations. It
will also be necessary to provide the routines to convert
between the required number system and the twos complement

Texas Instruments 8-62 October 1981

J

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

form. The TMS99110 provides floating point instructions in
macrostore.

8.13.2.1 Number Systems

A number in the decimal, base 10, system is composed of the
digits 0 to 9. Numbers greater than 9 are represented using
the decimal place convention. The value of each place is
ten times that of the place to Its immediate right.

For example, the decimal number 2976 means

2*103 + 9*102 + 7*101 + 6*10

Note: 10° = 1

While the decimal system is the most frequently used number
system it is not suitable for use on a computer.

The smallest unit of storage in a computer is the bit (from
Binary digiT). The bit can be thought of as a single wire
that can only be in one of two states: on or off, 'high' or
'low', '1' or '0'. The binary system automatically lends
itself to this.

A number in the binary, base 2, system uses only the digits
0 and 1. The value of each place, in the binary
place convention, is twice that of the place to its
immediate right (as opposed to 10 in the decimal system).

For example, the binary number 1011101 (93 decimal) means

1*26 + 0*25 + 1*24 + 1*23 + 1*22 + 0*21 + 1*2°

Note: 2° = 1

Writing large numbers in their binary representation is too
cumbersome for most applications. However, it is possible
to group bits together and represent each group by a single
digit. This gives rise to the octal and hexidecimal number
systems.

Octal, base 8, representation uses the digits 0-7. An
octal digit corresponds exactly to 3 bits.

Hexadecimal (or hex for short) notation, base 16, uses the
digits 0-9 plus A - F to represent the decimal values 10 -
15. Each hex digit corresponds to exactly 4 bits.

Texas Instruments 8-63 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

-3rd • —2nd- •< 1st—

1 1 1 1 I I

Figure 8-32 Bit Grouping

Octal

Binary

Hex

1001111111011010 => 1001 1111 1101 1010 => 9FDA

Binary Octal Decimal Hex

10 2 2 2

1000 10 8 8

1010 12 10 A

10000 20 16 10

11111111 377 255 FF

Note: Ten does not correspond to an integral power of two.
Therefore conversion from decimal to binary (and vice versa)
is more difficult.

8.13.2.2 Representation of Negative Numbers

Negative numbers are stored in twos complement form. In
this form, the most significant bit of a word (bit 0)
indicates the sign of the number. If it contains a '0', the
number is positive; if it contains a '1', it is negative.
The other 15 bits (bits 1 - 15) hold the twos complement
value of the number. For a positive number this is simply
the binary representation of that number.

The representation of a negative number, however, (for
example 1096) is derived as follows:

1) Take the magnitude of the number, in this case
1096, and write it in binary, using the full
word length of the machine. (16 bits for the
9900.)

1096 •0 000010001001000

2) Take the ones complement of this number (change
the state of each bit; replace '0's with 'l's
and 'l's with '0's).

1111101110110111

3) Add 1 to the least significant bit.

Texas Instruments 8-64 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

111110 1110 110 111

+1

1111101110111000

The positive number 1096 is stored as >0448 while the
negative number -1096 is stored as >FBB8.

8.13.2.3 Representation of Fractions

The general equation to convert a binary fraction into its
decimal equivalent is:

O.dl d2 dn = dl*2"1 + d2*2'2 + + dn*2""

where dl dn represent binary digits

For example, the binary fraction 0.1001 is equivalent to

1*2*1 + 0*2'2 + 0*2"3 + 1*2"*

= 0.5 + 0 + 0 + 0.0625

= 0.5625

To convert a decimal fraction to its approximate binary
equivalent, multiply the decimal fraction continually by 2,
saving the integer part of the result (either '0' or '1')
until the result is zero. Unfortunately it is not always
possible to produce an exact binary representation.

Consider the number 0.8125.

0.8125

*2

0.6250

*2

0.2500

*2

0.5000

*2

1.6250 1.2500 0.5000 1.0000

This number can be accurately expressed as 0.1101.

Now consider the number 0.9725.

0,,9725 0,,9450 0,,8900 0,,7800 0.,5600
*2 *2 *2 *2 *2

1,,9450 1.,8900 1.,7800 1.,5600 1. 1200

0.,1200

*2

0.,2400

*2

0.,4800

*2

0,,9600

*2

0.2400 0.4800 0.9600 1.9200

We could continue this process indefinately, but there is
little point to it as the number 0.9725 can not be

Texas Instruments 8-65 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

accurately represented in binary. After 9 iterations the
binary approximation to the number is 0.111110001. This
yields the number 0.970703125; an error of 0.001796875.
Obviously the error can be reduced further by performing
several more iterations. However, there are practical
limitations to how far this can be taken.

8.13.2.4 Representation of Floating Point Numbers

Floating point numbers can be stored in two consecutive 9900
memory words using Excess 64 notation. The 32-bit real word
is formed as: a sign bit, a 7 bit exponent and a 24 bit
mantissa:

0 1 7 8 31

EXPONENT MANTISSA

Figure 8-33 Floating Point Format

The sign bit (bit 0 of the first word) is used to show
whether the number is positive or negative (a '1' means that
it is negative). A real number is converted into the form
"fraction*exponent'. The fractional part is stored in the
24-bit mantissa field in true form and not twos complement.
The exponent part is stored in the exponent field in "Excess
64 notation".

The most significant hex digit of the mantissa must be
normalized (ie it must contain a value other than zero).
This is performed by shifting the number four bits to the
left (one hex digit) and decrementing the exponent value by
one until the mantissa is normalized.

Excess 64 notation means that the number stored in the
exponent field is 64 greater than the actual value of the
exponent part. Thus, the true exponent values 0 to 63 will
be stored as 64 to 127. The exponent field values 0 to 63
are used to represent the true exponent range of -64 to -1.

Consider the number -107.5

Binary Form Frac*Exp Form Normalised

01101011.1000 0.0110101110000 * 162 No change

In floating point form 1 1000010 0110101110000....0

The number -107.5 would be stored as >C26B8000 (sign = -ve,

exponent= +2).

Texas Instruments 8-66 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Consider the number 0.03125

Binary Form Frac*Exp Form Normalised

0.000010000 0.000010 * 16° 0.10000 * 16"1

In floating point form 0 0111111 1000000000000... .0

The number 0.03125 would be stored as >3F800000 (sign= +ve,
exponent= -1).

8.13.2.5 Binary Coded Decimal

A number that is stored in a decimal form is said to be in
Binary Coded Decimal notation (BCD). In this form a word
holds four decimal digits with each digit occupying four
bits. For numbers greater than 9999, more than one word is
required to store the BCD value.

If signed numbers are allowed, the user must decide on some
convention for indicating whether a number is positive or
negative (such as using the least significant four bits of
the least significant word to contain the sign).

Most Significant Word Least Significant Word

Most Significant Digit

Figure 8-34

Sign digit

Least Significant Digit

A Possible BCD Format

8.13.3 Position Independent Code

A program is normally assembled and linked to produce an
executable object module that is designed to reside at a
particular position in memory. Typically, if the program is
loaded at any other address than the program will not
execute correctly.

However, it is possible to write a program such that without
any modifications at all it will execute at any position in
memory. A program that exhibits this form is said to be
written in Position Independent Code. (This is different
from relocatable code, which is not directly executable
until it has gone through a location step to resolve all
addresses tagged relocatable into absolute form. It is then
no longer relocatable.)

The real value of position independent code may not be
immediately obvious so consider the following: You have an
EPROM based monitor (like TIBUG) and want to add new
capabilities to it (say an assembler, a disassembler and a

Texas Instruments 8-67 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

package) and these are also going to be EPROM
re these extra EPROMs going to be placed in
e same address? Possibly, but this would
power down your system, remove the unwanted
insert the required ones. And then you would
only one of these extra facilities at any one
rent addresses? This would be better as it

o all of the new features at any time.

floating point
based. Where a

memory? At th
require you to
EPROM(s) and
have access to

time. At diffe

allows access t

After a while, you could have built up a healthy selection
of extra monitor facilities and a number of useful
application packages. The only problem is that all of them
are specific to some particular address. What happens when
you want to use a combination of these packages and extra
facilities? It is quite likely that you will have an address
clash (two packages requiring the same memory address) and
it will become necessary to go back and re-assemble one of
them (taking great care that another address clash doesn't
happen). Now you've got two versions of a piece of software
that only differ in their load addresses. Nothing wrong
with this but it does mean that any updates (a bug corrected
or new facilities added) must be applied to both pieces of
software. This leads to a proliferation of near identical
parts and that is a real headache from a maintenance point
of view.

If the packages are written in position independent code
then only one copy of a package is ever required. When one
of the packages is wanted its EPROM(s) are simply inserted
in any unused memory space. A package is then invoked with
the address of the package's EPROM(s) as the start address.

The calling sequence for position independent code is shown
below, along with the relocatable code equivalent.

ENTRY EQU $

BL (9 SUB

SUB EQU

Relocatable Code

ENTRY EQU $

BL (3SUB-ENTRY(R4)

SUB EQU

Position Independent Code

In the above example, workspace register 4 (R4) contains the
actual address of ENTRY. This is obtained by:

START EQU

LI

BL

ENTRY EQU

MOV

R10,>045 Load RIO with RT instruction
RIO Execute instruction in RIO
$ Rll contains address of ENTRY
R11,R4 R4 contains address of ENTRY

Note: START is the real entry point for the position

Texas Instruments 8-68 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

independent code program.

8.13.4 ROM/RAM Systems

Before burning a program into ROM (the usual course of
events for a microprocessor based application/control
program), it is necessary to separate the variable data and
temporary storage locations from the constant data and

program instructions, and then add instructions to the
program to ensure that all the variable data is correctly
initialized (see Figure 8-35).

PROGRAM

Interrupts and XOPs

RAM Image

PROGRAM

*

Variables and
workspaces

At run time, the RAM image (held in ROM) is copied into the appropriate
RAM storage area.

Figure 8-35 ROM/RAM Partioning

• ROM

RAM

The simplest way of initializing data is by using the DATA,
BYTE, and TEXT assembler directives:

TEMPI DATA 100

TEMP2 DATA 25

MSG TEXT 'READY'

BYTE >D,>A,0

nment such as a

is loaded prior to
in a dedicated

ing system to load
e data is placed
in ROM, it cannot

ly all right for
if the program is

will not be

While this will work in a RAM enviro

development system, where the program
each execution, it will not work
microcomputer. There will be no operat
the progam and initialize the data. If th
in RAM, it will never be initialized; if
be changed by the program (this is perfect
constants). Even in a RAM environment,
restarted without reloading, the data
reinitialized.

The only way of ensuring variables are correctly initialized

Texas Instruments 8-69 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

is to include instructions in the program code to do the
initialization. This can be performed by:

* Data storage allocation in RAM
*

TEMPI BSS 2

MSG BSS 8

VAREND BSS 0

* Initial variable values in ROM
*

VALUES DATA 100

DATA 25

TEXT 'READY'

* Initial!.sation loop

ENTRY EQU $
LI Rl,TEMPI Rl points to TEMPI

LI R2,VALUES R2 points to VALUE

INIT MOV *R2+,*R1+ Load initial values

CI Rl,VAREND Done?

JNE INIT To INIT if no

The label VAREND (no storage space is allocated to it) is
used to delimit the block of data; its address is used to
terminate the initialization loop INIT.

The initialization can also be performed by:

LI Rl,100
MOV R1,@TEMP1
LI Rl,25
MOV R1,@TEMP2

Set TEMP1=100

Set TEMP2=25

The above does not make use of the table of values (VALUES).
MOV @VALUES,@TEMP1 Set TEMP1=100
MOV @VALUES+2,@TEMP2 Set TEMP2=25

Although both of these methods are simple and
straightforward, they can be more costly in memory space
(they both require 4 words of ROM for each variable) for
programs with a number of variables to be initialized.

Texas Instruments 8-70 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Note: A complete ROM/RAM system must satisfy the following
three conditionds.

If any interrupt level is not used then a spurious interrupt
handler should be written and included in the system. All
unused interrupt levels should set their PC to access this
routine. It may be necessary to allocate some RAM to each
unused interrupt level's WP, but this depends on exactly
what the spurious interrupt handler does.

If any XOPs are used then the appropriate XOP trap vectors
must be included.

If the LOAD vector is not used then it should be treated as
though it was an unused interrupt level. Typically this
vector is used to perform a 'warmstart' operation; it allows
the user to halt the application program (usually when an
error has been detected) and for it to be restarted from a
known state (eg immediately before the code that copies the
RAM image into memory).

8.13.5 Macro Processing

Suppose a sequence of source lines will be used often in a
program. There are several methods to accomplish this:

1) Explicitly write the sequence wherever it is to
appear.

2) Make a subroutine out of the sequence and code
subroutine calls wherever the sequence should
appear.

3) Write the sequence at the begining of the
program, associating a name with it. Insert
this name wherever the sequence is to appear in
the program and pass the program through a
special program called a macro processor. The
output from this is a program in which every
occurrence of the sequence name is replaced by
the sequence of source lines.

The following text is only concerned with the last method
described above. The sequence of source lines is a macro.
Associating a name to a macro is called macro definition and
writing this name in a source line is known as a macro
call.

Like the subroutine, macros can have parameters. Macro
calls may require text that is almost, but not exactly, the
same. For example, some instructions may use different
operands. This can be handled by defining parameters for
the macro. The actual operands required are then specified

Texas Instruments 8-71 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

in the macro call (an example is presented below).

A macro processor processes text. This text may, in fact,
be a program but to the macro processor it is simply text.
The macro processor is only concerned with macro related
operations, and source lines containing none of these are
output unchanged. Input to a macro processor is text
containing macro definitions, macro calls, macro
instructions and macro keywords. Output is text that has
had all the macro calls replaced by their replacement text
and all other macro operations removed.

Diagrammatically, this can be expressed as:

TEXT + MACRO CALLS

INSTRUCTIONS —

AND KEYWORDS

MACRO DEFINITIONS

MACRO
PROCESSOR

MODIFIED SOURCE TEXT
(all Macro operations removed.

calls replaced by substitution
text)

Figure 8-36 Macro Processor Operation

A macro processor has two phases: Macro Definition and Macro
Expansion.

Macro Definition - A macro is defined and subsequently
included into its macro library.

Macro Expansion - A macro operation is found in the source
text. A macro call causes the input to be 'switched' to the
macro's replacement text. Processing continues from there
until this text is exhausted. Other macro operations cause
the macro processor to perform the necessary, inbuilt,
operation.

The benefit of using a macro processor is that, once
defined, a macro can be "called" from anywhere within the
source (or replacement) text, with each call having specific
arguments. Obviously, it is a good idea to build up a macro
library (containing both special and general purpose
macros). This can then be either automatically accessed
when the macro processor is used or actually included into
the macro processor itself.

