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PREFACE

This Second Edition of the Software Development Handbook has
been extensively revised and updated to incorporate new
developments, and to improve and clarify the presentation.

As before, it is hoped that the book will appeal on several
levels. The first three chapters are an introduction to the
technolagy, and assume little or no technical knowledge.
Chapter 1, which 1s introductory, describes the nature of
software and the particular contribution of microsystems
technology. Chapter 2 describes, step by step, the process
of software development for microcomputers. Chapter 3
describes the tools of the software engineer. It is hoped
that these chapters will appeal to those who have a
peripheral interest in the technology, as well as to those
who are or will become directly involved in software
engineering.

Chapter 4 addresses the subject of software design, which we
feel can and should be tackled separately from the
discipline of programming in a particular language. The
goal of appealing to a wide level of readership means that
experienced software engineers will find some of the
material familiar; however the approach may well be new, and
some at least of the ideas will be novel. This chapter
introduces suggested algorithmic and graphical notations for
language independent software design. Those mnew to the
technology are advised to read Chapter 4 in conjunction with
some practical experience of programming in one of the
languages available.

Chapter 5, Component Software, is the major new addition to
the book. It describes a method of developing and packaging
complex real time software functions. Such packages are
available off the shelf from Texas Instruments for direct
incorporation in application systems. Component Software is
a significant step towards complete packaged functions,
incorporating both hardware and software. These are likely
to play an important part in microsystems technology in the
future. Chapter 5 also includes a description of
concurrency and the requirements of real time software.

Chapters 6, 7 and 8 describe in turn Microprocessor Pascal,
Power BASIC, and 9900/99000 Assembly Language. These
chapters are not intended to be complete language
tutorials. Tutorials are available elsewhere; and it is
felt that programming 1is best taught by a combination of
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personal tuition and practical experience. Courses on
programming are available from various sources, including
Texas Instruments. Rather, these chapters are designed to
give a feel for each language, its important features, and
its areas of application. Microprocessor Pascal 1is a
professional programmer”s tool which permits the
construction of reliable, real time software systems of any
level of complexity. Power BASIC is a much simpler language
that can be learned in a few hours, and can be used even by
non software professionals to provide quick solutions to
simple problems. Assembly language provides direct access
to all the resources of the microcomputer, and can be wused
in critical areas of a system to "fine tune” for maximum
performance. Naturally, effective use of assembly language
requires a certain 1level of skill. Chapter 8 contains an
extensive "Algorithms and Techniques"” section, describing
some commonly used solutions to specific problems. Each
chapter includes, besides the language description, a
Reference Section that tabulates the vital elements of each
language.

This handbook is not intended as a complete course in
software development for microcomputers. However, with
appropriate additional material and combined with practical
experience of one or more of the languages described, it
could form the basis for such a course. The aim 1s to
provide a Handbook for the emerging discipline of software
engineering for microcomputers, and to begin the process of
identifying and communicating those elements of the
technology that will prove to be of lasting value. This
book 1is a distillation of the practical experience of
software engineers, and it is hoped that it will make some
contribution to those entering on or already immersed in the
technology.

The authors wish to thank all those who have contributed

approaches, ideas, descriptions or actual software examples,
and without whom this book could not have been written.

Geoff Vincent
Jim Gill

October 1981
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We would appreciate your comments on the usefulness of this
handbook. Please complete and return this form to the
address overleaf.

Name: (last) (first):
Company: Position:
Address:
Country:
l. Is the handbook well organised? Yes No

Comments:

2. Is the text correctly presented and adequately
illustrated? Yes No
Comments:

3. What subject matter could be expanded or clarified?

4. Are you directly involved in software development?
Please indicate your main area(s) of interest.

5. Have you found this handbook useful
(a) As an introduction to the field
(b) As a source of ideas/information
(c) As a reference book
(d) In any other way (please specify)

6. Do you use any Texas Instruments software products?
Is the information on these products useful to you?

7. Any other comments
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Please mall this sheet to:

M/s 35

Microprocessor Group
TEXAS INSTRUMENTS Ltd
Manton Lane

Bedford

MK41 7PA

ENGLAND
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CHAPTER 1

INTRODUCTION

l.1 WHAT IS SOFTWARE?

Software is what makes microprocessor technology different
from conventional engineering techniques. Fundamentally,
software is a set of instructions that tells the hardware
(the microprocessor, and any electrical or mechanical
devices connected to it) what to do.

In a conventional machine, the physical layout of the parts
determines what the machine will do:

Figure 1-1 Conventional Machine

In a microprocessor machine, it is not always possible to
tell from the physical arrangement exactly what the machine
does:

MOTOR
MICROPROCESSOR

MOTOR

?

Figure 1-2 Microprocessor Machine

The function of the machine is determined by software.
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The general 1layout of a microprocessor machine is shown in
Figure 1-3.

INPUTS OUTPUTS
PROCESSOR
SENSORS
(TEMPERATURE,
POSITION, MOTORS,
LIGHT, ETC) \ ACTUATORS,
SWITCHES, A DISPLAYS,
KEYBOARDS _j Z, PRINTERS
. 4 ~A
Val e 55,

),
L1 —

Figure 1-3 Layout of a Microprocessor Machine

In the centre is the microprocessor. To the processor are

brought a series of inputs -~ which night come from
temperature sensors, limit switches, operator keyboards and
80 On. All inputs must be converted to electrical signals

before they reach the processor.

From the processor come a collection of outputs - again
electrical signals, which can be used to operate motors,
actuators, displays and so on. The processor itself has an
extensive repertoire of operations it can perform, involving
inputs, outputs and internal manipulations. However, by
itself the processor is useless. It needs a program - a set
of software instructions that specify exactly what
operations to perform, and in what order. The program will
determine when to take notice of (to read) the input
signals, what to do with them, and what output signals to
produce. It is the program that controls the machine.
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INPUTS OUTPUTS
PROCESSOR
SENSORS
(TEMPERATURE,
POSITION, MOTORS,
LIGHT, ETC) N\ W ACTUATORS,
SWITCHES, . “w DISPLAYS,
KEYBOARDS _ _, PRINTERS
v ~
/)' ﬁ‘ \\t 125.6

Iy
LT —

@ PROGRAM

Figure 1-4 Program Control

One characteristic of microprocessor systems 1is that a
different program placed in the same set of hardware will
cause the machine to do different things. Of course, the
scope of what can be done 1is determined by the hardware: if
there 1s not a motor control circuit connected to a
microprocessor, there 1is no way that the software will be
able to turn a motor on and off. It is the hardware that
determines what 1is possible; it 1is the software that
determines what the machine actually does.

Software must have some ultimate physical reality in order
to have any effect on the real world. However, it has two
fundamental characteristics which distinguish it from
hardware. First, it is at 1least an order of magnitude
easier to manipulate than hardware: changing a piece of
software wusually involves no more than typing a few keys at
a keyboard, while changing a hardware layout (say a printed
circuit board) requires a 1lot of work and a lot of time.
Second, software has a chameleon-like quality of being able
to change 1its physical form without altering its essential
nature. The same piece of software may exist on a magnetic
disk, in semiconductor memory, as printed output or
displayed on a screen.
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G

Q(( (

HUMAN READABLE MACHINE READABLE

Figure 1-5 Software Has No Unique Physical Form

The problems which characterise software engineering are
problems of management and organization rather than the
problems of dealing with the physical world.

The way the traditional computer evolved was determined by
the size and cost of available technology. These factors
influenced how the different parts of the computer
developed, how they were put together, and the kinds of
applications where computers could be used. For reasons of
cost and physical size it made no sense at all to consider
placing a computer in a consumer product, or even in the
average factory. Microprocessors are small and cheap enough
to be placed in any piece of equipment. This, in turn, has
revolutionised some aspects of computer technology:
microcomputers are not just smaller copies of 1large
computers, but have some significant new characteristics.

The major effort of design for a microcomputer application
goes into software. Software is in a number of ways easier
to deal with than hardware. However, it must be treated
with respect., Designing the software for a complex
application is not trivial, especially as the potential of
the microprocessor leads to more ambitious projects. With a
new technology, new methods must be used: those developed
for hardware design are not appropriate. Even techniques
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used 1in the design of software for ‘mainframe’ or ‘mini’
computers need adapting, because of the special features and
the different areas of application of microcomputers. This
book describes the techniques of system and software design
that are applicable to the new technology of microsystems
(= microprocessor systems).

1.2 BLACK BOXES AND DIGITAL ELECTRONICS

Any mechanical or electrical device can be considered, very
simply, as a black box with inputs and outputs:

Figure 1-6 "Black Box"

"Inputs" might be switches, temperature sensors, flow. rate
detectors, or keys pressed by a human operator. "Outputs"
might control a motor, print text or figures, switch on a
heater, and so on.

The '"black box" processes these inputs and produces outputs
in a well-defined fashion. For example, a typewriter takes
key presses as 1input and produces printed characters
corresponding to the key inputs as outputs. All problems
that are solvable by machinery can be analyzed in this
manner. The black box, with its inputs and outputs, may be

called a system.

How can such black boxes be built? The traditional,
non-computer method would be to design a dedicated piece of
hardware: a mechanical device. Methods of implementation
have varied. Early workers used wires, pulleys, cogs and a
great deal of mechanical ingenuity. 1In general, mechanical
systems are restricted to the kind of simple and direct
response characterised by the typewriter. Electrical
systems provide additional power, but in general do not
permit much greater complexity.
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Electronics introduced a whole new range of possibilities.
Perhaps the most significant advance in black-box
implementation was the invention of digital electronics,
based on the binary digit, or bit.

A bit can be considered as a switch. It has two possible
states: on or off, 1 or 0, high or low. Bits can easily be
represented in electronic circuits, and they can be used to
store information. Circuit elements can be designed that
combine bits in various useful ways. One such element 1is
the AND gate, conventionally depicted as follows:

A

INPUTS € outpPuT

Figure 1-7 AND Gate

The basic AND gate has two inputs, here called A and B, and
one output C. These are digital signals, each of which can
take one of two possible values (conventionally represented
as "0" and "1"). Each input and output line represents one
bit of information. For given conditions of the inputs A
and B, the output C is completely determined. For an AND
gate, C 1is 1 only when both A and B are 1. This can be
summarised in a truth table, which maps the value of the
output C for all possible values of the inputs A and B:

B
| O 1
——tm———————
010 0
A |
110 1

Figure 1-8 AND Gate Truth Table

By combining logic elements such as the AND gate, electronic
circuits can be constructed to take decisions and signal
appropriate outputs depending on the state of any number of
inputs. It is only necessary to arrange that the inputs
represent the state of switches, sensors etc, and to connect
the outputs to motor control circuits, actuators and
displays, to construct very complex pieces of machinery.

Electronic systems can provide a limited kind of memory,
counting operations, and simple arithmetic. Integrated
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circuit technology allows many thousands of logic elements
such as the AND gate to be implemented on a single chip of
silicon 4 or 5 mm square. Electronics works very fast, too:
many millions of decisions of the AND gate variety
(determining the value of C given the values of A and B) can
be made per second, and many decisions can be made in
parallel. However, the technology becomes very expensive
for complex applications, and systems take a long time to
develop.

Digital electronics is powerful because it permits any
operation that can be conceived using bits; and any real
world action that can be translated into electrical signals
can be represented as bits. The techuniques of digital
electronics can be used for a vast range of different
applications, where any kind of logical decision making or
arithmetic processing is required.

Solving a real world problem, of course, depends on
translating real inputs (such as mechanical movements,
temperature readings, etc) into bits, and translating bits
back into the real world. ’

This process of translation can be represented (adding to
the black box diagram) as:

MOTORS,
vsica ACTUATGs
MEASUREMENTS PHYSICAL
(TEMPERATURES, 1+ action DATA o » DATA MANIPULATION)
PRESSURES, ETC) INPUTS OUTPUTS \‘j
&
INFORMATION g?s":IE\R(g'
(INFORMATION)
REAL WORLD ‘BLACK BOX' SYSTEM REAL WORLD

Figure 1-9 Data Translation

‘Data’ is a term used for coded information - that is,
information translated into a pattern of bits for processing
by a digital circuit. Data can be considered as an
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abstracted representation of the real world.

In extracting data from the real world for processing by a
digital circuit, the designer selects only the aspects of
the information available that he wants, enumerates all
possible values, and designs his system to cope with and
respond predictably to every possible combination. The
digital circuit does not know or care what the data
represents; it simply processes bits according to the logic
designed into it.

This can cause problems, because bits (data) are entirely
abstract entities. The designer must be very sure that he
knows exactly what his data represents. Translating
information into data in a well thought-out manner is
probably the most important step in designing any digital
system.

In the 1last 20 vyears, advances in technology have vastly
decreased the price and increased the capability of digital
electronics. However, with the technological advance has
come the problem of organization. Organizing all these
logic elements to perform the desired action is a very
difficult, time consuming, and expensive task, requiring -.a
highly skilled designer (or team of designers). In
addition, because an AND gate is a piece of hardware - a
physical device - it is quite awkward to manipulate. Once a
design has been put together, it is extremely difficult to
change in any significant way without starting again from
scratch.

This is where the computer comes in.

1.3 COMPUTERS

The idea for the computer existed 1long before the
implementation techniques that made it practically
realisable. In the 19th Century, Charles Babbage conceived
a ’‘difference engine’ that would operate according to the
instructions of a stored program. However, the techniques
available to him (mechanical cogs and levers) were unequal
to the task. Babbage never completed his project.

Practical realisation of the computer had to wait for
electronics - first using valves (which were mnotoriously
unreliable, large, and power hungry), then transistors, and
finally integrated circuits. What the computer does 1is to
separate the device which carries out the work of decision
making, calculation etc - the processor - from the set of
instructions - the program - which tell the processor what
to do. This separation allows specialist manufacturers to
design and implement powerful and efficient processors for
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the range of possible applications, while application
engineers can take a standard processor and write a software
program to tailor its operation to their specific need.

Like other digital devices, computers work with bits. In
fact, they usually work with groups of bits. The Texas
Instruments TMS 9900/99000 family of microprocessors uses a
basic wunit of 16 bits, called a word. The possible
operations that can be performed on words are strictly
limited and well defined, which is what makes the computer
possible.

Of the total range of operations, the most useful are
selected to form the computer’s instruction set. Each
instruction performs one operation. For example, there is
an operation to perform a logical AND on two words of data:

first word 0101101110010110
second word 01 01010110101101
result 0101000110000100

Corresponding bits in each word are ANDed together to
produce the corresponding bit in the resultant word. Here,
a word is treated as containing 16 unconnected bits. The
instructions which operate on words in this way are called
logical instructions.

Using the binary number system *, a 16-bit word can also
represent a number. There is a group of
arithmetic instructions which treat words as numbers, and
perform the wusual arithmetic operations on them. For
example, ADD:

BINARY DECIMAL
first word 01 01101110010110 23446
second word 0 1 01 010110101101 + 21933
result 1'0 1100010100001 1 = 45379

The instruction set for the TMS9900 and 99000 also includes
operations on bytes (1 byte = 8 bits) of data.

In addition there are instructions to read input signals
from the outside world and to write outputs, and to move
data around within the computer.

* The binary number system is described in Chapter 8,
section 8.13.2.1
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A program is a list of these instructions stored in the

computer’s memory. A computer, then, looks like Figure
1 - l. 0 .
PROGRAM
\
INPUTS »| PROCESSOR »  OUTPUTS

Figure 1-10 Computer

The stored program controls the operation of the computer.
The processor fetches the program instructions one at a
time. Instructions are normally executed in sequence, one
after another. However, the computer has the capability to
change this. It can make simple decisions about whether to
execute one set of instructions or another. The decisions
might depend on the value of some data word stored in
memory, or the state of some input, or on a more complex
condition.

For example,

"IF temperature LESS THAN set value AND heater is off THEN
switch heater on"

The primitive control instructionms, which can change program
flow and make pre-programmed decisions, are the final group
of operations that make up the computer’s instruction set.
With these five basic groups of instructions - logical,
arithmetic, input/output (I/0), data transfer, and control -
a computer can perform any task that can be precisely and
unambiguously specified. The task of software design is to
carry out this specification and, ultimately, to produce the
program in a form that the computer can implement it.

The program completely determines the operation of the
system. If the initial conditions and all of the inputs are
known, the action of the computer will be entirely
predictable. Thus a computer is a black box, but one whose
operation is determined not by the physical arrangement of
its parts, but by a software program. Computer hardware can
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be regarded as a pool of resources, which are organized by
the software. By placing the burden of organization on
software, many of the problems of designing a digital system
are solved.

Figure 1-11 shows the structure of a computer in more
detail.

l MEMORY

: PROGRAM DATA :
! |

] 7 I

INPUTS —}——| conmoL ——T | oururs
I A I
| Y |
| ARITHMETIC
AND I
| LOGIC UNIT |
| (ALU)
' |
| PROCESSOR (CPU) :

Figure 1-11 Structure of a Computer

The Arithmetic and Logic Unit (ALU) performs the operations
requested by the program (addition, subtraction, 1logical
ANDing, etc). The Control section supervises the reading
and writing of program, data, and 1I/0O (Input/Output), and
ensures that everything happens in the proper sequence.
These two elements are traditionally grouped together to
form the Central Processing Unit (CPU), or Processor. When
this is implemented on a single silicon chip it is called a
Microprocessor, or MPU. The complete system 1is a
Microprocessor System, or Microcomputer. A microcomputer
nay be implemented as a single chip (eg the Texas
Instruments TMS9940) or as several chips.

Besides inputs and outputs, a computer will need a place in
which to store intermediate data (a scratchpad or filing
system). Therefore a computer will generally have data
memory as well as program memory.
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The 4inputs and outputs, more than anything else, determine
what a computer system "looks like" to the user. When the
usual peripherals (card reader, visual display unit (vbu),
line printer, magnetic tapes, etc) are connected, the system
looks like the traditional idea of a computer. But connect
motors, actuators, lights, switches, displays and it could
be a part of anything from a washing machine to a car. A
microcomputer is small and inexpensive enough to be hidden
in almost any piece of electrical equipment, and the user
need not even know that it is there.

1.4 SOFTWARE DEVELOPMENT

Because there i1s typically a large gap between the task to
be performed by the system (eg '"control a factory production
line") and the instruction set of the computer ("ADD two
numbers"), various techniques have been evolved to bridge
the gap and make the task of software design and development
simpler and faster. Most of these make use of development
tools and utilities that are themselves implemented in
software. In fact, one of the major advantages gained in
moving from a digital electronic to a software
implementation is that the design information itself can be
manipulated by computer, allowing much of the design and
development process to be automated.

The tools of the software engineer are rather more abstract
than the screwdriver and the soldering iron. A software
engineer will spend much of his time typing information at- a
keyboard, and looking at results displayed on a screen.
However, the keyboard and screen will take on different
roles depending on which utility program (which "software
tool") is being used at the time. Chapters 2 and 3 of this
book describe what is involved in the process of designing
and developing software for a microprocessor system, and the
tools and procedures used. Chapter 4 describes some of the
principles of software design, and the modern techniques of
software engineering which have been developed to make
complex software systems manageable.

A high level language (see Sections 2.6 and 3.5) allows the
software designer to make strategic decisions about what the
system will do, while the compiler determines the tactics to
be employed by the computer (memory addresses, storage
allocation and other "housekeeping'" functions that have to
be performed thousands of times a second). The compiler is
a software utility that translates high level language
programs into the detailed machine instructions required by
the computer.

In effect, a high level language provides a more powerful
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computer that can deal with most of its internal functions
automatically, allowing the software designer to concentrate
on the application problem to be solved.

Component Software supplies further assistance by permitting
complete pre-written software packages, designed to
implement whole areas of an application. Chapter 5
describes Component Software in detail. This chapter also
describes concurrency, which is a powerful technique for
designing software systems which have to perform a number of
different tasks simultaneously (as is often required in real
systems).

Early programming languages performed their task
imperfectly, and were often designed simply as extended
versions of the instruction set of a particular computer.
Modern 1languages, with the benefit of two decades of
research on the requirements for specifying and solving
application problems, come much closer to the ideal of
requiring nothing more than a complete and unambiguous
specification of what is to be done (an algorithm) in order
to produce an executable program. One of the best and most
successful of the modern languages is Pascal. Chapter 6
describes the Microprocessor Pascal language.

Pascal is a professional programmer’s tool, designed to
produce reliable systems and yet to give full flexibility
for implementing complex applications. For users who do not
wish to become professional programmers, but who need to
write occasional programs in the course of their work, BASIC
may be an acceptable alternative. BASIC is a simple
language that can be 1learned in a few hours and is
exceptionally easy to wuse. Chapter 7 describes Texas
Instruments’ implementation of Power BASIC.

For those who wish to understand the machine architecture of
the TMS 9900/99000 family, or to program directly in the
instruction set of the microprocessor, Chapter 8 describes
9900/99000 assembly language. Assembly language programming
requires more detailed knowledge and there is more risk of
error than when wusing a high 1level language. However,
assembly language programming allows the designer to squeeze
the last ounce of performance out of the machine, and may be
especially useful in critical areas of a software design.
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1.5 GENERAL PURPOSE COMPUTERS

Until a few years ago, the only computers in common use were

general purpose machines. A general purpose digital
computer consists of a central processing unit (CPU), main
memory and a set of standard peripherals - devices which

enable data to be input to and output from the computer. A
typical configuration might look something like this:

e MAIN
( MEMORY

CARD I MAGNETIC
READER TAPE
/ | BACKING

\-/ STORE

MAGNETIC
DISC

®

PRINTER

VISUAL SYSTEM
DISPLAY CONSOLE
UNITS (VDU's)

Figure 1-12 A General Purpose Computer

The input and output to a computer of this type is likely to
be entirely textual or numeric information (customer files,
order details, scientific results etc), and the work that it
does 1is entirely information processing or data processing
(DP for short). Human beings always act as buffers to this
kind of system - preparing textual or numeric input data in
the form of punched cards or keyboard input, and
interpreting or acting on printed results or reports.
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One of the most important peripherals is the backing store.
This is a memory device that is slower acting than the main
memory, but has a large capacity. Its principal function is
to load programs and data into the computer’s main memory.
A general purpose computer has a large repertoire of
programs 1in its ©backing store, any one of which can be

loaded and executed. Some of these programs are
systems programs, which control the operation of the
computer and provide commonly required tasks. These will

normally be provided by the computer manufacturer. Others
are application programs developed by the user for his
particular needs.

The wmost important systems program is that which runs the
entire computer, and controls the loading and executing of
other programs under commands from the operator. This
program 1is called the Operating System (0S) and 1is 1loaded
into main memory when the computer is switched on, remaining
in control the whole time the system is running. Other
systems programs provide software tools for developing
application programs. They can be called in as required by
the Operating System.

A general purpose computer is, therefore, a chameleon~-like
device which can perform any processing function depending
on the application program which i1is 1loaded into it.
However, the range of things it can do is limited by its
input and output devices. Standard peripheral devices
include keyboard and visual display unit (VDU), teletype,
line printer, punched card or paper tape readers and
punches, and magnetic disc or magnetic tape devices. These
last two are forms of backing store; the others are means of
communicating with the user.
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1.6 DEDICATED COMPUTERS

A microcomputer can be constructed as a general purpose
computer. But the microcomputer has brought a new
possibility: the dedicated system. A dedicated
microcomputer might look like this:

PROGRAM DATA
MEMORY MEMORY

e < =)
Y.
‘7

MINIATURE PRINTER

KEYPAD

INPUTS OUTPUTS

Figure 1-13 A Dedicated Microcomputer

This system could serve as a weighing scale. A program
would be written to read the pressure sensor and the price
(entered on the keypad), multiply the weight by the price,
display the result, and print a ticket. With extra
software, the system could become a complete cash register.
The complete microcomputer and associated circuitry could be
fitted into one corner of the case.

A term that is often applied to dedicated computer
applications is real time. "Real time" means that the
computer is responding to and controlling events as they are
happening. Unlike a DP system, which provides huge
processing power but at a considerable remove from real
physical events, a real time system must respond
immediately. It will often need to respond within
milliseconds or less.

Dedicated microcomputers often have an executive rather than
an Operating System. While an Operating System is likely to
be a large, all-inclusive piece of software, an executive is
more likely to be a set of service functions selected for
the particular application, and occupying very little memory
space. The program for a dedicated system may well be
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permanently and ineradicably stored in read only memory (see
below), and the microcomputer may only execute one small set
of programs all its life. A dedicated microcomputer may
well have no backing store from which to load alternative
programs.

In the example pictured above, the program would repeatedly
check whether or not there was any input from the pressure
sensor or the keypad. If there was, the portion of the
program written to deal with that input would execute.

1.7 ROM AND RAM - SEMICONDUCTOR MEMORY

Computer memory can be thought of as a collection of pigeon
holes or locations in which values (ie, numbers or patterns
of ©bits) can be stored. These locations can be referred to
by their consecutively numbered adresses.

Semiconductor memory systems are typically organized in
bytes (1 byte = 8 bits). The TMS 9900/99000 family can
operate on both bytes and words (16 bits) of data. A word
is stored in two consecutive memory locations, starting at
an even address.

A general purpose computer requires a program memory that
can be written to as well as read, since different programs
must be loaded into it from the backing store. However,
once the program is loaded, the portion of program memory in
which the program 1s stored will not normally be changed
until the operating system loads in the next program. (The
program can change data memory, but not the program code.)

A special type of program memory, called Read Only Memory
(ROM) is commonly used for dedicated microcomputer systems.
A ROM memory chip is programmed (ie, loaded with a program)
once, during production of the system in which it will be
used, and retains 1its contents permanently, even when the
power is switched off. This last feature is important
because there will often be no backing store from which to
load the program when the device is switched on.

1.7.1 ROM Types

There are several different types of ROM, each with its own
characteristics.

Mask ROM has the program inserted as part of the
manufacturing process. A mask must be made to etch the
pattern of ©binary digits which form the program on the
surface of the silicon chip. Generating this mask 1is an
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expensive process, because it must be done with great
precision. However, once the mask has been made, programmed
ROMs can be manufactured very cheaply. Where large
quantities (hundreds of thousands) of identical ROMs are
required, this method is by far the least expensive.

Programmable ROM (PROM) is manufactured with fusible metal
1inks in each memory cell. These links can be selectively
fused by applying high voltage pulses to the PROM chip after
manufacture using a device known as a PROM Programmer.
Blank PROMs are supplied by Texas Instruments and can be
programmed by the user, with appropriate development tools,
to put in his system. Once the pattern of 0’s and 1’s has
been ‘burned in’ in this way the PROM cannot be erased.
PROMs are more expensive per chip than mask ROMs, but work
out cheaper overall for small to medium quantities
(thousands), because of the cost of manufacturing a mask.

Erasable Programmable ROM (EPROM) is supplied blank and
programmed in the same way as PROM. But the high voltage
pulses do not break fusible links: instead they selectively
establish static charges in the memory cells, which turn on
or off switching devices (transistors) that represent the
0’s and 1°s. An EPROM is a very useful device. It can be
programmed permanently, like a fusible link PROM; the static
charge will be retained for a period of 20 years or more.
But by exposing it to ultraviolet 1light for a period of
about 20 minutes, the EPROM becomes erased and can be
programmed with something different. EPROMs are now
commonly used in all medium volume applications, except for
very high performance applications where the superior speed
of bipolar PROMs is required.

l1.7.2 RAM Types

Most microcomputer systems require some memory that can be
written to as well as read, for storage of intermediate
results. This is achieved by wusing RAM (Random Access
Memory) instead of ROM. RAM is a slightly misleading term,
since ROM can also be accessed randomly. (Read/Write Memory
would be more descriptive, but ‘RAM’ is at least easier to
say.) In a general purpose computer, the main memory is
implemented entirely with RAM. A microcomputer system is
more likely to have a partitioned memory - some ROM and some
RAM. .

Semiconductor RAM is volatile; that 1is, the contents
disappear when the power 1is switched off. There are, in

fact, two types of RAM:

o Static RAM retains its contents for as long as
the power is switched om.
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o Dynamic RAM must be refreshed, that is, read or
written to every few milliseconds, or its
contents decay. Dynamic RAM requires some
external circuitry to implement this refresh,
and is therefore more difficult to design into
a microcomputer. However, it is less expensive
and smaller than static RAM. Static RAM is
normally used for systems that require a
relatively small amount of RAM; dynamic RAM for
larger systems where the cost of refresh
circuitry can be justified by the savings on
memory chips.

1.7.3 ROM/RAM Summary

The characteristics of semiconductor memory are summarised
in Table 1-1 below.

Mask PROM EPROM Static Dynamic

ROM RAM RAM
Readable? Y Y Y Y Y
Writeable? N N N Y Y
User programmable? N Y Y - -
(outside system)
Eraseable? N N Y - -

(outside system)

Retain contents

without power? Y Y Y N N
(non-volatile)

Require refresh? N N N N Y

Table 1-1. Semiconductor Memory Characteristics
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1.8 APPLICATIONS

The microcomputer has accomplished three things:

1) It has revolutionized the design of both
small and large-scale electrical devices,
from toys to cars

2) It has changed the mnature of conventional
computer systems

3) It has made possible a completely new range
of applications, for which the new technology
of microsystems is uniquely suited.

There is virtually no electrical device within which a
microcomputer cannot be incorporated, providing cheap but
sophisticated control, and powerful processing capability.

Many applications previously performed by large general
purpose computers (’mainframes’) can now be carried out more
effectively by microprocessor systems, located at the point
where they are needed rather than isolated in a remote data
processing department.

With the arrival of the minicomputer several years ago, the
death of the mainframe was predicted. That death sentence
was premature. But a ‘mainframe’ is no longer likely to be
a solitary monolith, 1isolated within a data processing
department. It is more likely to fulfil a specialised need
for central data storage or massive processing power, within
a network incoporating microcomputers, minicomputers and
possibly other mainframes too.

Computer power now comes in sufficient shapes and sizes (and
prices) that it can be distributed anywhere that there is a
need for it. Large computer systems look less and less like
traditional  computers and more like communications networks,
with processors judiciously placed at appropriate points in
the network. The microcomputer allows the distribution of
computing power to the place where it 1is needed = the
office, the factory f£floor, or the home. Local processors
can be linked to larger computers, using the telephone
network if permanent connection is not required. Special
purpose microcomputers can be constructed to collect
information where it 1is generated and in the form that it
already exists. Such devices can do away with the tedious
manual process of data preparation.

Microcomputers have been used to build ‘intelligent’
peripherals for mainframes (disc controllers, for example)
which can handle some of the local ‘housekeeping’ functions
required by the peripheral and take the load off the central
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processor. One significant development in this regard has
been the intelligent terminal, a visual display unit
containing a microcomputer. The intelligent terminal
provides 1local processing power for small tasks, and can be
linked to a network for reference to central files, and for
handling large processing tasks.

The development of “personal” computers and small business
systems allows a further stage of development. A
storekeeper, for example, might use a microcomputer to
handle his daily transactions, and then transmit his
accounts over a dial-up link to the central office network.

In future, there are likely to be a number of imaginative
applications linking the power of the microprocessor with
rapidly developing communications technology. Viewdata is
an example that makes use of television, telecommunications
and processor technology. This is a public computer network
which can be accessed by anyone with the right equipment (an
adapted TV set) via the telephone network. It provides
information and services, and can even be used to transmit
software to a subscriber”s computer.

The development of local area networks will allow separate
computing devices to be connected together simply and
straightforwardly, to build distributed systems for office,
factory and even home environments. Fibre optics technology
promises a cheap, reliable and interference-free
communication medium.

The automation of 1industrial processes was first made
possible by minicomputers, which were general purpose
computers small and cheap enough that they could be placed
in a factory or chemical plant and used to provide some
degree of automatic control. However, such computers still
typically required a room to themselves.

Microcomputers are small and cheap enough to be incorporated
in individual machines, and to be distributed across the
factory floor wherever control functions or processing power
are required. Cheap, fast microprocessors make robots of
all kinds technically and economically feasible. Robots can
be used to construct flexible manufacturing systems, which
can provide the advantages of mass production in the
manufacture of small quantities of diverse products.

Microcomputer applications range from simple real time
control functions (such as a weighing scale) to production
control systems and sophisticated computer networks. In
“real-time” applications the computer is in direct control
of a process, event, or phé&nomenon such as engine control -
monitoring electronic ignition timing and fuel mixing, for
example, and modifying the physical parameters while the
process is taking place. Real time applications can be on a
small scale, or could involve control of (say) a complete
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chemical plant. The TMS 9900/99000 family 1is particularly
gsuited for real time and control applications. It has a
fast context switch to implement multiprocessing and modular
programs, and a flexible bit-oriented method of input and
output (the architecture of the 9900/99000 family is
described in Chapter 8).

The microcomputer has a dual personality: it 1is both
electronic component and computer. This is why it provides
such a rich field for applications. The technology and the
opportunity exist for a wide range of products; the only
real 1limit is the imagination of the designer.

1.9 FUTURE DEVELOPMENTS

With microcomputers cheap and readily available, there is no
need for systems to be restricted to a single processor.
Groups of cooperating processors, each with its own software
and possibly local input and output, can implement powerful
and reliable systems.

A significant development in this regard is the Electronic
Function Package (EFP).

LOCALI/O

DATA
MEMORY

PROGRAM
MEMORY

PROCESSOR

MESSAGE
INTERFACE

FUNCTION BUS

Figure 1-14 Electronic Function Package

Each package encapsulates a local processor with program and
data memory, 1I/0, and a standard functional interface to
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other packages. The first implementation of such a package
will be as a complete circuit board; but miniaturisation
will quickly reduce the size and cost of such packages.
Developments in hardware and software will make such
packages easy to construct, and easy to connect together
into application systems. Such packages are likely to be
common components in tomorrow’s systems.

Speeds of microcomputer devices are 1likely to increase
significantly over the next decade, so that many new
applications, including real time signal processing, will
become possible. Among other things, real time processing
and storage of speech, audio and even video signals is
likely to become a reality, all at reasonable cost. The
scope for new products and applications is considerable.
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CHAPTER 2

SOFTWARE DEVELOPMENT

2.1 THE SOFTWARE DEVELOPMENT PROCESS

This chapter gives an overview of the steps required to
design and implement software for a microprocessor system.

The end result of software development is a program - a
pattern of bits residing 1in memory that instructs the
processor what to do. To achieve this requires several
stages of development:

(1) Functional Specification

(2) System Design

(3) Software Design (and, in parallel, hardware
design)

(4) Programming (ie entering the software design
in precisely coded source program statements
on a development computer system)

(5) Translation of the source program (in a
human-readable programming language) into
binary machine code

(6) Configuration and linking of the software

(7) Debugging the software

(8) Integration and testing of hardware and
software

(9) Evaluation of the final system
Each of these is an iterative process. Problems encountered

at any stage may alter decisions taken at a previous stage,
so that the true picture is more like Figure 2-1:
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Figure 2-1 The Software Development Process
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/

2.2 FUNCTIONAL SPECIFICATION

Functional specification 1is where product requirements and
implementation technology meet. It is the first, and most
important, stage in developing any system.

A good functional specification will take account of the
spectrum of possible market requirements, and the range of
possible implementation techniques, and derive a "best fit"
solution. Characteristic of a good functional specification
is that it can accomodate a degree of change both in product
requirements and in implementation technology.

As both types of change are 1likely to happen during the
development phase of a product, it is worth spending a good
deal of time (perhaps 30 per cent of the total project
effort) to derive the best possible functional
specification. Microprocessor technology, software and
hardware, means that implementation from a well defined
functional specification 1is fast and straightforward.
Surprisingly, the major cause of delays, problems, and
ultimately project failure is inadequate specification.

The task of specification is to isolate and identify, from a
general appreciation of what is required, precise
definitions of the functions to be performed. Fast
developing technology, and rapidly changing markets and user
requirements, dictates collaboration between experts in the
area of application and engineers with knowledge of the
technology (software and hardware).

Microprocessors can replace more conventional technology -
for example digital logic - in existing applications, but
there are other possibilities. Software is a medium that
can be engineered in the same way as hardware. If it is
managed correctly, software development can be done much
more cheaply, more quickly and more flexibly than developing
custom hardware. Software functions can provide
"intelligent" control, information processing, and flexible
operator interaction. With software it 1is possible to
construct "working models" that can be tried out, adapted,
tested and finally "frozen" in silicon memory chips for use
in a production system.

A microprocessor is both a programmable logic device and a
computer. Where it 1is being used to replace conventional
logic, its abilities as a computer may also be used to
advantage, and vice versa. For example, a microprocessor
might replace digital 1logic 1in controlling a scientific
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instrument. In this application, it can also be used to
perform calculations on the results obtained by the
instrument, something not easily achieved by digital logic.
New forms of operator interface might also be considered; a
keyboard and visual display screen, for example, rather than
the traditional knobs and switches. The instrument can be
given some degree of programmability, to allow the wuser to
set up a series of operations to be performed unattended.
New possibilities are introduced simply by using a
microprocessor.

A full functional specification for a microcomputer based
product involves:

(1) Defining the environment - that is the devices
and signals with which the product must
operate, the operator controls and displays,
and any special interfaces

(2) Defining how the product reacts to this
environment - that 1is the actions it 1is
required to take, the inputs it is required to
respond to and the outputs it is required to
produce. Usually, this can be done by
defining a number of distinct functions that
the product is required to perform - operator
interface, data storage, machine control,
report generation etc. The major functions
must be identified, their operation specified
and their interaction detailed. If the
different functions are clearly 1isolated and
well defined, they can be implemented

straightforwardly as separate "packages".
Some functions may be implemented directly
using standard hardware and software

components.

Writing the functional specification requires some
understanding of what 1is possible with microprocessor
systems, as well as what is required by users. Functional
specification cannot be completely isolated from system
design, which considers some of the "how" of
implementation. Several passes through the functional
specification/system design c¢ycle may be needed before an
acceptable solution is produced.

Nevertheless, the functional specification should be
maintained as a separate document, which does not describe
any of the "how". The functional specification is the
interface between market (or wuser) requirements and
implementation technology; changes in either can be
incorporated in the functional specification and their
implications worked through. Functional specifications can
be written in a language that both engineers and marketing
executives (or wusers) can understand. Other types of
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specification may be incomprehensible to one or the other.
With both market requirements and technology changing month
to month, this channel of communication is essential.

2.3 SYSTEM DESIGN

The purpose of system design is to derive from the what of
specification, a how that describes an implementation
strategy. The system designer must decide how to integrate
hardware and software, whether any special interfaces are
required, 1if any special hardware is needed (for analog to
digital conversion, for instance), and so on. System design
must specify how each function is to be performed - in
software, hardware or a combination of both, and with what
mix of standard and custom-developed components.

The first step is to identify whether standard hardware or
software packages can be wused for any of the functions
identified. An existing custom IC designed for a particular
function (eg control of a floppy disc) brings increased
performance and, wusually, cheapness. A standard Component
Software package gives tremendous savings in development
cost and time, plus reliability. Unlike hardware
components, Component Software can also be tailored to meet
very precise application needs (see Chapter 5).

Having eliminated those parts of the system to be
implemented with standard components, attention can be
turned to the other functions required. System design
requires an appreciation of the characteristics of hardware
and software, and how they fit together. Often a function
(say, signal averaging) can he performed in either hardware
or software. Strictly, the comparison i1s between dedicated
hardware, and general purpose hardware (eg a microprocessor)
Plus custom software. The advantages of a software
implementation are flexibility, fast development time and
low development cost. The general equation governing
microsystems production is:

development cost

unit cost = material, labour, overheads +
no of items

For products which will be produced in large quantities,
development cost is of no importance: where a product is to
be mass produced 1in tens or hundreds of thousands,
development of a custom integrated circuit is justified. As
the number of products to be produced falls, development
cost becomes more and more important. For systems to be
produced in small quantities (say 1 - 100 per year) the cost
of development dominates all consideration of material
costs, Microsystems technology (in particular software
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technology) allows the tremendous advances in integrated
circuit technology to be applied to areas where a custom
chip design could not be justified. It does so by
dramatically lowering the cost of development for a product.

Other considerations may apply: 1if a microprocessor is
already present in a product and has spare capacity, it
makes sense to use it to "mop up" as much as possible of the
logic. Some functions may require custom hardware for speed
reasons. Again, there are functions, such as complex
calculations, that simply cannot be performed economically
in hardware.

However, software is not just directed to solving problems
of cost. Software also gives flexibility that, in some
applications, can be crucial. Whereas changing a hardware
design requires, probably, manufacture of a new printed
circuit board, a software program can be changed by typing
the modification at a keyboard, executing omne or two
automatic software wutilities (a matter of minutes), and
programming a new EPROM. Engineering changes can be made in
days rather than weeks or months (assuming the use of PROMs
or EPROMs rather than mask ROMs).

Modern techniques are integrating software and hardware in
new ways, and giving the system designer an expanding range
of choices. TI’s Function to Function Architecture (FFA) is
directed to defining a common set of rules for the
interaction of complex functions, whether implemented in
hardware, software or a combination. 1In future systems, it
will be possible to choose the appropriate mix of hardware
and software (and a wide range of corresponding standard
components) for every function in a system.

A well thought out system design, with adequate appreciation
of functional divisions, will make possible relatively
painless evolution of today’s systems to make use of
advanced functional components. Functions can be replaced
incrementally, to incorporate mnew components and new
application requirements, without requiring major redesign
of the whole system. Chapter 5, Component Software, gives
more details of the functional approach to system design.

The end result of system design should be a specification of
how each function 1is to be implemented, and a precise
definition of the interface between functions. System
design should specify all hardware/software interaction (eg
the configuration of all I/0 devices), so that hardware and
software design can proceed independently.
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2.3.1 Documentation

It is important to keep a record of the design process.
Notes, and formal documents such as specifications, can be
collected together to form a project notebook. Some part of
this can usefully be an "electronic notebook". Documents
stored in files on a development s8ystem computer (see
Section 3.3) can easily be kept up to date, and printed
coples can be obtained when required. This is an ideal
medium for specifications.

The project notebook should record design decisions taken.
For example, an analog input (a voltage, for example) may be
required. Decisions to be taken include:

(1) How much precision (ie, how many bits) is
required

(2) How often a reading must be taken

(3) What type of analog/digital converter can be
used

(4) Whether the input should be binary or coded
decimal

Hardware/software trade-offs can also be recorded in the
notebook. When writing a number to a seven segment display,
should the conversion from binary to decimal digits, and
then from digits to the signals used to drive the display
segments, be handled by microprocessor software or by
external hardware?

If processor resources are available, it makes sense to
perform the conversion in software and save the cost of
extra hardware. However, this depends on the processor
having enough spare time to handle it.

If the situation changes (eg new technology becomes
available), a comprehensive project notebook makes it much
easier to Dbacktrack and discover for what reasons the
original decisions were made, and whether they are still
valid.
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2.4 HARDWARE DESIGN

This section describes some aspects of hardware design which
affect and are affected by software.

In many applications, it makes sense to regard the hardware
of a system as resources, to be controlled by the software.
This implies an approach that is different from designing a
purely hardware system.

Much of the design effort consists simply of interfacing the
outside world (the inputs and outputs) to the microprocessor
system bus.

PROGRAM DATA
MEMORY MEMORY

/

INPUTS/ MPU .,\OUTPUTS

T~

Figure 2-2 Hardware Design for a Microprocessor System

What must be presented to the bus is a control interface.
The software will only have access to those signals which
are connected to the bus.

The design decision which must be taken when constructing
each I/0 interface is "how much control and information is
to be given to the software?". The answer will be based on

(a) the decisions taken at the system design stage on
what 1is to be implemented in software and what in
hardware

(b) how much flexibility is required in the design.

Where software access is provided, design changes can be
made simply by reprogramming rather than redesigning the
hardware. Extra software control signals may be provided
for this reason, particularly at an early stage of the
design.

Use of a ready-built microcomputer board (or boards)
simplifies the process of hardware design. Texas
Instruments supplies a range of microcomputer modules (the
TM990 and TM990/Euroboard series) which are ready built
microcomputers with a range of inputs and outputs, and

°
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memory configurations, to suit many requirements. Expansion
boards are available to extend both memory and I/0, and to
provide additional functions.

2.4.1 Estimating System Load

A single microprocessor can do only one thing at a time. If
it is required to perform several functions in parallel (as
a real time system wusually is) it must do so by tackling
each one in turn, sufficiently fast that every one is
performed within the required time. An important part of
specification 1is defining how fast and how often the
microprocessor needs to perform each function. (For
example: an analog input might need to be sampled every 5
ms, this being the minimum period in which it could change
significantly in a particular application). An important
part of hardware design is to determine that the processor
can meet these specifications.

A useful measure of this 1s system load, which can be
defined as:

Processor Time

Real-Time

for a given task, the load on the system is the processor
time needed to perform the task, divided by how often the
task must be performed. If the processor spends 2 ms
carrying out a particular task, and the task must be
performed every 10 ms, this represents a .2 or 20 per cent
system load.

An estimate of the total system load can be obtained by
calculating the system load for each task that must be
performed, and adding them together. System load is not a
foolproof test of a design’s practicality; but it does give
the designer an indication of the magnitude of the task, and
quickly shows up impossible specifications. Estimating the
load for a given task 1nvolves a consideration of the
software algorithm that will be used to perform it. This
need not be very detailed at this stage. A  rough
calculation often shows that use of system resources is
dominated by a very small number of tasks.

An estimation of 0.1 per cent could be out by a factor of 5
without making too much difference; a task calculated at 25
percent, however, needs careful evaluation. Usually, it is
only necessary to look at a very small portion of program,
which can be coded experimentally if necessary.

If the total system load comes out at more than 50 percent,
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the design should be reconsidered. There are two reasons
for leaving a wide margin:

(1) To allow for errors in the estimation, and for
modifications to the software

(2) Most systems have a degree of randomness: the
average rate at which things happen may be
predictable, but it may sometimes be exceeded
by quite a large amount. It is wise to leave
some power in reserve to deal with bursts of
activity.

Besides the raw estimates of system load, timing constraints
need to be considered. The straightforward estimate assumes
(naively) that processor time 1is spread evenly over
real-time. If the system needs to do a great deal within a
period of 1 ms, and then nothing for 50 ms, this obviously
must be taken into account. In this case, the load during
the 1 ms period should be evaluated separately.

If the system load does come to more than 50 per cent, there
are several alternatives:

(1) Unload some of the work from software to
external hardware

(2) Reduce the specification of the system
(3) Use a more powerful processor
(4) Add another processor

If the system load comes out very low (less than 1 per cent,
for example) this need not be a bad thing, if design and
cost criteria are met. However, if there are tasks being
performed by external hardware that could equally be done in
software, this is worth considering.

Microprocessors have become inexpensive enough to make it
economically feasible in many applications to have them
lying 1idle for much of the time. On the other hand, having
to redesign because design parameters have been pushed too
far can be expensive.

Once the load has been calculated and the design fixed, the
design engineer needs to beware of ’‘creeping enhancements’.
Microprocessor systems follow a revised form of Parkinson’s
Law: unless carefully controlled, designs expand to fill 150
percent of the resources available. To avoid this, the
designer needs to evaluate carefully the effect of proposed
enhancements, and consider them in relation to his 1loading
estimates - which can be checked experimentally once the
design is built.
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2.4.2 Memory Size

Naturally, one important consideration when designing the
hardware for a system is how much memory space to allow.
The only way to estimate memory size is to break a system
down 1into software packages and estimate the size for each,
based on existing packages. If the software designer making
the estimate lacks confidence 1in his figures, then the
packages should be broken down still further and, perhaps,
parts of them trial coded.

Whatever the figure arrived at, the hardware designer should
allow a sizeable margin for expansion; first, because no-one
has yet found a completely reliable method for estimating
the final size of a software package, and second because of
the previously mentioned tendency for ‘creeping
enhancements’. It 1is wusually much easier to cut down an
over-designed prototype version when producing a production
model, than to add significant memory space not foreseen in
the original design. The size of each software package
can be monitored as it is produced and compared with the
original estimate, to give a progressively better picture of
the final memory size.

2.5 SOFTWARE DESIGN

Software design consists of turning the specification of
each function the processor 1is to perform into precise
software algorithms (ie step by step procedures for
performing the desired function) and data structures. This
is not yet programming, which occurs at a more detailed
level. Starting to program too early, before a software
design strategy has been worked out, will lead to a design
that 1s incoherent and badly structured. At least a third
of the software development effort should be spent on
design, to establish the overall structure of the software
before starting on the details.

Software design should identify:
(1) The data structures to be used
(2) The routines and algorithms to be written

(3) How the different parts of the software will
work together.

The basis of software 1is data, since this represents the
information that will be manipulated by the algorithms. A
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system uses two types of data: input or output data, which
is the system’s means of communication with the outside
world, and stored data, which 1is held in memory and
represents those concepts internal to the system of which a
record must be kept.

The first task of the software designer should be to
determine:

o What data is required
o How it should be organized (structured).

The data should be structured to reflect as closely as
possible the information it represents. This involves:

o identifying those aspects of the information
which are fundamental and not superficial

o using these as the basis for structuring

o wherever possible using structures instead of
single wunrelated data items. This makes the
software more coherent and more manageable.

Older ‘high level’ languages such as FORTRAN, and low level
assembly language, provide no means of grouping and
structuring basic items of data to form more complex
entities. Any such grouping that 1is done must be done
inside the programmer’s head. Newer languages such as
Pascal provide, within the language itself, powerful means
of building complex data entities out of simple ones. This
neans that complex software systems can be built up that
model the outside world, and real operations, with
surprising accuracy. A single data structure, for example,
referred to by a single name, may contain all the
information that needs to be known about a chemical process,
or the operation of a machine. This data structure may be
passed as a single item to a routine that performs a complex
operation - say, shutting down the chemical reaction or
using the machine to manufacture a part for a motor. The
data structures establish a basis - an abstract model of the
"real world" - from which program algorithms can be
developed to perform various useful tasks. The real time
structure of Microprocessor Pascal and Component Software
also makes it possible to define and group complex
operations, '"packaging" a group of concurrent, closely
interacting operations, together with the data they operate
on as a single, higher level function.

The process of software design is considered in detail in
Chapter 4.
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2.6 PROGRAMMING

Programming involves turning a software design into source
program code, following the syntax rules of a particular
programming language. The amount of work involved depends
on the programming language selected for implementation.

Pascal was designed as a problem-oriented language
incorporating modern design techniques. Turning a software
design into a Pascal program should involve little more than
formalizing it and writing it to conform to the syntax
rules. The constructs used in design can be implemented
directly in Pascal. The routine work of translating the
design into machine instructions is handled automatically
by a software utility - the compiler.

BASIC, like Pascal, is a high-level 1language that handles
much of the routine work (data allocation, for example) of
translating the design into machine terms automatically.
However, BASIC was designed for simplicity and is not as
powerful as Pascal. It does not provide all the constructs
required for reliable software design in a directly usable
form.

BASIC does have other advantages. Being simple, it is easy
to learn. As an interpreted language, it has special
characteristics which are explained in Chapter 7. Because
it 1is designed to run on the TM990 range of microcomputer
modules, a design can be developed very quickly and cheaply
using standard hardware and a very low cost development
system. BASIC is ideal for experimental and 1low volume
designs.

Assembly Language 1is the most powerful, the most time
consuming and the most difficult alternative. It gives the
programmer complete control over all the resources of the
microcomputer, but to exploit this control requires skill
and discipline. Program development also takes much longer
than in a high level language. Assembly language should be
used where code size and efficiency is crucial (for example,
in small, high volume applications). It can also be used to
code critical areas of a program written in a high level
language (I/0 routines, for example). In gemeral, assembly
language can be used very effectively in small areas; large
programs quickly become unwieldy.

Selecting which language to use depends very much on the
application, the development facilities available, the
development timescale, and the skills of the programmers.
Later chapters of this book describe each language in more

detail.
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Programming, or coding, is a relatively mechanical process
which 1involves expressing a software design in a precise,
- unambiguous form that conforms to strict syntax rules. The
real creative work. of development 1is done at the system
design and software design stages. When choosing which
implementation language and what type of development system
to use, the designer is choosing how much of the programming
process will be handled automatically by software
development tools (compilers, linkers, etc) and how much
will be done by a human programmer.

Programs may be written on paper and then entered into the
development system, or they may be written directly at the
computer. The second method offers many advantages - no
duplication of effort, easy modification of the program, and
an immediate printed record if required. The development
system acts, in effect, as an electronic notebook -
faithfully recording the program as it develops, and also
checking periodically that the programmer has followed the
rules of the programming language.

The programmer uses a software tool called an editor (see
Section 3.4) to enter and modify his program on the
development system. A structured high level language like
Pascal makes it easy to build up a program as it develops in
the mind of the programmer. The Microprocessor Pascal
System (Chapter 6) includes a syntax-checking editor, which
will point out language errors for immediate correction on
the screen, during an edit session.

2.7 PROGRAM TRANSLATION

The source program, which is in a programming language, must
be translated into wmachine executable form - that is, a
pattern of binary O0°s and 1’s corresponding to the
microprocessor’s instruction set.

This 1is done by software tools called compilers and linkers
(see Sections 3.5.5, 3.6). The process of translation from
human~readable to machine-executable form is almost entirely
automatic, and takes only a few minutes. It will wusually
need to be done several times, as the programmer corrects
errors in his program by changing the source program code
and re-translating.

Two types of error can arise:

(1) Language errors. If what the programmer
writes does not conform to the rules of the
programming language, the compiler or

assembler will give an appropriate error
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message, and the error can be corrected
immediately.

(2) Logical errors. If there is an error in the
logic of the program, this may not be found
until the software is tested.

To minimise frustration and development bottlenecks, it 1is
important that compilers and assemblers can be called up
simply and directly from the development system keyboard,
and that they execute quickly.

2.8 CONFIGURATION AND LINKING

Most software systems are written not as omne large piece of
software, but as several smaller packages. Smaller programs
are much easier to manage, and take less time to translate.

This means that the pieces must be welded together into one
complete system before they can be used. Configuration is
the process of selecting the pileces of software required for
an application (perhaps from a "library" of software parts),
taking care of any system-wide considerations (such as how
to allocate memory, and what will be the hardware addresses
of I/0 devices), and linking the pieces together.
Configuration is particularly relevant to Component Software
systems - see Chapter 5.

The actual forging of the links between software packages is
carried out automatically by a software tool called a
link editor or a linker (see Section 3.6).

2.9 DEBUGGING

Once a program has been written, it must be tested.
However, a microcomputer program is often designed to run on
a system other than the one on which it is developed. (The
development system 1s often referred as the host system; the
final application system is called the target system). The
program 1is often ready for testing some time before the
target system is built; and in any case the target system
may not provide the facilities needed to test a program.

2.9.1 Simulation

To overcome this problem, some means of simulating the
target system environment on the development system is
required. The Texas Instruments Microprocessor Pascal
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System provides a host debugger that permits target system
programs to be executed and monitored interactively on the
host development system. The debugger builds a '"software
model" of the target system on the development system.
Inputs and outputs can be simulated via operator commands.
Program flow can be traced, and data items examined. Using
the debugger, the user can examine exactly what goes on when
the program is running. A 9900 Simulator is also available
to test assembly language programs.

Testing should exercise every possible path through the
software, and every possible condition. A good test
strategy is to test each software module separately,
simulating its interaction with the rest of the system
(perhaps writing a test program to provide suitable inputs
and outputs). Modules can then be placed together with
confidence that they work in themselves, and the interaction
between modules can then be tested. Without a test plan
like this, it is almost impossible to carry out a thorough
test.

2.10 HARDWARE INTEGRATION AND EVALUATION

While a simulator provides powerful debugging facilities,
and can be used to check out completely the 1logic of a
program, it does not prove that the software will work
correctly with the target system hardware. The critical
stage of hardware/software integration is best handled by
emulation.

2.10.1 Emulation

Using emulation, the software can be tried out in the target
system hardware, while retaining the facilities of the
development system to monitor program execution and change
the program if necessary.

This is achieved by connecting the development system to the
target by a special cable. The microprocessor is removed
from the target system and the cable plugged in in its
place.

Part way along the cable is a "buffer module" containing a
microprocessor and interface circuitry. This microprocessor
can execute a program contained in "emulation memory" on the
development system. Emulation memory can be loaded from the
development system with the program under test. The program
executes in the buffer module exactly as it would in the
target system (in real-time) and is connected to the target
system hardware for input and output. The development
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system can monitor program execution, trace the program flow
and stop execution if specified conditions (breakpoints)
OCCUre.

BUFFER
MODULE

DEVELOPMENT
SYSTEM

ZINATT,
BACKING | 2 = =/

STORE

TARGET
SYSTEM
(MICROCOMPUTER
BOARD)

STATUS INFORMATION
DISPLAYED
ON SCREEN

USER ENTERS COMMANDS
TO CONTROL EMULATION

Figure 2-3 Emulation

For Texas Instruments microprocessors, emulation is provided
by the AMPL (Advanced Microprocessor Prototyping Laboratory)
module. Emulation is controlled by a structured high-level
language, in which sophisticated test procedures can be
written.

2.10.2 Evaluation

Once the system is working in emulation, the software can be
programmed into PROMs and the "umbilical cord" to the
development system can be severed. At this stage the device
should undergo a thorough evaluation and audit by someone
not involved in its development. The designer will have
tested the device to the best of his ability, knowing its
internal structure and what might be likely to go wrong.
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The independent auditor will test without knowledge of the
internal workings, according to how the device is 1likely to
be wused. This audit should be performed against the
original statement of requirements; and it should use (and
criticize) the documentation (User’s Guide, etc) that is to
be provided to the end user.

2.11 PRODUCTION

When a working system has been obtained that satisfies the
design criteria, the hardware can be frozen and production
of the device can begin. (If the device is l-off, of
course, this is the end of the road.) Hardware typically
requires a much longer production lead time than software
(for printed circuit board layout, tooling, etc) and
therefore needs to be frozen much earlier. Minor software
changes and enhancements can still be made, provided they do
not affect the hardware.

The software should not be frozen until it has been tested
with production hardware. It may be possible to fix minor
problems introduced by the move from prototype to production
by modifying the software. This will usually be much easier
than changing the hardware at this stage.
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CHAPTER 3

DEVELOPMENT TOOLS

3.1 OVERVIEW

This chapter describes the hardware and software tools used
in software development for microprocessors, and some of the
mechanics of software development.

3.2 DEVELOPMENT SYSTEMS

In traditional forms of computing, software 1is usually
developed on the machine on which it is to run. Such
computers are general purpose machines capable of running
many different programs, including the ‘software tools’ used
in program development.

With microcomputers, this is not usually possible.
Normally, a dedicated system cannot be used to develop the
software that is to run on it. Many dedicated systems will
not provide the peripheral devices (keyboard, printer,
etc.), much less the software tools, required for program
development.

For this reason, a general purpose computer system called a
development system (or host system) is wused to develop
software for a microcomputer. The dedicated microcomputer
in which the software will finally run 1is called the
target system. The development system is often a
minicomputer, such as the Texas Instruments 990 family. 990
minicomputers have the same basic instruction set as the TMS
9900 family of microprocessors, which makes software
development much easier. However, it is possible to develop
software for a microcomputer on a large mainframe computer,
such as an IBM 370.

A microcomputer development system is likely to have one or
two special purpose peripherals, such as a PROM Programmer.
The AMPL package (Advanced Microprocessor Prototyping
Laboratory) provided by Texas Instruments also allows target
system emulation. The target hardware is connected by a
cable to the development system. The emulator runs a
program contained in the development system’s memory, on the
actual hardware of the target system. All the resources of
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the development system are available to monitor and to
change the program if necessary. AMPL provides
sophisticated testing aids for both hardware and software.

Using the peripheral devices and the software tools provided
with the development system, it 1is possible to write a
microcomputer program, translate it into machine
understandable form (ie binary digits), test it under
simulation on the development system, try it out in the
target system hardware, and finally write it permanently
into the memory of the target microcomputer system.

3.3 FILES

Much of the mechanics of program development consists of
creating and manipulating files on a development system. A
file is a sequential list of information held on a backing
storage device (disc, magnetic tape, etc). This information
may be text, numbers or binary digits. Files are used to
store the source program code that a programmer writes, and
to store the machine code that can be executed by the
microcomputer. Files can also be used to store
documentation, user’s guides etc - in fact anything that can
be reduced to words, numbers or bits.

Once a design has passed the paper stage, it will consist
entirely of files stored on the development system. This
medium may be unfamiliar to those used to working with
circuit diagrams, printed circuit boards and soldering
irons. However, once the basic techniques have been
mastered, it is an easy and natural medium to work in.
Software tools can manipulate the "stuff" of the design
directly, and hence a large part of the design and
development process 1s automated, eliminating repetitive
work and enhancing productivity.

A file can be read as input data by a program running on the
development system; the program can write back a file of
output data.

Utility programs are provided with a development system to
perform many of the tasks associated with program
development - for example, translating source code written
in a high-level 1language into object code that can be
understood by the microprocessor. The source code is read
from a file held on backing storage; the object code is
written to another file.
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Figure 3-1 Software Tools

These utility programs are the tools of the software
engineer; they are what he or she wuses to create and
manipulate software. A utility program (a ‘software tool’)
may have several input and several output files, depending
on the function it performs. An output file need not go to
backing storage: if it contains textual information it might
be sent directly to a printer. Similarly, an input file
might be typed in at a keyboard.

Files which contain readable text =~ that is, dinformation
that can be understood and manipulated by a programmer - are
known as text files. Bindry codes are used to represent the
individual text characters (see section 3.8).