Although a macro is only written once, the output from a
macro processor will contain the replacement text wherever a
macro was called in the source text. Note that although a
macro call and a subroutine call look similar when written
in a source program, a subroutine call is implemented in the

Texas Instruments 8-72 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

object module by a short calling sequence to the subroutine,
which only appears once. Wherever a macro call is written,
the complete code sequence specified in the macro definition
will be placed in the object module at the point of the
call.

The SDSMAC assembler supports a macro language (ie it is a
macro assembler). A short description of defining and
calling a macro under this assembler follows,
of the SDSMAC assembler capabilities are
Section 7 of the TMS9900 Assembly Language
Guide•

Full details

available in

Programmer's

8.13.5.1 Macro Definition

Macro definition is performed by the $MACRO instruction.
All source lines following this instruction up to but
excluding the definition terminator ($END instruction)
constitute a macro.

Mname $MACRO

$END

parm

Macro

MNAME is the name of the macro. PARM is the list

parameters (separated by commas) used by the macro.
of

$MACRO causes MNAME and its attributes to be stored in the

assembler's symbol table. A similar table, the parameter
table, is used to hold the names of the individual
parameters and their attributes. (Information about any
macro variables used within a program is also stored in this
table.) $END informs the assembler that the definition is
complete. All the source lines between these two macro
instructions are stored, in an encoded form, in a macro
file.

8.13.5.2 Macro Call

A macro is called by writing its name in the opcode field of
an instruction, with the actual parameters written in the
operand field.

When this is done, the actual parameters are linked to the
dummy ones (those supplied at definition time) in the
parameter table and then macro expansion takes place. The
lines output from the macro expander are then passed
straight to the assembler.

For example, to define a macro (AGAIN) with dummy parameters
AD and NOW, the following lines are required:

Texas Instruments 8-73 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

AGAIN $MACRO AD,NOW

• Macro's replacement lines

$END

To call this with real parameters R4, *R6 the following is
required:

AGAIN R4,*R6

SDSMAC supports conditional assembly through the $IF, $ELSE
and $ENDIF macro instructions. The general form for
conditional assembly is:

$IF expression

• Block A

.

$ELSE

Block B

a

$ENDIF

If the expression in the above example is true, Block A is
included in the program; if not, Block B is included.

A simplified form of this is:

$IF expression

Block A

$ENDIF

Unlike most macro processors, SDSMAC allows the programmer
to directly access and modify the individual components of
each entry in the parameter table. Thus 'expression' can
be:

P2.S = 'WORD' Is the string component of variable P2
equal to the string WORD

T.L = 5 Is the length component of variable T
equal to 5

SDSMAC also supplies a number of keywords such as $PCALL
(parameter appears as a macro instruction operand) and $PIND
(parameter is an indirect workspace register address) that
enable the programmer to test a variable's attribute
component. These keywords are used with the logical
operators AND ('&'), OR C++'), Exclusive OR ('&&') and NOT
('#'). For example:

Texas Instruments 8-74 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

P2.A & $PCALL This expression has a non zero value
when the variable P2 is a parameter
supplied in a macro instruction; esle
the value is zero.

8.13.6 Nested Subroutines

A subroutine is nested when it is invoked by another
subroutine. The only problem with nested subroutine calls
is that of ensuring that a subroutine's return address is
not lost or overwritten. This is particularly troublesome
if the subroutines are called via a BL instruction (the
return address is stored in workspace register 11).

Conceptually the flow of control is as follows:

BL

BL

t_;RT
1—RT

Executing the second BL instruction results in the loss of
the first return address. Exiting the inner routine causes
the continuous execution of the code located between the BL

and RT instructions.

One approach to resolve this is:

BL • MOV R11,R10 Save return address
.

BL • .

L-RT
. ...

MOV R10...R11 Restore return address

•—RT

In the above piece of code, the instructions:

MOV

RT

R10,R11

can be replaced by:

BL *R10

Texas Instruments 8-75 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.13.7 Stacks

Another way of performing this saving and restoring of
return addresses is by implementing a stack mechanism. An
area of memory is set aside to be used as a stack. A stack
usually starts at a high address and builds down towards low
memory as items are added (pushed onto the stack).

A register is reserved to point to the current top of stack
(ie it points to the last item added to the stack). This
register is usually referred to as the stack pointer. A
stack can be represented graphically by:

High Memory (>FFFF)

Stack pointer

Low memory O0000)

Figure 8-37 Stack Representation

The first instruction in a subroutine pushes the return
address onto the stack and decrements the stack pointer.

The last instruction, prior to a return, pops (or removes)
the last entry from the stack, updating the stack pointer in
the process.

SUB PUSH Rll

POP Rll

RT

PUSH and POP are not recognized assembly language
instructions. If SDSMAC is available, these operations can
be implemented by macros.

The reason for giving both PUSH and POP arguments (Rll) is
to make the stack operations general purpose, thus allowing
data other than return addresses to be stored on the stack.

However, if the stack is used in this way, care must be
taken to ensure that all such items are removed before

popping the return address.

PUSH and POP may be defined as macros as follows:

Texas Instruments 8-76 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

PUSH $MACRO OP

DECT RIO

MOV :OP.S:,*R10
$END PUSH

$MACRO SO

MOV *R10+,:SO.S:
$END POP

Define macro PUSH

Decrement stack pointer
Move data onto stack

POP Define macro POP

Move data from stack

Workspace register 10 (RIO) is used above as the stack
pointer. The macro operands may be any valid operand for a
MOV instruction.

Before the stack can be used, the stack pointer must be
initialized to the address of the top of the stack plus two;
otherwise the first word in the stack will not be used.

8.13.8 Recursion

A nested subroutine has already been defined as a
that is called by another subroutine. In this
there is nothing to stop the nested subroutine
the same as the calling subroutine. If this is
the subroutine is known as a recursive sub

subroutine that calls itself) and the mechanism i
recursion. Care must be taken to ensure that

subroutine does not perform recursion endlessly.

subroutine

definition

from being
the case,

routine (a
s known as

a recursive

Recursion presents problems. For example, how is a
subroutine's return address to be saved? Simply copying it
into another workspace register will not work, as on the
next recursive call the value will be overwritten by the new
return address. Here a stack mechanism is essential. By
pushing the return addresses onto a stack the problem is
solved, as long as the storage space allocated to the stack
is not exceeded.

Suppose, in a multiple user environment, a number of
programs need to perform the same operation. The code
performing this can be included in each program, or it could
be written in such a way that it is possible for the
programs to share a single copy of the code and execute it
(simultaneously, if necessary) as though each program had
its own copy. Code written to allow this is known as
re-entrant code.

A recursive subroutine must be written in this

effect, it shares the code with itself.

Texas Instruments 8-77

way a8, in

October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.13.9 Re-entrancy

For code to be re-entrant the following two conditions must
be satisfied.

The subroutine code must not modify itself. Modifying code
is an extremely dangerous practice; it is very difficult to
debug and is actively discouraged. Storing the code in ROM
ensures that this can not be done. If self modifying code
is included then the program will not work as expected.

On entry to the subroutine, the data local to the subroutine
must be correctly initialized. This also implies that the
data local to previous invocations must be preserved, and
restored on exiting the routine. The simplest way of
performing this is using a stack:

ENTRY EQU $
PUSH Rll

PUSH @ARG1

PUSH @ARG2

PUSH RO

LI RO,...
MOV R0,@ARG1
LI RO,...
MOV RO,GARG2

POP RO

POP @ARG2

POP 0ARG1

POP Rll

RT

Save return address

Save ARG1

Save ARG2

Save RO

Reset ARG1

Reset ARG2

Restore RO

Restore ARG2

Restore ARG1

Restore return address

Note: The stacked items are popped in reverse order. PUSH
and POP are macros as defined in section 8.13.7.

8.13.10 Automatic Workspace Allocation

Transparent stacking of workspaces can be achieved by
calling all subroutines through a special purpose XOP named
CALL, defined below. Return from any subroutine is via a
normal RTWP instruction. Arguments may be passed by
standard register conventions. The stack builds down
through memory and will be N*32 bytes deep, where N is the
nesting level.

Texas Instruments 8-78 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

* CALL XOP

* This routine

* through memo
* with the old

automatically stacks workspaces down
ry. An RTWP will return to the caller
workspace, effectively popping the stack

*

CALLPC LIMI 0

LI Rl,-6
A R13,R1
MOV R13,*R1+
MOV R14,*R1+
MOV R15,*R1+
MOV R11,R14
AI R13,-32
RTWP

Non interruptable
Offset to new wksp's R13
Pt to new wksp's R13
Move return WP

Move return PC

Move return ST

Get Subroutine's entry pt
Hit next wksp
Call subroutine

An example of using this routine follows:

XOPWP EQU >FF00
TPSTCK EQU >FEC0

MAIN

SUBR

AORG >78

DATA XOPWP

DATA CALLPC

AORG >80

LWPI TPSTCK

DXOP CALL,14

CALL (3SUBR

EQU $

RTWP

Assign wksp
Assign top of stack

XOP vector

XOP workspace
XOP entry point

Arbitrary start
Set top of stack
Define XOP call

Calls SUBR

SUB's entry point

Return to caller

Another way of implementing this stacking mechanism is shown
below. This method assumes that register 7 contains the
address of a BLWP vector (this vector is built in RAM at run
time as the workspace address field of the vector must be
updated after each call). A routine is invoked by issuing a
BLWP *R7 instruction (in the code this the CALL$ DATA
word)•

CALL$ EQU
RORG

>417

STACK BSS stacksize*2

WP1 BSS 32

CALLVEC

a

EQU $
NXTWP BSS 2

HNDLR BSS 2

Texas Instruments 8-79

BLWP *R7 Instruction

Allocate space for stack
Initial workspace

Call handler vector

Next WP to be allocated

Entry pt for call handler

October 1981

SOFTWARE DEVELOPMENT HANDBOOK

* Routine entry - set up call

ENTRY

LI

MOV

LI

LI

MOV

MOV

R1,CALLVEC
R1,R7
R2,ENTRY
R3,WPl-32
R3,*R1+
R2,*R1

DATA CALL$,SUBR

EQU

MOV

AI

MOV

RT

$
(?7*2(R13),R7
*R7,-32
*R14+,R11

ASSEMBLY LANGUAGE

handler vector

Ref vector

Save address of vector

Ref handler

Ref 1st stack WP

Set NXTWP

Set HNDLR

Call SUBR (shown above)

Call handler entry point
Get address of CALLVEC

Set address of next WP

Get routine's entry
Invoke routine

Only minor modifications are required to either
implementation to allow a user stack to be incorporated;
this would also allow a simple check to be made to determine
if stack overflow has occurred (stack overflow checking is
not performed in either mechanism above). For the CALL$
version this is shown below.

In the initialization loop:

LI R8,STACK

ENTRY now becomes:

ENTRY EQU $
MOV @7*2(R13),R7
MOV @8*2(R13),R8
AI *R7,-32
C R8,*R7
JH error

MOV *R14+,R11
RT

Pictorially this can be shown:

Set user stack start addr

Call handler entry point
Get address of CALLVEC

Get address of user stack

Set address of next WP

Overflow?

Y - error

Get routine's entry
Invoke routine

High Memory (>FFFF)

Low Memory (>0000)

Figure 8-38 A Stack/Workspace Allocation Implementation

Texas Instruments 8-80 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

and builds down

ress of the next

starts at low

R8 contains the

stack. In the

tected when the

the content of

occur and so the

also check for

en all workspace

Workspace allocation starts from high memory
towards low memory; NXTWP contains the add
workspace to be allocated. The user stack
memory and builds up towards high memory;
address of the next word to be used in the

allocation routine stack overflow is de

content of R8 is logically greater than
NXTWP. However, stack overflow can still
code that performs the 'push' operation must
stack overflow (if no check is made th
register sets could become corrupted).

A final improvement on the allocation routine (shown below)
removes the necessity for this additional checking. With
this the first word of the routine to be 'called' contains a

count of the number of words that are stacked in the

routine. ENTRY now becomes:

ENTRY EQU $
MOV @7*2(R13),R7
MOV (?8*2(R13),R8
AI *R7,-32
MOV *R14+,R11
MOV *R11+,R6
A R8,R6
C R6,*R7
JHE error

RT

The 'called' routine SUBR becomes:

SUBR EQU $
WORD stack count

RTWP

'PUSH routine' becomes:

MOV item,*R8+

'POP routine' is:

DECT R8

MOV *R8,item

Call handler entry point
Get address of CALLVEC

Get address of user stack

Set address of next WP

Get routine's entry
Get 'stack count'

Get final stack address

Overflow?

Y - error

N - Invoke routine

SUB's entry point
Words to be stacked

Return to caller

Stack <item>

Back up stack ptr
Stacked object to <item>

This final version allows the call handler (CALL$) to be
used with a recursive subroutine. On entry to the recursive

subroutine it is not necessary to save the return address or
any of the registers as these have already been saved In the
previous workspace; it is only necessary to load the
relevant local data (named ARGl to ARGn in the re-entrancy

Texas Instruments 8-81 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

section). Note: Any items that have not been explicitly
popped from the stack will automatically be lost when the
RTWP instruction is executed.

8.13.11 Jump Table

Suppose it is necessary to branch to a label (Li) depending
on the value of a key (1); if i=l, then 11, if i=2 then L2,
etc. Assume that RO contains the key. This can be written
as:

CI R0,1
JEQ LI
CI R0,2

UNDER

OVER

LI

JEQ LN

JGT OVER

EQU $

EQU

EQU $

Under range

Over range

KEY=1

A more efficient method would be to replace each

CI R0,i with a DEC RO

This saves one word for each comparison.

Probably the best method of implementing this would be to
create a table of addresses, in ascending key order, of the
labels and then using the index mode of addressing on the
key as follows:

j

TABLE DATA LI,L2,....,LN Table of addresses

A R0,R0 KEY->word offset

JLE UNDER KEY<=0?

CI R0,2*N
JGT OVER KEY>N?

B @TABLE-•2(R0) Keys start from 1 not 0

This assumes that all the keys within the range 1 to N are
used. If, for example, the key range is 1 to 40 and keys 2,
14 and 29 are not used, the address table (TABLE above) must
still contain entries for these three keys; it is necessary
to supply an 'unused key label'.

Texas Instruments 8-82 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

If there are large gaps of unused keys then a la
of extra memory could be used unnecessarily,
are only interested in determining if a 'key' is;
comma, a double quote, a single quote, a semi-col
stop or a question mark. These characters
following ASCII codes; >20, >2C, >22, >27, >3B
>3F. With the above method this would require a
entries and the key would have to be modified
within the range 1 to 20).

rge amount

Suppose you
a space, a

on, a full
have the

, >2E and

table of 32

to bring it

In this situation the following jump routine can provide
considerable memory savings, especially if this type of
checking has to be performed in a number of different
places. Note: This time the table is organised by frequency
with the most frequently used key as the first entry in the
table. (Assume that the high byte of Rx contains the key.)