3.3.1 Backup

Once programming has begun, the work of the software
designer will be held entirely on files in backing storage.
While storage media are inherently very reliable, errors do
occasionally occur (due, for example, to dust accidentally
getting into a disc drive) which can wipe out days or even
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weeks of work. It is therefore necessary to have some form
of backup for important files - an extra copy, stored away
from the computer. There are many ways of doing this: for
example, copying files at regular intervals to magnetic tape
or paper tape.

One method which works particularly well for floppy
disc-based systems, and can also be used for hard discs, 1is
to duplicate the complete disc (or discs) containing the
files for a project. The suggested way of doing this is to
have 2 backup discs for each disc in use. The 3 discs
(labelled A, B, C for convenience) can be wused in a
backup cycle:

CURRENT DISC

-O

B
C|> FIRST BACKUP DISC

C
Cl) SECOND BACKUP DISC

Figure 3-2 Backup Cycle -1

At regular intervals - say once a week, but depending on how
much work has been done - the current disc is backed up.
This is done by copying the complete disc to the second
backup (C). The copy should be verified after it has been
made.

CURRENT DISC

-0
>

COPY (I)B FIRST BACKUP DISC

C|)° SECOND BACKUP DISC

Figure 3-3 Backup Cycle - 2
Once this has been done, the second backup (C) becomes the

current disc, the previous current disc (A) is relegated to
backup, and the first backup to second backup:
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CURRENT DISC

-0
1)

A
Cl) FIRST BACKUP DISC

B
C|) SECOND BACKUP DISC

Figure 3-4 Backup Cycle - 3

There are two reasons for using C as the new current disc
instead of continuing with A:

1) If the cycle is carried out regularly each disc
will get the same amount of use

2) If for any reason the copy did not work, this
will quickly become apparent when trying to use
c.

If the current disc becomes corrupted at any time, the first
backup can be used to restore the situation at the time of
the last backup cycle.

The second backup provides an extra insurance policy against
catastrophes - for example if a disc drive fault corrupts
both the current disc and the first backup, or a power
failure occurs during the backup process.

The extra expense of triplicating discs (not much for
floppies) and the time spent backing up is more than paid
for by the savings if a fault does occur.

3.4 Text Editing

The text editor is a program which allows the user to create
and manipulate text files. The editor is perhaps the most
important tool on the development system. It 1is the tool
which a programmer will spend more time using than any
other. So it is important that an editor is well designed,
easy to use and has a good set of facilities.

New text 1is entered at a keyboard, and saved in a file on
backup storage (cassette, floppy or hard disc). The text
will wusually consist of source program code in assembly or
high level language; however most editors will allow any
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kind of textual information to be entered. The text
(whether newly entered or recalled from backing storage) can
be modified by entering commands at the keyboard (Figure
3-5) )

Generally the editors which are easiest to use are those
which are screen based: that is, the text is displayed on a
visual display screen and can be modified by moving a cursor
and using simple key strokes to change, insert or delete
characters at appropriate positions (Figure 3-6).

(1) Creating a new file

TEXT |_—
47| EDITOR

USER EDITOR
ENTERS CREATES TEXT FILE
TEXT ON BACKING STORAGE

(2) Modifying an existing file

TEXT

@ /' Emfn \

TEXT FILE MODIFIED TEXT
READ FROM FILE WRITTEN TO
BACKING STORAGE BACKING STORAGE

USER ENTERS COMMANDS
TO MODIFY TEXT

Figure 3-5 Editor Function
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CURSOR
CURSOR
MOVEMENT
KEYS
afwhleNrY| 7Y
\ A
INs/// 7 ///pEL | \ AN
/.

/ \
L [ \\ AN
“INS" KEY “DEL" KEY

= INSERT CHARACTERS = DELETE CHARACTER
AT CURRENT CURSOR AT CURRENT CURSOR
POSITION POSITION

Figure 3-6 Use of a Screen Based Editor
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Most editors also provide a repertoire of commands that
allow such functions as searching for and replacing
specified strings of characters.

Commands *—*-k—k-k—k_k_k_k_k—k-k-k Commands *=k-k—k_k_k_k_k_ k-dokok_k_k_k_k_%
ABORT Exit the editor BOTTOM Position cursor at end-of-file
INPUT Edit another file TOP Position cursor at top-of-file
QUIT Save file & ABORT +/- int Position cursor up or down "int"
SAVE Save file & INPUT

INSERT Insert a file
CHECK Check syntax of file SHOW Display a file
COPY Copy the specified block after the current line
DELETE Delete the specified block
MOVE Move the specified block after the current line
PUT Put the specified block into the specified file
FIND(tok,n) Find the Nth occurrence of tok
REPLACE(tokl,tok2,n) Replace tokl with tok2 for n occurrences
TAB(increment) Set tab increment

Kokokokokok koK okokokok_k-k-k-% Function Keys *-k-k—kok_k k- kodkokekokok_k_k_k_%
Fl F2 F4 F5 F6 F7 F8
Roll Up Roll Down Duplicate Start Block End Block Edit/Compose Split

File = INPUT.FILE Tab = 2
<>

Figure 3-7 Microprocessor Pascal Editor ‘Menu’ of Commands

3.5 PROGRAMMING LANGUAGES

As far as a programmer is concerned, software development
consists mainly of manipulating text files stored on a
development system. These text files will probably be
written in some programming language. A programming
language is a precise form of notation that a programmer
uses to specify what he requires the microprocessor to do.
Software tools are used to translate the program in this
form (in which it can be created and worked on by a software
engineer) into a form that can be understood and executed by
the microprocessor. Together, the language and the software
tools form a design system for programming electronic
parts.
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3.5.1 Assembly Language

The earliest computers were programmed directly in machine
code: that 1is, binary digits. Each instruction in a
computer is represented by a unique pattern of bits within a
word of program code. For example, in the TMS 9900,

1010XXXXXXXXXXXX means "add"

The X’s carry other information (where the elements to be
added can be found, and where to store the result) and may
be 0’s or 1’s. Some instructions require two or three
words, because they contain data, addresses of memory
locations, etc.

Programming in machine code is extremely tedious and very
prone to errors. Therefore assembly language was invented.
Using assembly language, a program can be written with
meaningful mnemonics (e.g., MPY for multiply) instead of
binary code for instructions, and symbols instead of numeric
addresses for memory locations:

c @WORD1,@WORD2 COMPARE WORD1 WITH WORD2

JEQ SAME JUMP IF RESULT = 0 TO LABEL "SAME"
SAME TB 7 TEST INPUT BIT 7
WORD1 BSS 2 RESERVE STORAGE (BLOCK STARTING
WORD2 BSS 2 WITH SYMBOL) FOR WORD1 AND WORD2

2 BYTES = 1 WORD EACH

3.5.2 Assemblers

Translation from assembly language to machine code, which
must be done before the program can be executed, is a
tedious but fairly straightforward process; the sort of
thing computers do well. The translation is carried out
automatically by a software tool (a computer program) called
an assembler.

An assembler converts assembly language source code, which
is produced by a programmer, into object code, which can be
understood by the microprocessor. The input to the
assembler will normally be a text £file created by the
editor. The output will be a file of object code. The
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assembler also generates a listing file, which is a text
file containing details of the assembly, and any error
messages.

OBJECT
TEXT FILE CODE

OF SOURCE FILE
CODE S ASSEMBLER

LISTING
CONTROL STATUS FILE

COMMANDS MESSAGES

—

Figure 3-8 Assembler

One of the advantages of using an assembler (instead of
programming directly in machine code) is that programs can
easily be changed. For example, an extra instruction can be
inserted in an assembly language program and the program
simply reassembled. Inserting an extra instruction in a
machine code program would involve going through the whole
program changing (eg) jump addresses, because the position
of all the code after the insertion would have changed.

3.5.3 High-Level Languages

Assembly language, though a great improvement on machine
code, still requires a problem to be translated into machine
terms before it can be programmed. Each assembly language
instruction corresponds to one machine instruction.
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The programmer must write a statement like

IF temperature less than 70 degrees AND
pressure sensor is off THEN
notify operator

in terms of the low-level tests and conditional jumps that
are the only things the computer understands:

CI  @TEMP,70

JNE NEXT

CI  @PRESS,OFF

JNE NEXT

BLWP @NTFYOP
NEXT .

In addition, the programmer must manage all the resources of
the computer, such as which memory locations are to be used
to store each item of data, himself.

High level languages were introduced to allow the computer
to handle all these ‘housekeeping’ functions automatically,
and to free the programmer to concentrate on the problem.

One of the first high-level languages was FORTRAN, which
stands for FORmula TRANslation. It allows programs to be
written in a stylized 1language that combines elements of
mathematics and English:

10 J 4
I 5% + 7
IF (I.EQ.27) THEN GOTO 100

The programmer can set up storage locations with names 1like
"I" and "J". I and J are called variables because they can
be assigned any value. The first 1line of the program
(labelled 10) sets J to the value of 4. The second line
takes the value stored in J (which we know to be 4),
multiplies it by 5, adds 7 and assigns the resulting value
to I. Line 30 then tests I to see if it has the value 27;
if so, the next line to be executed will be the one labelled
100. Otherwise the program continues with the next line in
the sequence.

I and J represent memory locations. But the programmer does
not have to worry about where in memory they are. ‘

It is much easier to write programs in FORTRAN than in
assembly 1language. However, in some respects FORTRAN is
still closer to the way machines operate than to the way
human beings think. The GOTO statement, for example, is
obviously derived from the assembly language JMP; it 1is a
machine construct and not a human, or logical, one.
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Implementation of conditional statements, for example,
requires GOTO statements and labels. To program "If I is
equal to 5 then do X else do Y", it is necessary to write:

IF (I.EQ.5) THEN GOTO 50

« (do Y)

éOTO 100
50 .

: (do X)
100 :

Not only are the statement numbers an additional confusion
and a source of error, but the order is inverted: the then
action comes second. FORTRAN was designed simply as an
easier and quicker way of writing assembly language
programs.

More recently, high-level languages have been designed with
the intention of getting as close to the problem as
possible. The ideal 1is that writing a program should
require no more than a precise and unambiguous statement of
what to do. Everything else (translating this precise
statement into code to be wunderstood by a machine, and
allocating machine resources) should be done automatically
by software tools.

A precise and unambiguous statement of what to do 1is known
as an algorithm. One advantage of this approach is that the
algorithms derived are independent of a particular machine
architecture, and can survive changes in hardware
technology. Many of the newer languages are based on ALGOL
(ALGOrithmic Language), which was designed in the 1960s as a
natural language for writing algorithms.

3.5.4 Pascal

Pascal is acknowledged as one of the best modern high-level
languages. Developed principally by one man, PASCAL has a
coherence which some committee-designed languages lack. It
implements most of the generally accepted good programming
practices. Besides providing the fundamental constructs
needed to write algorithms, in a much more natural way than
in FORTRAN (say), Pascal also has powerful methods of
organizing and structuring data.

Algorithms can be turned directly into Pascal programs with
very little effort.
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A Pascal program 1is easy to read, and is almost
self-documenting:

IF input value = 5 THEN
BEGIN ~
perform_test_procedure;
print_results
END

ELSE
record value;

perform_test_procedure, print_results and record value will
be precisely defined elsewhere in the program.

3.5.5 Compilers

A compiler performs the same function as an assembler (see
section 3.5.2 above), but its input will be a program
written in a particular high level language. Some compilers
produce object code (machine code) directly; others generate
assembly language source, which must be run through an
assembler to generate object code. This is an extra step,
but it does give the user the option of hand optimizing the
compiler output before it is assembled. The input to a
compiler or assembler is called source code; the output 1is
object code.

Execution of a compiler or an assembler 1s completely
separate from execution of the resulting program. A
compiler or assembler is a software tool wused during
development that translates a program written in a
programming language into a machine executable form. 1In
developing a microcomputer application, the
compiler/assembler will run on the development system and
the compiled or assembled program will be designed to
execute on the target system.

3.5.6 Interpreted Languages

Languages such as FORTRAN are compiled languages; that is,
the source program is turned into machine code in a separate
step (perhaps on a different machine) before it is
executed.

With an interpreted language, such as BASIC, there is no
separate compllation step. The program 1s not stored in
machine code but in intermediate code, which can be regarded
as condensed source code with all wunnecessary symbols
removed. At execution time, the interpreter, a program
which resides with the intermediate code in the target
system, looks at each line of intermediate code, determines
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what it means and carries out the necessary action. The
intermediate code is not executed directly; the interpreter
examines it to determine what it means, then calls an
appropriate piece of assembly language code, contained
within the interpreter, to perform the operation.

Intermediate code is much more compact than machine code;
however, the interpreter must always be there, whatever the
size of the intermediate code, so that there is a minimum
overhead in an interpretive system. Beyond a certain size,
an interpreted program will take 1less memory than an
equivalent compiled program. However, an interpreted
program will run a lot slower (typically 5 to 10 times) due
to the extra work that must be done at execution time in
interpreting the intermediate code.

3.5.6.1 BASIC

BASIC 1is a simple 1language which is very easy to learn.
BASIC systems also use a very simple set of software tools.

BASIC is especially suited to systems where development and
execution are carried out on the same hardware. BASIC
systems usually have a special editor, which converts input
programs to intermediate code, a line at a time, as they are
entered. The BASIC editor checks each 1line for syntax
errors as it is entered, and signals any errors for
immediate correction. There is no separate compilation or
assembly step; programs can be executed simply by typing
"RUN". Programs can be halted and changed, then run again,
which makes for very quick, interactive development.

Texas Instruments’ Power BASIC (see Chapter 7) is designed
to run on the TM990 range of microcomputer boards. A BASIC
program can be developed and executed using, at minimum, one
TM990 board and a terminal. BASIC provides an inexpensive
microcomputer system which is ideal for small applications
and experimental work, and can be wused by people without
computer experience.

However, BASIC does have limitations. 1Its "line at a time"
nature means that there 1is no adequate program or data
structuring, and very limited checks on program
correctness. BASIC is not recommended for the development
of complex systems.

3.5.6.1 Interpreted Pascal

Microprocessor Pascal programs (see chapter 6) will normally
be executed in machine code ("native'" code). This gives
maximum execution speed. However, they can optionally be
executed interpretively. This allows the user to trade-off
execution speed against memory size, and to select which is
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more important for his particular application. Interpretive
execution is slower, but takes less memory.

3.5.7 High-Level vs Low-Level

Faced with the choice of which language is best, some
general observations can be made.

Low-level (assembly) language allows the programmer direct
access to all the features of the machine and thus the
opportunity to write compact and efficient programs. To
capitalize on this requires skill and time. The opportunity
equally exists to make mistakes and to write inefficient
programs.

High-level languages can shorten development time by a
factor of 5 or more, and produce more reliable code. With a
high-level 1language it 1is much more difficult to make
expensive mistakes. High=-level programs are more
understandable (if properly written, they can be
self-documenting), so that a project is less 1likely to be
dependent on one programmer. Changes are easier to make in
the late stages of a project. The cost 1is some code
inefficiency because a compiler cannot optimize as well as a
good assembly language programmer. However, this becomes
less true as the size of the program increases.
Inefficiencies (and errors) may be introduced in a large
assembly language program simply because of the intellectual
difficulty of managing such a 1large amount of detail
(especially when it 1is worked on by more than one
programmer). Compilers do not suffer from this problem.

Restrictions on code size, particularly for high volume
products, may dictate the use of assembly language in order
to produce the most compact code possible. Unless this 1is
the case, it makes sense to use a high-level language.
Assembly language projects of more than a few K (= thousand)
bytes should be considered very carefully because complexity
increases very rapidly with size. (Studies have estimated
that complexity is proportional to the square of the size of
the program).

For many projects, a compromise solution may be attractive.
For example, the control aspects, where clarity of the
design is important, can be programmed in high-level
language, with assembly language routines for critical 1low-
level areas such as input and output.

An alternative (or complementary) solution is to
hand-optimize compiler-produced code, once the program has
been completely checked out; or even to rewrite it in
assembly language after proving the design in (say) Pascal.
Both approaches have been used very successfully by Texas
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Instruments in intermnal projects.

3.6 Linker

A linker, or link editor, is a program which will combine
separately compiled or assembled object code modules to form
a complete system.

With a system of any size, it is much easier to break the
program down into modules which can be written separately.
Usually, these modules will be chosen so that each performs
a fairly self-contained function and can be treated as a
logical unit.

The interfaces between these modules - that is, the way that
they will fit together to form a complete system - must be
carefully considered when the system is being designed.
Modules will often need to use programs or data contained in
other modules. These can be defined as external references
to symbolic names: they will be indicated (tagged) as
unresolved addresses in the object code. Definitions to be
used by other modules will also be included in the object
code. The 1linker connects together, or resolves, these
loose ends by linking references with their corresponding
definitions.

3.6.1 Absolute and Relocatable Code

Before a program can be executed, it must be located at a
particular place in memory. Addresses in a program refer to
particular memory locations, and the right data or program
code must be present at those locations for the program to
work.

Some assemblers for the 9900 (the Line-By-Line Assembler for
example) produce only absolute code; that is, the position
of the code in memory is specified at the time of assembly,
and cannot subsequently be changed.

However, most assemblers produce relocatable code. Program
and data addresses are calculated relative to the program
base address - usually 0. Address fields are specified as
"relocatable" in the object code output. When the program
is loaded for execution, starting at, for example, address
100, the loader program can add this value to all the fields
tagged '"relocatable" so that the program will execute
correctly (Figure 3-9).

Relocatable code allows the programmer to postpone deciding
where the program will be located until the time comes to
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load it. This can be very useful when a system 1is being
constructed from a number of different program modules.
Each module can be assembled separately without needing to
calculate exactly where it will fit in memory - which would
involve knowing the lengths of all the other modules. More
important still, one module can be changed (perhaps
increasing its length) without the need to reassemble all
the others in different positions to make room for it.

Program assembled at Loaded in memory
base address 0 at address >100

* Branch to

* address >4A
B @LABEL >100 added to

relocatable

addresses

4A|LABEL MOV R1,R2

100

S5F

* Branch to

* address >14A
B @LABEL

14A |LABEL MOV Rl,R2

15F

Figure 3-9 Relocatable Code

Modules to be linked will wusually be relocatable. The
linker stacks them one after the other in memory, adjusting
all the addresses accordingly. Output from a linker can
either be a larger relocatable module, or absolute code,
designed to be executed at a particular position in memory.

Linkers and relocatable code make a great difference to
software development. It is possible to break a project
down into manageable modules. One module can be changed
without recompiling or reassembling the whole system. The
linker automatically takes care of changes in module size
and in the addresses of external variables. This can save a
great deal of time (and money) in developing software.

A linker also allows the wuse of 1libraries of standard
routines. Libraries can provide, for example, mathematical
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capabilities or run—-time support for a particular
programming language. A 1library consists of a number of
different modules, which can either be written by the wuser
or supplied by a manufacturer. These modules are stored as
relocatable object code. A user can reference any of these
modules in his program; when the time comes to link, the
linker will automatically select from the 1library the
modules required by the program, and link them into the
system. See Chapter 5, Component Software, for further
information on the use of software libraries.

With a 1linker, some modules can be written in high level
language and others in assembly language, according to their
characteristics. This makes possible a very flexible
approach to system design.

3.7 TARGET SYSTEM EXECUTION

Having produced an executable program using the software
tools of a development system, there are two ways of
transferring the program for execution in the intended
target system (a third method, emulation, is described in
Chapter 2, section 2.10.1).

3.7.1 Loader

A loader 1s a software utility that loads an executable
program from some form of backing storage into read/write
(RAM) memory, for execution by the processor. A loader will
therefore be used in a target system which has been designed
to execute more than one program, and which has a backing
store of some kind (magnetic disc, tape etc) available.
However, a loader may also be wused 1in a target system
without backing storage, to load a program into RAM memory
for test execution. Here, the "backing store" is likely to
be a host development system, or a terminal with some form
of storage.

Any computer system requires some form of program stored in
read only memory that will be executed immediately when the
system powers up. In a general purpose computer, this
program may do nothing more than 1load in the Operating
System or Control Program from backing store, and then
relinquish control. Such a program is called a '"bootstrap
loader".

Some loaders are relocating loaders - that is, they can take
a relocatable object program from backing storage and place

it at any specified position in memory, adjusting the
addresses tagged ’‘relocatable’ so that the program will
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execute correctly. Other loaders require program code in
image format - that 1is, absolute binary code that can be
placed directly in the computer’s RAM memory.

3.7.2 PROM Programmer

A dedicated microcomputer is likely to have its program code
already stored in read only memory when the system powers
up, so that no loader is required. A utility called a PROM
Programmer is used to permanently fix the program into a
PROM memory chip which can be plugged into the target
system. (In the case of EPROM, the program can be erased
again by exposure to ultraviolet light - see Section 1.7,
Semiconductor Memory). A PROM Programmer is a peripheral
device attached to a microcomputer development system,
together with a software utility which takes program files
from disc on the development system and feeds them to the
peripheral device.

For systems produced in large quantities, mask ROM (Section
1.7) may be used. In this case the developed program will
be incorporated into the ROM device during manufacture.
However, PROM (Programmable ROM) is likely to be used to
prove the final program before it is committed to mask.

3.8 TEXT FILES

In order to store textual information in a machine which
recognizes only binary digits, some form of code must be
used - that is, some rule for transforming textual
information into binary data. The code adopted for the 990
and 9900 series 1is ASCII (American Standard Code for
Information Interchange). The ASCII code specifies a unique
bit pattern (number) for each member of the ASCII character
set - 1letters, digits, punctuation marks and control
characters. 7 bits are sufficient to uniquely identify an
ASCII character. ASCII characters are wusually stored one
per byte (8 bits), with the most significant bit often being
used for error detection (parity check).

This means that textual information can be held in memory,

saved as a text file on backing storage and manipulated by
utility programs.
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Character ASCII code
Binary Hexadecimal*
A 01000001 41
T 01010100 54
1 00110001 31
5 00110101 35
? 00111111 3F
line feed 00001010 0A

It 1is the input and output devices (Visual Display Unit,
printer, etc) that recognize ‘01000001° as ‘A’, and so on.
They translate key presses into ASCII coded data, and coded
data back into displayed and printed characters.

Program manipulation of textual data is normally limited to
moving it around in memory (to insert or delete text),
searching for particular sequences of characters, and
similar operations. (Arithmetic operations on text do not
make much sense.)

Numbers (decimal, hexadecimal or otherwise) can be
represented in text as a string of ASCII digits. However,
the bit pattern representing these digits in the computer is
a code and bears no direct relation to the binary
representation of that number - which the computer would use
to perform any calculation.

* For the hexadecimal number system, see Section 8.13.2.1
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CHAPTER 4

SOFTWARE DESIGN

4.1 OVERVIEW

This book cannot present a full description of the software
designer’s craft. However, the aim of this chapter is to
suggest directions and provide a starting point for further
investigation. The science of software - particularly real
time software - is inexhaustible.

New tools and procedures are gradually automating the '"lower
levels" of software development and pushing the area where
creative engineering 1is most needed back towards system
design and requirements specification. New requirements
will always provide scope for innovative and practical
engineering solutions.

This chapter is concerned with the design and structuring of
software for microcomputer applications. What is presented
here is independent of any particular programming language -
though much of it is quite close to Pascal, which was
designed with the explicit goal of implementing the
"universal" elements of a programming language.

Producing an initial language-independent software design
has a number of advantages. It allows the overall strategy
of the design to be worked out before it becomes cluttered
with implementation detail; and it provides a common point
of reference that can be returned to when making changes to
the system, or if it 1is desired to 1implement the same
application using different techniques. For a 1large
project, the initial design can be kept sufficiently simple
to be manageable by one man, or a small team. This design
specification can then be used to coordinate the efforts of
a larger group.

Some languages (eg assembly language, FORTRAN, BASIC) offer
no means of developing a high level design strategy without
descending to the details of implementation. Here a
stylized design language must be wused in the initial
stages. Using more modern, application-oriented languages
such as Pascal, it is possible to develop a high 1level
design 1in the language itself. Some users may still prefer
to use a design language to produce a separately documented
design.

Texas Instruments 4-1 '. October 1981



SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

4.2 SOFTWARE STRUCTURE

Good structure, both of program and data, makes the
difference between a well-ordered, reliable program that is
easy to maintain and upgrade, and untidy ("spaghetti") code,
with hidden bugs that may not be found until it is too
late. Establishing a good structure may mean spending some
time on system and software design before going near a
keyboard or coding pad, but the time spent 1is well worth

while. Errors mnot caught at the design stage become ten
times more expensive to correct at the programming stage, a
hundred times more expensive at final test, and,

potentially, thousands of times more expensive when the
product is in the field.

Structure 1is equally important for high 1level and for
assembly language programs, although a good high 1level
language gives much more assistance by supplying pre-defined
structural constructs.

This chapter describes the basic principles of modular
software design (ie structuring at the level of
software/hardware packages and modules), and also some of
the “fine detail’ of data structure and program algorithms.
An algorithmic design 1language and a structured graphical
notation that can be used for design are introduced. This
chapter owes much to the pioneers of modern software
engineering techniques, in particular Dahl, Dijkstra, Hoare
and Wirth. The graphical notation used in this book was
developed by Eric Richards * from a notation devised by
Michael Jackson. The references at the end of this chapter
provide material for further research.

No accepted standard for a design language yet exists. A
suggested notation and standard is introduced in this
chapter. Designers who wish to adopt a strict formal
notation for software design are recommended to use Pascal.
Designs can then be checked automatically for consistency by
a suitable Pascal compiler. This approach has been very
successfully adopted within the experience of the authors.

The present chapter describes 1in some detail the basic
structuring techniques that are fundamental to modern high
level languages. Chapter 5 describes how these have been
extended in the Component Software environment to apply to
real time microprocessor systems. Chapter 6 describes Texas
Instruments’ Microprocessor Pascal System.

* Described in an article in the British journal Computing,
May 19 1977
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4.3 SOFTWARE PACKAGES

With a project of any size, it 1is helpful to split the
overall problem wup into smaller packages which can be
tackled separately.

When adopting this approach, two things must be considered:
(1) The detailed nature of each package

(2) How the packages will fit together to form a
complete system.

To simplify the task of interfacing, packages should be
selected to be as self-contained as possible. In other
words, the package ©boundaries should be drawn so that
relatively little information needs to be exchanged between
packages, compared with the work done within each package.

"Mature" systems, where significant thought and experience
has been put into the design, and where the implementation
medium is flexible -enough not to dictate the system
structure, tend to migrate to this condition. However, for
a new system, the designer may have to put in considerable
thought to ensure that the system structure 1is appropriate
from the start., Where the designer 1is implementing an
existing system in a new way (ie where the application is
mature), much of this thought may have been done for him.

Packages should be logically self-contained, each performing
a well-defined set of functions. The ways in which each
package interfaces with the rest of the system must be
clearly defined.

A designer implementing a factory control system, for
example, might identify the following packages:

FACTORY
CONTROL
CONTROL COMMUNICATE STORE AND DISPLAY
INDUSTRIAL WITH REMOTE RETRIEVE INFORMATION
PROCESS COMPUTER DATA TO OPERATOR

Figure 4~1 Component Packages of a Factory Control System
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Each of these packages is still a fairly complex entity, but
the problem is beginning to look more manageable.

This analysis identifies the 1logical components of the
system. At this point, it is important to determine the
physical distribution - where will each function need to be
performed, and what communication paths are necessary? The
physical analysis will determine the likely hardware
components of the system - where processing capability is
required, where physical operations have to be performed,
at what points interaction with a human operator is
required, and where the communication paths will run.
Microsystems technology allows information processing
capability (which includes the ability to control things,
and the rudiments of an "intelligent'" response) to be
located wherever it is required.

Although the example described is a factory control system,
the same considerations, on an appropriate scale, apply to
systems of all types and sizes.

A software package encapsulates a particular type of
"intelligence", a control function, or a data processing
operation. Many such packages can be specified
independently from the hardware environment where they will
be used, and some may be availahble as standard software (see
Chapter 5, Component Software). A standard package will
usually need to be ‘"configured" into the particular
application (analagous to providing a standard socket and
circuit elements to interface to an integrated circuit).

Some applications may require 1little more than selecting
standard software packages and configuring them into a final
system. However, most applications will require some custom
software to be developed.

Each package can in turn be split into successively smaller
packages, until the -complete problem has been broken down
into manageable blocks. At every level in the structure,
the packages can be regarded as ‘black boxes’ that perform
clearly specified functions and combine in clearly defined
ways. The programmer can focus on a particular part of the
design, knowing that he can concentrate on the other parts
of the structure at other times.

4.4 DESIGN LANGUAGE

Design language can be compared to the logic diagrams wused
by circuit designers. As yet there is no universal standard
for software design languages, but there are some generally
agreed '"good practices". The notations used in this and the
following sections incorporate the features generally
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regarded as useful in software design.

A design language can be regarded as a generalised
programming language, with the following characteristics:

(1) Syntax need not be completely rigid, as long
as the logic is clearly defined and
unambiguous

(2) Operations can be identified by verbal
description to start with, and later described
precisely - eg '"calculate mean"

(3) Only standard, "universal" constructs -
sequence, selection, iteration (see below) and
standard data structures - are used.,
Language-dependent constructs are not
included.

The aim of the design language is to establish the precise
logical structure of the application before proceeding to
implementation. 1In fact the notation described here is very
close to the Pascal programming language (see Chapter 6).
Pascal was developed as a language that would implement,
more or less directly, the features required for software
design. It was not designed for any particular machine
architecture and hence has a "universal" structure.

It is possible to use Pascal itself as a design language.
The advantage of this 1is that a design can be checked
automatically for logical correctness, even if parts of the
design are incomplete.

The graphic notation described below provides an alternative
notation that implements the same constructs. Either or
both can be used during design; sometimes a graphic notation
provides a clearer picture, especially in the early stages.

4.5 ALGORITHMS

An algorithm is a list of instructions: a statement of ‘how
to do’ something. More precisely, it is the specification
of a finite number of steps required to achieve a desired
end. A function can be performed by a computer if and only
if that function can be stated as an algorithm. However,
writing an algorithm rather than a program liberates the
designer from concern with the syntax and details of a
particular programming language. An algorithm should be
understood by people who are not programming specialists;
hence it is very useful when specifying a project.
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An algorithm for making tea might be as follows:

begin

fill kettle;

put kettle on;

put tea in teapot;

wait for kettle to boil;

fill teapot;

delay 5 minutes;

for number of cups required do
pour cup

end

Figure 4-2 Tea Making Algorithm

Two things can be identified in this (or any) algorithm.
First, there are the fundamental operations (fill kettle,
pour cup etc)e. Second, there are the control structures
which dictate if and when these operations are to be
performed. These control structures are 1identified by
underlined keywords:

begin ... end

li «ss then ... else
for e e 0 -d-o_ L N ]
while ... do ...

etc

It is the control structures that provide the power of an
algorithm, and of a computer program. Algorithms can
specify alternative or repeated operations, provided the
conditions that determine the different actions are
specified completely and precisely. The algorithm
enumerates all possible options, and specifies exactly how
to take every decision. This is what is required to write a
computer program.