BL (3JUMPRX

TABLE BYTE TABLE-Ll/2,<keyl>
BYTE TABLE-L2/2,<key2>
.

BYTE TABLE-Ln/2,<keyn>
DATA 0

NOTFND EQU $ Return here if specified key not found

LI EQU $

Ln EQU $

Here the Li are arranged so that they lie within a range of
+127 and -128 words from TABLE. Each entry in TABLE
consists of a signed word displacement (from TABLE to the
corresponding label - Li) and a <keyi> byte opcode. The
DATA 0 word indicates that there are no more entries in

TABLE.

After executing the BL instruction the return address (ie
the address of TABLE) is stored in Rll.

JUMPRx compares the key to the next <keyi> entry in TABLE.
If they are the same then the displacement field is 'added'
to the address of TABLE and a branch is then made to this

address. Otherwise the pointer into TABLE is incremented to
the next <keyi>. If the value of this entry is zero then
the specified key is not in the table and a return is made
to the instruction immediately following the DATA 0 word.

The actual working of the JUMPRx routine is shown below. In
the brief desciption above the displacement field is not
simply added to TABLE address (hence the 'added'). The
displacement field is in words and needs to be expressed in

Texas Instruments 8-83 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

bytes; simply doubling it is not sufficient as it is a
signed quantity (it is necessary to preserve the sign).
Further, a MOVB instruction is used to copy the displacement
from TABLE into a register; this automatically causes the
displacement to be stored in the register's high byte and it
needs to be in the low byte for the add instruction to work
correctly. In the code below, this is performed by the
SRA R4,7 instruction (an arithmetic shift is used so that
the sign bit is propogated).

JUMPRx EQU $
MOV R11,R3

* CLR R4

JUMP MOVB *R11+,R4
JEQ JUMPNO

CB Rx,*Rll+
JNE JUMP

SRA R4,7
A R3,R4
B *R4

JUMPNO INC

RT

Rll

Save return address

Needed for 80 and 81 processors
Get the current displacement
If 0 then not found

KEY = <keyi>?
No - back for next <keyi>
Yes - Disp to low byte and *2
Add TABLE address to offset

Goto Li

Not found - skip over 2nd byte
'Error return'

Although the TMS9980 and the TMS9981 microprocessors force
all instruction executions to be from a word boundary it is
possible for the contents of the program counter (PC) to be
odd. Normally this presents no problems. However, if the
PC is used to index into a table then the wrong byte in this
table could be accessed.

This can, in fact, happen with the JUMPRx routine above as
executing the BL instruction causes the incremented PC (the
address of TABLE) to be stored in Rll. The problem revolves
around the contents of R4 before the SRA instruction is

performed. If bit 8 of this register is a '1' then Rll will
contain an odd address when this routine is called the next

time (assuming this bit is not cleared in the meantime). To
guarantee that JUMPRx will work correctly the CLR R4
instruction is needed. (Note: This is not really necessary
for the TMS9900 microprocessor as bit 15 of the PC is never
used nor saved.)

8.13.12 Miscellaneous Techniques

A number of miscellaneous 'tricks' and techniques that may
prove useful to the assembly language programmer are listed
below.

8.13.12.1 Swapping Register Values

Often when writing a program consisting of a number of
routines the required value is already stored in a register,

Texas Instruments 8-84 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

but not in the right register for the routine. Usually,
this problem is overcome by using a spare register to swap
the contents of the two registers:

MOV Rx,temp

MOV Ry,Rx

MOV temp,Ry
'call routine'

Save Rx contents into TEMP

Required contents to Rx
Original contents of Rx to Ry

However, this is not always possible (all the registers are
in use and there is no 'free RAM' available). Here, the
following piece of code can be used:

XOR Rx,Ry Ry contains bit-wise difference
XOR Ry,Rx Set Rx to original contents of Ry
XOR Rx,Ry Set Ry to original contents of Rx
'call routine'

8.13.12.2 Error Return

Occasionally it is nece
a called routine to

something 'unexpected'
action is necessary (ie
information can be re

by setting a particular
setting (or resetting)
(ST); by branching dire

ssary to return some information from
inform the calling routine that
happened and that some specific

an error occuried). This sort of
turned in a number of different ways:
register to a specific value; by
a certain bit in the status register

ctly to an error routine; etc.

Register setting. The most common error indicators used
are:

CLR Ry
a

MOV Ry,Ry
JEQ error

or SETO Ry
•

INC Ry
JEQ error

Set error flag

Error flag set?
Y - error routine

Status bit setting. With XOP and BLWP instructions this can
be performed by anding workspace register 15 (the old ST)
with >F (this clears all the status bits except the
interrupt mask). The required status bit can then be set to
'1' using an ORI mask instruction (the AI mask instruction
can also be used); 'mask' is >2000 (for EQ bit), >1000 (for
C bit), etc. On return to the calling routine these status
bits are interrogated using the appropriate jump
instructions; JEQ or JNE for the EQ bit; JOC or JNC for the
C bit; etc.

ANDI R15,>F

ORI R15,>1000
.

RTWP

Texas Instruments

XOP routine - clear status bits

Error - set Carry bit

Return to calling routine

8-85 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

The ANDI instruction could be replaced by:

SB R15,R15 Clear R15's high byte

The calling sequence is:

XOP

JOC error

For BL instructions:

SETO temp

CLR temp
•

MOV temp,temp
RT

Calling routine - issue XOP
C bit set? Y - error

Error flag = no

Error - error flag = yes

Set status bits in ST

Return to calling routine

A variation on these is for the word immediately following
the call to contain a jump to an error return. If an error
occurs in the called routine then a return is made to the
JMP instruction. A normal return to the calling routine
causes the return address to be incremented past the JMP
instruction.

'error test'

JEQ errrtn
.

INCT R14

errrtn RTWP

The calling sequence is

BLWP

JMP error

Called routine - Error?

Y - to error return

Skip over error return
Return to calling routine

Calling routine - issue BLWP
Error return

Normal return

Suppose the routine to be called converted data input from a
terminal (ie from ASCII) to binary. Then any of these
mechanisms could be used to inform the calling program that
the input data was not a decimal number but a hexadecimal
number. Further, these mechanisms can be combined to allow
multiple returns, for example:

BLWP

JMP hexno

JEQ zero

Convert ASCII to binary
Hex number return

Zero 'return'

Normal return

8.13.12.3 Buffered I/O

In a microprocessor application it
output information to a terminal,
doing this is not a byte at

Texas Instruments 8-86

is often necessary to
The most efficient way of
a time but as a string of

October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

bytes. An area of memory is set aside as an output buffer,
and bytes are written into this buffer until a line is
complete. A terminating character is then added to the end
of the line. The output routine is invoked and printing
continues until the termination character is encountered.

Note: Typically, it is not possible to mix byte and word
operations on the buffer; it is all right starting off
writing words to the buffer and occasionally writing two
bytes together to it. The problem ocurrs when you start off
with bytes and want to write a word to it. If the buffer
pointer contains an odd address then performing a word
operation will cause the last byte entered to be
overwritten. It is often very difficult to guarantee that
when you want to write a word to the buffer that the buffer
pointer contains an even address.

RORG

OUTBUF BSS 80 Allocate output buffer
.

LI Rx,OUTBUF Ref the output buffer

A byte is written to the buffer:

MOVB @char,*Rx+ Output 'char'
or MOVB Ry,*Rx+ Output high byte of Ry

A word can be written to the buffer:

MOVB Ry,*Rx+ Output high byte of Ry
SWPB Ry Swap bytes over in Ry
MOVB Ry,*Rx+ Output new high byte of Ry

When the line is complete the terminator is added:

SB *Rx,*Rx Add termination char (null)

In the code above the termination character is a null byte
(a byte containing 0). This is used to simplify the actual
terminal output routine, instead of comparing each character
with the terminator all that has to be done is to take the
next byte from buffer and move it into a register. Doing
this causes the processor to set/reset its status bits
according to the value of the byte moved; if it is zero then
the EQ status bit is automatically set.

OUTPUT EQU $ Output routine entry point
LI Rx,OUTBUF Ref the output buffer

OUTP1 MOVB *Rx+,Ry Get next char to be output
JEQ OUTND Null? Y - finished
. N - output this character

.

JMP 0UTP1 Back for the next character

OUTND return

Texas Instruments 8-87 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

With most terminals it is also necessary to add the carriage
return and linefeed characters to the buffer before storing
the termination character. The actual code required to
output a character to a terminal (a KSR743) is included
later.

8.13.12.4 Increment Register by 4

The TMS9900 contains a number of instructions that allow
registers to be incremented. INC increments a register by
one and INCT increments a register by 2. For increments
greater than these the A (add) and AI (add immediate value)
instructions have to be used. However, the C (compare)
instruction can be used to increment a register by four, and
it only takes up one word. The AI requires 2 words. The A
only takes one word, but the source register must have
already been loaded with the value four. The compare
instruction is used as follows:

C *Rx+,*Rx+ Rx=Rx+4

8.13.12.5 Non Destructive Memory Sizing

In this example a simple memory check is also performed; it
only checks to see if each bit in the word can be set to a
'1' and a '0'. (A full memory checking algorithm would be
extremely complex and could literally take days to run. For
a practical system, some compromise is obviously
necessary.)

LI R2,start
LI R5,end

NEXTWD C R2,R5
JL done

MOV *R2,R3
INV R3

MOV R3,*R2
C *R2,R3
JNE nomatch

INV *R2

DECT R2

JMP NEXTWD

done EQU $
nomatch INCT R2

Ref start address (high memory)
Ref end address (low memory)
Finished?

Y

N - save original contents
Invert all the bits in copy
Write back to test address

Same?

N - end of RAM found

Y - restore original contents
Ref next word to be tested

Back for the next word

Back up to last 'good' word

Note: Memory autosizing operations should not be performed
on an area of memory that contains memory mapped devices as
this could cause the devices to become corrupted.

8.13.12.6 Simple Clock using the 9901

The 9901 Programmable Systems Interface is a CRU-driven

Texas Instruments 8-88 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

device that is used to regulate (enable or disable) incoming
interrupt signals without interfering with the 9900
microprocessor. It is also contains an interval timer that
can be programmed to generate level 3 interrupts when the
interval period has elapsed. This device can be in one of
two modes (clock mode or interrupt mode). The mode is
selected by writing either a '0' (interrupt mode) or a '1'
(clock mode) to the 9901's control bit (bit 0 in the 9901's
CRU address space).

Clock mode allows the user to program the interval timer
with a 14 bit value; a copy of this value is decremented
every 64 system clock cycles (for a system clock frequency
of 3MHz this means a decrement every 21.3us). The value
1875 (in the code below) corresponds to an interval of
40ms.

Interrupt mode allows the user to enable or disable a
particular interrupt level. An interrupt level is enabled
by writing a '1' to the appropriate mask bit (mask bit 5
corresponds to interrupt level 5) and disabled by writing a
'0' to the mask bit.

The initialization code below sets the 9901's CRU base

address to BASE, selects clock mode and then loads the
interval timer for a 40ms delay. (The LDCR instruction
writes 15 bits to the 9901; the first bit causes clock mode
to be selected as it is a '1', the other 14 bits contain the
required delay.) It is now necessary to enable interrupt
level 3, otherwise no interrupt will be allowed through to
the 9900 when the specified interval delay has expired.
Level 3 interrupts are enabled by selecting interrupt mode
(SBZ 0) and writing a '1' to the mask bit 3 (SBO 3). Now
the 9901 will pass any level 3 interrupts through to the
9900, however the 9900 will not recognise any interrupts
until the status register's interrupt mask is set to a
sufficiently low value. This is performed by the LIMI 3
instruction. (Note: A D0RG directive is used to allocate
memory for the workspaces, starting at address FREE. DORG
is similar to the AORG directive except that no code is
actually produced for the DORG section, however, all
references to a DORG'd label are resolved.)

DORG

WP1 BSS

CLKWP BSS

SPURWP BSS

AORG

DATA

DATA

DATA

DATA

DATA

DATA

Texas Instruments

free

32

32

32

0

WP1

START

SPURWP,SPUR Level 1 not used
SPURWP,SPUR Level 2 not used
CLKWP Define level 3 vector

CLOCK

Define RESET interrupt's WP
Define clock interrupt's WP
Define spurious interrupt WP

Define RESET (level 0) vector

8-89 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

SPUR EQU $ Spurious interrupt handler

START EQU $ Initial entry point

* Set current time - zeroise all clock values

Ref clock's WP

Clear clock handler's RO

Clear clock handler's Rl

Clear clock handler's R2

Clear clock handler's R3

LI R2,CLKWP
CLR *R2+

CLR *R2+

CLR *R2+

CLR *R2

* Initialise the 9901

LI R12,base Set 9901 CRU s/w base addr
LI Rl,1875*2+1 40ms delay + clock mode
LDCR Rl,15 Set 9901 interval timer
SBZ 0 Select interrupt mode
SBO 3 Enable level 3 interrupt
LIMI 3 Set interrupt mask to 3

The clock interrupt handler is:

CLOCK

CLK1

CLK2

EQU $
LI R12,base
SBZ 0

SBO 3

CI R0,>24
JHE CLK1

INC RO

RTWP

CLR RO

INC Rl

CI Rl,60
JLT CLK2

CLR Rl

INC R2

CI R2,60
JLT CLK2

CLR R2

INC R3

CI R3,24
JLT CLK2

CLR R3

RTWP

Set 9901 CRU s/w base addr
Select interrupt mode
Reset level 3 interrupt
24th tic?

Y - 1 second elapsed
N - increment tic count

Return

Reset tic count

Increment second count

60 sees elapsed?

N - return

Y - reset second count

Increment minute count

60 mins elapsed?
N - return

Y - reset minute count

Increment hour count

24 hours elapsed?
N - return

Y - reset hour count

Return

In the clock interrupt routine above the interrupt signal is
reset by selecting interrupt mode and re-enabling the level
3 mask bit.

The above routine can be modified, very simply, to drive a
clock display (a circuit for this is described in the Time

Texas Instruments 8-90 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

of Day Clock Application Sheet).

8.13.12.7 Simple I/O Routines using the 9902

The 9902 is a CRU-driven asynchronous communications
controller. It allows the user to receive and transmit
asynchronous serial data over a wide range of baud rates.

The receive routine reads a character from the 9902 receive
buffer register (CRU bits 0 to 7 in the 9902's CRU read
address space) into the high byte of register 0. Data is
present when the read CRU bit 21 (RBRL - Receive Buffer
Register Loaded) is set to '1'. If data is there then the
character is read into the register (only 7 bits are
actually read), the RBRL bit is reset by a write to CRU bit
18 (RIENB) and the return address is increment to skip over
the 'no character return'.

GETCH LI R12,base Set the CRU base address
TB 21 Character ready - RBRL set?
JNE GETC1 N - return

CLR R0 Clear receiving register
STCR R0,7 Read character (only 7 bits)
SBZ 18 Reset RBRL

INCT Rll Skip over 'no char return'
GETC1 RT

The calling sequence is:

BL @GETCH

JMP no char

Get next character input
No character return addresi

Character return address

The transmit routine assumes that the character to be
transmitted is stored in R0 (this character is masked down
to 7 bits). When the terminal is ready (bit 27, Data Set
Ready - DSR - is set) a Request To Send is issued (sets bit
16 - RTS). Before the character can be sent the Transmit
Buffer Register Empty flag (bit 22 - XBRE) must be set.
When this occurs the character is passed to the 9902.
(Note: Although the character has been masked to 7 bits, 8
bits are actually passed across. In the 9902, the character
is initially loaded into the Transmit Buffer Register and is
not sent until the most significant bit of this register is
written to. If only 7 bits are passed across it is
necessary to include either a SBZ 7 or a SBO 7
instruction). The RTS flag is then reset.

Texas Instruments 8-91 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

OUTCH LI R12,base Set the CRU base address

ANDI R0,>7F00 Mask to 7 bits

OUTC1 TB 27 DSR ready?

JNE OUTC1 N - wait until it is

SBO 16 Set RTS

OUTC2 TB 22 XBRE empty?

JNE OUTC2 N - wait until it is

LDCR RO,8 Y - send character

SBZ 16 Reset RTS

RT

Note: If the terminal is a slow printer (below 1200 baud)
then whenever a carriage return character is sent a delay of
around 200ms is needed to allow the print head to return to

the left hand margin.

Before the 9902 can be used it must first be
For this the following sequence must be used:

initialized.

o Write to bit 31 (RESET). This initializes the
transmitter and receiver, and sets all the load
control flags.

o After a reset the first 8 data bits written to

the 9902 are used to set up the Control
Register. This selects character length,
parity, the number of stop bits to be generated,
and the clock predivider.

o If the interval timer is not required then it is
necessary to reset the Load Interval Register
flag (bit 13 - LDIR). Otherwise the next 8 data
bits written to the 9902 are used to specify the
interval delay.

o The next 12 data bits sent to the 9902 are used
to select the receive data rate. If the Load
Transmit Data Rate Register flag (bit 11 - LXDR)
has not been explicitly reset then these 12 bits
will also be used to select the transmit data

rate.

In the code below the first LDCR instruction loads the
Control Register with >62; this means that 2 stop bits are
generated and that each character is 7 bits with even
parity. (As a multiple bit CRU instruction of less than 9
bits is involved it is necessary to store the >62 byte in
Rl's high byte.) The second LDCR instruction causes the
receive and transmit data rate registers to be set to RATE.
The actual value of RATE depends on the system clock
frequency; for a 3MHz system clock a value of >638
corresponds to 110 baud, >4D0 to 300 baud, and MAO to 1200
baud. (Full details are in sections 2.1.2.3 and 2.1.2.4 of
the TMS9902 Asynchronous Communications Controller Data
Manual.)

Texas Instruments 8-92 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

LI R12,base
SBO 31

LI Rl,>6200
LDCR Rl,8
SBZ 13

LDCR rate,12

Set the 9902 CRU base address

Reset the 9902 (RESET)

Initialise the control reg
No interval reg (LDIR)
Init REC/XMIT data rate

8.13.12.8 Automatic Baud Rate Determination

The receive line (RIN, bit 15 on the 9902) of a terminal to
EIA port communication cable is usually in the SPACE
condition (it is held at logic level '1') when nothing is
being received. When a key is pressed on the terminal, the
terminal puts the RIN line into the MARK condition (pulls
the line down to logic level '0') by generating a start
bit. This start bit is followed by 7 data bits (the least
significant bit first) and a parity bit. At least 1 stop
bit is then generated to put the line back into the SPACE
condition.

MARK SPACE

s P

T l : A S : s :
A s • R T : t :
P b : 1 0 . o •
T T

Y
p : p :

-7.BITCHAR/I

TIME

The 9902'

line goe
received)
being re
length of
condition

From this

receive

then used

registers

Figure 8-39 TMS9902 Character Timing

s RIN pin can be interrogated to determine when the
s into the mark condition (when a start bit is

If the least significant bit of the character
ceived is a '1' (eg the character 'A'), then the
time taken for the RIN pin to go from the mark
back to the space condition can be calculated.

, the rate at which bits are being received (the
baud rate) can be determined. This baud rate is
to initialize the receive and transmit data rate

The code below operates by counting the number of times the
RIN pin is interrogated while waiting for it to be pulled up
from the mark condition to the space condition. This count
(stored in R3) is then compared against a table of 'maximum
times around the interrogation loop for a given baud rate'.
The corresponding baud rate is then loaded into the receive
and transmit data rate registers.

Texas Instruments 8-93 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAG,

* Initialize the 9902
*

LI R12,base Set the 9902 CRU base address
SBO 31 Reset the 9902 (RESET)
LI Rl,>6200
LDCR Rl,8 Initialise the control reg
SBZ 13 No interval reg (LDIR)
CLR R3 Clear loop count

*

* Wait for the start bit
*

SBAUD TB 15 Space condition?
JEO SBAUD Y - test RIN pin again

* In the mark condition - wait until RIN goes back
* to the space condition
*

SBAUD1 INC R3 Update loop count
TB 15 Space condition?
JNE SBAUD1 N - retry the RIN pin

*

* Back in the space condition - find baud rate
*

LI R4,BAUDTB-2 Ref max value table
SBAUD2 INCT R4 Try next entry

C R3,*R4+ Loop count <= table entry?
JH SBAUD2 N - higher, back for next

*

* Baud rate found - set receive and transmit data

* registers, wait until character received, and
* throw the character away
*

LDCR *R4,12 Y - set rec/xmit baud rate regs
SBAUD3 TB 21 RBRL set?

JNE SBAUD3 N - character not complete
SBZ 18 Reset RBRL

The 'baud rate' table (BAUDTB) below works for a 3Mhz system
clock (eg for a TM990 /100 or /101 CPU board). Each entry
in the table consists of two fields; a loop count (in the
description above this field was referred to as the 'maximum
times around the interrogation loop for a given baud rate')
and the baud rate corresponding to this value.

BAUDTB DATA >0007,>001A
DATA >000E,>0034
DATA >001D,>0068
DATA >003B,>00D0
DATA >0075,>01A0
DATA >00EA,>0340
DATA >0246,>04D0
DATA >7FFF,>0638

19200 baud

9600 baud

4800 baud

2400 baud

1200 baud

600 baud

300 baud

110 baud

Note: For processors other than the TMS9900 it may be

Texas Instruments 8-94 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

necessary to adjust the loop count entries (eg for a TMS9995
microprocessor using internal RAM).

8.13.12.9 Packed Data

r of instances a binary variable is required; such
only has two possible values (eg the state of a

ither on or off) and can be stored in a single
rtunately the assembler does not support a bit
(it only recognises the word, byte and text
) and storing one bit's worth of information in a
even a byte) can be rather wasteful, especially if
f these binary variables are required.

In a numbe

a variable

switch, e

bit. Unfo

structure

structures

word (or
a number o

Packing a number of these binary variables into a word
solves the memory wastage problem, however, it does make it
a little more complicated to access the individual
variables; you can not do a straight value comparison nor a
'MOV var,var' instruction to set the status register's
status bits.

binary variable can be se
Ones Corresponding), reset

t Zeros Corresponding), toggl
o '0' or from '0' to '1')

instruction, and tested
rresponding) and/or the CZC
instructions. (Note: The

be used to isolate a par
can then be tested using the

An individual

instruction (Set
instruction (Se
state from '1' t

(Exclusive OR)
(Compare Ones Co
Corresponding)
instruction can

variable, which
instruction.)

t using the SOC
using the SZC
ed (change it's
using the XOR
using the COC
(compare Zeros

ANDI logical
ticular binary
compare or move

The SOC instruction sets the bits in the destination operand
to a '1' that correspond to a '1' in the source operand.
All other bits in the destination operand are unchanged.
Example: Set the binary variable in bit position 10 of a
packed word:

LI Rx,>0020 Bit 10 = '1' (rest = '0')
SOC Rx,@PACKED Set bit in PACKED

or MASK DATA >0020 Bit 10 = '1' (rest = '0')

SOC <?MASK,@PACKED Set bit in PACKED

Note: This can also be performed by:

MOV @PACKED,Rx Copy PACKED into register
ORI Rx,>0020 Set the bit

MOV Rx,@PACKED Copy updated word to PACKED

The SZC instruction resets the bits in the destination
operand to a '0' that correspond to a '1' in the source
operand. All other bits in the destination operand are

Texas Instruments 8-95 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

unchanged. Example: Reset the binary variable in bit
position 10 of a packed word:

LI Rx,>0020 Bit 10 = '1' (rest = '0')
SZC Rx,@PACKED Reset bit in PACKED

or MASK DATA >0020 Bit 10 = '1' (rest = '0')

SZC @MASK,@PACKED Reset bit in PACKED

Note: This can also be performed by:

MOV @PACKED,Rx Copy PACKED into register
ANDI Rx,>FFDF Reset the bit
MOV Rx,(?PACKED Copy updated word to PACKED

The XOR instruction performs a bit by bit exclusive or of
the two operands, and stores the result in the destination
(second) operand. A bit-wise exclusive or operation sets
the result bit to a '1' if the source and destination bits
are different, otherwise the result bit is reset to '0'.

MASK DATA >0020 Bit 10 = '1' (rest = '0')
•

MOV @PACKED,Rx Copy packed data into Rx
XOR @MASK,Rx Toggle bit in PACKED
MOV Rx,@PACKED Restore updated data

The COC instruction sets the EQ status bit to '1' if all the
bits in the destination operand that correspond to a '1' in
the source operand are 'l's.

MASK DATA >0020 Bit 10 = '1' (rest = '0')
.

MOV @PACKED,Rx Copy packed data into Rx
COC (?MASK,Rx Bit 10 set to '1'?
JNE N0T1 N - goto N0T1
. Y - drop through to here
.

N0T1 EQU $ Bit 10 was not set to '1'

The CZC instruction sets the EQ status bit to '1' if all the
bits in the destination operand that correspond to a '1' in
the source operand are '0's.

MASK DATA >FFDF Bit 10 = '0' (rest = '1')
.

MOV @PACKED,Rx Copy packed data into Rx
CZC @MASK,Rx Bit 10 reset to '0'?
JNE NOT0 N - goto N0T0

Y - drop through to here

.

NOT0 EQU $ Bit 10 was not reset to '0'

Texas Instruments 8-96 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14 REFERENCE SECTION

8.14.1 Instruction Formats

Format no.

and use

Bit Positions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 ARITHMETIC

2 JUMP

3 LOGICAL

4 CRU

5 SHIFT

6 PROGRAM

7 CONTROL

8 IMMEDIATE

9 MPY,DIV,XOP

10 DOUBLE WORD

OPERATIONS

(99000 Only)

-I —I —I —I —I —I —I
OPCODE |B | Td |
-I —1"| —1~| —I —I

OPCODE

-I~| —I —I —I —I —I
OPCODE |

-I —| — |— |— |— |— |
OPCODE I

OPCODE

OPCODE
., — 1— 1— 1— 1— 1— 1

OPCODE
., — 1— 1—1 — 1— 1—1

OPCODE
,, — 1— 1— 1— 1— 1— 1

Immediate value
,— 1— 1— 1— 1— 1—

OPCODE |
,— 1— 1— 1— 1— 1—

OPCODE

Code Td |

-I —I

•I —I
D

I

D

I

D

I

Ts

•I-
SIGNED

Ts

•I-
Ts

Ts

I-

NU

Ts

Ts

S

•I"
S

•I-
W

NU

W

•I"

Note: For AM/SM Code='0100'
For SLAM/SRAM Code='0100';Td='00';D is shift count
For TMB/TCMB/TSMB Code='0000';Td='00';D is bit number

OPCODE - Assembly language mnemonic
B - Byte indicator (1 = byte, 0 = word)
Td/Ts - Destination/Source address mode
D/S - Destination/Source address
C - Shift or CRU transfer count

W - Workspace register number
NU - Not used

SIGNED - Signed displacement of -128 to +127 words

Texas Instruments 8-97 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Td/Ts Field

Code Mode Effective address

00 Workspace register Rx WP+2*[S or D]
01 Indirect *Rx (WP+2*[S or D])
10 Indexed (S or Dj^O) (?Label(RX) (WP+2*[S or D])+(PC+2)
10 Symbolic (S or D=0) (?Label (PC+2)
11 Indirect with Auto *RX+ (WP+2*[S or D]); Increment

increment eff. address by 1 - byte;
2 - word; 4 - double word

An extra word is required for each operand code of 2.

8.14.2 Status Register

0 1 2 3 4 5 6 7 8 9 10 11 12 15

|L>|A>!= IC 10 |P IX |PRIM I |0E|EM| Int. mask I

0 - L>

1 - A>

2 - =

3 - C

4 - 0

5 - P

6 - X

7 - PR

8 - M

10 - OE

11 - EM

Logical greater than
Arithmetic greater than
Equal/TB indicator
Carry from most significan bit
Overflow

Parity

Software implemented XOP in progress
Privilege mode (99000)
Map select (9989 and 99000)
Overflow enable (9995, 9989 and 99000)
Emulate XOP enable (99000)

Interrupt mask: F - All interrupts enabled
0 - Only interrupt level 0 enabled

8.14.3 Interrupts

Vector address

Vector address+2

Workspace Pointer (WP)

Entry point (PC)

Note: 1) Interrupt vectors 0-15 from 0 TO >3C
(only levels 0-4 for 9980A, 9981 and 9995)

2) XOP vectors from >40 to >7C
3) LOAD vector at >FFFC

4) Interrupt 0 is the RESET interrupt

Texas Instruments 8-98 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.4 CRU

R12 - Base address for CRU operations
bits 3-14 used (all but 9995 and 99000)
bits 0-14 used (9995 and 99000)

Transfers < 9 bits - high byte used
Transfers > 9 bits - low byte used

Parallel CRU (99000 only) - CRU base address -ve

| Transfer I Count Effect on R12 |

1 Byte
0010 Not altered |

0011 Post incremented by 2 1

I Word
1010 Not altered |

1011 Post incremented by 2 1

8.14.5 Register Restrictions

Memory
addr Register Usage

Shift count

MPYS and DIVSWP+>00

WP+>02

1 R0 I

1 Rl 1

1 Rll I

1 R12 |

I R13 |

1 R14 1

I R15 I

t MPYS and DIVS

WP+>16

WP+M8

WP+MA

WP+MC

WP+>1E

Index

capability

Data or

Addresses

t

BL - Return address

XOP - Operand's eff. address

CRU base address

Saved WP

Saved PC

Saved ST

MPY and DIV use two consecutive registers, the first is
supplied as the source operand. If R15 used then the word
following R15 is used as the second register.