The individual operations described in Figure 4-2 can
themselves be analyzed into algorithms. For example, ‘pour
cup’:

if milk is required
then

begin
pour milk;

pour tea

end
else

pour tea

Figure 4-3 '"Pour cup" Algorithm
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By combining the control structures shown here, extremely
powerful algorithms can be developed to control, for
example, a complex scientific instrument or an industrial
process.

It 1is possible to define many different control structures.
However, it can be proved that any sequential algorithm (and
any computer program) can be written using only three basic
constructs =- sequence, selection and iteration -- all of
which are included in the above examples.

4;5.1 Sequence

A sequence is simply a list of operations carried out one
after the other, in order:

begin

fill kettle;

put kettle on;

put tea in teapot

end
The keywords "begin" and "end" bracket the sequence, so that
it can be treated as one logical entity. The general forn
of a sequence is:

begin
{statement>;

{statement>

end
{statement)> defines a single operation. Individual
statements are separated by semicolons. In the design
language, a statement can be a verbal description that will
later be expanded 1into a precise definition (as in the
example above, which could be expanded into a precise
program for a tea making robot).

It is 1impossible to start the sequence anywhere other than
at the begin, or finish it anywhere other than at the end.
This property of having a single entry and a single exit
point is shared by all of the basic constructs.
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A sequence can also be represented graphically, as follows:

': fill kettle

e

P

a

r

e put kettle on
put teain

teapot

Figure 4-4 Sequence Structure Diagram

The long vertical box represents the sequence as a whole.
The other boxes are the elements of which it is composed.
It is often useful to give a sequence a name, because it can
then be referred to as a single operation in a
‘higher-level’ algorithm. The elements of the sequence are
carried out in order, from top to bottom.

This is a structure diagram. The connecting lines show that
the elements belong to the sequence. (The 1lines do nmnot
indicate 1logic flow, as in a flowchart). The logic flow is
obtained simply by proceeding from top to bottom, performing
each operation in turn.

The elements of a sequence might be simple operations, or
they can themselves be any of the three basic constructs
(sequence, selection or iteration).

A complete program will wusually be a sequence. In the
design language, the semicolons are an important part of the
sequence construct. They are not part of the individual
statements; rather they separate (or delimit) the
statements, and should more properly be regarded as
belonging to the begin ... end construct. Note that there
is no semicolon following the last statement; there is no
need for one, as the end serves as a delimiter instead.
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4.5.2 Selection

The selection is a decision construct. Depending on a
condition, one of two or more alternative operations is
selected and performed. For example,

ii weather is fine
then open ventilators
else switch on heaters

Graphically, this 1is represented as:

weather open
is fine? ventilators
switch on
heaters

Figure 4-5 Selection Structure Diagram

The circle represents the selection as a whole: that 1is, a
single component which can be either of two things. The
boxes are the elements of the selection. For each execution
of the selection, one and only one of the elements is
executed. Once again, the connecting lines express that the
components are members of the selection (they are
subordinate to it). The logic flow through a selection
consists of testing the condition, and executing one only of
the elements.
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There is a selection in the example algorithm:

if milk is required
then begin pour
milk
pour milk;
pour tea
pour
end tea
else
our tea pour
P tea

Figure 4-6 "Pour cup" Structure Diagram

Here, the first alternative 1is a sequence of operations.
The begin and end indicate clearly that, as far as the
selection is concerned, the sequence is a single element
that can be regarded as one statement. The single
entry/exit property of the sequence makes this possible.
Each of the three basic constructs '"packages'" a complex
operation, so that from outside it can be regarded as a
single, indivisible statement.

The keywords begin ..... end can be regarded as "bracketing"
a sequence of statements in the same way that parentheses
are used to bracket numerical expressions:

5 x (2 +7) =45
The general form of a selection in the design language is:

if <condition> then {statement>
else <{statement>

{condition) is any expression which evaluates to one of the
values TRUE or FALSE. Such an expression 1is called a
Boolean expression, and the most common way to arrive at it
is by the use of comparison operators such as =, <, >

if temperature > 70 then ...

A special case of a selection occurs when there is only one
alternative, to be executed when the. condition 1is
satisfied. 1If it is not satisfied, nothing is done. This
can be regarded as a selection in which one of the
components is the null action, "do nothing". This component
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is usually left out of the diagram. In the design language,
this corresponds to omitting the else clause:

if <condition> then <statement)>

In the example, ‘pour cup’ can be written another way:

begin
milk
if milk 1 ired is pour milk
if nm s require reqd?
then pour milk;
pour tea pour tea
end

Figure 4-7 Alternative Algorithm for "pour cup"

Here, ‘pour cup’ is a sequence consisting of two elements:
an 1if construct (with only one alternative), and a simple
statement. ‘Pour tea’ is always executed; ‘pour milk’ is
executed only if milk is required. The effect is exactly
the same as before.

The semicolon (which, as indicated in section 4.5.1, is part
of the begin ... end construct) separates the two elements
of the sequence, and makes clear where the end of the if
statement occurs. ‘Pour tea’ 1is not a part of the if
statement, and hence is not dependent on the condition; it
is the next item in the begin ... end sequence, and 1is
executed in all circumstances. If ‘pour tea’ was to become
part of the if statement, begin ... end brackets would be
used as in Figure 4-6. The indentation of the text makes
the relationship clearer. The structure diagram  shows
without doubt that "pour tea" is an element of the sequence
and not of the selection. The strong visual resemblance of
the diagram to the indented text makes comparison of the two
notations easy.
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4.5.3 Algorithm Design

It is common in software design to start with a vague
formulation of the problem (if weather 1is fine .es) and
gradually home in on a precisely defined, deterministic
solution that specifies every measurement and calculation.
Although a precise solution is finally needed (or it will
never get past a compiler or assembler), a degree of
vagueness (or "controlled imprecision") is actually
beneficial in the early stages, even though it may go
against the grain. A precise formulation too early on may
exclude some vital elements, particularly if the software
designer does not have direct knowledge or experience of the
application. The design language helps here by permitting
partial solutions to be tried out on paper before they
become cast in silicon. The logic of the application can be
precisely formulated before considering in detail how the
individual operations required are to be implemented. The
design language allows the designer to identify and
precisely specify each operation required (reading a
temperature, controlling motors and heaters etc) before an
attempt is made to implement them.

The software design can be compared to the architect’s plans
for a building. Although some of the details may be changed
during implementation, plans for the foundations and overall
structure must be established before starting to build
individual rooms.

The algorithm of Figure 4-5 might be part of a system
controlling the environment in a greenhouse (say). The next
stage in design might be to consider whether it 1is the
inside or outside temperature (or both) that is significant,
whether the temperature should vary according to the time of
day, and what effect other parameters such as humidity might
have.

There are often several alternative ways of writing an
algorithm to perform a particular function. The first
solution hit upon may not always be the best.

Just as a good data structure (see section 4.6) extracts the
essential elements of the information being represented, so
a good algorithm extracts the essential elements of the
process being performed and uses these elements as the basis
of its design.

The best algorithms are usually those that clearly reflect
some underlying structure of the application itself, rather
than imposing some new structure invented by the system
designer. It’s quite easy to see why. Unless the
specification for a piece of software is perfect the first
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time, changes are likely to occur. Perfect specifications
are almost unheard of. If the software is structured along
the same lines as the application, the software will be able
to follow changes in specification quite easily. It will
have some "resilience" in the face of changing
requirements.

A software design that 1is structured in a significantly
different way to the application is likely to be "brittle",
and to break under the strain rather than adapt gracefully
to new requirements. Changes in requirements may have
unpredictable consequences in different areas of the design,
which will either make adaptation impossible, or will reduce
confidence in the reliability of the final system.

The nature of software aggravates the problem. Software
tends to be applied to complex problems, so that changes are
likely to be complex. It’s very easy to actually make a
software change - simply type in something new. It is much
more difficult to ensure that the change is correct.

At first sight it may be very hard to tell the difference
between a change that has only limited effect in an isolated
software function, and a change that can have ramifications
throughout the design.

For this reason it’s necessary to pay a lot of attention to
software design. Programming is only a part (a relatively
small part) of the story. Software needs to be designed and
engineered for resilience and reliability, rather than
stacked up like a house of cards.

In fact, there are two types of resilience. Software should
be able to cope with and recover from unexpected conditions
and, ideally, minor hardware faults. Secondly, the system
should maintain its integrity in the face of changes to
parts of the software itself - perhaps in response to new
requirements. A structured design methodology, such as is
presented here, assists greatly. The framework of Component
Software (Chapter 5) and Microprocessor Pascal (Chapter 6)
was designed to the same purpose.

However, a good set of tools is not enough. The system
designer needs to spend a good deal of time understanding
the application he is designing for, and the ways in which
it is likely to change over the lifetime of the system. In
this way, likely changes can actually be anticipated and the
system can be designed to make them possible.
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4.,5.4 The CASE Construct

There is a version of the selection which permits more than
two choices. This is represented in the design language by
the case construct:

case weather of

. ¢ 1k go for
sunny: go for walk; walk
raining: Dbegin ]
r
put coat on; ? — put coaton
1
n
go for walk i
ni— go forwalk
end; g
snowing: stay inside
stay inside
end
Figure 4-8 The CASE Construct
The case labels “sunny", '"raining", "snowing" specify the

possible values of the case expression "weather", and the
actions to be performed for each ("weather" will have been
declared as a variable of type (sunny, raining, snowing)).
When executing the selection, the case expression is tested
and, according to its value, only one of the operations will
be performed. (Note that the operation for "raining" is a
sequence, enclosed within a begin ... end bracket.)

The case labels can specify a list or a range of values.
There can be any number of case alternatives.
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Case constructs can have an otherwise clause that specifies
an action to be carried out if the case expression has a
value not expressed in any of the case labels:

case number of

0..3,8 add number to total;

4,6,7 subtract number from total;
5,9 : divide total by 2

otherwise write (’number out of range’)

end

Graphically, this is represented as:

add number
to total

subtract
number from
total

divide
total by 2

write (‘number
out of range’)

Figure 4-9 CASE Construct with OTHERWISE Clause
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The general syntax of the case statement is:
case <expression> of

{case labeld> : {statement);

{case label)> : <statement>
otherwise <statement>

end;

The otherwise clause is optional.
4,5.5 Iteration

The third and final algorithmic construct is the iterationm,
or loop. The iteration allows an operation to be repeated
either a specified number of times, or while some condition
remains true. There 1s an example of the first kind of
jteration in the algorithm of Figure 4-2.

for number of cups required do
pour cup

Graphically, an iteration can be represented by a
lozenge-shaped box:

read
character
for .
o] milk \'Y pour
number of o reqd? milk
u
r
c pour
u tea
P

Figure 4-10 Iteration Structure Diagrams
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Once again, the left hand box represents the iteration as a
whole, which can form a single element in another
algorithm. This single element consists of a (possibly
zero) number of executions of the right hand box. The right
hand box represents an individual execution of the operation
to be performed. The distinction may appear subtle at
first, but it is important. It allows a repeated operation
to be included as a single element of, say, a selection
construct. Like the sequence and selection, the iteration
packages a complex operation as one element with a single
entry and exit point.,

Usually, it 1s a sequence of operations that will be
repeated. As most computer programs carry out some
operation repeatedly (otherwise there would be little point
getting a computer to do it), the iteration is a very useful
construct.

In many iterated operations, it 1is wuseful to know which
iteration is currently being performed. Most programming
languages that implement the for construct therefore specify
a for-loop variable:

FOR I := 1 TO 10 DO
BEGIN
START_MACHINE (I);
DISPLAY (START_MESSAGE, I)
END

The variable I keeps a count of the repeated execution, and
can be referred to within the code of the for-loop. This
feature is often required, and this convention will be
adopted in the design language. The general form of the
for-loop, then, is:

for <variable> := <initial expression> to
<final expression> do
{statement>

{statement> 1is executed for all possible values of
{variable>, in order, starting at <{initial expression)> and
ending with <final expression>. <statement> will usually be
a sequence, enclosed within begin ... end brackets.
{initial expression> and {final expression> must be
compatible with the type of <variable)>, which can be any
enumeration type (see section 4.6). <initial expression)
and <final expression)> are only evaluated once, on entry to
the for 1loop (so it is not possible to change the value of
<final expression>, for example, within the loop). If
{initial expression> 1s greater than <final expressiond to
begin with, <statement> is not executed at all. *

* Some programming languages differ slightly from these
conventionse. However, some standards must be specified to
maintain consistency in the design language. These
standards represent generally agreed opinion on language
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A variant is:

for <variabled> := <{initial expression> downto
<final expression> do
{statement>

Here <variable> is decremented from <initial expression>, which
should be the larger of the two, down to <final expression>.
This may be more useful in some applications.

The alternative form of the iteration construct is:

while buffer is not full do
read character

The while construct is used where it is not possible, or not
convenient, to find out in advance how many times the loop
must be executed. The general form is

while <condition)> do <{statement>

The condition is checked before each execution of the loop;
as long as it remains TRUE, the loop is executed one more
time. '

4,5.6 Structured Programming

Although many programming languages provide additional
control structures, programs written using only the three
constructs described above have been shown to be easily
understood, easily amended, and above all 1likely to be
correct. This discipline is known as
structured programming.

The three constructs sequence, selection, and iteration are
basic mental structures, representing very closely the way
the human mind analyzes a problem. Consequently they are
very easy and natural to "think in", once the notation has
become familiar. The single entry and exit properties of
each construct mean that "high level", application-oriented
algorithms can be developed without worrying (yet) about
what happens at the detailed 1level of the operations
described. It is known that the effect of each operation is

design, and most modern languages (including Pascal) behave
exactly 1like this. When translating a software design into
a particular programming language, it 1is important to
determine how the language implements the standard
programming constructs - eg does the iteration construct
allow for the special case of zero iterations? Pascal
directly implements all the constructs of the design
language; implementation of these constructs in Power BASIC
and Assembly Language is discussed in Chapters 7 and 8.
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localised, and that the operation will complete and return
control to the high level algorithm without (say) jumping
unexpectedly to another part of the program.

Other notations, such as flowcharts, have sometimes been
used for designing computer programs. Flowcharts may be
useful at the lowest levels of implementation, when coding
in Assembly Language for instance (see Chapter 8). However,
flowcharts are designed to represent the way machines
operate rather than the structure of an application. Trying
to understand a problem using flowcharts involves bending
the mind, and the application, to work in the way machines
do. This may be necessary at some point, but it is not
advisable in the earlier stages of a design. Flowcharts
concentrate on the details of implementation, and have no
way of representing structure.

4.6 DATA

Data elements, which are implemented in the computer simply
as a collection of bits, can be used to represent any kind
of information. Often the information represented will be
numeric, but this need not be the case. A single bit may
signal the state of a digital input or output line; or a
group of bits may be coded to represent text or any other
information.

Most programming languages provide some pre-defined data
types (eg FORTRAN defines integers and real numbers) that
can be wused directly in a program. A data type definition
can be regarded as a code that translates some kind of
information into an internal representation in the
computer. Some languages allow users to define new data
types, either by combining already existing data types into
new structures, or by specifying the characteristics of a
new data type from scratch. These capabilities are very
useful when developing software designs.

Structured data types allow related data items to be grouped
together and referred to as a single entity. This is much
easier than remembering that the information about (say) a
piece of production machinery is contained in several
different integer and real variables, all with different
names. Programs with well thought out data structures are
likely to be more reliable and much easier to maintain.

Even where the programming language chosen for
implementation does not support flexible data structures,
such structures can be worked out by developing a paper
design using a design language. This can then be translated
into the implementation language. This method, which seems
roundabout, will often result in a faster development
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turnround than coding directly in the implementation
language. Certainly, it will produce a more reliable
Systemo

Effective use of data depends on identifying the essential
elements of what is to be represented, and choosing the most
appropriate representation in terms of numbers or binary
digits. For example, if a temperature is to be input from
the outside world to a microprocessor system, how should it
be represented? Does the system need to know the actual
temperature value? To what precision? Or is a single bit,
indicating that the temperature is above or below some
threshold, sufficient?

75

. 60.25
HIGH . .
LOW or . or .

. 31.32

20 .

Figure 4-11 Data Representation of a Temperature

This decision will, of course, dictate the choice of sensor
used to measure the temperature.

Data items can also represent things that are much more
abstract than a temperature - for example the root mean
square of a collection of statistical figures. It 1is this
ability to represent and manipulate anything that can be
defined exactly that gives software its power. Data items
can represent things which only have meaning within a
particular piece of software - intermediate results 1in a
calculation, for example, or codes representing which of a
number of possible operations should be performed.

How the data types are chosen defines the environment within

which software algorithms can work. A program can only
manipulate things which have previously been defined as data
items. Hence, data design 1is the key to any piece of
software.

-4,6.,1 Data Types

The first step in building a software design is to identify
the different kinds of information that need to be dealt
with, and to define appropriate data types. A
type declaration identifies a particular type of variable
that will be dealt with in the program, and the range of
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values that variables of this type might have. For example,
a particular system might need to make decisions according
to what day of the week it is. It makes sense to define a
data type called "day":

type day = (Monday, Tuesday, Wednesday, Thursday,
Friday);

The items in brackets identify the values that variables of
type '"day" might have. Note that this declaration does not
actually specify any wvariables of type "day". It simply
introduces the notion that variables of this type can
exist. After this declaration, we can talk about '"days" in
the software design and know exactly what 1is meant. (In
ordinary conversation we think we know what days are, but in
software it’s necessary to be more precise. The definition
makes clear that we’re talking about days of the week, not
days of the month, and in particular that we’re talking
about workdays: Saturday and Sunday aren’t included.) '

At this stage it is neither necessary nor desirable to
congsider how this data type will be implemented. Data items
of type "day" must be capable of taking five different
values representing the days of the week. These items could
be stored as the values 0-4, 1-5 or as arbitrary patterns of
bits. That decision can be made later. At this point it is
necessary simply to understand what’s needed to satisfy the
application.

From the computer’s point of view, what has been said so far
is:

(1) There will be data items that can take one out
of five possible values

(2) The designer 1is going to refer to these as
|lday"s

(3) The designer 1s going to refer to the
different values of these "day"s as Monday,
Tuesday, Wednesday, Thursday, Friday.

The general form of a type declaration is:

type <name> = <{type definition>;
The angle brackets indicate a generic name; in an actual
type statement, "<name>" will be replaced by an actual type
name. The form "(<value 1listd)", as in the "day"
declaration, is one kind of type definition. Other kinds of

type definition are presented below.

For the purpose of a software design, the following data
types can be regarded as predefined:
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integer (-32768..32767)

real (= floating point)

char (= ASCII character set)
boolean (= TRUE or FALSE)

4.6.2 Variables

Type declarations simply specify a kind of information that
is to be represented. To define actual data storage items,
or variables, of a particular type, a variable declaration
is needed:

var startday, endday : day;

This statement declares two variables, which will ultimately
be storage locations within a computer. These variables are
called '"startday" and '"endday". They are of type "day",
which means that the values they can take are Monday,
Tuesday etc. Whatever implementation is later decided on
for "day", that amount of storage and that representation
will be assigned to "startday" and "endday"

The general form of a variable declaration is:

var <variable list> = <typed;

Separating out the type declaration from the var declaration
means that the decision on how to represent "day"s is taken
once and once only. There’s no need to take this decision
again (perhaps differently -~ particularly if more than omne
designer is working on the same system) every time a
variable of this type is needed. Also, if the requirements
change and it‘s necessary (say) to include Saturday and
Sunday, this can be done simply and reliably throughout the
system simply by changing the one type declaration.

This is a relatively trivial example; but multiplied by the
thousands of decisions required during implementation,
clearly thought out data typing can make the difference
between manageable programs and intractable ones.

<type> in the var declaration need not be a type name, but
can be an expliclt type definition:

var startday : (Monday, Tuesday, Wednesday,
Thursday, Friday);

However, if more than one var declaration wuses the same

right hand side defintion, it 1is preferable to define a
type, and then use the type name in the var declaration.
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Where the values of a data type follow a predefined
sequence, only the start and end need be enumerated:

type weeknumber = (1..52);

Such types are called subrange types because they are
defined as a specific subrange of an already defined type.
The above declaration works because the type "integer",
consisting of the wvalues -32768, -32767 5000001, 0,
1,....32766, 32767 (for a 16-bit processor) is predefined.
"Weeknumber" is a subrange of integer.

It is also possible to define subranges of type "day":

type first_half week = (Monday..Wednesday);

4.6.3 Operators

Having defined data items, it’s necessary to do something
with them. 1In a program, variables of particular types can
be combined using operators. In the statement

a=bd+c¢c

"+'" is an operator. "+" means "add the values of b and ¢ to
give a third value".

In ordinary mathematical Jlanguage, the above formula is8
simply a statement of fact: "a is equal to b plus c". 1In
computer language, it’s more likely to signify an operation:
"make a equal to the value of b plus ¢", or, to put it
another way, "a becomes equal to b plus c". This is one of
the most common of algorithm statements, namely the
assignment statement. Here "=" 1is an operator too - the
assignment operator, whose effect is to assign the value of
whatever expression 1is on its right to the variable on its

left.

To avold confusion between the assignment operator and the
mathematical "=", which mean quite different things, modern
languages such as Pascal use a special symbol, ":=", for
assignment:

a :=b + ¢

read, "a becomes equal to b plus c¢". This convention will
also be used in the design language. The left hand side of
an assignment statement must always be a variable, because a
value will be assigned to it. However, the right hand side
can be an expression: that is, any combination of variables,
operators and constant values that can be evaluated:
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5%a + b - ¢/2
The general from of the assignment statement is
{variable > := <expressiond;

The expression should evaluate to a type that is compatible
with the variable on the left hand side. It makes no sense
to assign a temperature value to a day of the week.

Some programming languages make no check that the type of
the expression is compatible with the type of the variable:
‘they simply assign the bit code representing the value of
the expression to the storage location for the variable.

While this can be made use of in special cases, ninety per
cent of the time an unmatched statement indicates that the
programmer has made an error. Programming languages that
check for exact compatibility of types in assignment and
other statements are said to implement strong data typing.

Even when an unmatched statement is written deliberately *,
it is a rather risky operation: it depends on a certain
relationship between the internal bit representations of the
two data types (some examples of internal representations
are given in Chapter 8). If the software is transported to
another machine, or even if the compiler is changed, this
relationship may no longer hold. 1In developing a software
design, it is wise not to make use of such relationships; or
if they are used, to isolate them to certain routines which
are known to be machine dependent.

In general, an operator will apply only to certain data
types. In developing a software design, all the standard
mathematical operations (+ - * /) (* = multipy, / = divide)
can be regarded as pre-existing for numeric data types. But
multiplying days of the week makes no obvious sense, either
in the real world or in a software design. Any operations
to be performed on non-numeric data types must be defined,
perhaps as separate procedures (see section 4.10 below).

Types such as "day" and "weeknumber" (and "integer") are
called enumeration types, because their possible values are
specified by enumerating them, in sequence. The order of

values in the sequence is significant. The operators PREC
(preceding) and SUCC (succeeding) can be regarded as
pre-defined for all sequenced data types:

eg PREC(Wednesday) is Tuesday

* Microprocessor Pascal, which is a strongly typed language,
provides a type transfer operator which can be used to
override type checking. However, the programmer must
explicitly tell the compiler that he is doing something out
of the ordinary, and exactly what he 1is doing (Section
6eb6.14),
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SUCC(Thursday) is Friday

The assignment operator can also be applied to all data
types. More complex operations can, of course, be devised,
but they must be specified precisely.

Subrange types can be used to specify the range and
precision of numbers that will be used in calculations:

type temperature = (~-50..+100);
pressure = (0..900);

(Note that the keywords type, var etc need not be repeated
for multiple declarations. The declarations are separated
by semicolons.) For Pascal designs, the compiler can
optionally perform automatic checks to ensure that variables
never exceed the bounds specified.

In addition to the type '"integer" the numeric type
"longinteger" (-2147483648..+2147483647, ie 32 bit signed)
is often useful, and is directly implemented in
Microprocessor Pascal and in some other languages.

Obviously, use of certain facilities of the design language
will be conditioned by what is expected to be available in
the final implementation language =~ for example, is a
floating point package available? Nevertheless, the freedom
of the design language 1s useful at 1least in the early
stages of working out what 1is needed to implement the
application.

Note that 'real" is not an enumeration type. With
enumeration types, it 1is always possible to identify a
unique predecessor and/or successor for any value (eg with
integers, 5 is preceded by 4 and succeeded by 6). However,
what is the successor of the real number 2.414? Is it 2.415?
2.4141? or 2.41401? Given any two real numbers, it 1is
possible to define a third real number that lies between
them in wvalue (up to the 1limit of precision of the
computer). The representation of real numbers follows a
completely different principle from the representation of
integers. Real numbers are stored differently within the
computer,* and cannot, for example, be used as an index to
an array (see below, section 4.7.2).

The discipline of data typing makes it much harder to make
mistakes - such as using variables in the wrong place - and
much easier to find mistakes if they are made. Data types,
and variables, can also be given meaningful names (in the
design 1language at least, and in some implementation
languages). With variables called I, J, K, or even K2BCPLZ,
and all implemented as (say) integers, it’s quite easy to
mistake a variable representing a day of the week for omne

* The representation of real and other numbers is discussed
in Section 8.13.2
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representing (say) the mean of 25 temperature values, and
hence to perform a completely inappropriate operation. Such
errors can easily propogate right through to implementation,
and may only be discovered when the system doesn’t work.
For software designs executed in Pascal, the compiler will
automatically check compatibility of data types.

4e6.4 Data Design

Designing good data types and data structures is not easy,
and there is no standard way to go about it. It is perhaps
the biggest challenge of software design.

Some languages (eg Pascal) implement the data type
constructs described here directly. Others implement only a
small range of data types (such as INTEGER and REAL).
Whichever 1language 1is to be used for the final
implementation, the software design can be developed using a
design language, as described here. When the design is
complete, each data type can be '"mapped" onto a suitable
implementation in the programming language to be used.

One advantage of this approach is that much of the design
work is done in a medium that is not tied to any particular
hardware implementation. This means that the design will be
much more transportable. It also means that details of the
implementation which might sidetrack design thinking at this
stage (such as precise syntax and punctuation, and the
idiosyncracies of a particular programming language) can be
left until a later stage.

Besides documenting the system and the design process, the
software design can be referred to when making changes to
the system. It contains relevant information that may be
lost or obscured in implementation. The design is also a
starting point for implementation using different
programming languages.

4,7 DATA STRUCTURES

Single data items, of whatever type, are of little use in
real applications. Usually, the data required to describe
anything in the real world is much more complex than this.
It is useful to group single data items together into data

structures. As with program algorithms, there is a set of
simple constructs which can be used in a wvariety of
combinations to represent data structures of any

complexity. The principle data constructs are the record
and the array.
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4.7.1 Records

The record enables data items that are associated in some
way to be grouped together, and referred to by a single
name. A record 1is simply a collection of (probably
dissimilar) data types.

Consider an application that controls a number of pumps at a
self-service filling station. A record can be defined to
contain information about a pump as follows:

type pump_record =
record
status : (off, filling, completed);
grade : (regular, premium, unleaded);
gallons : (0..30)
end;

var pumpl, pump2 : pump_record;

The type declaration defines the structure of the record;
the var statement declares two record variables, pumpl and
pump2, of the newly defined type "pump_record". The record
construct is another form of <type definition>, as described
in section 4.6.1. "end" closes the record definition.
" " is used to make pump_record into one word.

The record in this example contains three fields (status,
grade and gallons), each of which has a unique name. The
record groups, in one place, the status of operations at a
particular pump (whether the pump is off, in the process of
filling, or has completed); the grade delivered; and the
number of gallons delivered.

The status information for the first pump can be referred to
unambiguously as '"pumpl.status'. ".status" is called the
field qualifier. All of the information about this pump can
be referred to collectively as '"pumpl". This is a very
useful shorthand when dealing with 1large and complex
collections of data.

The fields in a record can be of any type, including

structured types. This allows the building of very powerful
data structures.
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Types of fields in a record can be predefined, eg:
type status_values = (off, filling, completed);

type pump_record =
record
status : status_values;

end;

The algorithm for the filling station application involves
continually checking the status field of each pump record in
turn. When a status of "completed" is read, the program
calculates the cost, displays it at the cash desk and resets
the pump:

if pumpl.status = completed then
begin
calculate_cost;
display cost;
reset_pump_l
end

calculate_cost, display cost and reset_pump_l are all
operations that are expanded elsewhere in the software
design.

The cost calculation is based on the '"grade" and “"gallons"
fields of the pump record and a table of prices.
"Calculate_cost" can be expanded as follows:

cost := pumpl.gallons * cost_;able[pumpl.grade]

"cost_table" is an example of another structured data type
called the array.

4-7.2 Arrays

An array is an ordered 1list of data items of identical
type. The whole array is given one name; an individual
element of the array is referred to (referenced) by giving
the array name and an index or subscript, which identifies
which element in the array is required.

type buffer = array [1..80] of char;
var bufl : buffer;

or, equivalently
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var bufl : array [1..80] of char;

"char" is a pre-defined type. The number of elements in the
array (80 in this case) is specified by listing the possible
values of the index, in square brackets.

The fourth element of the array (ie, the fourth character in
the buffer) can then bhe referred to as "bufl[4]"; this
element is of type "char'.

In the design language (and in Pascal), any enumeration type
can be wused to index an array. So "cost_table" (above) is
declared:

var cost_table : array [regular, premium, unleaded]
of price;

The reference cost_table[premium] will then give the price
of premium grade ("price" is a type defined elsewhere).

To gain a feel for the notation, and its practical
application, 1it’s worthwhile constructing a few trial

examples. For example: design a record type named
"call record" to contain all the essential information about
an individual telephone call (originating number,

destination, distance etc). Declare two or three record
variables of this type. Declare an array to hold the tariff
information, and write the algorithm to calculate the cost
of the call. Declare another array to hold, for every
subscriber, the current bill. Write the algorithm statement
to add the cost of a new call, to the bill for the
appropriate subscriber.

What 1is 1inside the square brackets of an array declaration
has the same form as the right hand side of a type
declaration. In fact, a type name can be used in place of
an explicit list of values. An array containing the daily
receipts of a store can he declared:

var daily takings : array [day] of money;
(assuming the previous declaration of type "day", as in
section 4.6.1). The receipts for Tuesday can then be
referenced by
daily takings [Tuesday]
Arrays can be employed for any list of identical items. The

elements can be any data type, including records and other
arrays.
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It is convenient to use the same type to declare an array
and any variable used to index it:

type buf_size = l1..80;

var bufl : array [buf_ size] of character;

var index : buf_size;

This makes changes to the buffer size much easier, and also
aids documentation. With an appropriate choice of names,
designs such as this can be largely self-documeunting. If
this design is turned into Pascal, compiler checks can be
used to ensure that the array index never exceeds the
specified bounds in execution.

With an index variable, the same portion of a program can be
used to operate on different array elements, according to
the value of the index. This is relevant to the gas station
example (above). As it stands, a separate piece of program
needs to be written for each pump. Instead of declaring
pumpl, pump2 as separate variables, declare an array of pump
records: i

type no_of pumps = 1..10;

var pump : array [no_pf_pumps] of pump_record;

var pump_no : no_of_ pumps;
The same statements can then be used for any pump, first
setting pump_no to the required value, then referring in the
program to:

pump [pump_no].grade

for the grade field of the pump specified by pump_no. The
notation works like this:

pump is an array

pump[pump_po] is an element of the array, and is a record

pump [pump_no].grade is a field of this record, and is of
type: (regular, premium, unleaded)

Any array can be indexed by adding "[index]"; any record can
be qualified by adding ".field". By nesting definitions in
this way, data structures provide powerful tools for
managing the complex data found in the real world.

It is not necessary to grasp the whole of a large data
structure at once. Beyond a certain point, it is mentally
impossible. Using the techniques described here, if each
level of the structure is correct and well wunderstood, the
designer can be confident that the whole is correct. This
is the principle on which most modern software design
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techniques are based, and it applies to algorithms and
programs as well as data.

4.7.3 Dynamic Data Structures

Returning to the filling station example, one problem
appears in the original design. 1In order to save the cost
information, a new customer cannot use a pump until its
previous customer has paid his bill. Several solutions,
however, are possible. For example, an array of
pump_records could be defined for each pump, one record per
customer. A decision will then have to be made as to how
many customers will queue at each pump. In another
solution, the cost information can be stored in a separate
data structure (or printed out) as soon as it becomes
available, and the pump cleared.

A third possibility is to structure the data not by pumps,
but by customers =-- one record per customer. A customer
record might look something like this:

type customer_record =

record
pump_number : no of pumps;
status : (off, filling, completed);
grade : (regular, premium, unleaded);
gallons : (0..30)
end;
Each time a customer arrives, a new record is created. An

array of customer records could be declared. These records
could be assigned to customers as they arrive. However,
customers leaving would create "holes" in the array. This
problem can be solved (eg, by a "tidying up" algorithm).
Such a solution, however, is messy. 1In the array structure
in this application there seems to be no obvious meaning for
the index. This is one indication that an array is not the
right structure to use in this application.

A structure called the 1list is more appropriate to the
situation spelled out above. Records and arrays must have
their size (the amount of storage allocated to them) defined
when the program 1is written. These allocations cannot be
changed while the program is running. Lists, on the other
hand, consist of data eleménts (usually records) which are
dynamically allocated from a pool, or heap, of storage space
while the program is executing. Elements can be deleted
from anywhere within the list when no longer required, and
the storage will be returned to the heap. Thus, customers
can be added to the list when they arrive, and deleted when
they leave. The data structures change dynamically to
reflect the real situation.
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Lists, and other useful data structures such as treesg, are
described in more detail in the references given at the end
of this chapter (in particular see reference [1] in the
Bibliography, section 4.13). Lists, and other dynamic data
structures, are generally managed through another data type
called the pointer. Pointers and the structures they can be
used to implement are described in reference [1], and in the
Microprocessor Pascal System User’s Manual.

The different solutions illustrate a point made earlier:
that data can be structured in many ways, and it is worth
exploring the alternatives. Data design determines the
basic elements with which the system will work and affects
both algorithms and input/output. The best way to arrive at
an optimum solution is to be aware of the choices that can
be made.

4.7.4 Data Diagrams

The graphical notation described above for algorithms can
also be used for data structures. The sequence notation can
be used to represent records, and the iteration construct to
represent arrays. Thus, the array ‘pump’ of ‘pump_records’
in section 4.7.2 can be drawn:

P

no. of :‘ status
pumps p
r

2 grade
o
r
d

gallons

Figure 4-12 Data Diagram for an Array of Records

The selection construct can be regarded as representing the
record variant, a record structure in which part of the
record can have alternative forms. For example, a personnel
record for a college might need to contain different
information depending upon whether it represented a student,
faculty member or a member of the administrative staff
(Figure 4-13).
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Figure 4-13 The Record Variant
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In the design language, this can be written:

type personnel record =

record
name ! name_record;
age : 0..100;
college : (cas, tech, music, jour);

status : (student, faculty, admin);
case status of

student : (graduate status status type;

year t 1l..7);

faculty : (tenure : boolean;
rank : rank_type);

admin ¢ (position : position_type;
length of service : 1l..50)

end

end
assuming the previous definition of:
type status_type = (graduate, undergraduate);

(inst, asst, assoc, prof);
(asstdean, dean, chairman, other);

rank_type
position_type

According to the value of status (called the tag field),
only one of the variants will be wused to determine the
structure of the record in any particular case.

Examples of further constructs which can be used (including
the pointer type and dynamic data structures) are given in
the Microprocessor Pascal System User’s Manual. The
constructs of Pascal are designed to be '"universal", and
many of them can be adapted for direct use in the design
language.

4.8 DESIGN APPROACHES

A completed software design consists of a complex
multi-dimensional mass of information, ranging from overall
structure to details of implementation. When constructing
such an edifice from scratch, what 1is the best way to
approach 1it?

At the start, two ‘ends’ of the problem are known:
1) What the system is supposed to do, and

2) The basic operations that the processor is
capable of performing.
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This leads to two approaches to software design:

1) Starting from the problem and working down
towards the details of implementation. This
involves splitting the problem into smaller
segments, considering each in turn and
further subdividing until the basic processor
operations are reached.

2) Starting from the basic processor
instructions, putting them together into
larger wunits that will perform more complex
operations, and so working up towards a
solution of the complete problem.

The second method is the traditional way of designing
software. It has been called the ‘bottom-up’ approach. For
example, if it was thought that a system required a keyboard
input routine and a display routine, these functions would
be written, together with other routines, and used as
building blocks to construct larger modules which would then
be put together to make the complete system.

However, it has been found by experience that the first
method, “top-down’ design, produces software that is better,
clearer and easier to maintain. The problem with bottom-up
design is that usually not very much thought is given to the
precise requirements of each function, and the ways in which
functions will fit together, before they are implemented.
Therefore the designer ends up with blocks that are of
incompatible size or shape, and he either has to reconstruct
the blocks, or make the best of what he has and design some
special pieces of software to overcome the problems of
incompatibility.  This does not 1lead to very robust
systems.

The major problem of software, unlike other technologies, is
not in the actual construction of functions. Once a
requirement has been precisely identified, implementing a
stand alone piece of software to perform it is fairly
straightforward. The problem lies in organizing a
collection of functions so that they will cooperate to
perform a complex task. This is the problem that 1is
addressed by top-down design. The requirement and the
interface for each function is identified before it 1is
implemented.

Actually, pure bottom-up design i1is not possible. The
designer must have given the problem some ‘top-down’ thought
or he would have no idea what building blocks to construct.
What top-down design does is to make this thought much more
systematic. It provides the designer with some tools to
attack the problem (such as the design language), which are
better than his bare hands. Traditionally, the only
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languages available for design were programming languages,
which typically required so much attention to machine detail
that the major issues were obscured. Also, early
programming languages were unstructured, so that it was
difficult to isolate and focus on particular design issues
or to 1look at the system as a whole without becoming
involved in a mass of detail.

Design languages and notations like those introduced above
have largely solved this problem.

A design might be conceived initially like this:
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action
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Figure 4-14 Initial Design Algorithm

This could be a device which, after initialization, would
wait for an operator command, perform the appropriate
action, and then return to wait for the next command. The
device is specified in very general terms, but its basic
operation is already clear.

The operator interface might be a teletype keyboard, on
which the user would type a command telling the system what
to do. Suppose a command consists of a line entered on a
teletype keyboard, terminated by a carriage return (CR).
The device prompts the operator for a command by outputting
’?’ to the teletype.
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"Read Input" could then be expanded like this:
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Figure 4-15 "Read Input" Algorithm expansion

The terminal boxes of this diagram can be further expanded
until a complete solution is derived.

Because of the single entry and exit properties of the
structured programming constructs used, the designer can be
confident that however he expands the design of, for
example, the box labelled ‘take appropriate action’, it will
not affect any of the other boxes in the diagram, or the
structure of the diagram.
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It 1is this property of structured notation which makes it
possible to hold off consideration of details and to design
from the top downwards (or, more accurately, from
application towards implementation).

In a practical system, top-down design must often be
tempered with bottom-up considerations. It is impossible to
start designing at the top without some idea of what is
possible at the bottom. For example, it may be necessary to
code and try out an I/0 routine or a critical piece of code,
in order to check the feasibility of the design. With a
complex problem, it may be necessary to attack the
intractable mass in the middle from both ends. However, the
most important progression in design remains from problem
towards implementation.

4.9 BLOCK STRUCTURE

In a software design, the general form of any programming
unit can be expressed as follows:

TYPE DECLARATIONS
VARIABLE DECLARATIONS
PROCEDURE STATEMENTS

Such a program unit 1is called a block. The type
declarations specify the types of data that will be used in
the program (in addition to predefined types); the variable
declarations specify actual data items of these types; and
the procedure statements define what the program will do
with these data items.

Most modern programming languages are block-structured -
that is they make use of the block construct to modularise
programs.

The advantages of blocks become apparent when considering
how a large software design can be broken down into smaller
parts for separate implementation (by the same programmer or
by others). Each part can be implemented as a separate
block, with 1its own types, variables and procedure
statements.

A block encapsulates the complete programming environment
for a particular program unit. The declarations made within
a block apply only to that block. They constitute a 1local
"language" invented and spoken (or rather written) by the
programmer of that block. This language (the types of data
permitted, the actual data items declared, and the
procedures available for doing things) is designed to be
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appropriate to the specific problem to be solved by that
block, and is unknown outside the block.

Thus different parts of the same software design can be
developed separately with no possibility of interference or
confusion. 1It’s even possible for two programmers to use
the same name for two completely different variables.
("TEMP", for example, could be chosen to represent a
temperature by one programmer, and to represent a temporary
variable by another. While such name duplication should not
be encouraged, it’s difficult to ensure that it doesn’t
happen among the many separate decisions that are made in
developing a software design.) There are standard and
controlled means by which information is exchanged between
different blocks.

The block construct can be used wherever a self-contained
programming wunit is to be defined. A complete program is a
block; so is a subprogram. Blocks can be nested one within
another.

A smaller block nested within a larger can be regarded as
existing within the environment (or context) of the outer
block. Thus, type and variable declarations in the outer
block apply in the inner block. However, local declarations
override global ones: if by chance a variable is declared in
an inner block with the same name as one already declared in
an outer block, the local declaration applies in the inner
block. This is shown in Figure 6-2, Section 6.3.6.

The block structure defines a hierarchy, or tree, of
relationships between programming units. These are called
lexical relationships. 1In Figures 6-2 and 6-3, the lexical
parent of PROCEDURE P is PROGRAM A (both PROCEDURE P and
PROGRAM A are blocks). PROCEDUREs P and Q are lexical
brothers; P, Q and A, as well as B and R, have SYSTEM X as a
common lexical ancestor. This lexical relationship simply
describes the (static) context in which the individual
blocks are declared, and the data items, types etc which
they share. It does not determine the (dynamic) order in
which blocks will be executed when the system is running.

Block structure is a way of managing complex 1logical
entities by splitting them into smaller entities with
clearly defined relationships. From experience, this kind
of structure is required to manage all but the smallest
software systems.

4.10 PROCEDURES AND FUNCTIONS

The most common way of implementing a smaller block within a
larger program is as a procedure or function. A procedure
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(sometimes known as a subroutine) is a separate block that
is declared within a program. A name 1s assigned to a
procedure to enable the user to reference it.

Declaring a procedure is similar to defining a new statement
or operation in the programming language. Once a procedure
has been declared it can be activated or <called from the
main program simply by writing its name. For example, if
the programmer has written a procedure called
calculate_mean, to find the mean of a series of numbers, he
can simply write

calculate mean;

in the main program wherever this operation needs to be
performed. (Some languages require a keyword, such as CALL,
to precede the procedure name.)

In a case like this, the operation will probably have to be
performed on several different sets of numbers which are
stored as different variables. This can be accomplished by
passing variable names as parameters to the procedure in
order to specify the data objects on which it is to operate:

calculate_mean (array_of numbers)
Later the same procedure might be called by:
calculate_mean (different_;rray_pf_pumbers)

When a procedure is declared, the number and type of
parameters are specified in the procedure header. The
variable names written here are used in the statements in
the procedure body. They are the formal parameters. When
the procedure is executed (called), the formal parameters
will be replaced by the actual parameters specified in the
procedure call.

Procedure declaration:

procedure seq (a : integer; b : real; c : array [1..80]
of char);

begin

(* procedure body *)

e OV N

Figure 4-16a Procedure Declaration
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Procedure call:

seq (x, y, 2)
Figure 4-16b Procedure Call

The number and type of the actual parameters must exactly
match the formal parameters. Thus, X must be declared as
"integer", Y as '"real" and Z as an "array [1..80] of char".

A function is a special type of procedure that returns a
single value of a particular type. ("function" wunderlined
has a specific technical meaning, as described here.
Elsewhere in this book, "function" is used in a more general
sense.) A function can bDe treated as a variable and
included 1in an expression, even though calculation of the
value to be returned involves some algorithmic process. The
type of the function is specified in the function header:

function number (a : boolean; b : char) : integer;

begin

end;
and the function can be written as part of an expression:

p := 5 * number (true, ’'x’)
Figure 4-17 Function Declaration and Reference

Besides variables, values or expressions can wusually be
passed as parameters, provided they are of the right type.
Procedures can declare local variables which are only used
within the procedure. In a block structured language the
procedure also has access to the variables of the program in
which it is declared. 1In Pascal, procedures can be declared
within procedures.

Procedures form a mnatural method of writing modular
programs, particularly 1if they can be nested (declared
within other procedures) to any depth as in Pascal. In
implementation, procedures save code. An instruction
sequence that can he used in several places in the program
only occurs once in the object code.
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seq(5,2.4,buffer); ——— P procedure seq(a:integer;b:real;

. 44— c:array[1..80] of char);
. begin
end;
CALLING PROGRAM PROCEDURE CODE

Figure 4-18 Procedure Call Mechanism

When a procedure call is executed, the processor transfers
execution to the procedure, saving the address of the the
calling instruction in the main program. Once the called
procedure has finished, the processor returns to the
statement 1in the main program following the procedure call
and resumes processing of the main program.

Quite apart from code saving, procedures are a useful way of
structuring a program, and may be used even when the
procedure 1s called only once. In a block structured
language such as PASCAL, variables declared within a
procedure are completely local to that procedure, and cannot
interfere with the operation of a procedure that 1is
separately declared. (Procedures still have access to the
variables of the program or procedure that contains them, so
this has to be carefully controlled.)

Most programming languages allow a program to make use of
procedures defined elsewhere 1in the system, perhaps in
another program module. Such procedures are declared within
the program block which 1s to use them by some form of
EXTERNAL declaration:

procedure select (a : integer; b : real); external;

The standard model for a program block (section 4.9) should
therefore be expanded as follows:

TYPE DECLARATIONS
VARIABLE DECLARATIONS
EXTERNAL DECLARATIONS

PROCEDURE STATEMENTS
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4.10.1 Parameter Passing

There are two distinct ways of passing parameters to a
procedure or function. Passing by value will simply cause
the value of the actual parameter to be found and assigned
to a new storage location in the procedure or function. Any
changes made to the formal parameter variable in the
procedure will have no effect on the actual parameter
variable in the calling program. In fact, actual parameters
passed by value can be arbitrary expressions (of appropriate

type):

test (5*x + 2)

Passing by variable reference (sometimes called "passing by
location") transfers not a value, but the address of the
actual parameter variable in the calling programe.
Operations in the procedure are performed using the actual
variable in the calling program, not a local copy. Results
can therefore be returned from the procedure to the calling
program (by assigning a new value to a parameter). However,
the call to "test" above would be illegal in this case as
the actual parameter must be a variable.

A simple procedure will illustrate the difference:
Declaration:

procedure modify (x : integer);

begin
x = 2 * x
end;
Call:
modify (a)

If "x" 1is passed by value, there will be no effect on "a".
If "x" is passed by variable reference, "a" will be doubled
by the call to modify. However, a call such as '"modify
(5*%a)" would be illegal. The differences are summarised in
Table 4-1.
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METHOD OF PARAMETER PASSING

VALUE VARIABLE
REFERENCE
Allows expression as
actual parameter Y N
Allows variable as
actual parameter Y Y

Modifies value of actual

parameter variable in

calling program N Y
(ie returns results)

Table 4-1 Methods of Parameter Passing

When writing a procedure or function, it is important to be
clear about the method of parameter passing. If a value 1is
to be returned, variable reference must be used. If not,
value passing gives additional security against accidental
modification of the calling program’s data.

Some programming languages provide only one method of
parameter passing, or determine the method required from the
context. But problems can arise: in some versions of
FORTRAN it’s possible to change the value of a constant by a
call such as "modify (5)". Strongly typed languages avoid
such anomalies by checking the correspondence of parameter
declarations and calls.

Most modern languages allow the programmer to choose the
method of passing for each 1individual parameter. In the
design language, parameters to be passed by variable
reference should be identified in the procedure declaration
by the prefix "var":

procedure example (var x : integer; y : real);
All other parameters are assumed to be passed by value. 1In

the above, "x" is passed by variable reference and "y" by
value.

4.11 REAL TIME SOFTWARE

Much of what has been described so far applies to sequential
software. An algorithm is a sequential construct,
representing a single thread of logic designed to perform a

Texas Instruments 4-44 October 1981



SOFTWARE DEVELOPMENT HANDBOOK SOFTWARE DESIGN

particular function.

But purely sequential systems are of 1limited wuse in a
parallel world. 1In real life, many things are happening
simultaneously. Microprocessor applications in particular
often need to be aware of, and to control, several things
that don’t have a simple, one-after-the-other relatiomnship
in time. A system controlling an industrial process may
need to monitor several different temperatures, pressures
and flow rates, and take appropriate action to control the
process., It may need to open and close valves and start
pumps in a predetermined sequence. And it may need to
respond to commands from an operator, which can come at any
time.

A microprocessor will probably have the capacity to do all
this. The problem 1lies in organizing its time and other
resources so that everything gets done when it is required.
A general solution to this problem requires something more
than the sequential modularity described above. What 1is
required is a modularity based on application function, that
comprehends both the sequential and parallel nature of the
world.

A procedure call is a sequential mechanism: the calling
program suspends execution until the procedure has
completed. But real time applications do not split easily
into PROCEDUREs and FUNCTIONs with a simple sequential
relationship. Squeezing such applications into a sequential
package means a departure from natural program modularity,
and usually results in "brittle" designs which are difficult
to test and may be unreliable in operation.

It would be much easier to define individual tasks to be
performed as separate program blocks, which could be
considered to be executing at the same time. Concurrency
permits this. Separate tasks can be writtemn as individual
processes. When the system is executing, processor time and
other resources will be shared out automatically between the
processes according to demand and priorities set by the
designer. This sharing out of processor time is known as

scheduling.

Each ©process 1is a separate sequential block which can be
written separately from the other processes. Processes can
signal to each other and exchange messages to coordinate the
operation of the system.

A brief description of semaphores, executives and interrupts
is given here. Concurrency and its implementation is
described in more detail in the following chapter.
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4.11.1 Semaphores

A semaphore 1is a signalling mechanism that represents an
explicit event. It can be used for signalling between
individual processes, and between processes and the external
Worldo

Semaphores can indicate the occurrence of any kind of event
that 1is of importance to more than one process in a system.
A semaphore may indicate an external event - eg
"character_received" from a terminal device - or an event
purely internal to the software of the system - eg
"text_buffer_ full".

There are two primitive operations that can be performed by
a process on a semaphore -~ signal and wait. A process that
completes an event signals the appropriate semaphore; the
semaphore ''remembers" that the event has taken place.
Another process can execute a walt operation on the
semaphore, which means that it will be suspended until the
semaphore is signalled from somewhere else. (If the
semaphore has already been signalled, the waiting process
will be released immediately and can continue.) Thus a
semaphore 1s a simple signalling mechanism, mutually
understood by two or more processes:

Process #1 Process #2
for 1 := 1 to bufsize do .
begin .
wait (char_received); wait(buffer full);
/read char (a); process_buffer;
char_ buffer [1] := a buffer_full .
received end; .
signal (buffer_ full); .

Figure 4-19 Semaphore Signalling
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A process can synchronize its operation on an event taking
rlace anywhere else in the system. A semaphore is a very
simple signalling mechanism that conveys only that some
event (mutually understood by signaller and waiter) has
taken place.

The most wuseful type of semaphore 1s a counting semaphore,
which will count and store the number of times it has been
signalled 1if several signals have been received without a
wait. A counting semaphore will also establish a queue of
waiting processes if more than one wait is received without
a signal. Thus semaphores can provide a degree of
flexibility 1in a system, to cope with temporary "peaks" and
"troughs".

The implementation of a semaphore must ensure that a process
can complete its signal or wait operation without being
interrupted by another process, so that the semaphore does
not become corrupted.

Semaphores can be wused to construct more powerful
communication and synchronization mechanisms between
processes, that allow for the exchange of messages as well
as signalling the occurence of an event. Such mechanisms
are discussed in Chapter 5, Component Software, and in the
Microprocessor Pascal System User’s Manual.

4.11.2 Executives

Because the processor instruction set does not directly
implement concurrency and semaphores, a set of software
routines executing on top of the bare machine are required
to provide these facilities. This set of routines is known
as an executive.

A '"bare" software system can be written to run on a
processor without an executive. This was often done in the
early days of microprocessors. However, a standard
executive makes things considerably easier and can provide
services such as concurrency and standard management of
interrupts and 1/0 (see below). An executive tailored to
the needs of a microprocessor need not be large: Texas
Instruments’ Realtime Executive can be configured down to a
size of 3K bytes.

4.,11.3 1Interrupts

There are two ways that a processor can become aware of
something that is happening in the external world. One 1is
to execute a software instruction at a particular point in a
software algorithm to read or test an external input. This
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technique is called polling. Until the appropriate
instruction is executed, the software is completely unaware
of the current value of that input (it may have stored the
value read last time that input was polled).

The other technique 1is to connect a signal in hardware so
that it immediately interrupts the processor when a certain
condition occurs (defined by external hardware). When the
processor receives an interrupt, it will carry out a
context switch to completely save whatever it was doing at
the time the interrupt was received, and will then execute
an interrupt service routine. (The hardware mechanism
implemented on the 9900 and 99000 microprocessors for
interrupts and context switches is described in Chapter 8).
In a system containing an executive, the interrupt service
routine will probably signal a semaphore associated with the
interrupt received, and cause a rescheduling operation.
TI’s Realtime Executive is event driven: that is, occurrence
of an external event (an interrupt) will cause the processor
to immediately reschedule its operations to deal with the
event. The event may cause a process that has been
suspended on the interrupt semaphore to reactivate, and this
in turn may signal other processes, so that an external
event may propagate a chain of activity throughout the
SYS teme.

Event driven scheduling is what is required in real time and
control situations, as it provides immediate response to
external happenings. The hardware interrupt priority scheme
may be used to prioritise the response to different external
events, if more than one occurs at once. The executive
provides a standard means of managing and controlling
interrupts, so that synchronization with external events is
handled in the same standard way as synchronization with
internal processes. It is also possible to write interrupt
service routines that execute outside the executive
environment, so that very fast response can be provided for
those signals which require it, without involving the
executive or other processes.
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4.12 MAKING TEA

The tea making algorithm (Figure 4-2) can be updated to run
in a real time environment:

begin

fill kettle;

put_kettle on;

put_tea_in_teapot;

wait (kettle_boiling);

fill teapot;

delay (5*60%1000);

for number := 1 to cups_required do
pour_cup -

end

Figure 4-20 Real Time Algorithm

"kettle_boiling" is now a semaphore, and the process
containing this algorithm performs a "wait" on it. The
semaphore will be signalled, and the process will be
revived, by the external event of the kettle boiling. (A
steam sensor will probably be wired up to generate an
interrupt to the processor, which will signal the
semaphore). While this process is suspended, other
processes can be executed. If this is really a domestic
robot, it might have a table laying or washing up algorithm
which could be carried out. Similarly, a concurrent system
is likely to include a standard delay routine which will
suspend the process for the required time. The parameter
for this routine 1s assumed to be the number of milliseconds
delay required. The other operations (eg fill kettle) can
be declared as procedures.

This algorithm now conforms to standard Pascal syntax and
can actually be compiled (omitting the wunderlines, which
Pascal does not require). Figure 4-21 shows the compilation
listing which was obtained from the Microprocessor Pascal
System. "fill kettle" etc are declared as EXTERNAL
procedures, to be defined elsewhere.
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DX Microprocessor Pascal System Compiler 3.0 10/23/81 11:41:52
PROGRAM make tea;

VAR number, cups_required : integer;
kettle boiling : semaphore;

PROCEDURE fill kettle; EXTERNAL;

PROCEDURE put_kettle on; EXTERNAL;

PROCEDURE put tea in teapot; EXTERNAL;

PROCEDURE fill teapot; EXTERNAL;

PROCEDURE wait (sema : semaphore); EXTERNAL;
PROCEDURE delay (milliseconds : INTEGER); EXTERNAL;
PROCEDURE pour_cup; EXTERNALj;

BEGIN

fill kettley

put_?éttle_pn;

put_tee_in_teapot;

1104

wait (kettle boiling);

fill teapot;

delay (5*60*1000);

FOR number := 1 TO cups_required DO
pour_cup

END.

k%

VONIOTNS R WDNNHER,OOOO0OODOOONARSHOOO

Figure 4-21 Compilation Listing for the
Tea Making Algorithm

Error 104 1is described in the Microprocessor Pascal System
User’s Manual as "identifier not declared". The compiler is
pointing out that "put tee_in teapot" is misspelled. This
must be corrected in the final software design. A corrected
compilation, with the "(* MAP *)" option set to show the
actual wvariable storage allocated for the module, is
displayed in Figure 4-22,

Figure 4-23 shows the reverse assembled TMS9900 object code

that was output from the compiler., With a little more work,
this module could form part of a real system.
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DX Microprocessor Pascal System Compiler
0 (* MAP *)
PROGRAM make_tea;

VAR number, cups_required :
kettle boiling H

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

fill kettle;
put_] kettle _on;

wait (sema :
delay (milliseconds
pour_cup; EXTERNAL;

BEGIN

fill kettle;

put_| kettle on;

put_tea in ._teapot;
wait (kettle _boiling);
fill teapot;

delay (5%60%*1000);

PONOOTUNPLOUNFHFEFOOODODOOOOORRSOOO

SOFTWARE DESIGN

3.0

EXTERNAL;
EXTERNAL;

put_tea in _teapot; EXTERNAL;
£i11 teapot' EXTERNAL;
semaphore), EXTERNAL;

10/23/81 11:31: 7

integer;
semaphore;

¢ INTEGER); EXTERNAL;

FOR number := 1 TO cups_required DO

pour_cup
END.
PROGRAM MAKE TEA;
STACK SIZE = 0006
VARIABLE DISP TYPE SIZE
NUMBER 0000 INTEGER 2
cupPs _REQ 0002 INTEGER 2
KETTLE , B 0004 SEMAPHORE 2
PROCEDURE FILL KET; EXTERNAL;
PROCEDURE PUT_KETT; EXTERNAL;
PROCEDURE PUI_?EA;j EXTERNAL;
PROCEDURE FILL_TEA; EXTERNAL;
PROCEDURE WAIT ( SEMA :SEMAPHORE); EXTERNAL;
PROCEDURE DELAY ( MILLISEC:INTEGER); EXTERNAL;
PROCEDURE POUR_QUP; EXTERNAL;

MODULE - MAKE TEA

R15 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0006
R14 - CONTAINS VALUE OF LOCAL VARIABLE AT DISPLACEMENT 0008
* LITERAL CODE LENGTH = 0OOE,

Texas Ins

TOTAL CODE LENGTH = 0060

Figure 4-22 Corrected Compilation Listing

truments
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IDT

DEF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
*
PSEG
SYSTM$ EQU
PR EQU
CODE  EQU
LF EQU
SP EQU
LO EQU
DATA
DATA
DATA
DATA
D0008 DATA
DOOOA DATA
DOOOC DATA

LOOOE EQU
MOV
MOV
SETO
CLR
CLR
DATA
DATA
DATA
DATA
MOV
DATA
DATA
MOV
DATA
LI
MOV

L0048 EQU

JGT
DATA
INC

*MAKE_TEA’

SYSTM$
FILL K
PUT_KE
PUT_TE
FILL T
WAIT

DELAY

POUR C
S$PRCS
E$PRCS
CALL$

EXIT$P

$

7 R7

8 R8

9 RY

10 R10

$
LOOOE-LO
L0054-1L0
>0000
>0000
>0006
>0001
>93E0

$
@D0008-LO(CODE) ,*SP+
@DO00A-LO( CODE), *SP+
*SP+

*SP+

*SP+

CALLS,SSPRCS
CALL$,FILL K
CALLS$,PUT KE
CALL$,PUT_TE
@>0004(LF),*SP+
CALLS ,WAIT
CALL$,FILL T
@D000C-LO(CODE), *SP+
CALL$,DELAY
R15,>0001
@>0002(LF),R14

$

R15,R14

L0054

CALL$,POUR_C

R15

Texas Instruments 4-52
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10/23/81 11:31:32
LC HEX CHAR
0004 0000 oo
0006 0000 .o
0008 0006 .o
000A 0001 .o
000C 93E0 .e
LC WORD(S)
0CO0E CEAS8 0008
0012 CEAS8 000A
0016 073A
0018 04FA
001A 04FA
001cC
0020
0024
0028
002C CEA9 0004
0030
0034
0038 CEAS8 000C
003C
0040 020F 0001
0044 C3A9 0002
0048 838F
004A 1504
004C
0050 058F
October 1981
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JMP L0048 0052  10FA

L0054 EQU ¢
MOV @DOOOA-LO(CODE),*SP+ 0054  CEAS8 000A
DATA CALLS$,E$PRCS 0058
B @EXITSP 005C 0460 0000
END

Figure 4-23 Reverse Assembled Object Code
for the Tea Making Algorithm
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CHAPTER 5

COMPONENT SOFTWARE

5.1 WHAT IS COMPONENT SOFTWARE ?

Component Software is a means of packaging software to
address what is perceived as the major problem of
microsystems development for the next decade - the "software
crisis".

Studies have shown that up to 90% of the development cost for
a typical system using programmable hardware will be spent on
software. Microprocessor hardware 1is cheap, but software
development is expensive. With software forming the major
investment for users, it 1is wvital to manage software
development effectively, and to make the most effective use
of scarce software skills.