Texas Instruments 8-99 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.6 Assembly Language Instructions

Symbols Used

G,G1,G2 - General memory addresses
R - Workspace register address
S - Symbolic memory address
E - Expression (all symbols previously defined)
I - Immediate value

T - Term (range 0 - 15)
() - Contents of the address within parenthesis
-> - 'Replaces'
: - 'Is compared to'
C - Count (0 - 15)
* - Result is compared to zero

Additional symbols for 9989, 9995 and 99000

R* - Register pair Rl and R2
Gl,Gl+2 - General memory address double word

Instruction

ABSOLUTE VALUE

ADD BYTES

ADD IMMEDIATE

ADD WORDS

AND IMMEDIATE

BRANCH

BRANCH AND LINK

BRANCH AND LOAD WP

CLEAR

CLOCK OFF

CLOCK ON

COMPARE BYTES

COMPARE IMMEDIATE

COMPARE WORDS

COMPARE ONES CORRES.

COMPARE ZEROS CORRES.

DECREMENT BY ONE

DECREMENT BY TWO

Format Status
iType Bits Format Effect

Opcode Affected

0740 6 *0-2,4 ABS G ABSOLUTE(G)-XG)

B000 1 *0 — 5 AB G1,G2 (G1)+(G2)->(G2)

0220 8 *0 — 4 AI R,I (R)+I->(R)

A000 1 *0 — 4 A G1,G2 (G1)+(G2)->(G2)

0240 8 *0 — 2 ANDI R,I (R) AND I->(R)

0440 6 B G G->(PC)

0680 6 BL G G-XPC)
(PC)-XRll)

0400 6 BLWP G (G)->(WP)
(G+2)->(PC)
(Old WP)->(R13)
(Old PC)->(R14)
(Old ST)->(R15)

04C0 6 CLR G 0->(G)

03C0 7 CK0F External

03A0 7 CK0N External

9000 1 0-2,5 CB G1,G2 (G1):(G2)

0280 8 0—2 CI R,I (R):I
8000 1 0—2 C G1,G2 (G1):(G2)
2000 3 2 COC G,R ST2=AND of RBITS

corres. to GBITS=1

2400 3 2 CZC G,R ST2=NAND of RBITS

corres. to GBITS=1

0600 6 *0 — 4 DEC G (G)-1->(G)

0640 6 *0 — 4 DECT G (G)-2->(G)

Texas Instruments 8-100 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Instruction

DIVIDE

EXECUTE INSTRUCTION

EXTENDED OPERATION

EXCLUSIVE OR

IDLE

INCREMENT BY ONE

INCREMENT BY TWO

INVERT BITS

JUMP (UNCONDITIONAL)
JUMP IF CARRY

JUMP IF EQUAL

JUMP IF GREATER THAN

JUMP IF HIGH OR EQUAL

JUMP IF LESS THAN

JUMP IF LOGICAL HIGH

JUMP IF LOGICAL LOW

JUMP IF LOW OR EQUAL

Format Status

Type Bits
Opcode Affected

3C00 9 4

0480 6

2C00 9 6

Format

DIV G,R

X G

XOP G,T

2800 3 *0 — 2 XOR G,R
0340 7 IDLE

0580 6 *0 — 4 INC G

05C0 6 *0 — 4 INCT G

0540 6 *0 — 2 INV G

1000 2 JMP S

1800 2 JOC S

1300 2 JEQ S

1500 2 JGT S

1400 2 JHE S

1100 2 JLT S

1B00 2 JH S

1A00 2 JL S

1200 JLE

JUMP IF NO CARRY 1700 2 JNC S

JUMP IF NO OVERFLOW 1900 2 JNO S

JUMP IF NOT EQUAL 1600 2 JNE S

JUMP IF ODD PARITY 1C00 2 JOP S

LOAD CRU 3000 4 *0-2,5 LDCR G,T
LOAD IMMEDIATE 0200 8 *0 — 2 LI R,I
LOAD INTERRUPT MASK 0300 8 12-15 LIMI I

LOAD ROM AND EXECUTE 03E0 7 12-15 LREX

MOVE BYTE D000 1 *0-2,5 MOVB G1,G2
MOVE WORD COOO 1 *0 — 2 MOV G1,G2
MULTIPLY 3800 9 MPY G,R

NEGATE 0500 6 *0 — 4 NEG G

OR IMMEDIATE 0260 8 *0 — 2 ORI R,I
RESET I/O 0360 7 RSET

RETURN WORKSPACE 0380 7 0 — 6 RTWP

POINTER 12-15

Texas Instruments 8-101

Effect

INT (R)/(G)->(R)
REM (R)/(G)->(R+1)
Execute instr at G

(>40+4*T)->(WP)
(>42+4*T)->(PC)
Eff add of G-XR11)
(Old WP)->(R13)
(Old PC)->(R14)
(Old ST)->(R15)
1->ST6

(G) XOR (R)-XR)
IDLE; External
(G)+1->(G)
(G)+2->(G)
Is COMP(G)->(G)
S->(PC)
S->(PC) IF ST3=1
S->(PC) IF ST2=1
S->(PC) IF ST1=1
S->(PC) if ST0=1
OR ST2=1

S->(PC) if ST1=0
AND ST2-0

S->(PC) IF ST0=1
AND ST2=0

S->(PC) IF ST0=0
AND ST2=0

S->(PC) IF ST0=0
OR ST2=1

S->(PC) IF ST3=0
S->(PC) IF ST4=0
S->(PC) IF ST2=0
S->(PC) IF ST5=1
T bits (G) -> CRU

I-XR)
I-Xlnt. mask)
External

(G1)->(G2)
(G1)->(G2)
MSW((G)*(R))->(R)
LSW((G)*(R))->(R+1)
-(G)->(G)
(R) OR I ->(R)
External

(R13)->(WP)
(R14)->(PC)
(R15)->(ST)

October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Instruction

SET BIT TO ONE

SET BIT TO ZERO

SET TO ONES

SET ONES CORRES. BYTE

SET ONES CORRES. WORD

SHIFT LEFT ARITH.

SHIFT RIGHT ARITH. * 0800

SHIFT RIGHT CIRCULAR S 0B00

SHIFT RIGHT LOGICAL * 0900

STORE CRU 3400
STORE STATUS REGISTER 02C0

STORE WORKSPACE POINTER 02A0

SUBTRACT BYTE 7000

SUBTRACT WORD 6000

SWAP BYTES 06C0

SET ZEROES 5000

CORRESPONDING BYTE

SET ZEROES 4000

CORRESPONDING WORD

TEST BIT 1F00

Format Status

Type Bits
Opcode

1D00

1E00

0700

F000

EOOO

OAOO

2

2

6

1

1

5

5

5

5

4

8

8

1

1

6

1

1

2

Affected

*0-2,5
*0 — 2

0 — 4

0—3

0—3

0—3

*0-2,5

*0 — 5

*0 — 4

*0-2,5

*0 — 2

2

Effect

1->(E+(R12))
0->(E+(R12))
>FFFF->(G)
(Gl) OR (G2) ->(G2)
(Gl) OR (G2) ->(G2)
Shift left C bits

and '0' fill

Shift right C bits
and MSB fill

Shift right C bits
and LSB into MSB

Shift right C bits
and '0' fill

T CRU bits ->(G)
(ST)->(R)
(WP)->(R)
(G2)-(G1)->(G2)
(G2)-(G1)->(G2)
Interchange bits 0-7
with bits 8-15 of G

(INV(Gl)) AND (G2)
-XG2)
(INV(Gl)) AND (G2)
-XG2)
(R12)+E->ST2

8 If C=0 then count taken from bits 12 - 15
If this is zero then C«16.

Format

SBO E

SBZ E

SETO G

SOCB G1,G2
SOC G1,G2
SLA R,C

SRA R,C

SRC R,C

SRL R,C

STCR G,T
STST R

STWP R

SB G1,G2
S G1,G2
SWPB G

SZCB G1,G2

SZC G1,G2

TB E

of RO.

Additional Instructions for 9995 and 9989

Instruction

LOAD ST FROM REGISTER

LOAD WP FROM REGISTER

SIGNED DIVIDE

SIGNED MULTIPLY

Format Status

Type Bits Format
Opcode Affected

Effect

0080 8 0-15 LST R (R)->ST

0090 8 LWP R (R)->WP
0180 6 *0-2,4 DIVS G INT(R*)/(G)->(R0)

REM(R*)/(G)->(R1)
01C0 6 *0 — 2 MPYS G MSW((R*)*(G))->(R0)

LSW((R*)*(G))->(R1)

Texas Instruments 8-102 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Additional Instructions for 99000 Family

Instruction

ADD DOUBLE

BRANCH INDIRECT

BRANCH AND PUSH STACK

POINTER

LOAD ST FROM REGISTER

LOAD WP FROM REGISTER

SHIFT LEFT ARITHMETIC

DOUBLE *

SHIFT RIGHT ARITHMETIC

DOUBLE *

SIGNED DIVIDE

SIGNED MULTIPLY

SUBTRACT DOUBLE

TEST MEMORY BIT

TEST AND CLEAR MEMORY

BIT

TEST AND SET MEMORY

BIT

Format Status

Type Bits Format
Opcode Affected

002A 10 0—4 AM G1,G

0140 6 BIND G

00B0 8 BLSK R,I

0080 8 0-15 LST R

0090 8 LWP R

001D 10 0 — 4 SLAM G1,C

001C 10 0 — 3 SRAM G1,C

0180 6 *0-2,4 DIVS G

01C0 6 *0 — 2 MPYS G

0029 10 0 — 4 SM G1,G

0C09 10 2 TMB G1,T
OCOA 10 2 TCMB G1,T

OCOB 10 2 TSMB G1,T

* If C=0 then count is taken from bits 4 - 7 of RO.

8.12.7 Pseudo-Instructions

Instruction

NO OPERATION

RETURN

Format

NOP

RT

Effect

(Gl,Gl+2)+(G2,G2+2)
—> (G2,G2+2)

(G) -> (PC)
(W)-2 -> (W)
(PC)+4 -> ((W))
I -> (PC)
(R)->ST
(R)->WP
Shift (Gl,Gl+2) left
C bits; '0' fill
Shift (Gl,Gl+2) right
C bits; MSB fill
INT(R*)/(G)->(R0)
REM(R*)/(G)->(R1)
MSW((R*)*(G))->(R0)
(G2,G2+2)-(Gl,Gl+2)

> (G2,G2+2)
(Gl+Tbit) -> ST2
(Gl+Tbit) -> ST2
0 —> (Gl+DISP)
(Gl+Tbit) -> ST2
1 —> (Gl+DISP)

Effect

JMP

B

$+2
*R11

TRANSFER VECTOR for a 'BLWP Glabel'

label XVEC wpadd,pcadd
(SDSMAC only)
label DATA wpadd

DATA pcadd
WPNT wpadd

Texas Instruments 8-103 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.8 Assembler Directives

{ } - The item in parenthesis is optional
(,x) - Any number of 'x's (each preceded by a comma)

All directives (except OPTION) may be preceded by a label
and followed by a comment. Strings are enclosed in single
quotes.

ABSOLUTE ORIGIN - AORG exp - absolute value
Defines an absolute code block and loads the location

counter with EXP.

RELOCATABLE ORIGIN - RORG {exp}
Defines a relocatable code block and loads the location
counter with EXP; if EXP not present then uses:

o Current length of program segment for absolute code
o Length of data segment for data relocatable code
o Length of common segment for common relocatable code

DUMMY ORIGIN - DORG exp
.Defines a dummy code block (no code is generated but it
allows a module to access symbols defined in another module)
and loads the location counter with EXP.

DATA SEGMENT - DSEG

Defines a data relocatable block and loads the location

counter with:

o Max location counter from data relocatable code

o Zero

DATA SEGMENT END - DEND

Terminates a DSEG and defines a program relocatable block.
Loads the location counter with:

o Max location counter from program relocatable code
o Zero

COMMON SEGMENT - CSEG {string}
Defines begining (or continuation) of named common
relocatable code block and loads the location counter with;

o Zero if named common block previouly unused
o Max location counter from already used named common

relocatable code

If STRING (6 characters) not present then refers to blank
common segment.

COMMON SEGMENT END - CEND

Terminates a CSEG and defines a program relocatable code
block. The location counter is loaded as for DEND.

PROGRAM SEGMENT - PSEG

Defines a program relocatable code block and loads the
location counter with:

o Max location counter for program relocatable code
o Zero

Texas Instruments 8-104 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

PROGRAM SEGMENT END - PEND

Terminates a PSEG and defines a program relocatable code
block. The location counter is loaded as for DEND.

BLOCK STARTING WITH SYMBOL - BSS exp
Reserves EXP consecutive bytes. If a label present it is
assigned the address of the first byte of the block.

BLOCK ENDING WITH SYMBOL - BES exp
Reserves EXP consecutive bytes. If a label present it is
assigned the address of the first byte immediately following
the block.

INITIALIZE BYTE - BYTE exp (,exp)
Reserves successive bytes of memory and initializes them to
their respective values of EXP.

INITIALIZE WORD - WORD exp (,exp)
Reserves successive words of memory and initializes them to
their respective values of EXP.

INITIALIZE TEXT - TEXT {-} string
Reserves successive bytes of memory and initializes them to
the appropriate character in STRING (max 52 characters) if
minus sign present then the last character in STRING is
negated.

WORD BOUNDARY ALIGN - EVEN

Aligns the location counter to a word boundary if it
contains an odd value, otherwise it is unchanged.

DEFINE ASSEMBLY TIME CONSTANTS - label EQU exp
Assigns the value of EXP to LABEL.

EXTERNAL DEFINITION - DEF symbol (.symbol)
Allows other programs to access a program's SYMBOLS.

EXTERNAL REFERENCE - REF symbol (,symbol)
Provides access to SYMBOLS defined in other programs.

SECONDARY EXTERNAL REFERENCE - SREF symbol (,symbol)
Provides access to SYMBOLS defined in other programs.

FORCE LOAD - LOAD symbol (,symbol)
Causes a special object tag to be generated for the Link
Editor (effect INCLUDE SYMBOL). Used with SREF.

DEFINE EXTENDED OPERATION - DXOP sym,num

Defines SYM to be an XOP; NUM is the XOP number.

PROGRAM END - END {symbol}
Terminates the assembly (everything following is ignored).
If SYMBOL present it is the program's entry point.