Where the product being developed is to be produced in large
quantities (tens or hundreds of thousands), development cost
is not significant - divided by a hundred thousand it does
not add much to the selling price. But for an increasing
number of microprocessor products that will be sold only in
tens, hundreds or thousands, development cost is all
important. For a 100-off product a single man-month of
software development (at around $6000) will add $60 to the
cost of each product - before any profit. A typical project
will involve at least 4-6 months of software development.

Component Software is a way of providing packaged functions
that are significantly more powerful than any currently
available, either 1in software or in hardware. These
functions consist of "encapsulated software" that can be
purchased ready written and tested, and "plugged in" to a
user’s application. Unlike conventional applications
software, the Component Software environment allows packaging
of real time functions that can execute either concurrently
or in sequence with other functions in an application system.
This capability overcomes most of the restrictions of
sequential software for writing real time control systems,
and many other types of application. The framework ensures
complete security of function packages, so that functions
cannot interfere with one another.

Because of the flexible packaging of Component Software,

systems can be designed and constructed in terms of
meaningful application-oriented functions, rather than
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abstract software routines. Many of these functions can be
purchased off the shelf, or reused from previous systems.

Component Software is the first step in a more radical
approach to systems design using programmable components.
Many functions first identified and packaged in this way will
eventually be '"canned" in silicon, as dedicated hardware
functions.

Component Software 1is supplied as 1libraries of software
modules stored on magnetic media (such as floppy discs),
together with full documentation. The packages are designed
to be configurable in many different ways, to suit individual
application needs. Configuration involves selecting the
software modules required from the 1library supplied, and
linking them together with the user’s application program.
This semi-automatic process gives the system designer a
higher 1level of programming capability (he can manipulate
complete functional blocks in a real time environment),
supplementing already available software development tools.

CONFIGURATION OF
SOFTWARE COMPONENTS
Software components Component X End application
se\ec‘\eé \ User
e \ written
P Feature A \ code
7 \
\
B
\ &
\ N
Component X \ Component X
\ e
\ C 56\0“
\ D -
\
\
\ E Additional
\ components

Figure 5-1 Configuration of Component Software Packages
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Individual features of the package can be selected or left
out, according to the needs of each application. Packages
are designed to permit several levels of access - from a high
level, trouble-free interface that requires minimum
knowledge, to a low level interface that gives direct control
over the workings of the package, but requires greater
expertise to wuse effectively. System designers can choose
whichever level 1is most appropriate for each particular
application.

A typical Component Software package can be used in different
ways 1in many different applications. A library of common
application functions can be built up, which can supply
component parts for new applications. Users can write their
own Component Software packages - the Component Software
Handbook, MP918, describes how to do this. Texas Instruments
(TI) encourages the production and sale of Component Software
packages by other companies.

It is expected that configuration from pre-compiled object
modules will supply most application needs, but TI also
supplies source code as standard for all routines. TFor those
applications which require it, functions can be customised at
the most detailed level using standard Microprocessor Pascal
and/or assembly language development tools.

5.1.1 The Functional Approach

Component Software makes possible a functional, application-
oriented approach to system design. First, an application is
analysed into the individual functions that are to be
performed. This functional analysis can be done in whatever
way 1s naturally appropriate for the application. Next, the
requirements for each function, and the interaction between
the separate functions, are wunambiguously specified.. A
precise algorithmic description of the operation of each
function will lead straightforwardly to a high level language
software implementation (which can be optimised in assembly
language if required). The structure of Component Software
means that separately developed, concurrent functions can be
connected together simply and with confidence. Testing can
be carried out on each function individually, and on the
‘system as a whole. Finally a choice of hardware can be made,
from a range of options, to provide the required cost,
performance and environmental suitability.

Traditional forms of system design rarely start with the
application - they wusually require choosing a hardware
configuration, often with barely adequate information, at the
start; and then building up software on top of this to adapt
the hardware to the application requirements.
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Figure 5~2 The Traditional Approach

Bridging the gap between the chosen microprocessor hardware
and application requirements wusually involves major design
effort, with skills that are rare. In addition, the design
produced 1is 1likely to be '"brittle" rather than flexible,
because built into it are assumptions about a particular type
of hardware and a particular set of application requirements.
Incorporating new hardware or new requirements usually means
major redesign of both hardware and software, and comnsequent
problems of testing and reliability.

The functional approach places few arbitrary restrictions on
the development process. Both the software algorithms (which
determine how an application functions) and the hardware
(which determines price and performance) can be varied
independently, with minimal effect on the rest of the design.
The constructs of Component Software are sufficiently
flexible that systems can be structured according to the
nature of the application, whatever it is, rather than being
shaped by the necessities of the technology. Systems built
like this are both more responsive to application
requirements in the first place, and easier to change if the
requirements alter.
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Figure 5-3 TI Functional Architecture

How to divide an application 1into functional parts for
separate development may be immediately obvious from the
nature of the application; or functional "packages" may be
chosen according to the division of available engineering
resource to Iimplement them. Packages may also be chosen to
encapsulate areas of a system which may be reused, or areas
which are 1likely to change. In any case, the ability to
encapsulate real time functions (which may have a concurrent
structure - see below) can be used to advantage.

Systems can be wupgraded incrementally by changing or
replacing separately developed functions. The Component
Software environment ensures that separate functions are
enclosed, so that changes will have no effect on other parts
of the system.

TI’s microprocessor hardware provides a wide range of price,
performance and environment options (available either as
individual LSI and VLSI components, or in a range of
prepackaged board modules), all with a common software
interface. The 9900/99000 instruction set defines a low
level standard interface; the Realtime Executive (Rx) defines
a standard at a higher level of capability - the Software
Function Bus - that incorporates concurrency, standard
management of system resources, and all the features required
to implement Component Software. Versions of Rx will be
available to adapt the standard software interface to
multiple processors and various types of memory
configuration.
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The functional approach can be seen as a generalisation of
the "Top Down" and "Structured Programming" approaches which
have been successful in achieving reliable software design.
Here, the approach is applied to system design, in particular
to the design of real time systems.

S5¢1.2 Function to Function Architecture

The functional approach of Component Software forms part of a
broader architectural scheme called Function-to-Function
Architecture, which integrates both hardware and software in
the service of wuseful functions. Function-to-Function
Architecture (FFA) defines a standard interconnect mechanism
between complex functions, however they are implemented - in
hardware, software, or a combination of both. It makes
possible early definition and implementation of functions in
the flexible medium of Component Software. Once the
usefulness and reliability of a function has been proved, it
can be migrated to progressively "harder" implementations.
Those functions which justify it will eventually end up as
custom VLSI silicon chips. The standard interconnect
mechanism means that systems will be wupgraded gradually by
replacing individual functions to give improved cost,
performance or features, without having to redesign the whole
system.
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5.2 THE COMPONENT SOFTWARE ENVIRONMENT

The Component Software Handbook, from which this chapter 1is
extracted, gives further information on the construction and
use of Component Software packages, and precise terminology.
This section provides an overview of the Component Software
environment. Terms such as "function", "program" etc are
used here in a general rather than a specific technical
sense, except where capitalised.

5.2.1 Concurrency

Component Software supports concurrency - i.e. simultaneous
execution of a number of different software programs.

Conventional programming environments only allow the user to
run one program at a time. However, a typical microprocessor
system may be required to perform a number of different
functions at once.

N
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Figure 5-4 Concurrency
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For example, a system controlling a group of manufacturing
machines may be required to monitor and control each machine,
continuously check safety conditions, select and record
information for costing each job as it appears, and still to
respond immediately to commands from its operator.

Reducing all of this to one sequential list of instructions
(a conventional program) is a very difficult task. The
result (if it turned out to be possible) would be a very
convoluted program that breaks off in the middle of doing one
thing to perform another, halts that to carry out a third,
and so on. Such programs are difficult to wunderstand and
awkward to maintain. They are also nearly impossible to
test.

Conventional software is built on the assumption that
functions will be executed one at a time, in sequence. Each
function must start, execute and terminate before another
function can begin.

But the real world does not always (or even usually) behave
like this. A typical real time application system will need
to do several things "at once". Even though each individual
task may only require periodic attention, the system must
keep track of everything that is going on, carry out each
task when it is required, and must also respond immediately
and correctly if an unexpected event occurs. A control
function, for example, may need to check the status of a
machine or a chemical process continuously over a period of
hours. However, the check may only require a small
calculation every half second (say).

To dedicate a complete processor to this function would be
wasteful; yet conventional application software provides no
standard means of wusing the processor to perform another
function in the meantime, while ensuring that the check gets
made every half second, and that the two functions do not
interfere.

Demands on the system may occur not only at fixed time
intervals: from the system’s point of view, it is completely
impossible to predict when an operator is going to press a
button, or when a temperature will exceed a safe margin - but
it is important to respond quickly and reliably, and without
disrupting the operation of the rest of the system.

For a specific application, it may be possible to solve these
problems in a sequential program. However, to do so would
require a great deal of effort, and would result in an ad hoc
solution, very specific to one application. With software
constructed in this way, it is not unknown for an apparently
simple change in the specification (say, the need to check
the status of a machine every quarter second rather than half
second) to require a complete redesign of the system.
Additional problems arise when trying to test such systems.
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What is needed is a standard framework in which this class of
problem is handled automatically. The system designer can
then specify and write each individual function separately,
and evaluate and test it independently. Applications can be
built up by selecting the required functions and linking them
together (semi-automatically) to construct a complete system
- analogous to the process of connecting together ICs using a
printed circuit board. This standard framework is provided
by Component Software.

In the Component Software environment, functions are
considered to be independent, and may have a sequential
and/or a concurrent relationship with other functions. The
designer may specify that one function must wait for another
function to complete before it executes, but (unlike
conventional software environments) he can also specify that
the two functions should take place concurrently. For
example, a user’s program can initiate an I/O request (such
as a read from floppy disc), but need not wait for it to
complete before going on to do something else. The system
will automatically complete the transfer, taking care of the
hardware timings and delays of the floppy disc controller and
the necessary format conversions, in a way that is completely
transparent to the rest of the software.

Explicit support for concurrency is an important element in
the framework. It makes possible the construction of systems
which perform real tasks, easily, cheaply and reliably, and
permits software to be structured in a natural way that
reflects the real world. It allows a functional approach (as
outlined above) to be applied to software - because the
natural analysis of an application will rarely result in
functions that have a simple sequential relationship.

52.1.1 Packaged Functions

Software libraries have existed before, but they have
generally been 1libraries of routines that only execute
sequentially. There is a limit to the type of function that
can be placed in a purely sequential package.

Sequential software is well suited to a restricted class of
operations - those operations that can be specified by a
single list of instructions. Unfortunately, by no means all
of the tasks to be performed in the real world can be
specified as simply as this. Microprocessors, by virtue of
their cheapness and effectiveness, are required to perform a
wide variety of tasks which mainframe computers were never
called wupon to do. Consequently, a more powerful medium is
needed to program them effectively - a framework which
incorporates concurrency.

A "package" such as a process control function looks quite
different from a sequential software routine. The package
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may include a piece of code to be executed automatically
every (say) half second, plus some routines callable by a
user’s program to set up and change the control parameters,
obtain status information etc; and maybe some logging
routines, again executed automatically at fixed intervals, to
record selected data regularly on disc. The package contains
a number of functions which must be executed at different
times and in different ways - some automatically at fixed
time intervals, some on demand from the user’s application
program (perhaps halting the flow of the user’s program while
they execute, and perhaps not), and some on detecting a
particular out-of-range condition (say).

Component Software is designed to accomodate such complex
"packages" as this. Using the basic constructs provided by
the Software Function Bus, algorithms written in a high level
programming language (or 1in assembly language) can be
combined in a variety of sequential and concurrent
relationships to build a complete package implementing, say,
a file manager or a machine controller. The simplicity of
the basic constructs means that parts of any package can be
isolated and tested independently, using interactive
debugging tools.

The complete package (or such parts of it as are required)
can be incorporated in a larger system easily and quickly,
with the knowledge that it will not interfere with any other
function in the system.

5.2.1.2 Implementation of Concurrency

Functions which execute concurrently can be regarded as
taking place independently and simultaneously. Functional
design, and the Component Software environment, makes no
fundamental assumptions about how this concurrency is
implemented. The "simultaneity" may involve two or more
separate hardware processors, or may be simulated in software
with a single processor.

In a single processor environment, concurrency is implemented
by switching the processor between the different functions to
be performed, according to the demands of the system and
priorities set by the user. This switching 1is called
scheduling. More generally, scheduling can be regarded as
the allocation of available system resources to the different
functions competing for them. The statement that "a function
is separately scheduled" means that it competes independently
for system resources, according to priorities set by the
system designer. In a Component Software system, the
designer chooses which functions are actively independent,
and hence need to be separately scheduled. Generally,
functions which have independent timing requirements, or
which take place over 1long periods of time, should be
separately scheduled.
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Functions which are not separately scheduled can be regarded
as '"passive", and only execute when called on by an "active"
function. The scheduling policy is designed to ensure that
the task being performed by the processor is always the most
urgent omne, and in particular that external events (eg a
signal from a device connected to the system) are responded
to immediately. Scheduling is described in detail in the
Microprocessor Pascal System User’s Manual (MP351) and the
Realtime Executive User’s Manual (MP373).

With a single processor, concurrency provides the advantages
of increased clarity of system design (which means easier
maintenance, testing and upgrade), functional packaging, and
improved throughput (because the processor need never bhe
idle, waiting say for a slow output device to respond - it
can switch to performing some other function). Concurrency
means that the system has some degree of dynamic flexibility:
it can respond to changes in the demand for any function by
reallocating resources from less urgent functions.

With multiple processors, throughput will be further
increased because there is more than one active processing
element. Reliability may also be increased, because (with
appropriate design) the whole system need not collapse if omne
processor fails. However, a multiple processor system is
likely to be more expensive. It is intended that Component
Software programs can be executed on the same processor or on
a distributed network of processors, with minimal impact on
the programs themselves or their interaction. The system
designer will then choose the hardware to implement his
functional design purely on the basis of cost and performance
tradeoffs. Adding another processor, say, to increase
throughput will no 1longer be a major design exercise.
Currently, multiple processor systems can be built in which
functions executing in different processors interact through
file 1level messages across standard communication links (eg
HDLC or EIA). Future versions of Rx will support more
closely coupled multiple processor systems.

5¢2.1.3 Levels of Concurrency

The Component Software environment permits concurrency not
only between complete function packages, but within packages
themselves. This means that a complex function, such as the
HDLC Data Communications package, can be designed as a
collection of subfunctions that may execute sequentially
and/or concurrently.

Typically, a users program will pass a data record to the
HDLC subsystem, for transmission over the HDLC communications
network. The HDLC subsystem then performs all the work
needed to transmit the record to its destination. Within the
HDLC package are a number of concurrent functions which
manage the different levels of HDLC protocol, interact with
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the physical data link, and check that receipt of correct
data 1s acknowledged within a specified time interval. If
acknowledgement is not received, or if an error is signalled,
the HDLC subsystem will retransmit the data. Efficient and
reliable implementation of this kind of "intelligent"
operation requires concurrency. The Component Software
environment permits such an intelligent function to be
encapsulated in a single package which has a simple interface
with the users program (for example, it can be accessed
through straightforward sequential procedure calls).

The internal structure of such a function package 1is
completely invisible to the wuser, unless he chooses to
interact with the package at that 1level of detail. The
package can be initialised automatically at power wup, and
will perform throughout as an enclosed operation, complete in
itself.

5.2.2 Code, Data and Re-entrancy

Component Software 1is designed to make efficient use of the
memory space available in a microprocessor system, and to
maintain strict separation between program code and data.
Separation of code and data improves system integrity (making
accidental modification of code less likely), makes possible
re-entrancy (as described below), and permits easy
partitioning into read only and read/write memory (ROM and
RAM), which is often required in a microprocessor system.

The fundamental wunit of instruction code in a Component
Software system is the routine. A routine is a sequence of
processor instructions that performs a particular operation.

Component Software provides a set of constructs that group
routines together, define which routines will have access to
which other routines, and determine how routines will
interact (sequentially or concurrently). The Component
Software Handbook describes the detailed structure of a
Component Software package, and how to construct one. Within
a separately compiled Component Software module (which will
probably include several routines), the rules of scope define
exactly which routines and which data structures are
accessible at each point 1in the software. (See the
Microprocessor Pascal System User’s Manual for a complete
discussion of scope.) Between modules, explicit EXTERNAL
declarations in each module specify exactly what connections
are to be permitted with other modules.

The structure of a Component Software system is shown in
figure 5-5.
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Figure 5-5 SYSTEMs, PROGRAMs and PROCESSes

For implementation as a Component Software package,
application functions must be implemented as groups of
PROGRAMs, PROCESSes, PROCEDUREs, and FUNCTIONs. A SYSTEM is
likely to contain a number of independent, separately
scheduled PROGRAMs. However, a PROGRAM may also have a
hierarchy of dependent PROCESSes - separately scheduled, but
related. Strictly, the term PROGRAM applies only to the
single, "top level"” routine in the group. The complete
structure of a PROGRAM with all subordinate PROCESSes (and
PROCEDUREs and FUNCTIONs -~ see below) is referred to as a
PROGRAM family. Continuing the analogy, routines further up
the hierarchical tree are referred to as "ancestors"; those
lower down are "descendants". The PROGRAM family 1is a
convenient package for a complete, independent function
within a system.

PROGRAMs and PROCESSes are independent routines which are
separately scheduled; however the hierarchical relationship
makes it possible to isolate and develop separately not only
single routines, but also complete groups of concurrent
routines implementing a complex function.

PROGRAMs and PROCESSes are the "active" elements in a
Component Software system. '"Passive" routines can also be
defined, which may be called on by an active PROGRAM or
PROCESS to perform a specific function. These are PROCEDUREs
and FUNCTIONs. (NB "FUNCTION" capitalised has a precise
technical meaning, as distinct from the more general use of

Texas Instruments 5-13 October 1981



SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

"function").

A PROCEDURE or FUNCTION never competes directly for system
resources; it always executes under the wing of a PROGRAM or
PROCESS, and provides a particular "skill" that the PROGRAM
or PROCESS may need at the time. PROCEDUREs and FUNCTIONs
can be used to encapsulate functions which are simple enough
not to require the power of the PROGRAM family construct to
implement them.

Depending on where a PROCEDURE or FUNCTION is defined, it may
be accessible to some or all of the routines in the system.
PROCEDUREs and FUNCTIONs declared at the level of the SYSTEM
are available to any routine. They may also be declared at
some point in the hierarchy of a PROGRAM family, so that
access to the PROCEDURE or FUNCTION is restricted to that
PROGRAM family or part of that family.

The Microprocessor Pascal System User’s Manual (MP351) and
the Realtime Executive User’s Manual (MP373) give more
details about the structure of Component Software systems.

5.2.2.1 Memory Allocation

Before it is activated, a software system is simply a
collection of dormant instruction code, grouped into
routines, and probably stored in ROM. To perform any useful
work, a routine must be activated and allocated data space
with which to work. The stock of dormant routines can be
regarded as the "repertoire" of the system, which 1is called
upon as needed. The task of the system designer is, first,
to ensure that there are adequate functions in the
repertoire; second, to activate them as needed to perform the
task required. When a Component Software SYSTEM is powered
up, system data structures will be initialised, any I/0
subsystems (see below) will be initialised, and any user
defined initialisation will be performed. Typically, the
PROGRAM(s) present in the SYSTEM will then be started. All
action beyond this point is dependent on the system designer.
He may

l. design a system that is a single sequential PROGRAM

2. use two or more concurrent PROGRAMs, each of which
is sequential

3. within a PROGRAM, start more concurrent PROCESSes to
create a PROGRAM family

4. incorporate Component Software packages, of which he
he may or may not know the internal structure
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Each call to start a PROGRAM or PROCESS is said to activate a
new site of execution within the system, which executes
independently of every other site of execution. In the
following discussion, what is said about PROCESSes applies
also to PROGRAMs: a PROGRAM 1is a special case of a "top
level” PROCESS. Whenever a PROCESS is activated, it 1is
allocated by the executive an appropriate amount of data
memory from a pool (known as the heap). This allocated
memory 1s returned to the heap when the PROCESS terminates,
so that it can be allocated to other PROCESSes. Processor
time is allocated to each PROCESS according to demand and the
priority given to the PROCESS when it was started.

PROCEDUREs and FUNCTIONs that are called by a PROCESS borrow
memory from that PROCESS’s allocation, and use processor time
scheduled to that PROCESS. The PROCESS gives its resource to
execute that PROCEDURE or FUNCTION, and cannot do anything
else until it 1is complete. Each PROGRAM or PROCESS can be
thought of as an independent, single "thread" of logic within
the system, with its own timing characteristics and separate
existence. PROCEDUREs and FUNCTIONs provide a kind of
"stored logic" that can be inserted in the thread of a
PROGRAM or PROCESS at an appropriate time. PROCESSes may
request additional memory from the heap while they are
executing.

5¢2.2+2 Multiple Activations

Because the instruction code for a PROCESS is completely
separate from its data space, and is never changed, it can be
activated more than once. For example, a factory may contain
several identical machines, all controlled by one system.
The control program for each machine is identical, and only
one copy of the instruction code need exist. However,
several activations of the control program may be present at
the same time, using the same instruction code but different
data spaces. There will be no conflict. The same applies to
PROCEDUREs and FUNCTIONs: as the data space for executing
any PROCEDURE or FUNCTION is allocated from the data space of
the calling PROCESS, several PROCESSes may call a general
purpose PROCEDURE (a matrix multiplication routine, for
example) at the same time without problems. The routine code
need only exist once within the system. This property of
software is known as re—entrancy.

5.2.3 The Realtime Executive

The Realtime Executive (Rx) is the backbone and artery of a
Component Software system; it supports the other functions
and provides commonly needed services. Within Rx are the
routines that allocate system resources (processor time,
memory, I/0) between the different PROCESSes, according to
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demand and priorities. Also within Rx are the standard
procedures that allow one routine to call or start another.
Finally, Rx contains the code that permits concurrent
PROCESSes to synchronise their operation with other PROCESSes
or external events, and allows PROCESSes to pass data to
other PROCESSes.

The most basic synchronisation is achieved using a low level
software mechanism called a semaphore. A semaphore allows
one PROCESS to signal occurrence of an event (eg
machine_operation_complete) to another.

It is Rx which sets up the Component Software environment,
and maintains it. Rx establishes a "Software Function Bus" -
a standard, concurrent interface into which Component
Software functions can be "plugged".

5¢2+.3.1 Channels and Interprocess Files

Data communication between PROCESSes can take place over
channels. A channel is simply a means of passing data from
one PROCESS to another in a way which ensures that the
integrity of the data is preserved (eg that one PROCESS does
not try to read data until the other has finished writing
it), and that the data is placed in an area of memory that
will be accessible to both PROCESSes. Channels can also be
used to provide a higher level of synchronisation.

A further method of communication is the interprocess file
mechanism. This allows a PROCESS to write to another PROCESS
exactly as 1if it were writing to an input/output device,
using the standard file I/0 primitives (see below).

The hierarchical system structure defines a clear
relationship between the concurrent PROGRAMs and PROCESSes in
a Component Software application. However, this may not be
sufficient in all circumstances. The channel and
interprocess file mechanisms allow any PROGRAM or PROCESS to
connect to and exchange data with any other PROGRAM or
PROCESS in the system (provided both "ends" prepare for and
understand the exchange). These connections are made
dynamically while the system is running. Connections of this
kind can be '"hard coded" into the routines when they are
written, in which case they cannot be altered. However, it
is also possible to write systems in which the connections
can be modified at run time, either by an operator or by a
piece of "intelligent" software, in response to changing
requirements, or perhaps in response to failure of part of
the system. With a system constructed using interprocess
files, connections can be rerouted from a local PROCESS to an
external device, or perhaps via a data link to a PROCESS in a
completely different computer system. Requests for dynamic
connections of this kind are made via executive routines
which ensure that system integrity is preserved in making the
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connection.

5.2.3.2 Rx vs Operating Systems

Many of the functions performed by the Realtime Executive
(Rx) would be handled in a mainframe computer by an Operating
System. Early computers suffered from the problems outlined
above in the section on concurrency - namely, how to adapt a
basically sequentially machine to a range of independent,
probably simultaneous requirements. However, the scale of
the problem for mainframe computers was different - requiring
solutions to problems typically within hours or days rather
than milliseconds. So human operators were introduced to
share out the resources of '"mainframe" computers between
different users. Later, software Operating Systems (0Ss)
were designed to partially automate the process.

For mainframe computers, the tasks of programming and
operating the computer remained very separate. Separate
disciplines evolved, and people were trained to perform one
job or the other.

A microsystem designer needs to have direct control over both
the programming of the functions to be performed, and the
operation of the system. Typically, operation of the system
(as regards controlling the execution of different functions)
needs to be completely automatic in the final system, but the
system designer should have a good measure of control over
how this operation takes place - that 1is, just how the
computer makes its millisecond-to-millisecond decisions on
what to do next.

The requirements of an Operating System for a large general
purpose computer, and an executive for a dedicated
microcomputer system, are very different.

Traditional Operating Systems were designed to maximise the
use of the computer’s hardware resources - which at the time
represented a huge capital investment. With cheap,
distributed microcomputer power, the balance has shifted, and
other factors - such as development, support and maintenance
costs, and software correctness - are now more important than
keeping the processor occupied 100 per cent of the time. In
addition, a large, centralised general purpose computer has a
complete set of resources, hardware and software, on hand at
all times. There is no incentive for selecting the minimum
set of resources required to implement a particular
application. Where a product 1is to be produced in large
quantities, the tradeoffs are quite different.

Operating Systems can afford to be large, monolithic
structures that are always present for every application. An
executive needs to be small, and tailored for each
application (by configuring from a standard "kit of parts").
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Thus, although Rx draws on techniques learnt from the design
of operating systems, its structure 1is significantly
different in many respects.

An Operating System is wusually pictured as a set of
concentric circles, centred on the (single) mainframe
processor.

hpplicaﬁOn

Software

Figure 5-6 Conventional Operating System Structure

This structure is large, monolithic, and difficult to get
inside (the shell is "hard"). An Operating System tends to
be a union of all possible system requirements, and is
difficult to split apart. Rx looks more like a "bus":

File HDLC Application
Manager Communications | | Component

e

M M M

Software Function Bus

Figure 5-7 Software Function Bus
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The Rx Software Function Bus establishes a set of conventions
which are expected by the Component Software functions. This
set of conventions can be implemented on virtually any
hardware architecture. Versions of Rx will implement the
standard Software TFunction Bus across a range of different
single- and multiple-processor configurations, and memory
schemes. Different Component Software functions can be
"plugged into" the standard bus to expand the total
capability of the system.

The requirements that 1led to the adoption of Component
Software for application programs apply equally to systems
software. Rx is itself a Component Software package - a "kit
of parts" for constructing an executive customised to each
application.

The Rx executive is "built" for each particular application
by selecting (automatically) the functions actually used by
the application, from a library of executive functions.

5.2.4 TFile I/0 Standards

The Component Software environment standardises input and
output so that systems can be built up using any combination
of I/0 devices without danger of conflict. Systems can
incorporate a wide range of standard hardware and software,
and can also include custom I/0.

The concurrent nature of the Component Software environment
permits many asynchronous devices to be handled
simultaneously. An independent process is assigned to each
device, assoclated with an appropriate interrupt. The
execution of this device process 1is synchronised with the
device, and the process is activated according to the needs
of the device. I/0 routines called by the wuser’s process
will be synchronised with the user, and will respond to the
user’s needs. The two will interact via channels. The
concurrent structure thus manages automatically the timing
and synchronisation between user program requests and
hardware 1/0 operations.

5¢2.4.1 I/0 Subsystems
I/0 software 1is grouped into subsystems, each subsystem

handling a particular class of devices - rotating mass store
(magnetic discs), for example, or HDLC data communication

devices.
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Figure 5-9 5 Levels of Interface to I/0 Subsystems

The 1I/0 standards provide for grouping of all hardware
related details (I/O addresses, interrupt levels etc) in one
system configuration module, for ease of system design. A
standard method is provided for initialising I/0 subsystems
and for handling device interrupts. The I/0 Standards and
I/0 Subsystems are discussed in more detail in the Component
Software Handbook, MP918, and in the Device Indepedent File
I/0 User’s Manual, MP355.

Texas Instruments supplies standard Component Software 1I/0
subsystems for wuse with TM990 board modules and TMS99XX
peripheral components. The I/0 subsystems supplied by Texas
Instruments are extensively documented and supplied with
source code (as are all TI Component Software packages), and
can be modified or used as templates to write I/0 subsystems
for custom hardware devices.

5¢2.5 Configuration

Microcomputer systems typically differ in two respects from
general purpose mainframe and mini computers. First, a
microcomputer application 1is 1likely to be more cost
sensitive. Second, a microcomputer system is likely to be
dedicated to a specific application or range of applications,
and will often be embedded in another piece of equipment.
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These two requirements dictate the need for configuration. A
microcomputer system cannot afford to include features
(hardware or software) not actually used by the application.

A Component Software package is supplied as a 1library of
software functions and subfunctions stored on a magnetic
medium - such as a floppy disc. To build a system, the
designer will write an application program that makes use of
some of these functions, select the functions from the
Component Software Library, and then link them together with
his application program to build a target system. The
process of selection and linking is largely automatic, and is
called configuration.

[ USER’S
APPLICATION
(@) PROGRAM
o Q
Q CONFIG
COMPONENT o MODULE
SOFTWARE /—
LIBRARIES (o)
LINK
EDITOR 4——— LINK
EDIT
CONTROL
l FILE
o)
0

APPLICATION
LOAD
MODULE

Figure 5-10 Configuration

Success of this approach depends on the division between
functions being well chosen, so that a designer is not faced
with having to include a software module only part of which
he wants to use. This must be a prime consideration in the
design of Component Software packages; the concurrent
structure makes it easier.
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5.2.6 Customisation

For the great majority of applications, configuration alone
will be sufficient to tailor Component Software packages to
particular needs. A range of different requirements have
been foreseen in developing each package, and comprehended in
the division of each package into functional modules.

However, for cases where configuration 1is insufficient,
source code 1is included in Component Software packages,
together with sufficient documentation to allow complete
customisation. For example, the device service routines
(DSR’s) of an I/O subsystem package can be rewritten for non-
standard devices, retaining the higher 1level routines.
Component Software 1s written in most cases in concurrent
Microprocessor Pascal, and supplied with documentation which
fully describes the structure of the package, so that
customisation is relatively easy.

5.2.7 Microprocessor Pascal

The Component Software environment supports Tl’s
Microprocessor Pascal. Pascal was designed as a high 1level,
application oriented language in which the sequence of steps
required to perform a particular task (an algorithm) can be
expressed easily and naturally. Writing a Pascal program
requires little more than a precise specification of what the
program is to do. This means that programs can be developed
easily, quickly and reliably. Complex programs can be
written much more quickly than in assembly language, and with
fewer errors. It also means that the program developed 1is
independent of any particular set of hardware.

TI’s Microprocessor Pascal extends the original Pascal
definition by dincorporating within the language the
constructs of Component Software. PROGRAMs, PROCESSes,
PROCEDUREs and FUNCTIONs can be declared directly in the
language. Synchronisation and communication mechanisms (eg
semaphores) are also directly available. Microprocessor
Pascal extends the scope of the Pascal language to the area
of real time systems, retaining the original philosophy of
the language and developing it for the real time environment.

Using Microprocessor Pascal, results can be achieved more
quickly with less resource and less headaches. Management of
projects becomes simpler and more rewarding, because Pascal
programming 1is easier to schedule and control. These points
have been proved by software projects undertaken within Texas
Instruments (TI). TI has adopted Pascal as a corporate
standard language, and trained thousands of programmers to
use it., (Contact TI for detalils of courses on Microprocessor
Pascal programming, and other subjects.)

Texas Instruments 5-23 October 1981



SOFTWARE DEVELOPMENT HANDBOOK COMPONENT SOFTWARE

Because Microprocessor Pascal can be "read" like English it
is partly self documenting. Comments can be inserted to
explain anything which is not made clear by the code 1itself.
With a well written program, paper documentation can be
reduced to a description of the program and data structures
and of the routine functions, and, where appropriate, a Users
Guide.

5.2.7.1 Code Efficiency

Use of a high level language inevitably produces code that is
larger than a custom, hand crafted assembly language
solution. However, the code produced by the Microprocessor
Pascal code generator 1is efficient (a great deal of
optimisation is performed automatically). Studies have shown
that the code is, typically, slightly less than 1.5 times the
size that would be expected from an experienced assembly
language programmer. The compiler may well produce better
(and certainly more reliable) code than an inexperienced
assembly language programmer. Design tradeoffs are such that
in most cases the extra memory cost, for all the systems that
will be produced, works out less than the extra man months of
software development time that would be needed in assembly
language. When the further considerations of reliability,
maintainability and development time are added, it is not
difficult to justify the use of high level language.

The Microprocessor Pascal system includes a reverse assembler
which turns the output of the code generator into assembly
language source code. This code can be hand optimised in
critical areas to squeeze the last ounce of performance from
the system. Where code size 1is critical, Microprocessor
Pascal programs can be executed interpretively instead of in
native machine code. Interpretive execution is slower, but
optimises use of memory.

5¢2.7.2 Programming Support Environment

Microprocessor Pascal provides not only a language, but a
complete design system for the development of microprocessor
software. It provides a range of interlinked software tools,
including a syntax checking text editor and extensive testing
facilities within both host and target microcomputer systems.
These tools make up a Programming Support Environment which
guides software development from initial design through to
final implementation and testing.
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Figure 5-11 The Microprocessor Pascal System
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The Microprocessor Pascal system is available on a wide range
of single and multi-user, floppy and hard disc-based
development computers, according to the needs of each user.

5.2.7.3 Microprocessor Pascal and Component Software

Pre-written Component Software functions (sequential or
concurrent) can be accessed from within a user’s
Microprocessor Pascal program simply by declaring them
EXTERNAL within the user’s application program.

The Component Software packages themselves have been written
in Microprocessor Pascal, for reliability, ease of
understanding, and ease of customisation. A few have been
recoded in assembly language to optimise performance in
critical areas.

5.2.8 Other Languages

Although Component Software packages will generally be
written in Microprocessor Pascal, the Software Function Bus
(and hence the Component Software environment) is language
independent. The low level "housekeeping" functions provided
by Rx do not depend on any particular language. Application
programs, and Component Software packages, written in
assembly language interface directly with Rx. Microprocessor
Pascal programs interface with Rx through an intermediate set
of run time support functions. With the addition of suitable
run time support, the Software Function Bus is capable of
supporting any application language. Run time support
functions and development tools for other languages will be
added as the need becomes apparent.

Candidates for such addition may be not only the standard
programming languages, but also special purpose languages and
operator interfaces designed for specific application needs,
such as process control. A range of programming languages is
possible, permitting software development both "off line" in
a separate development system and "on line" in the
application microcomputer system itself.

52.9 Hardware

The Software Function Bus permits flexible selection of
hardware implementations. Rx will adapt a standard software
interface to a variety of hardware configurations, built from
board modules or LSI components. TI’s adoption of a standard
instruction set for its 16-bit microprocessors (and
minicomputers) has made this much easier.
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For several years now, a range of compatible 16-bit
microprocessors has been available from TI (the 9900 family).
These processors have been designed to meet a wide range of
price/performance goals. The recently announced 99000 family
shares the same instruction set, with a number of advanced
architectural features (such as storage of frequently used
software functions in on-chip macrostore). The Software
Function Bus provides a "cushion" against hardware changes,
and protects software investment agdainst potentially
disastrous architectural changes.

The architecture of the 9900/99000 family is perfectly suited
to the Component Software environment. The fast '"context
switch" efficiently implements both concurrency, and the
program modularity required by all modern high level
languages. Memory-to-memory architecture provides great
flexibility in implementing independent, cooperating software
functions.

At the board level, many special purpose Component Software
packages correspond exactly to prepackaged microcomputer
board modules. For example, the File Manager package
corresponds with the TM990/303 Floppy Disc controller board.
Matching software and hardware modules are designed to form
complete Electronic Function Packages (EFPs) that can be
incorporated directly in a system.

Process Communi- Video
Control ‘g"":r’:;’ Board
PID Board HDLC e:ﬁg:?cs
S/W S/W S/W

Hardware Function Bus

Software Function Bus

Figure 5-12 Software/Hardware Correspondence
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5.2.10 Component Software Products

The first Component Software packages supplied by TI provide

"system management" functions such as file storage and data
communication between different systems. Later products will
be designed for more specific application areas - ©process

control and video graphics output, for example.

The Realtime Executive is available separately for assembly
language users (it is supplied as a standard part of the
Microprocessor Pascal package). The Microprocessor Pascal
run time support functions will also be available as separate
Component Software packages (Data Pack, Maths Pack, and
Device 1Independent File 1I/0 Pack). These functions can be
called from assembly language programs to provide features
such as floating point arithmetic, device independent files
and structured data types.

Component Software packages will be available from other
vendors as well as TI. The framework of Component Software
is available to any manufacturer or software house that
wishes to write and sell Component Software packages.

Contact Texas Instruments for a 1list of the Component
Software packages currently available.

52.11 Silicon Functions

Taking a wider perspective, Component Software can be
regarded as a development ground for functions which will
eventually find their way into VLSI silicon, as dedicated
hardware Microfunctions. VLSI integration will reduce the
cost and increase the performance of Electronic Function
Packages, so that future systems will be built from
distributed networks of silicon Microfunctions,
interconnected via a standard Function Bus.

This functional architecture 1s far more flexible than
conventional microcomputer architectures, based on the
mainframe model. Within a functional system, individual
function packages can be incorporated that have a specialised
architecture designed for particular needs.
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Function-to-Function Architecture defines a standard set of
interconnection mechanisms for functions, hardware or
software. This will permit replacement of software functions
by their hardware equivalents, and vice versa. Software
provides flexibility and fast development, hardware gives
performance and cheapness (when it can be produced in
quantity). In future, it will be possible to choose whether
software or hardware (and what type of software or hardware)
is appropriate at each point 1in a system, and to use the
technology most exactly suited to the needs.

Component Software permits the development and tailoring of
new functions in a flexible medium, quickly and cheaply.
Such a development ground is needed if the potential of VLSI
is to be exploited effectively.

New functions will be initially provided as Component
Software libraries, permitting many different configurations

from a standard "kit of parts". TI will eventually "can"
particular configurations of these functions in silicon.
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CHAPTER 6

MICROPROCESSOR PASCAL

6.1 INTRODUCTION

Pascal was originated in the early 1970°s by Professor
Niklaus Wirth and Kathleen Jensen of ETH University, Zurich,
Switzerland (see reference [1] in the Bibliography). Like
the majority of modern programming languages, it is derived
from ALGOL (ALGOrithmic Language).

Previous ‘high-level’ languages, such as FORTRAN, were
designed to take advantage of a particular computer’s
instruction set (FORTRAN was designed around the IBM 360)
and can more properly be regarded as high-level assemblers.
For example, standard FORTRAN makes certain restrictions on
the form of array subscripts, DO loop expressions, and so
on, because this makes the code particularly easy to
implement on the 360. However, these restrictions also made
the language difficult to remember (it has a 1lot of
‘quirks”’), and the restrictions quickly 1lost their
significance when the 1language was implemented on later
generations of computers with different instruction sets.

ALGOL was the first serious attempt to design a language
that was independent of any particular machine’s instruction
set. The aim of the ALGOL designers was to construct a
language that would make it easy to write clear, correct and
maintainable programs. In this they 1largely succeeded.
However, while ALGOL became popular with academic users, it
was never very widely wused in industry. This was partly
because the ALGOL designers were uncompromising in refusing
to consider implementation efficiency, and partly because
ALGOL did not gain strong backing from computer
manufacturers.

But ALGOL was the 1inspiration for a completely new
generation of languages, of which Pascal 1s probably’ the
most successful.

Pascal corrects most of the failings of ALGOL, while still
retaining its ease of use. It leaves out some of the
little-used but expensive (in code and time) features of
ALGOL, and is designed with efficiency of implementation in
mind. Therefore it 1is possible to implement Pascal
efficiently on a small computer or a microcomputer. It is a
very practical language. Pascal was developed principally
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by one man so it has a coherence that some
committee—~designed languages lack. Pascal is very regular
(orthogonal): it has few ‘quirks’, and so is easy to learn.
The features of Pascal make it equally suited for systems
and applications work, so that there is no need to use two
different languages.

Not only does ©Pascal have powerful program structures,
directly implementing the constructs described in Section
4.5, but it also has extremely flexible data structures
which are very necessary for manipulating complex
applications. 1In fact, the Pascal language is very close to
the design language described in Section 4.4 because they
both come from the same root. Turning a software design
into Pascal should involve little more than "tightening-up"
the syntax and turning English-language descriptions into
precise Pascal statements.

With rapidly decreasing hardware costs and increasing labor
costs, software has become the major investment in
developing a computer-based product. This cost trend has
led to the move from 1low-level to high-level languages,
necessitating standardization within high-level languages.
At least as 1important as the investment made in existing
software is the cost of retraining programmers to use a new
language, and to use it efficiently.

One of the greatest advances in Pascal 1is the data
structuring facilities that are an integral part of the
language. The concept of the data type has been greatly
expanded to allow not only the wusual types (eg INTEGER,
REAL, CHAR, ARRAY, etc) but also more complex structures
based on these types (eg SET and RECORD). Further, the user
is able to define his own data types that totally satisfy
his own requirements.

To ensure that these data structuring facilities are
properly managed and controlled, the language encompasses a
feature that 1is known as strong type-checking. This means
that when a variable is defined it is declared to be of a
particular type. As variables are used, the compiler checks
that they are used correctly and consistently. This strong
type-checking increases program reliability.

Pascal provides a high-level standard that protects software
(and the programming skills to implement that software) from
future obsolescence due to the introduction of new
hardware. This form of standardization has now become more
important than standardization on a particular low-level
machine architecture.
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6.2 TEXAS INSTRUMENTS’ IMPLEMENTATIONS

Several years ago, Texas Instruments recognised that a
single programming language was required as as a corporate
standard for all software, whether for mainframes or
minicomputers. The selected language would be used to cover
the following areas:

o Systems programming
o Applications programming
o Industrial real-time control

This led to in an in depth study of the 20 most prominent
languages (including ALGOL68, BCPL, BLISS, C, CLU, Pascal,
PL/I, etc) to determine which, if any, could satisfy these
requirements.,

After exhaustive tests, it was decided that a programming
language based on Pascal (which was designed primarily as a
teaching language) but having adequate extensions to operate
in a real-time environment most suited the requirements.
This resulted in Texas Instruments Pascal (TIP) which was
designed to compile and execute on large machines (the Texas
Instruments DS 990/10 and the IBM 370). TIP provides ‘large
machine’ features such as dynamic arrays and extended
precision reals. It also 1includes some extra compiler
options allowing, for example, optimization probes to be
inserted in the program to identify the most frequently
executed paths.

After the release of the TIP compiler, it soon became
apparent that the language would be extremely wuseful for
programming microprocessors for 1industrial and control
applications. For this reason, a variant called
Microprocessor Pascal was developed. This has fewer
extensions than TIP and is therefore more easily implemented
on small computers. In fact the compiler runs on a £floppy
dise based system that uses the TMS9900 microprocessor as
its central processing unit.

The two languages are fundamentally the same, but provide
slightly different features to support their different areas
of application.

Because microcomputer systems usually have to operate in
real-time, concurrency is an integral part of the
Microprocessor Pascal language. A concurrent system
consists of a number of independent processes executing in a
single environment. Each process is a separate sequential
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program, and the processes are written as if they were
executing simultaneously. In fact, the processor can only
do one thing at a time; the executive divides processing
time between the processes so that the effect 1is of
simultaneous execution. Using this approach, a programmer
can identify the various tasks that a real-time system has
to perform, with their inputs and outputs, and write a
separate process for each: the executive will do the rest.
This can greatly simplify a complex problem.
Synchronization of processes is accomplished by signalling
devices called semaphores. Higher 1level communication
between processes can be handled by interprocess files.
Further information on concurrency is presented in section
6.8 and also Section 5.2.1.

During the design of Microprocessor Pascal, it was
recognised that a language on its own (no matter how good)
is not enough. What is also required is what has become
known as a ‘programming support environment’ - that is a
collection of ‘tools’ that aid and simplify the design of
complex application systems. The Microprocessor Pascal
System (see section 6.4) was designed for this purpose.

6.3 MICROPROCESSOR PASCAL LANGUAGE OVERVIEW

6.3.1 Features

Microprocessor Pascal has structured statements which allow
the user to produce a readable, maintainable, and easily
checked program algorithm with mnimimum effort. These
structures, 1f used as intended, automatically generate
hierarchical, nested code resulting in more easily
understood, and better, more reliable software.
Microprocessor Pascal’s structured statements include IF,
CASE, TFOR, WHILE and REPEAT: they are described in section
6.7

Microprocessor Pascal provides extensive data structuring:
RECORD and ARRAY data structures can be combined and nested
to any level. The POINTER data type permits powerful
structures such as linked lists and trees. It also permits
dynamic storage allocation. These data structures are
described in section 6.6.

In addition to the standard data types, Microprocessor
Pascal allows the user to define his own data types, which
can have values represented by meaningful names. The type
concept was introduced in Section 4.6. Its implementation
in Microprocessor Pascal is described in section 6.6.

Data typing allows data to be grouped according to use. It
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can clarify the design of a program so that, for example, it
is easier to change at a late stage in development.
Compiler checks on type compatibility can reduce the risk of
undetected errors in program code.

Microprocessor Pascal allows the user to define meaningful
names for his identifiers (there are no arbitrary length
restrictions). By wusing these identifiers and standard
keywords (IF...THEN...ELSE) the programmer can create a
program that is largely self-documenting.

Microprocessor Pascal is a block structured language, which
means that procedures (and processes) can be nested to any
depth. It 1is therefore a natural 1language for writing
modular software. Block structure and scope rules are
described in section 6.3.6.

The concurrent structure of Microprocessor Pascal allow a
new approach to software design, particularly for
microcomputers. A real-time problem can now be divided into
separate parallel processes, each of which can be simply
specified and coded (a powerful extension of the concept of
modular software). Concurrency was designed into
Microprocessor Pascal from the start; all the development
tools that make up the Microprocessor Pascal System were
designed to support it. (However, if the user wishes to
develop a conventional sequential program in Microprocessor
Pascal, he can do so without incurring any extra overhead.)
The mechanisms involved in concurrency are described later
in more detail (see section 6.8) and also in Section 5.2.1.
Additional information can be obtained from the
Microprocessor Pascal System User’s Manual.

6.3.2 Stack and Heap

Like the ma jority of modern high=level languages,
Microprocessor Pascal has a stack architecture. The stack
is an area of read/write memory from which sections (called
stack frames) are allocated to a routine (procedure or
function) at the time it is invoked. When the routine has
finished executing, its data storage area is returned to the
stack for use by other routines. The workspace register
concept of the 9900 (see Section 8.4.4) forms a natural
basis for implementing stack frames.

Data 1is completely separated from program code, so that
Microprocessor Pascal adapts mnaturally to the ROM/RAM
environment of a microcomputer. This means that
Microprocessor Pascal code is automatically re-entrant. 1f
a routine is simultaneously invoked from different parts of
a system (as can well happen in a concurrent system) both
invocations can wuse the same program code; it is only
necessary to create different stack frames.
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When the target system is initially started, all available
RAM 1is in a common pool called the heap. As programs and
processes are activated they are allocated their stack space
from the heap. This is returned to the heap (for re-use)
when the program or process terminate.

In addition to the storage provided in the stack,
Microprocessor Pascal is able to dynamically allocate areas
of memory (known as heap packets), under program control,
from the heap. This 1is accomplished wusing the standard
procedures NEW and DISPOSE, and the pointer variable
described in section 6.6.13. (NEW and DISPOSE are described
in the Microprocessor Pascal System User’s Manual.)

6.3.3 Systems and Programs

The largest unit in the Microprocessor Pascal language is a
SYSTEM. A system may contain a number of processes,
apparently executing in parallel. A Level 1 (highest level)
process is declared, in Microrprocessor Pascal, by the
keyword PROGRAM. A conventional sequential program can be
regarded as a special case of a system with only one
PROGRAM.

6.3.4 Processes and Procedures

Each PROGRAM can contain within it subordinate processes
that are declared by the keyword PROCESS. The keyword
PROGRAM is wused at the highest level because processes at
this level have special properties. This also maintains
compatibility with standard Pascal.

A system, program or process can contain within it
procedures (and functions). Processes and procedures look
similar but, in practice, are quite different. A procedure
is, logically, a part of the sequential program that calls
it, whereas a process 1is a separate sequential task that
executes concurrently with all the other processes in the
system, including the one that calls, or STARTs it.

6.3.5 Declarations and Statements

For the programmer there are two principal parts to any
Microprocessor Pascal system, program, process, procedure,
or function: the declarations, and the statement body.

Declarations define identifiers that can later be referred
to by name (instead of by repeating the declaration). These
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identifiers specify the data that the program is to work
with; the statements specify exactly what is to be done with
this data.

The statement body is a collection of Microprocessor Pascal
statements that is enclosed by 'a BEGIN...END compound
statement. '

PROGRAM factorialj; (* PROGRAM DECLARATION *)
VAR i,j,n : INTEGER; (* VARIABLE DECLARATIONS *)
(* Declare variables named *)
(* I, J, N of type integer *)
BEGIN (* factorial *) (* PROGRAM BODY *)
Reset (INPUT);
Read(n); (* Read in a value for N *)
i =13 j := 1; (* Set T and J to 1 *)
WHILE i <> n DO
BEGIN
i =1 + 1; (* Use I and J to compute *)
j o= 1 % j (* factorial N *)
END;
Writeln(j) (* Output value of factorial N *)

END. (* factorial *)

The declarations also specify any subordinate processes,
procedures, etc, and assign identifiers to them so that they
can be referred to in the statement body.

c RESET (INPUT)
o READ (N)

M

P

U I: =

T J: =

E

F WHILE .

C

T

g J:=IxJ
I

A

L WRITELN (J)

Figure 6-1 Program Structure Diagram
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Microprocessor Pascal programs are free format; the program
can be laid out in any manner on the page. Statements, for
example, need not start in a particular column; nor are they
restricted to one per line, though this 1is usually good
practice.

Microprocessor Pascal gives the programmer a free hand in
formatting his program. However, for readability, it is a
good idea to lay out the program to reflect its structure.
This can be done by wusing indentation. In the example
above, the statements within the BEGIN...END compound
statement following the WHILE clause are indented to show
that they are one level down in the program hierarchy. In
fact, the indentation reflects the appearance of the
structure diagram for the program (Figure 6-1). (See
Section 4.5 for a description of structure diagrams.)
Formatted in this way, the program is much more readable and
the structure can be seen at a glance.

6.3.6 Block Structure

One of the key features of Microprocessor Pascal is its
block structure. The basic ideas of block structuring are
discussed in Section 4.9.

A block 1is a self contained area of program that contains
both a statement body and the declarations (type, variable,
procedure, etc) relating to it. A Microprocessor Pascal
program consists of a hierarchy of blocks, nested one within
another. A system block, which is a complete Microprocessor
Pascal system, contains a number of program blocks, which in
turn can contain process blocks, procedure and function
blocks, etc. This hilerarchy is displayed in Figure 6-2.
(The lexical hierarchy is shown in Figure 6-3, and the
corresponding concurrent structure in Figure 6-4.)

The declarations made at the start of a block apply to that
block and to any blocks nested within it. This 1is called
the scope of the declaration. Scope can be formally defined
as the range of system text over which the declaration is
valid. Identifiers cannot be referenced outside their
scope, ie outside the block in which they are declared. For
example, in the system of Figure 6-2, the declarations in
PROGRAM A cannot be referenced in PROGRAM B or PROCESS R,
but can be referenced in both PROCEDURE P and PROCEDURE Q.
The declarations in PROCEDURE P cannot be referenced in
PROCEDURE Q or in PROGRAM A.

If a reference 1is made to a declaration (variable, type,

procedure, etc) that is not in scope, the compiler will
generate an error message.
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SYSTEM X;
{declarations> (* System X’s declarationms *)

PROGRAM Aj;
{declarations)> (* Program A’s declarations *)

PROCEDURE P;
{declarations (* Procedure P’s declarations *)
BEGIN

. (* Procedure body *)

END;

PROCEDURE Q3
{declarations) (* Procedure Q’s declarations *)

BEGIN
. (* Procedure body *)
END;
BEGIN
. (* Program body *)
END;

PROGRAM B;

{declarations> (* Program B’s declarations *)
PROCESS R;
{declarations> (* Process R’s declarations *)
BEGIN
. (* Process body *)
END;
BEGIN
. (* Program body *)
END;
BEGIN
. (* System body *)

Figure 6-2 System Structure

Block structure and scope rules are powerful tools for
managing program structure. Procedure P, for example, can
be written without worrying whether it will interfere with
procedure Q. A variable can even be declared in P with the

Texas Instruments 6-9 October 1981



SOFTWARE DEVELOPMENT HANDBOOK MICROPROCESSOR PASCAL

same name as a variable declared in Q: they will be
completely different variables because they are in different
areas of scope. If a variable is declared in P with the
same name as a variable declared in A, the compiler will
create a new variable with this name, and references to it
in P will always access this local definition. Where there
is a possible ambiguity, the compiler always chooses the
most local declarationm.

SYSTEM X

PROGRAM A PROGRAMB

PROCEDURE P PROCEDURE Q PROCESS R

Figure 6-3 Lexical Hierarchy

SYSTEM X

PROGRAM A PROGRAMB

PROCESS R

Figure 6-4 Concurrent Structure

Note that in the example, both P and Q can access the
declarations made at the start of program A; the interaction
with data declared in higher 1level modules needs to be
clearly defined when writing a system. This should be part
of the module specification.
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As well as assisting program structure, block structuring
(combined with Microprocessor Pascal’s stack architecture)
can save memory space. Data area is not allocated to a
procedure from the stack frame until it is actually called.
This means that if, say, procedure P is called followed by
procedure Q, the space taken up by the wvariables of
procedure P is returned to the stack when it has finished
executing, and the same memory area can be used for the
variables of procedure Q. The system only allocates data
space to the routines currently executing.

A variable has an extent as well as a scope. Extent is the
time during system execution for which storage space is
allocated to the variable. Apart from dynamically allocated
variables, this extent is the duration of execution of the
block in which the variable is declared. In a concurrent
system, a variable’s extent continues as long as any of the
processes declared in the same block are executing. The
reason for this is that the variable is in scope in such a
process and might be referenced.

6.4 MICROPROCESSOR PASCAL SYSTEM - PROGRAMMING SUPPORT
ENVIRONMENT

The Microprocessor Pascal System is a powerful integrated,
software development tool set that provides a development
environment for the design, coding, and debugging of
Microprocessor Pascal applications for microcomputers.

This system was designed from the start to execute
efficiently on the “small’ single-user floppy disc based
FS 990/4 and TMAM 9000 minicomputers. The system is also
supported on the much larger, hard disc multi-user DS 990/10
and /12 computers.

Currently there are four ma jor components in the
Microprocessor Pascal System to assist 1in software
development:

o An “intelligent’, interactive, screen-based editor for
source preparation, with syntax-checking capability.

o A compiler that produces interpretive code.
o An interactive host debug interpreter.
o A code generator that transforms interpretive code

into TMS9900 native object code.

Two executives support the execution of the user’s system on
a target microcomputer. One supports the interpretive code
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produced by the compiler (MPIX - Microprocessor Pascal
Interpretive Executive); the other supports the object code
produced by the code generator (MPX - Microprocessor Pascal
Executive). These executives are functionally identical, so
that the user has a choice of running either interpreted or
compiled code on his target system.

6.4.1 Microprocessor Pascal Editor

The Microprocessor Pascal System features an interactive,
screen-based editor that allows the user to create and
modify Microprocessor Pascal source files. Some
‘intelligence’ has been built into this editor to allow it
to recognise certain Microprocessor Pascal language keywords
and to automatically indent the source text being entered
into easily distinguishable blocks of code that show the
program structure.

When editing, a page of text 1is displayed on a visual
display unit (VDU screen). The text may be modified simply
by positioning the cursor and typing new information.
Characters can be inserted and deleted anywhere on the
screen. The displayed page can be positioned anywhere
within the text file (page boundaries are not fixed).

Alternatively, the user can press the command (CMD) key and
enter a range of explicit edit commands, including find
string, replace string, etc.

When creating a source file, the editor assists line-by-line
program layout by automatically positioning the cursor for a
new line. The cursor can be moved forward or backward using
the TAB keys. This helps in indenting text to reflect the
program structure. The tab increment (number of columns for
each indentation) can be set by the user.

Most editors (even screen-based ones) use a line numbering
mechanism to access a particular source line within the
source file. The first line in the file is "line 1" (or 10
or 100), the second line is "line 2" (or 20 or 200) and so
on. Such mechanisms can be cumbersome to wuse, especially
when inserting source lines and also when going back to
perform modifications on an already partially modified
source file. To overcome these problems, the Microprocessor
Pascal system editor 1is completely cursor driven and does
not use a line numbering mechanism.

A number of edit commands (MOVE, COPY, DELETE and PUT)
operate on blocks of code. The required block is indicated
by:

o Positioning the cursor to the first line in the block
and press the function key F5.
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o Positioning the cursor to the last line of the block
and press the function key Fé6.

o If a destination position is required (MOVE and COPY)
then reposition the cursor to the required source
line. (The block of code will be inserted into the
program immediately after this line.)

(The function keys are the grey keys, numbered Fl to F8,
that are located above the normal ‘QWERTY’ keyboard on the
911 VDU.)

The HELP command (press the CMD key and type the word HELP
followed by the return key) displays a full 1list of the
available edit commands, along with the meaning of each
function key.

After the program has been entered, the user can perform a
Microprocessor Pascal syntax check without leaving the
editor, by entering the CHECK command. The editor is not
equipped to detect semantic -errors (such as undeclared
identifiers), but will perform a complete syntax check that
will find such errors as misspelled or missing keywords,
incorrect punctuation, invalid constructs, etc.

When the editor finds an error, it outputs an appropriate
English language error message to the screen, displays the
relevant area of text and positions the cursor over the
error so that the user can edit it immediately. When this
has been done, the CHECK command can be reentered and
checking will resume from the earliest point at which the
text was changed. (The syntax checker only ‘backs up’ as
much as 1s necessary; it does not need to restart from the
beginning of the file.)

The syntax checker speeds up and simplifies the process of
correcting syntax errors. It eliminates the need to exit
the editor, execute the compiler, print the 1listing, and
re-edit the source file for each mistake. The entire
process becomes a single interactive step.

The CHECK facility is entirely optional. The Microprocessor
Pascal System Editor can be used for text files other than
Microprocessor Pascal source.

The available edit commands are:

ABORT Exit the editor

INPUT Change the edit file

QUIT Save the edited file and ABORT
SAVE Save the edited file and INPUT
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BOTTOM Position the cursor to the end-of-file

TOP Position the cursor to the top-of-file

+/- int Position the cursor up/down "int" lines

CHECK Check syntax of edit file

HELP Display edit commands available

INSERT Insert the specified file

SHOW Show the specified file

COPY Copy the specified block to current cursor posn
DELETE Delete the specified block

MOVE Move the specified block to current cursor posn
PUT Write the specified bhlock to the specified file
FIND(tok,n ) Find the "n"th occurrence of "tok"
REPLACE(tokl,tok2,n) Replace "tokl" by "tok2" '"n" times
TAB(inc) Set the tab increment to "inc"

The function key operations are:

Fl Roll down the file
F2 Roll up the file
F4 Duplicate this line

F5 Start block delimiter ({===-===- in cols 72 to 80)
Fé6 End block delimiter (==—=—=- > in cols 72 to 80)
F7 Compose/Edit

F8 Split line from the current cursor position

CMD Go into command mode (4==—==-=- + in cols 72 to 80)

6.4.2 Microprocessor Pascal Compiler and Code Generator

The Microprocessor Pascal Compiler generates interpretive
code from a Microprocessor Pascal source file. This code
can be executed directly using the interpretive debugger or
the Microprocessor Pascal Interpretive Executive (MPIX).
Passing this interpretive code through the Microprocessor
Pascal Code Generator produces native 9900 object code that
will run under the Microprocessor Pascal Executive (MPX).

Thus, Microprocessor Pascal gives the wuser a choice of
executing either interpretive or native code. Interpretive
code and native code for the same Microprocessor Pascal
source file will be functionally identical, apart from
considerations of speed and code size.

Interpretive code executes several (approximately five)
times slower than native code; but (beyond a certain size,
which accounts for the overhead of the interpreter) an
interpreted system is smaller. Interpretive code only takes
up about three quarters of the memory required by the
equivalent native code. Therefore, for a large application,
interpretive code can represent a great saving in memory.
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Figure 6-5 Interpretive vs Compiled Characteristics

In selecting whether to use native or interpretive code, the
user can trade off speed against memory size. One example
of such a trade-off is the Microprocessor Pascal Compiler
itself. On the FS 990/4 floppy disc based system, the
compiler executes interpretively so that it will £fit into
the available memory space (it still runs at an acceptable
speed, processing approximately 100 lines of source code per
minute). On the DS 990/10, where there are no memory
restrictions, it executes as native code to maximize the
speed.