Texas Instruments 8-105 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

OUTPUT OPTIONS - OPTION key (,key)
Specifies the output and listing options to the assembler.
KEY can be:

XREF - Print cross reference table.

OBJ - Print listing of the object code.
SYMT - Print symbol table.
NOLIST - Suppress listing (SDSMAC)
TUNLIST - Text statement unlist (SDSMAC)
DUNLIST - Data statement unlist (SDSMAC)
BUNLIST - Byte statement unlist (SDSMAC)
MUNLIST - Macro expansion unlist (SDSMAC)

PROGRAM IDENTIFIER - IDT string
Assigns a name (first 8 characters of STRING - enclosed in
single quotes) to the program. Must precede everything that
produces object code.

PAGE TITLE - TITL string
STRING (max 50 characters) supplies heading for the
assembler listing. (If TITL not first source statement then
no heading on first page of listing).

LIST SOURCE - LIST

Restores printing of the source listing after an UNL.
directive is not printed in the listing.

The

NO SOURCE LISTING - UNL

Inhibits the printing of the source listing
is not printed in the listing.

The directive

PAGE EJECT - PAGE

Causes the assembler to continue the source listing on a new
page. The directive is not printed in the listing.

WORKSPACE POINTER - WPNT label SDSMAC only
Defines the current workspace (referenced by LABEL)
assembler but produces no object code.

COPY SOURCE FILES - COPY file SDSMAC only
Causes input to the assembler to be taken from FILE,
of file, input is resumed from the original file.

to the

On end

DEFINE OPERATION - DFOP sym,op SDSMAC only
Defines a synonym (SYM) for an operation (OP). OP may be a
mnemonic, a macro name, or the SYM of a previous DFOP or
DXOP directive.

Texas Instruments 8-106 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.9 Object Record Format and Code

1 Byte 4 Bytes 6/8 Bytes (when required)
I— 1 1 1
| Tag I 1ST Field | 2ND Field |

TAG 1st FIELD

0 Length of all
relocatable code

1 Address

2 Address

3 Location of last

appearance of

symbol
4 Location of last

appearance of
symbol

5 Location

6 Location

7 Checksum for

current record

8 Any value
9 Load address

A Load address

B Data

C Data

D Load bias

E

F Not used

Texas Instruments

2nd FIELD MEANING

8 char Program start
Program ID
Not used Absolute entry point
Not used Relocatable entry point
6 char External reference last

symbol used in relocatable code

6 char External reference last

symbol used in absolute code

6 char Relocatable external

symbol definition
6 char Absolute external

symbol definition
Not used Checksum

Not used Ignore checksum value
Not used Absolute load address

Not used Relocatable load address

Not used Absolute data

Not used Relocatable data

Not used Load bias or offset

Illegal
Not used End of record

8-107 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.10 Instruction Execution Times

8.14.10.1 TMS9900

Instruction Clock Memory Add. Mod Table |

Cycles Access Source Dest |

A 14 4 A A I

AB 14 4 B B I

ABS Msb=0 12 2 A |

Msb=l 14 3 A - I

AI 14 4 - I

ANDI 14 4 - I

B 8 2 A - |

BL 12 3 A - |

BLWP 26 6 A |

C 14 3 A A I

CB 14 3 B B I

CI 14 3 - |

CKOF 12 1 - |

CKON 12 1 - - |

CLR 10 3 A |

COC 14 3 A I

CZC 1 14 3 A - |

DEC 1 10 3 A |

DECT 10 3 A I

DIV ST4 Set 1 16 3 A J

ST4 Reset a I 92-124 1 6 1 A I

IDLE 1 12 1 - |

INC 1 io 1 3 1 A |

INCT 1 io 3 1 A I

INV 1 io 3 1 A 1

JUMP PC Changed 1 io 1 - 1

PC Unchanged 1 8 1 i - - |

LDCR C=0 1 52 1 3 A - 1

1<=C<=8 | 20+2C 1 3 B - 1

9<=C<=15 | 20+2C 1 3 1 A 1

LI 1 12 1 3 - 1
LIMI 1 16 1 2 - |

LREX 1 12 1 - 1
LWPI 1 io 2 - - |

MOV 1 14 1 4 A A |

MOVB 1 14 1 4 1 B B |

MPY 1 52 1 5 1 A - I
NEG 1 12 1 3 1 A — |

~RESET function I 26 5 — — |

TOAD function I 22 1 5 - - |

Interrupt context

switch I 22 5 | — — |

Texas Instruments 8-108 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Instruction Clock Memory Add. Mod Table

Cycles Access Source I Dest

ORI 14 4 _ _

RSET 12 1 - -

RTWP 14 4 - -

S 1 14 4 A A

SB 1 14 4 B B

SBO 12 2 - -

SBZ 12 2 - -

SETO 10 3 A -

SHIFT Cj&O 12+2C 3 - -

C=0, RO=0 52 4 - -

C=0, R0=N^0 20+2N 4 - -

SOC 14 4 1 A A

SOCB 1 14 4 1 B B

STCR C=0 60 4 A -

1<=C<=7 42 4 B -

C=8 44 4 B -

9<=C<=15 58 4 1 A -

STST 8 2 - -

STWP 8 2 - -

SWPB 10 3 A -

SZC 14 4 1 A A

SZCB 14 4 B 1 B
TB 12 2 - -

X b 1 8 2 A -

XOP 36 8 A -

XOR 14 4 1 A —

Undefined opco>des 6 1 - -

a Execution time is dependent upon the partial quotient
after each clock cycle during execution

b Execution time is added to that of the instruction at the

source address minus 4 clock cycles and 1 memory access

Address Modification Tables (A and B)

Addressing Clock Cyc les Memory Access

Mode A B 1 A B

Register 0 0 0 0

Indirect 4 4 1 1

Indexed 8 8 2 2

Symbolic 8 8 1 1

Indirect with 1 8 6 1 2 2

autoincrement

Texas Instruments 8-109 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

T=tc[C+(W*M)]

T

tc

C

W

M

- Total instruction execution time

- Clock cycle time
- Number of clock cycles for instruction execution

plus address modification
- Number of required wait states per memory access

for instruction execution plus address
modification

- Number of memory accesses

8.14.10.3 SBP9900A

As for the TMS9900 except:

Instruction I Clock | Memory I Add. Mod Table
| Cycles | Access | Source I Dest

LIMI | 14 | 2 | - | -
X a | 4 | 1 | A | -

a Execution time is added to that of the instruction at the

source address minus 4 clock cycles and 1 memory access

Texas Instruments 8-110 October 1981

wo<e
>
S
5

<
J

•
J

P
Q
sWC
O

C
O

U
i

oo
»

H

P
Q

0
0

P
o

\

!S
c
r

<
!

C
O

ffi
sH

H
"»««.

5
5

<
:

W
o

s
0

0
P

u
©

\

O
o

\

•
J

C
O

>
g

wp
C

M

w
.

ptS
O

<
3

i-H

&
.

H
s
r

f
e

1
-
4

O
•

C
O

0
0

<
D

4
J

M
0
3

,
o

a
)

(
d
P

H•
aoT
3

T
3

oJ-l

o
<
3

c
o

:>
>

0
)

M
C

O

O
a

)

e
o

0
)

o

IS
<

3C
O

A
J

C
D

o
M

o
o

M
^

O
o

co•
H

4
-
i

Oa
s

M

<
2

p
q

i
I

I
I

I
I

<
P
Q

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
i

i
i

i
<
:

p
q

i
i

i
<
:

<tl
P
Q

<
3

<
3

|
<
3

<
<

<
P
Q

<
J

<
J

<
J

<
J

<
J

<
J

<
3

<
<

<
|

<
«

<
d

I
I

I
<
c

p
q

<
:

<
j

i
I

<
3

0
0
C
O
S
f

V
O
C
O

0
0

«
tf

v
C

C
M

v
©

v
O

v
©

C
M

N
v
O

v
O

v
O

v
O

v
O

v
C

N
N

v
O

v
O

v
O

M
N

v
O

v
O

v
O

v
O

v
C

N
t—

i
i—

i

s
r
o

o
o

o
o

v
o

o
o

c
M

o
o

o
o

C
O

O
C

O
C

M
N

v
O

C
N

N
N

O
C

O
O

C
O

O
«

(
J
,
<

,
v
O

O
C

v
O

\
O

C
M

H
s
f
v
D

v
O

v
O

N
O

O
O

C
M

N
O

O
N

<
,
s
t
N

N
N

O
O

N
«

*
N

N
N

C
g

H
N

N
N

H
H

n
N

N
N

H
H

H
N

N
H

H
N

|
H

H
H

H
H

H
i
n

+
+

H
N

H
H

N
N

v
O

H
N

H
{
V

|
N

s
t

v
O

v
C

O
C

M
C

M

O
—

I
II

II
^

X
>

09
C

O

<
u

c
o

C
O

M
C

O
Q

s
s

t
s

5
S

P
M

M
M

a
)

a>
o

c
o

o

Xoo

to
Xoc

o
D

II

P
M

pci

p•
J

C
O

P
&

O
O

P
U

O
U

U
O

P
Q

P
Q

M
JS

»-J
(J

p
q

H
^
^
t
J
O

N
W

K
<

3
<

1
<

«
J

<
J
<

J
p

Q
p

C
p

Q
O

O
O

C
J
O

C
J
C

J
O

P
P

M
•">

m

0
0

t-H

II
II

V
V

o
o

II
II

V
V

w
-t

o
>

M
X

M
P

Q
H

P
n

S
W

P
L

4
>

>
{
H

C
M

W
&

M
M

p
c
S

^
C

O
P

L
i
W

P
S

C
O

H

I
I

l
I

o
o

v
O

C
M

c
n

e
n

C
M

c
n

o
o

•
H

«
H

4
J

4
J

0
O

c
c

«
W

((-4

HW
P

c
o

<
J

w
o

P
C

h
J

1
(

4
Jco

u0ooM
U

cu
4

J

C
>

M
C

O

0
0

O
N(-1

a>

,oo*
j

oo

I
0

0C
O

4
Jc6uC
O

aMC
O

CIS
Xa>

H

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Instruction Clock Memory Add. Mod Table

Cycles Access Source Dest

SB 22 8 B B

SBO 16 4 - -

SBZ 16 4 - -

SETO 16 6 A -

SHIFT C^O 18+2C 6 - -

C=0,RO=0 60 8 - -

C=0,RO=N^O 28+2N 8 - -

SOC 22 8 A A

SOCB 22 8 B B

STCR C=0 68 8 A -

1<=C<=7 50 8 B -

C=8 52 8 B -

9<=C<=15 66 8 A -

STST 12 1 4 - -

STWP 12 4 - -

SWPB 1 16 1 6 A -

SZC | 22 1 8 A , A

SZCB | 22 1 8 1 B B

TB 1 16 1 4 - -

X b 1 12 1 4 A -

XOP 1 52 1 16 1 A ! -

XOR | 22 1 8 A —

Undefined opcodes 1 8 I 2 | |

a Execution time is dependent upon the partial quotient
after each clock cycle during execution

b Execution time is added to that of the instruction at the

source address minus 4 clock cycles and 1 memory access

Address Modification Tables (A and B)

Addressing Clock Cycles Memory Access

Mode A B A B

Register 0 0 0 0

Indirect 6 6 2 2

Indexed 12 12 4 4

Symbolic 10 10 2 2

Indirect with 12 10 4 4

autoincrement

Use the TMS9900 formula for calculating the TMS9980A
the TMS9981 instruction execution times

and

Texas Instruments 8-112 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.10.4 TMS9995

Everything Everything!
but Src but Dst

and Dst operand Operand |

I Instruction Everything operands off chip Everything | address |

on chip off chip a off chip derivation!

CI XM1 CI XM1 CI XM1 CI 1XM1 | Src Dst I

1 A 4 1 0 5 2 6 4 8 8 A A I
| AB 4 0 5 2 5 3 5 5 A A I
I ABS 3 0 4 2 6 6 6 6 A - |

I AI 4 0 6 4 6 4 8 8 - - |

| ANDI 4 0 6 4 6 4 8 8 - J

1 B 3 0 4 2 4 2 4 2 A - |

I BL 5 0 6 2 7 4 7 4 A |

I BLWP 11 0 12 2 14 b 6 b| 17 12 A - |

I c 4 0 5 2 6 4 7 6 A A I
I CB 4 0 5 2 5 3 5 4 A A I

1 CI 4 0 6 4 6 4 7 6 - J

| CKOF 7 0 8 2 8 2 8 2 - |

| CKON 7 0 8 2 8 2 8 2 - |

I CLR 3 0 4 2 5 4 5 4 A - J

| COC 4 0 5 2 6 4 7 6 A - J

| CZC 4 0 5 2 6 4 7 6 A - |

| DEC 3 0 4 2 6 6 6 6 A |

| DECT 3 0 4 2 6 6 6 6 A I

| DIV ST4 Set c 6 0 7 2 8 4 10 8 1 A I

I ST4 Reset 28 0 29 2 30 4 34 12 A |

| DIVS ST4 Set c 10 0 11 2 12 4 36 8 1 A |

I ST4 Reset 33 0 34 2 35 4 39 12 1 A |

I IDLE d 7+21 0 8+21 2 8+21 2 8+21 2 - |

I INC 3 0 4 2 6 6 6 6 A |

| INCT 3 0 4 2 6 6 6 6 A - |

I INV 3 0 4 2 6 6 6 6 1 A |

I JUMP - All 3 0 4 2 4 1 2 4 1 2 - - J

| LDCR C=0 41 0 42 2 43 4 I 44 1 6 1 A |

1 1<>C<=15 9+2C 0 10+2C 2 11+2C 4 I12+2C 1 6 1 A - J

1 LI 3 0 5 4 5 1 4 1 6 1 6 | I

1 LIMI 5 I o 7 1 4 | 7 1 4 | 7 1 4 | |

I LREX 7 1 o 8 1 2 8 1 2 1 8 1 2 | |

I LST 5 1 o 1 6 1 2 1 6 1 2 | 7 1 4 | J

I LWP 4 1 o | 5 1 2 6 1 2 1 6 1 4 | 1

I LWPI 4 1 o 1 6 1 4 1 6 I 4 1 6 1 4 | 1 ~ 1

| MOV 1 3 1 o 1 4 1 2 1 5 1 4 1 6 1 6 1 A 1 A |

| MOVB 1 3 1 o 1 4 1 2 1 4 1 3 I 4 1 4 1 A 1 A |

| All interrupt

| context

| switches | 14 e 0 e 17 b 6 b 17 b 6 b 20 f |12 f 1 •" | ™ 1

Texas Instruments 8-113 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Everything Everything
but JSrc 1 but Dst

and Dst operand Operand
Instruction Everything operands off chip [Everything address

on chip off chip a I Off (:hip derivation

CI |XM1 CI |XM1 CI XM1 1 CI |XM1 Src | Dst

MPY 23 0 24 2 25 4 28 10 A _

MPYS 25 0 | 26 1 2 27 4 30 10 A -

NEG 3 0 1 4 1 2 1 6 6 6 6 A -

ORI 4 0 1 6 1 4 6 4 8 8 - -

RSET 7 0 8 2 1 8 2 8 2 - -

RTWP 6 0 7 1 2 7 g 2 g 10 8 - -

S 4 0 5 2 6 4 1 8 8 A A

SB 4 0 5 2 5 3 5 5 A A

SBO 8 0 9 4 9 2 10 4 - -

SBZ 8 0 9 2 9 2 10 4 - -

SETO 3 0 4 2 5 4 5 4 - -

SHIFT C^O 5+C 0 6+C 2 6+C 2 8+C 6 - -

C=f),RO=0 23 0 24 2 24 2 27 8 - -

C=f),RO=N^O 7+N 0 8+N 2 8+N 2 11+N 8 - -

SOC 4 0 5 2 6 4 8 8 A A

SOCB 4 0 I 5 2 5 3 5 5 A A

STCR C=0 43 0 44 2 46 6 47 8 A -

1<==C<=8 19+C 0 20+C 2 22+C 6 23+C 8 A —

9<==C<=15 27+C 0 28+C 2 30+C 6 31+C 8 A -

STST 3 0 4 2 4 2 5 4 - -

STWP 3 0 4 2 4 2 5 4 - -

SWPB 13 0 14 2 16 6 16 6 A -

SZC 4 0 5 2 6 4 8 8 A A

SZCB 4 0 5 2 5 3 5 5 A A

TB 8 0 9 2 9 2 10 4 - -

X h 2 0 3 2 4 4 4 4 A -

XOP 15 0 16 2 18 b 6 b| 22 14 A -

XOR 4 0 5 2 6 4 8 8 A —

a Registers for register-only instructions (STST, LST, STWP, LWP,
shifts) and registers for instructions where an additional register
is required (AI, ANDI, BL, CI, LDCR, LI, ORI, SBO, SBZ, STCR, TB,
and shifts) are on chip,

b Trap vector off chip and new workspace on chip,
c Execution time is dependent upon the partial quotient after each

clock cycle during execution. Clock cycles shown are for worse case
operands,

d Will remain in Idle state until an unmasked interrupt request occurs
(1= number of CLK0UT cycles until the request occurs),

e Trap vector and new workspace on chip (NMI only),
f Trap vector and new workspace on chip,
g Workspace on chip,
h Execution time shown does not include

instruction located at the source operand.
execution time of the

Texas Instruments 8-114 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Operand Address Derivation Table (A)

Registers Registers
Registers, on chip; off chip; Registers,
index base index base index base index base

Address]Lng addr, and addr, and addr, and addr, and

Mode symbolic symbolic symbolic symbolic
address address address address

on chip off chip on chip off chip
C2 XM2 C2 XM2 C2 | XM2 | C2 XM2

Register 0 0 0 0 0 I 0 0 0

Indirect 1 0 1 0 2 | 2 2 2

Symbolic 1 0 2 2 1 1 1 1 2 2

Indexed 3 0 4 2 4 I 2 5 4

Indirect with 3 0 3 0 5 1 4 5 4

autoincrement

T=tc[Cl+C2+W*(XMl+XM2)]

T - Total instruction execution time

tc - CLKOUT cycle time

CI - Base CLKOUT cycles
C2 - Additional CLKOUT cycles for operand address

derivation (table 'A' above)
W - Number of wait states per off chip (byte length)

memory cycle
XM1 - Base off chip (byte length) memory cycles
XM2 - Additional off chip (byte length) memory cycles

for operand address derivation (table 'A' above)

8.14.10.5 SBP9989

Address Modification Table A

Addressing | Clock | Memory
Mode I Cycles I Access

Register 10 1 0
Indirect I 4 I 1
Indexed 1 6 1 2
Symbolic 1 6 | 1
Indirect with | 6 1 2

autoincrement I |

Texas Instruments 8-115 October 1981

wo<oJZ•J•*mP
Q

32
WC

O
C

O

<oOp
a

P5
5

<
:

s
e

HS
5

WP
w

oh
J

w>wpWP
i

<
:

F
*4

OC
O

0
)

4
J

M
C

O
,£>

a)
CO

P
H*
oo*
3

C
O

o3o
<

!
c
o

<
:

«
s

<
J

<
<

<
I

I
I

<
<

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

<
3

<
3

I
I

I

<
3

<
J
<

j-
«

i3
<

J
|

I
|<

s
J
<

3
<

J
<

3
<

3
«

s
:
<

J
<

tlo
3

l<
:
<

3
<

3
l<

J
<

J
I

<
3

<
i

<
3

<
3

<
!

>
%

CO
U

C
O

O
C

O
e

o
<

u
o

^
^

N
(
O

^
^

H
N

v
o

c
o

c
o

f
n

H
H

N
M

n
n

w
«

*
v

c
<

t
v

O
H

c
o

f
o

c
n

H
f
O

f
O

f
O

N
H

N
N

N
f
o

-
*

i
f
i
i
n

f
O

00

^
CO

O
M

o
o

M
f*

C
M

C
M

O
s
t
s
t
s
t
v
O

O
s
t
C

M
C

M
C

M
O

O
O

O
C

M
C

M
O

O
O

v
C

v
O

O
O

O
O

O
v
O

C
O

C
M

C
M

C
M

O
O

O
i—

I
r-l

i—
4

f—
I

•—4
i—

I
,-H

CM
t—

4
f-4

i—
4

f—
4

f—
j

,_
|t_

4
t_

(^
H

C
M

m
m

v
O

'-l»
—

I
i—

I
•—

*
S

t
+

•—
'

i—
I

i—
4

t—
I

i—
4

v
O

C
M

O
C

M
C

M
v
O

C
M

«-<
r-4

m
m

i-4

3O•H

C
i-H

II
II

+
J

.O
X

O
C

O
C

O

3
X

X
P4
JC
O

C
O

3
P

Q
P

Q
M

<
!

<
d

<

C
D

C
O

S
t

H

<
U

4
J

C
O

0
)

C
O

<
t

0)
E

-"

M
P

m
C

n
525

H
P

&
O

O
P

C
5

U
C

J
O

C
J

M
!
Z

.
J
.
J

P
Q

H
^
^
i
J
O

N
W

W

C
O

P
S

C
O

«

<
t

>
H

M
C

O

P

C
O

s
t

>
H

M
C

O

P

W
H

P
JZ

JZ
JZ

M
M

M
M

O

I
II

C_>

C
O

P
m

P
S

X
o

5
p

•-3
»

J

m1—
4

II
VoII
\
/

M
X

M
P

Q
C

O
^
W

H
P

H
P

4
>

>
>

4
J
H

0
M

M
p

£
!
C

O
r
5

&
O

O
P

-
.O

M
W

I
I

m
m

o
o

C
M

C
M

OC
M

X
3

3
co

O
O

4
J

•H
M

3
•U

4
J

O
O

O
o

3
3

3
3

4-1

U
-4

M
-4

3
H

M
X

w
p

U
u

c
o

<
2

<
D

4
J

w
o

4-1
•
H

«
h

J
3

&
1

I
M

00

C
OoXo4
-)

oov
OI

0
0C
O

4
J30
)

e3>
j

4->

003MC
O

cdo>
H

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

Instruction Clock Memory Add. Mod Table

Cycles Access Source Dest

ORI 14 4 — _

RSET 10 1 - -

RTWP 16 4 - -

S 12 4 A A

SB 12 4 A A

SBO 12 2 - -

SBZ 12 2 - -

SETO 8 2 A -

SHIFT' c?feo 12+2C 3 - -

C=0, R0=0 52 4 - -

C=0, R0=N£0 20+2N 4 - -

SOC 12 4 A A

SOCB 12 4 A A

STCR C=0 56 4 A -

1<=C<=8 40 4 A -

9<=C<=15 56 2 A -

STST 8 2 - -

STWP 8 2 - -

SWPB 1 io 3 A -

SZC 1 12 4 A A

SZCB 1 12 4 A 1 A
TB 1 12 2 - -

X a 1 4 1 A ! -

XOP b | 28 7 1 A | -

XOR 1 12 4 A | —

Undefined opcodes 24 6 - !

a Execution time is added to that of the instruction located

at the source address

b Execution time includes time to perform a context switch
resulting from XIPP being inactive

T=tc[C+(Wl*M)] + tc(W2*R)

T

tc

C

Wl

M

R

W2

- Total instruction execution time

- Clock cycle time
- Number of clock cycles for instruction execution

plus address modification
- Number of required wait states per memory access

for instruction execution plus address
modification

- Number of memory accesses
- Number of CRU operations
- Number of required wait states per CRU operation

Texas Instruments 8-117 October 1981

(t
>

C
O M 3 C
O

r
t

3 B (D 3 0
0 I

0
0

O o r
t

o o
*

(t
»

»-
»

V
O

o
o

o
>

O
M

3
M

r
t

fl>
H

»
X

3
r
t

r
t

n>
cn

r-
t

«J
M

H
-

3
r
t

T
3

O
r
t

3
*

CD C
O

0
>

f
f

f
C"

«
IT

*
P

1
SJ

S3
C

O
»

M
M

M
X

M

tr
*

o c
*

o
o

I
K

II
O

O

C
-4

M
M

M
M

g
2!

a
2!

a
3

<
o

<
n

m
>

tf
H

W
C

O I

C
O H w (D C
O

a> r
t

H
W

H
M

M
N

O
r
'
^
^
H

W
[
"
•
f
r
'H

2
!

3
H

<
H

<
n

n
n

o
j
o

o
o

s
:

co
co

js
»

H
2

!
*

i
>

tf
*

>
•>

>

C
O

03 n>

> M

03
03

M
M

c
o

n
a

H
(D

-P
»

C
O

C
O

r
t

r
t

c
o

H ja
»

c
o

rt
>

r
t

25
a M

3
3

C
O

C
O

II
II

H
-

O

0
0

+
W

W
U

l
v
l
J
l
W

U
l
N

)

o

o
-
4

4>
+

W
O

U
H

O
W

U
W

W
N

U
l
l

K
O

W
W

4
>

4
>

W
M

M
4

>
4

>
2

5
I—

•

U
3

4
>

H
>

J
U

1
4

>
W

4
>

N
4

>
U

>
*

»
4

>

N
N

)
N

)
M

N
)
W

W
W

W
M

W
W

W
M

O
N

4
>

^
4

>
U

J
W

W
U

)
N

M
M

W
W

W
C

f
t
U

l
N

5
N

M
4

>
M

4
>

W
W

4
>

4
>

I
I

I
i

I
\
>

>
>

1
>

>
>

1
>

>
>

>
>

>
>

>
>

1
I

!
>

>
>

!
?

>
?

>
>

>
;>

>
>

l
l

I
I

l
l

I
I

I
I

I
l

l
I

I
l

>
>

I
I

>
>

>

M 3 C
O

r
t

f% 3 O r
t

H
«

O 3

c
o

3
r
t

03
03

O
r
t

3
*

CO
3

>
3

O
fl>

o
B

a>
o

C
D

»
i

co
v«

j

c
o

>
0

C
u

3
c
u

1
•

O fl>
3 O

—
C

u

t-
3

n>
c
r

C
O

M
r
t

fl
>

0
0

o . O
N

»-
3

3 C
O

V
O

V
O

o o o *
l

03 3

C
O

o M a w < w c-
«

o 3 w 2
!

3
3

> 2S a W o o > C
O

C
O

w 3 w 2
i

o w

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

| Instruct! on | Machine I Memory I Add. Mod Table |
| States I Access | Source I Dest |

| MOV 1 3 1 3 1 A I A |
| MOVB 1 4 1 4 1 A 1 A |
| MPY 1 24 I 5 1 A [— |

| MPYs | 26 I 5 1 A — 1

| NEG 1 3 1 3 1 A — 1
| ORI 1 4 1 4 | - I - |

| RSET | 7 I 1 I — — 1

| RTWP 1 6 1 4 | - ~ I
I s 1 4 1 4 1 A 1 A |
| SB 1 4 1 4 1 A 1 A |
| SBO I 7 1 2 | - — 1

| SBZ I 7 1 2 — — I

| SETO 3 2 — — |

| SHIFT CjfeO 5+C 3 — — 1

1 c=o, R0=0 22 4 — — |

I c=o, RO=N^O 7+N 4 — — i

| SHIFT DOUBLE C^O 13+C 5 A — 1

I c=o, R0=0 30 6 A — 1

1 c=o, R0=N?^0 14+N 6 A — |

>| SM 11 7 A A I
| SOC 4 4 1 A A I
| SOCB 4 4 A A I
| STCR C^O,serial 13+2C 4 A — |

C=0,serial 45 4 A — |

para:Llel 9 4 A — |

| STST 3 2 - — |

| STWP 3 2 - — |

| SWPB 3 3 A — |

| SZC 4 4 A A I
| SZCB 4 4 A A I
| TB 7 2 - — |

| TEST MEMORY BIT | 28 3 — — 1

1 x b I 2 1 1 A — 1

| XOP 15 c 8 A — |

| attached proc. 10 A I — |

| XOR 4 4 1 A - |

| Undefined opcodes 14 c 6 _ _ i

I external proc. 8 | — — |

a Execution time is dependent upon the partial quotient
after each clock cycle during execution

b Execution time is added to that of the instruction located
at the source address

c Exceution time does not include the time required by soft
ware or an attached processor to emulate the instruction

Texas Instruments 8-119 October 1981

SOFTWARE DEVELOPMENT HANDBOOK

Address Modification Table A

Addressing | Clock | Memory
Mode | Cycles | Access

Register 1 0 1 0
Indirect | 1 | 1

Indexed 1 3 1 2
Symbolic | 1 | 1
Indirect with | 3 1 2
autoincrement | |

ASSEMBLY LANGUAGE

T=tc[C+(W*M)]

T - Total instruction execution time

tc - Machine state time (four times the external input
clock period)

C - Number of machine states for instruction execution

plus address modification
W - Number of required wait states per memory access

for instruction execution plus address
modification

M - Number of memory accesses

Texas Instruments 8-120 October 1981

>
-«

3
h

J
o

P
Q

•
H

a
s

4
J

w
O

C
O

3
C

O
3

<
5

PE4

3•
HP
M3O•H4
J

O
W

3
o

3
o

PL<
P

Q
P5

5
C

O

<
:

4
J

3
E

C
3

•
H

C
U

P
-<

E
H

B
JS

3
P

C
6

0
o

X
•
H

o
3

P
u

C
O

O
N

O
o

C
O

C
t\

•
H

»
J

<
C

O
4

J

m
S

O
>

3
H

3
w

•
H

3
p

P
H

i—
i

P
n

w
•

P
i

1—
1

i—
i

<
!

»
-
l

i—
«

3
&

.
.

•
H

H
S

t
<

*
P

-.
P

m
i-H

i-H

O
.

.

C
O

0
0

0
0

W
2

:
•
J

>
*

w
p

O
p

X
h

J
o

^
c
M

c
n

s
t
m

o
C

3
W

<
3

c
x
3

0
s
t
m

v
o

r
^
0

C
O

>
i
—

i
i
-
i
i
-
H

i
-
i
i
-
i
i
-
H

O
O

O
p

!
!2

W
S

K
p

p
p

p
p

p
p

p
p

p
p

p
2

;
2

;
>

o
i

c
r
fi

i

i
f
i
v
O

N
w

a
O

H
N

c
n

^
i
r
i
v
O

N
o

o
a

O
H

N
c
n

s
r

s
t
s
t
s
t
s
t
«

s
t
m

m
m

m
m

m
m

m
m

m
v
o

v
o

v
o

v
o

v
o

o
*

H
w

3>
J
z

«
2

;
O

M
E

-*
CO

*
3

H
D

D
Z

C
O

N
H

O
CO

^
n

o
s
t

c
o

-
a

c
n

p
Q

p
c
s
o

S
M

O
U

u
o

o
c
j
o

t
o

c
H

N
t
n

<
3

<
J
<

6
2

.>
>

«
iP

C
_

)C
J
)t

m
m

m
m

2
:
2

:
2

:
>

p
p

p
p

c
n

s
t
m

v
o

r
^
o

o
c
r
O

i
-
H

C
M

c
n

s
t
m

v
o

r
^
o

o
o

N
O

i
-
H

C
M

c
n

s
t

c
M

C
M

C
M

C
M

C
M

C
M

C
M

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

s
t
s
t
s
t
s
t
s
t

P
<

P
Q

H
<

J
p

c
o

.
O

O
M

C
t
J
W

©
'

s
t

c
n

cm
^

c
,o

o
<

!
h

l
O

t
f
<

!
H

N
H

H
H

H
H

o
\
c
o

N
v
o

i
n

<
*

c
n

«
*

>
>

is
i

p
c
i

M
<

d
«

i<
:
<

:
<

5
<

:
<

2
<

2
<

i<
<

i<
:
<

t!
<

:
<

i<
2

i
-
)
C

M
c
n

s
t
m

v
o

r
^
o

o
c
7

\
O

i
-
H

C
M

c
n

s
t
m

v
o

r
^
o

o
o

N
O

i
-
t
c
M

>
-
|
<

-
|
l
-
f
l
-
4

l
-
|
,^

(
_

|
,_

4
,_

4
p

H
C

M
C

>
j
C

s
j

3O•
H4
J

Ocu33OOo2
:

o2
:

c0
0

o
>

O
N

C
O

C
M

s
t

i—
i•

0
0

3O•H4
J

O333•
HP
wO33E
n3•
HP
-3O•

H4
J

O33P
n3•
H

53
O

P
S

M
co

*
a

&
w

<
3

w
c
n

s
t
m

v
o

r
>

.
^

co
-3

pes
&

w
s

p
p

p
p

p
o

>
>

u
?

#
i

c
r.

O
H

N
(
n

<
r

l
o

v
o

s
o

o
m

o
c
M

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

c
n

s
t

2
;

n
h

o
2

*
M

H
3

O
.
O

c
n

H
H

E
H

C
M

—
<

O
P

Q
P

tf
O

^
«

l
^

S
2

C
H

N
<

!<
5

<
l!

O
U

>
>

I
M

M
M

P
P

P

m
v
c
r
«

«
.
o

o
o

>
O

i
-
i
c
M

c
n

s
t
m

v
o

r
*

»
o

o
H

H
H

H
H

N
W

N
N

N
N

N
N

C
M

p
<

h
J

P

O3
3

P
S

O
»

J
O

O
C

M
.-i

O
3

3
0

<
!
v
.
H

H
H

O
\
c
C

N
v
O

i
r
i
«

?
f
(
0

\
p

C
M

c
n

<
3

<
!
<

:
<

3
<

3
<

J
<

J
<

3
<

s
3

<
3

•
-
H

C
M

c
n

s
t
i
n

v
o

r
-
«

.o
o

o
\
O

i
-
<

c
M

c
n

s
t

0
0

o
>0
)

o4
JoOC

M
i
-
(

0
0c
o

4
-i

3a>B34
JC
O

3C
O

c4cu
H

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.11.3 TMS9981

in Function Pin Function Pin Function

1 -HOLD 15 A2 29 D4

2 HOLDA 16 Al 30 D5

3 IAQ 17 AO 31 D6

4 A13/CRUOUT 18 DBIN 32 D7

5 A12 19 CRUIN 33 OSCOUT

6 All 20 Vcc 34 CKIN

7 A10 21 03 35 Vss

8 A9 22 INT 2 36 Vdd

9 A8 23 INT 1 37 CRUCLK

10 A7 24 INT 0 38 -WE

11 A6 25 DO 39 READY

12 A5 26 Dl 40 ~MEMEM

13 A4 27 D2 s

14 A3 28 D3

8.14.11.4 SBP9900A

in Function Pin Function Pin Function

1 GND 23 Al 45 D4

2 GND 24 AO 46 D5

3 WAIT 25 NC 47 D6

4 -LOAD 26 INJ 48 D7

5 HOLDA 27 GND 49 D8

6 -RESET 28 GND 50 D9

7 IAQ 29 DBIN 51 D10

8 CLOCK 30 CRUOUT 52 Dll

9 INJ 31 CRUIN 53 D12

10 A14 32 -INTREQ 54 D13

11 A13 33 IC3 55 D14

12 A12 34 IC2 56 D15

13 All 35 IC1 57 INJ

14 A10 36 ICO 58 NC

15 A9 37 NC 59 -CYCEND

16 A8 38 NC 60 CRUCLK

17 A7 39 NC 61 -WE

18 A6 40 INJ 62 READY

19 A5 41 DO 63 -MEMEN

20 A4 42 Dl 64 -HOLD

21 A3 43 D2

22 A4 44 D3

Texas Instruments 8-122 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.11.5 TMS9995

•in Function Pin Function Pin Function

1 XTAL1 15 -INT 1 29 A5
2 XTAL2/CLKIN 16 IAQ/HOLDA 30 A6

3 CLKOUT 17 -DBIN 31 Vss

4 D7 18 -HOLD 32 A7
5 D6 19 -WE/-CRUCLK 33 A8
6 D5 20 -MEMEM 34 A9
7 D4 21 -NMI 35 A10

8 D3 22 -RESET 36 All

9 D2 23 READY 37 A12

10 Vcc 24 AO 38 A13
11 Dl 25 Al 39 A14
12 DO 26 A2 40 A15/CRUOUT
13 CRUIN 27 A3
14 -INT 4/-EC 28 A4

8.14.11.6 SBP9989

•in Function Pin Function Pin Function

1 GND 23 Al 45 D4

2 GND 24 AO 46 D5
3 WAIT 25 -MPEN 47 D6
4 -LOAD 26 INJ 48 D7
5 HOLDA 27 GND 49 D8

6 -RESET 28 GND 50 D9
7 IAQ 29 DBIN 51 D10
8 CLOCK 30 CRUOUT 52 Dll

9 INJ 31 CRUIN 53 D12
10 A14 32 -INTREQ 54 D13

11 A13 33 IC3 55 D14
12 A12 34 IC2 56 D15
13 All 35 IC1 57 INJ

14 A10 36 ICO 58 -xipp

15 A9 37 INTACK 59 -CYCEND

16 A8 38 NC 60 CRUCLK
17 A7 39 MPILCK 61 -WE

18 A6 40 INJ 62 READY

19 A5 41 DO 63 -MEMEN

20 A4 42 Dl 64 -HOLD

21 A3 43 D2

22 A4 44 D3

Texas Instruments 8-123 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.11.7 TMS99000 Family

in Function Pin Function Pin Function

1 -WE/-CRUCLK 15 Vcc 29 A13/D13

2 -DEN 16 AO/DO/CRUIN 30 A14/D14

3 -RESET 17 Al/Dl 31 -ST8/D15/CRUOUT

4 -APP 18 A2/D2 32 ALATCH

5 -HOLD 19 A3/D3 33 Vss

6 WAITGEN 20 A4/D4 34 CLKOUT

7 READY 21 A5/D5 35 XTAL2

8 -INTREQ 22 A6/D6 36 XTAL1/CLKIN

9 -NMI 23 A7/D7 37 BST3

10 ICO 24 A8/D8 38 BST2

11 IC1 25 A9/D9 39 BST1

12 IC2 26 A10/D10 40 —MEM

13 IC3 27 All/Dll

14 ~INTP 28 A12/D12

Texas Instruments 8-124 October 1981

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.14.12 ASCII Character Set

Char Hex Char Hex Char Hex

NUL 00 + 2B V 56
SOH 01

» 2C W 57
STX 02 - 2D X 58
ETX 03 . 2E Y 59
EOT 04 / 2F Z 5A
ENQ 05 0 30 [5B
ACK 06 1 31 \ 5C
BEL 07 2 32] 5D
BS 08 3 33

A

5E
HT 09 4 34 5F
LF OA 5 35

"v"
60

VT OB 6 36 a 61
FF OC 7 37 b 62
CR OD 8 38 c 63
SO OE 9 39 d 64
SI OF •

• 3A e 65
DLE 10 • 3B f 66
DC1 11 < 3C g 67
DC2 12 = 3D h 68
DC3 13 > 3E i 69
DC4 14 9 3F j 6A
NAK 15 Q 40 k 6B
SYN 16 A 41 1 6C
ETB 17 B 42 m 6D
CAN 18 C 43 n 6E
EM 19 D 44 o 6F
SUB 1A E 45 P 70
ESC IB F 46 q 71
FS IC G 47 r 72
GS ID H 48 s 73
RS IE I 49 t 74
US IF J 4A u 75

Space 20 K 4B V 76
! 21 L 4C w 77
it

22 M 4D X 78

23 N 4E y 79

$ 24 0 4F z 7A

% 25 P 50 { 7B

& 26 Q 51 1 7C
/

27 R 52 } 7D

(28 S 53 ~ 7E

) 29 T 54 DEL 7F
* 2A U 55

Texas Instruments 8-125 October 1981

wo<o2
:

<
3

iJP
*

.JP
Q

XwC
O

C
O«OOP
Q

cu

P
M

fe
X

<
!

CO
P

C
H

H
M

S5
CO

W
e

X
•H

P
w

O
o

0
)

•
J

P
p

a
1

>
X

w
cu

p
P

C

p
a

«
c
n

<
!

f-
4

J$
.

H
<

t

P
*

fH

O
.

C
O

0
0

cu
4

JP>»
P

Q

-
3

»
3

O

<
U

4
J

>
^

P
Q3a
)

>p
a

ocu

Pcu
P

Cocu
PXCU
pcocu
PXCU
P

CoO
J

pcu
P

C

O
i
-
H

C
M

c
n

s
t
m

v
o

t
s
»

o
o

o
N

O
i
-
«

c
M

c
n

s
t
m

O
i-

n
c
M

c
n

s
tm

v
o

r
^
o

o
o

v
-
<

3
p

Q
O

P
p

a
P

n

O
v
O

C
M

O
O

<
tO

v
O

C
N

O
O

»
3

"
O

v
O

C
M

C
O

<
tO

i-
H

C
n

s
tv

O
0

0
O

>
i-

H
C

M
s
tv

D
f^

O
>

.
C

C
M

s
t

_
<

1
_

l,_
<

,-
H

l-
H

_
ie

M
C

M
C

M

O
i-

ic
M

c
n

s
tm

v
o

r
^
o

o
c
r
i<

tlp
Q

O
P

P
a

p
t*

C
v
O

C
M

C
O

s
tO

v
O

C
M

O
O

s
tC

v
O

C
M

O
O

<
tC

m
i-

H
v
o

c
M

o
o

c
n

c
r
i<

to
v
O

i-
ir

«
-
c
M

o
O

'5
t

c
M

m
r
^
o

c
M

m
r
^
o

c
n

m
o

o
o

c
n

m
o

o

H
H

H
H

C
M

c
M

N
N

c
n

c
n

c
n

f
O

O
i-

H
C

M
c
n

<
tm

v
o

r
«

.o
o

o
>

<
5

P
Q

O
P

p
a

p
4

O
v
D

C
M

C
O

s
tO

v
O

C
M

C
C

S
tO

v
C

C
M

O
O

s
t©

o
>

o
>

o
o

o
o

o
o

ts
»

r
*

»
v
o

v
o

v
o

m
m

*
^
"
<

t<
t

O
i-

H
C

M
c
n

s
tm

v
o

r
^
o

o
o

>
>

C
i-

<
c
M

c
n

<
t

s
r
o

o
c
M

v
o

o
^
t
o

o
c
M

v
o

o
m

o
N

c
n

r
^
i
-
H

i
-
H

i
-
4

C
M

C
M

C
M

c
n

c
n

s
t
<

t
<

t
m

m
v
o

0
<

-
)
(
M

(
0

^
i
O

v
O

N
K

O
\
<

!
n

C
;
P

H
h

0
0

O
Nucu

Xooov
o

C
Ml

0
0C
O

4->

3C
U

@3»J
4

J

C
O

3MC
O

COXC
U

H

SOFTWARE DEVELOPMENT HANDBOOK ASSEMBLY LANGUAGE

8.15 BIBLIOGRAPHY

TI Publications

TMS9900 Microprocessor Assembly Language Programmer's
Guide (943441-9701)

TMS9901 Programmable Systems Interface (MP003)

TMS9902 Asynchronous Communications Controller Data
Manual (MP004)

TM990/100M Microcomputer User's Guide (MP321)

TM990/101M Microcomputer User's Guide (MP337)

TM990/302 Software Development Board User's Guide (MP343)

TM990/402 Line-by-Line Assembler User's Guide and
Listing (MPB07)

Component Software Handbook (MP918)

Realtime Executive User's Manual (MP373)

Model 990 Computer Terminal Executive Development System
(TXDS) Programmer's Guide (946258-9701)

Model 990 Computer AMPL Microprocessor Prototyping
Laboratory Operation Guide

AMPL I (946244-9701)
AMPL II (946275-9701)

Model 990 Computer DX10 Operating System Release 3
Reference Manuals Volumes:

II Production Operation (946250-9702)
III Application Programming Guide (946250-9703)
IV Developmental Operation (946250-9704)

Time of Day Clock Application Sheet

Texas Instruments 8-127 October 1981

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012
	content013
	content014
	content015
	content016
	content017
	content018

	back-cover