Various compiler options are available. These options
include:

LIST - Produce source listing

MAP Produce variable map

STATMAP ‘Produce statement displacement map
DEBUG Include debug information in code

ASSERTS Generate code for ASSERTS statement checks
CKINDEX Generate code for array index checks

CKPTR Generate code for NIL pointer checks

CKSET Generate code for set expression checks

CKSUB Generate code for subrange assignment bounds
checks

The host debugger can be used to check the functionality of
the application program. When satisfied that the program
works correctly it can be transferred to the actual target
hardware where any hardware dependent parts of the progranm
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can be verified using the AMPL in-circuit emulator. The
Microprocessor Pascal System is supplied with two sets of
AMPL procedures (one for MPIX, the other for MPX) that
present the same user interface as the host debugger. Any
necessary ‘fine tuning’ or customisation can also be
performed at this stage.

6.4.3 Microprocessor Pascal Host Debugger

The Microprocessor Pascal Host Debugger 1is an interactive
interpreter that allows the wuser to control and monitor
execution of a Microprocessor Pascal target application
system. This greatly simplifies the task of finding errors
in a system (debugging).

The debugger is designed for use with a concurrent (multiple
process) system. The user can monitor the execution of a
single process, or examine and control process scheduling
and communication. Debugging wusually proceeds with one
aspect of a system at a time.

The user can set breakpoints at any Microprocessor Pascal
statement by specifying the routine and the statement number
(printed on the source listing). The system can be executed
in single-step mode (one Microprocessor Pascal statement at
a time), or continuously until a breakpoint is reached.
Three modes of tracing - trace process scheduling, trace
routine entry/exit and trace statement flow - are possible.

The contents of a routine’s stack frame (data area), heap,
and common areas, can be displayed and modified. The
scheduling algorithm can be overridden by holding
(suspending) a particular process until an explicit release
command is given.

The user can also connect interprocess files (discussed in
section 6.8.5.4) using the Connect Input File and Connect
Output File commands. The new file that results can be sent
to an external file or to the terminal. The process
concerned will then input or output to the device
specified. If it is a terminal, the system will prompt for
input, and send a message identifying the source in the case
of output.

Interrupts can be simulated using the SIMulate TInterrupts
command.

The system has three ways of dealing with CRU I/0 (for a
description of the CRU see section 8.9). CRU statements can
be directly executed, ignored, or simulated by the user.
The "CRU" command is used to specify which option applies to
a particular process. When simulated I/0 is specified, the
CRU address and value are displayed for output, and the user
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is prompted for input. This feature can be useful when
debugging software for a target system, which is likely to
have a different CRU configuration from the development
system.

The Microprocessor Pascal debugger is a very powerful
high-level tool for verifying the detailed execution of a
piece of software. It is designed to integrate closely with
the other components of Microprocessor Pascal and to form a
complete system in which designs can be smoothly carried
through to implementation.

6.5 MICROPROCESSOR PASCAL LANGUAGE

Before describing the major features of the Microprocessor
Pascal language (data types, control structures,
concurrency, etc) it is first necessary to explain some of
the basics of the language.

6.5.1 Basic Language Elements

A Microprocessor Pascal application program is made up of
symbols from a finite vocabulary. The vocabulary consists
of identifiers, numbers, strings, operators and keywords.
These 1in turn are composed of sequences of characters from
the underlying character set.

6.5.2 Character Set

The Microprocessor Pascal character set is:

the letters A-Z, a-z
the digits 0-9
and the special characters:
+-* /", =8> {}Yy# @

6.5.3 Keywords

?

Keywords are reserved words with a fixed meaning; they may
not be used as identifiers. Although they are written as a
sequence of letters, they are interpreted as a single
symbol. A full list of these keywords 1is given below.
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ACCESS AND ANYFILE ARRAY
ASSERT BEGIN BOOLEAN CASE

CHAR COMMON CONST DIV

DO DOWNTO ELSE END
ESCAPE EXTERNAL FALSE FILE

FOR FORWARD FUNCTION GOTO

IF IN INPUT INTEGER
LABEL LONGINT MOD NIL

NOT OF OR OTHERWISE
OUTPUT PACKED PASCAL PROCEDURE
PROCESS PROGRAM RANDOM REAL
RECORD REPEAT SEMAPHORE SET

START SYSTEM TEXT THEN

TO TRUE TYPE UNTIL
VAR WHILE WITH

In program text, it is convient to write keywords in upper
case to distinguish then from user-defined identifiers in
lower case. Microprocessor Pascal does not require this
distinction, but it is helpful in making programs more
readable.

6.5.4 Identifiers

Identifiers are names denoting user defined or predefined
entities. An identifier consists of a letter or § followed
by any combination of letters, digits, $ or "’
(underscore). A lower case letter is treated as if it were
the corresponding upper case letter. For example, the
identifier Data_Size 1is the same as the identifier
DATA SIZE. The convention followed in this chapter is that
all identifiers are written in lower case when they appear
in examples, but they will be in upper case whenever they
appear in the text.

A maximum 1length is 1imposed by the restriction that
identifiers must not cross line boundaries, so that they may
not be more than 72 characters long. All characters in an
identifier are significant. Process, routine and common
names should be unique within the first 6 characters.

Legal Identifiers:
X
S$VAR
LONG_IDENTIFIER
NUMBER 3
READ
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Illegal Identifiers:

ARRAY (Reserved word)
_ROOT3 (Cannot start with D)
3RDVAL (Cannot start with number)

MAX VALUE (Cannot contain blank)
TOTAL-SUM (Cannot contain =)

Some identifiers are standard, that is they are predefined
with a given meaning. They can be redefined by the user, in
which case the standard meaning no 1longer applies. For
example, if the standard routine name READ is redefined, the
standard routine READ cannot be, called.

6«55 Language Element Separators

At least one separator must occur between two constants,
identifiers, keywords or special symbols. No separators can
occur within these elements (except spaces within strings).
Separators include spaces, end of 1lines, comments or
remarks. For example, in the statement:

WHILE X<K10
a space separates WHILE and X. This is not equivalent to:
WHILEX<10

as WHILEX could be a legal identifier. However, a space is
not necessary between X and ‘<’ because ‘<’ is not permitted
within an identifier and thus serves to delimit it.

6.5.6 Comments

A comment is any sequence of characters beginning with { or
(* and ending with } or *) (except within a string). A
remark 1is any sequence of characters beginning with " and
extending to the end of the line (except within a string).
Comments and remarks are ignored by the compiler, and can be
used to annotate program text.

6.5.7 Constants

Part of the declaration section for a program, process, etc,
consists of the <{constant declaration part>. This allows an
identifier to be used as a synonym for a constant and can
make a program more readable. These constants are defined

by:

CONST <constant declaration list>
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where <constant declaration 1list)> 1s one or more of the
following:

{identifier> = <constant> ;

where <constant> may be a signed real constant, string
constant, character constant, integer constant expression or
a previouly defined constant identifier. An integer
constant expression may consist of: integer constants and/or
constant identifiers along with any of the integer
arithmetic operators. For example:

CONST max = 500;
asterisk = "%’
one_half = 0.5;
half max = max DIV 2;

"Application parameters" that are liable to change between
systems (eg the number of capstan lathes in an engineering
shop) are best handled by defining them as constants. Doing
this would mean changing only a few statements right at the
begining of the application program instead of having to
search the whole program for instances where the parameter
values are used (and possibly even missing some of thenm).

6.5.8 Variabhles

Variables are used to reference areas of storage within a
module. A variable declaration associates an identifier to
a location which can hold a value of a specified type. The
form of a variable declaration is:

VAR {variable declaration list>

where <variable declaration 1list> 1is one or more of the
following:

{identifier 1listd> : <type definitiond> ;

¢identifier 1list> is a 1list of identifiers separated by
commas. <type definitiond (described in section 6.6) can be
a standard type (INTEGER, REAL, etc), the name of a type
defined in a type declaration statement, or a new type
definition which can take any of the forms allowed in a type
declaration. In the last case, the new type will not have
any name associated with it (the declaration of PROFIT bhelow
is an instance of this). For example:

VAR nyears : INTEGER;
amount,value,rate : REAL;
ten_years ¢ vector;

profit ARRAY [1..10] OF BOOLEAN;
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(Type VECTOR is defined in section 6.6.1.)

A variable can either be a simple identifier which
references the entire variable, or may be a qualified
variable which is used to reference part of a structured
variable - for example a record or an array.

6.5.9 Expressions

Expressions combine the values of variables and constants
using operators to generate new values. Expressions consist
of operands, operators and function calls.

6.5.9.1 Operands

Operands reference the values of constants or variables. An
operand may be one of the following:

{integer constant>
{real constant>
{string constant)>
{character constant>
{constant identifier>
NIL

{set>

{variable>

{function calld>

6.5.9.2 Operators

An operator specifies an operation that is to be performed
on one or two operands. An operator can only be applied to
two operands if their types are compatible. Some operators
accept mixed mode operands: if an INTEGER value is added to
a REAL, the INTEGER is first converted to REAL and then
added to give a REAL result.

Operators have a precedence, which specifies the order of
their evaluation in a complex expression.

The operators are:

Group 1: Multiplying operators:
Multiplication; set intersection
/ Real division
DIV Integer division (divide and truncate)
MOD Modulus
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Group 2: Adding operators:
+ Addition; unary plus; set union
- Subtraction; unary minus; set difference

Group 3: Relational operators:

= Equal

<> Not equal

< Less than; proper set inclusion

> Greater than; proper set inclusion
<= Less than or equal; set inclusion

>= Greater than or equal; set inclusion

IN Set membership

Logical operators:

Group 4: NOT Negation
Group 5: AND Conjunction
Group 6: OR Disjunction

The list of operators is in order of precedence, with groups
of higher precedence 1listed first. In an_ expresssion,
operators of highest precedence are evaluated first;
operators of equal precedence are evaluated from 1left to
right within the expression. Parentheses may be used to
alter the order of evaluation.

Examples:

Expression - Value
2 +3 %5 17
15 DIV &4 * 4 12
NOT (5 + 5 >= 20) TRUE
6 + 6 DIV 3 8

3<50R 25> 6AND1 > 2 TRUE

In a BOOLEAN expression of the form:
x AND y

if X is false, Y is not evaluated and the value of the
expression is FALSE. Similarly, in a BOOLEAN expression of
the form:

X OR y
if X is TRUE, Y is not evaluated and the value of the
expression is TRUE., This is called short circuit
evaluation.

6¢5.9.3 Function Calls

A function is a subroutine that returns a single value of a
specific type. It is invoked by a function call:
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{function identifier> ( <parameter 1listd> )
eg sqrt(max)

where <function identifer> is the name of the function to be
called. {parameter list> 1s' one or more <parameterds,
separated by commas, as specified by the function
definition. {parameter> may be any variable, constant or
expression so long as it matches the declared type.

6.5.10 Assignment Statement p

The assignment statement specifies an expression that is to
be evaluated and assigned to a variable. 1Its general form
is:

{variable)> := <expression)

eg X = 5

The symbol ‘:=’ can be read ‘becomes equal to’. The type of
{expression> must be compatible with the type of <variable),
except that an INTEGER expression is automatically converted
to LONGINT or REAL, and a LONGINT expression is
automatically converted to INTEGER or REAL. Direct
assignments can be made to variables of any type (including

records, arrays, etc) except files and semaphores.

6+5.11 Routine Declaration

A PROCEDURE declaration packages a self contained sequence
of operations that performs some action, and also associates
this action with a particular identifier. This action can
then be performed from anywhere within the program (so long
as it is in scope - see section 6.3.6) by simply invoking
the appropriate procedure.

The general form for a PROCEDURE declaration is:

PROCEDURE <identifier)> ( <parameter list> ) ;
{declarations)>

BEGIN
END ;
where <{parameter list> is one or more of the following:
VAR <identifier 1listd> : <type definitiond> ;

{identifier 1list> 18 one or more identifiers separated by
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commas. <type definition> is described in section 6.6. 1f
no parameters are required then the "(" and ")" can be
omitted. VAR is optional (see below).

{declarations> can be one or more:

LABEL declaration refer to manual
CONST declaration section 6.5.7
TYPE declaration section 6.6
VARS declaration section 6.5.8
COMMON declaration refer to manual
ACCESS declaration refer to manual
PROCEDURE declaration
FUNCTION declaration below
There are two methods of parameter passing. Call by wvalue

will cause a copy of the actual parameter’s value to passed
over to a new storage location in the procedure. This
parameter can then be modified by the called procedure
without affecting the value of the actual parameter variable
in the caller’s stack. Call by reference will cause the
address of the caller’s actual parameter variable to be
passed over to the procedure. Modifying a call by reference
parameter modifies the contents of the caller’s actual
parameter variable. (More detail on the parameter passing
mechanisms is given in Section 4.10.1.)

If a parameter is to be passed by reference then the keyword
VAR should be included before the appropriate
{identifier 1listd>:

INTEGER;

PROCEDURE add_five_plus_inc ( VAR update
INTEGER);

inc

CONST five = 53

BEGIN
{ Modify the caller’s actual parameter by INC+5 }
update := update + five + inc;
{ Modify local variable INC - does not affect
the caller’s actual parameter }
inc := inc +3

END;

{declarations> and the BEGIN ,.. END; can be replaced by the
keyword EXTERNAL, which informs the compiler that that
particular procedure 1is defined outside this program
module.

A FUNCTION declaration is similiar to a PROCEDURE
declaration. The only difference is that the first line 1is
of the form:

FUNCTION <identifier> ( <{parameter 1list)> ) :
{type definitiond> ;
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The function’s result 1is returned by assigning the required
value to the function identifier, ie:

FUNCTION return_6x ( value : INTEGER ) : INTEGER;

BEGIN
return_6x := value * 6
END;

Microprocessor Pascal implements additional structures that
can be used to package concurrent statement blocks (PROGRAMs
and PROCESSes). These are defined 1in a similiar way to
procedures and can have parameters in a similiar way (but
parameters must all be passed by value). However, programs
and processes are STARTed rather than called and once
started exist as separate concurrent "sites of execution"
within the system.

A PROGRAM or PROCESS declaration is identical to a PROCEDURE
declaration, except that the first line is:

PROGRAM <identifier> ( <parameter listd> ) ;
or

PROCESS <identifier> ( <parameter list> )

e

The <declarations® can include other PROCESS declarations.
The <parameter list)> cannot contain variable parameters (ie
the keyword VAR is not allowed in <{parameter list)).

See sections 6.3.3 to 6.3.6, 6.9 and Section 5.2.2 for the
concurrent structures of Microprocessor Pascal.

6.6 DATA TYPES

A data type defines the set of values a variable of the type
specified may assume, and the set of operations that may be
performed on these values. Each variable is associlated with
one and only one type.

In Microprocessor Pascal, data types can be split into three
distinct classes. These are:

Simple types INTEGER, LONGINT, REAL, CHAR,
BOOLEAN, SEMAPHORE, Subrange and
Enumeration

Structured types ARRAY, RECORD, SET, POINTER and
FILE
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User defined types Specified by the TYPE statement

The symbol PACKED may precede a record or array type
definition. If a structure 1is declared to be PACKED,
several unstructured components of the structure, if
possible, are stored in one word. Packing may economize the
storage requirements of a data structure, at the expense of
efficiency of access of the components.

One example of a packed array is a string, which can be
defined as: ,

PACKED ARRAY [ <index type> | OF CHAR

In this structure, characters are stored one per byte
instead of the usual one per word. {index type> is
described in section 6.6.9.

Details of the packing algorithm are given in the
Microprocessor Pascal System User’s Manual.

6.6.1 User Defined Types

A type declaration introduces an identifier as the name of a
new data type. The identifier can later be used to refer to
that type; for example, to define variables, or to define
structured types in which that type is included. The form
of a type declaration is:

TYPE <{type declaration 1list)>

where <type declaration 1list> 1s one or more of the
following:

{identifier>

{type definitiond> ;

For example:

TYPE vector = ARRAY [1..10] OF REAL;
days = (mon,tue,wed,thu,fri,sat,sun);
digits = '0’..79";
complex = RECORD
re,im : REAL
END;

The wvarious forms of <type definitiond> are described in
subsequent sections.

The TYPE declaration does not declare any actual variables

(storage locations); this is performed by the variable (VAR)
declaration, as described above (section 6.5.8).
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6.6.2 Integer and Longint Type

A value of type INTEGER is a whole number in the range
=32768 to 32767 (signed 16 bit quantity). A value of type
LONGINT ranges from -2147483648 to 2147483647 (signed 32 bit
quantity).

Theloperators defined for INTEGER and LONGINT operands are:

+ Unary plus or add

- Negate or subtract

* Multiply

DIV Divide and truncate result

MOD Modulus [ @a MOD x = a - ((a DIV x) * x) ]

The operator / (divide) can be applied to integers, but
always produces a REAL result. The relational operators =,
<o, < >, <=, >= can be applied to integers and produce a
BOOLEAN result. Standard functions applying to INTEGER and
LONGINT are described in section 6.13.6.

6.6.3 Boolean Type

A value of type BOOLEAN is one of the logical values TRUE or
FALSE., The following operators are defined for BOOLEAN
operands and yield BOOLEAN results:

NOT Logical negation
AND Logical conjunction
OR Logical disjunction

TRUE and FALSE are predeclared keywords such that FALSE 1is
less than TRUE. Thus the relational operators can be used
with BOOLEAN operands to provide additional operations. For
example:

= Equivalence
<> Exclusive OR

6+6.4 Char Type

Values of type CHAR are ordered according to their ASCII
value. A character constant can be written either as a
single character between single quotes, or by specifying its
hex value, preceded by #:

"A’ ASCII character A
’#0D’ ASCII character ‘carriage return’
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6.6.5 Enumeration Type

INTEGER, LONGINT, BOOLEAN and CHAR are special cases of the
enumeration type. An enumeration type is any simple type
except REAL. The characteristies of an enumeration type
are:

o There 1is a distinet set of values which a
variable of that type can take.

o The values have a unique linear order, in which
each value (except the first and last) has a
single predecessor and a single successor.

The integers
-32768, -32767, e+ =1, 0, 1, ... 32766, 32767

clearly follow these rules; so do the characters, which have
a unique order (A, B, C, etc) defined by their ASCII
representation. However, the user can also define his own
enumeration types 1in a TYPE declaration, simply by
specifying a type name and an ordered set of values:

TYPE days = (mon,tue,wed,thu,fri,sat,sun);

The values are represented by identifiers (which must be
unique). These can be regarded as primitive values, just
like ‘7° or ‘125’: it is not necessary to translate them
into bit patterns, or know how they are represented within
the computer, any more than it 1is necessary for most
purposes to work out the internal bit pattern wused to
represent ‘1257, MON, TUE, etc are values in their own
right.

These user defined types are called scalar types. The
relational operators (>, <, etc) are defined for all
enumeration types. The BOOLEAN expression MON < WED is TRUE
because the values form an ordered set in which MON precedes
WED. However, the arithmetic operators (+, -, etc) are only
defined for the standard types INTEGER and LONGINT (and
REAL); it is meaningless to write MON + WED. The following
standard functions apply to enumeration types:

SUCC(x) Successor of X
PRED(x) Predecessor of X
ORD(x) Integer ordinal value of X within the set of

values (not defined for INTEGER or LONGINT)
eg SUCC(wed) = thu, PRED(wed) = tue, ORD(wed) = 3

Scalar types are useful for counting purposes. For example,
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to index into an array or control the number of iterations
of a FOR loop (see section 6.7.5):

FOR today := mon TO fri DO
total takings := total_takings + takings[today];

The variable TODAY is declared to be of type DAYS; the array
TAKRINGS is declared to be indexed by type DAYS.

6+.6.6 Subrange Type

A type can be defined as a subrange of any previously
defined enumeration type by specifying the smallest and
largest values in the subrange:

TYPE weekdays = mon..fri;
array_index = 1..25;

This 1s a wuseful feature, because a compiler option can
insert runtime checks to ensure variables do not exceed
their specified subrange. This can be a great help in
debugging. Subrange types can also be used in declaring
array bounds, for example:

ARRAY [array_index] OF INTEGER;
ARRAY [days] OF BOOLEAN;

VAR table :
gsickdays :
This performs the double function of specifying the size of
the array, and the type of the index variable. Constructs
such as this makes it easy to change the size of an array at
a late stage in development, simply by altering one or two
TYPE statements. (Arrays are discussed in section 6.6.9.)

6.6.7 Real Type

The type REAL can be used to represent real values with 6-7
decimal digits of precision. The range of absolute values
that can be represented 1is approximately 1.0E-78 through
1.0E75.

The following operators accept operands of type REAL and
yield a REAL result:

+ Unary plus or add
- Negate or subtract
* Multiply

/ Divide

The relational operators are defined for REAL operands and
yield a BOOLEAN result. The standard functions TRUNC,
ROUND, LTRUNC, LROUND will truncate or round a REAL value to
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give an INTEGER or LONGINT result.
6.6.8 Semaphore Type

The type "semaphore" is used for process synchronisation and
communication (more about this 1later, see section 6.8).
Operations on variables of type semaphore are performed by
functions and procedures which must be declared EXTERNAL to
the program. Arithmetic operations are not wvalid for
semaphore variables.

6.6.9 Array Type

An array type consists of an ordered group of components
which are all of the same type. The form of an array type
definition is:

ARRAY [ <index type 1list> ] OF <component type)

{component type> can be any type except FILE. This means
that it is possible to have arrays of arrays, of records or
of any other structured type. <index type 1listd> is a 1list
of <index type>s separated by commas. These can be either
explicit subrange definitions (such as 1..5) or the name of
a suitable enumeration type (such as DAYS). The number of
{index type>s in the declaration determines the number of
dimensions of the array. There is no limit to the number of
dimensions an array may have. Each <index type)> definition
determines both the size of that dimension of the array, and
the type of the variable that will be used to index it. An
{index type> can be any enumeration type; the types of
different dimensions need not be the same. For example:

VAR holidays : ARRAY [l1..52, days] OF BOOLEAN
An exactly equivalent definition is:

VAR holidays : ARRAY [1..52] OF
ARRAY (days] OF BOOLEAN

The assignment operator can be used between arrays of
compatible type. For example:

VAR a,b ¢ ARRAY [10020, 25.050, 1002];
a := b;

This causes every element in the array A to be assigned the
value of the corresponding element in the array B.
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An indexed variable is used to reference an element of an
array. Its form is:

{variable> [ <expressiond> ,...., <expressiond ]
eg VECTOR [5]

The expressions are used to subscript into each of the n
declared dimensions. If an array variable is declared to
have n dimensions, then the indexed variable may have from 1
to n subscript expressions. For example, if an array is
declared

a : ARRAY [l..10, 1..20] OF INTEGER
then A [5] is a legal indexed variable; it is an
ARRAY [1..20] OF INTEGER
This array can itself be indexed, eg A [5] [6]
which is exactly equivalent to A [5, 6]

The type of the subscript expression must correspond exactly
with the declared <index typed>. There i8 a compiler option
to check the value of a subscript to make sure it is within
the declared bounds.

6.6.10 Record Type

A record type consists of a group of components of possibly
different types called fields. Each field in a record type
is given a distinct name. A field of a record can be of any
type (including array, record, etc) except FILE. The form
of a record type definition is:

RECORD <field 1list)> END

A <(field 1list> is an arbitrary number of <record sectionds
separated by semicolons. Each <{record sectiond> 1is of the
form:

{field identifier 1listd> : <typed

<field identifier 1list> 1is a 1list of field identifiers
separated by commas. For example:

TYPE complex = RECORD

re, im : REAL
END;
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date = RECORD
month : (jan,feb,mar,apr,may, jun, jul,
aug,sep,oct,nov,dec);

day H 1.031;
year ¢+ INTEGER
END;

The assignment operator (:=) can be applied to records of
exactly the same type.

A field of a record is referenced by specifying the name of
the record variable and the field name, separated by a
period. For example:

VAR start, finish : date;
cl, ¢2, 3 : complex;

start.day := 20;
finish.year := 1978;
clere := 3.4,
c3.im := 5.8;

and
start t¢= finish;

which is equivalent to
start.month := finish.month;

start.day ¢t= finish.day;

o=f

start.year : inish.year;

A record variable 1is wused to reference a field within a
record. Its form is:

{variabled> . <field identifier>

where {field identifier)> is one of the fields declared in
the record type definition.

pump_one.grade
cl.re
start.day

Any record can be qualified; any array can be subscripted.
Since it is possible to construct arrays of records and
records containing arrays, variables such as

arr [5] . field [4]

are possible. Here,

arr is an array
arr [5] is a record
arr [5] . field is an array

arr [5] . field [4] is an element
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Very powerful and complex data structures can be built in
this way.

Pascal also allows record variants, which means that part of
a record can be interpreted in more than one way. This
would allow, for example, a personnel record for a college
to contain different information (different fields)
according to whether it described a student or a member of
staff (see Section 4.7.4). Record variants are described in
detail in the Microprocessor Pascal System User’s Manual.

6.6.11 Set Type

Pascal allows a set type, in which the possible values are
subsets of the base type, which can be any enumeration
type. For example, with the base type 1l..5, possible values
of a set variable include:

(the empty set)

A full range of operators 1s defined for sets - union,
intersection, inclusion, etce.

6.6.12 File Type

A file type is a structure which consists of a sequence of
components (of unspecified length) which are all of the same
type. A file is usually associated with a mass storage
medium, such as tape or disc. However, this 1s not
necessarily the case as file variables can be used as a
means of communicating between concurrent processes. One
process can write information to a logical file and another
can read 1it. The MPX or MPIX executive performs the
transfer in internal memory without involving any external
storage devices.

The form of a file type definition is:
RANDOM FILE OF <component type)>
or
FILE OF <{component type>
or

TEXT
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The component type of a file can be any type except pointer
or file. The number of components (ie the 1length of the
file) 1s not specified and can grow to any size, depending
on the storage medium with which the file is associated.

The prefix RANDOM denotes a random file in which components
are accessible by their component number. This numbering is
defined to be the natural ordering of the sequence of
components, with the first component being number zero.

A TEXT file is a sequential file of type CHAR which 1is
divided into lines by end-of-line markers. INPUT and OUTPUT
are standard predeclared TEXT files.

TYPE rec = RECORD

name : PACKED ARRAY [1..15] OF CHAR;
id num : INTEGER
END;
VAR f : FILE OF INTEGER;
employee : RANDOM FILE OF rec;
temp ¢+ TEXT;

The following standard procedures and functions are
available for file manipulation:

CLOSE Close the file

EOF Check for EOF (end-of-file)
EOLN Check for EOL (end-of-line)
READ Read components of the file

READLN Read components from a text file until EOL
RESET Open file for input

REWRITE Open file for output

WRITE Write components to the file

WRITELN Write components and EOL to a text file

See the Microprocessor Pascal System User’s Manual for
further details.

6.6.13 Pointer Type

Variables may be referenced indirectly by means of a
pointer, which can be thought of as the address of a
variable. The form of a pointer type definition is:

@ <type identifier>
read as "pointer to a <type identifier>".
A pointer wvariable can only point to the type for which it
is declared. This goes a 1long way to ‘taming’ the

potentially dangerous pointer type, which in languages such
as PL/I is allowed to roam freely throughout memory, and can
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cause chaos 1f the programmer makes a small error in
manipulating it. (In Microprocessor Pascal it is always
possible to do such things using the type transfer function,
for instance, but the programmer is obliged to tell the
compiler that he is doing something risky.)

The <type identifier> need not be defined before the pointer
type 18 defined, provided it 1is declared 1later in the
declaration section. This is a forward type declaration,
which is only permitted with pointer types.

TYPE ptr = Qlist;
list = RECORD

value : REAL;
loc t 0..FF
END;

PTR is declared to '"point to the type LIST" and variables of
type LIST can only be wused to point to records of type
LIST.

A pointer variable is used to reference the variable pointed
to by a pointer type. Its form is:

{variable) @

where <variable> is a pointer type. The value of a pointer
variable is undefined until either a value is assigned to it
or a NEW is performed on it to allocate an area of dynamic
storage (see section 6.3.2). The constant NIL can be
assigned to any pointer variable, which means it points to
nothing at all. A compiler option (CKPTR) is available to
check if a reference is made to a NIL pointer.

{ Declare NEXT and TEMP as pointers to records of
type LIST }
VAR next,temp : ptr;

{ Set TEMP to point to the NIL record of type LIST }

temp@ := NIL;

{ Allocate new record of type LIST from the heap, and
set NEXT to point to it }

new(next);

{ Set VALUE field of record pointed to by NEXT to 2.5 }

next@.value := 2,5;

The operators that can be applied to pointer variables with
compatible types are:

= Assignment
Equal (TRUE if the operands point to the
same address)

<> Not equal

I e

Pointers allow storage to be dynamically allocated from a
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storage area called the heap, using the standard procedure
NEW. Pointers can also be used to construct "advanced" data
structures (see reference [2] in the Bibliography) such as
linked 1lists and binary trees. A linked list is easily
created by defining a record type which contains one field
that is a pointer to the next record in the 1list.
Similarly, a bhinary tree of records cam be constructed by
defining a ‘right link’ and ‘left link’ pointer within the
record.

6.6.14 Type Compatibility and Transfer

Microprocessor Pascal has strict rules for compatibility
between types. In general, incompatible types cannot appear
on opposite sides of an assignment statement, or as operands
of the same operator.

Two types are distinct if they are explicitly or implicitly
declared in different parts of the program. A type 1is
explicitly declared using a TYPE declaration. A type may be
implicitly declared in a VAR declaration or in other places
where a name 18 not associated with the type (eg in
specifying an array index type).

Two types are compatible if one of the following is true:
o They are identical types.
o Both are subranges of the same enumeration type.
o Both are string types with the same length.

o Both are pointer types which point to identical
types.

o Both are set types with compatible base types.

o Both are file types with compatible element
types.

Arrays or records are compatible only if they are declared
to be of the exact same type.

There is no implicit conversion of types except from INTEGER
and LONGINT to REAL and between INTEGER and LONGINT.

The strict compatibility rules give the programmer a means
of checking that he 1is not using a variable in the wrong
place (for example, using the wrong variable to index an
array, or specifying the indices of a multi-dimensional
array in the wrong order). It 1s possible to completely
ignore this facility by, for instance, not declaring any new
types and specifying all array indices as unnamed subranges
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of integer. However, intelligent use of the TYPE concept
can greatly reduce the possibility of errors, and make a
program more readable and easier to change.

It is possible to override the compatibility check by using
the type transfer facility, which temporarily changes the
type of a variable. The form of a type transfer is:

{variable> :: {type identifier)>
eg i := ptr::INTEGER

The variable is temporarily treated as if it were the type
specified after the double colon. No conversion 1is
performed; only the apparent type of the variable 1is
altered. Use of this facility transfers responsibility from
the compiler to the programmer; therefore he needs to be
sure he knows what he is doing.

It is also possible to override the type structure by using
variants 1in record structures without checking the tag
fields (see the Microprocessor Pascal System User’s
Manual).

6.7 CONTROL STRUCTURES

This section is primarily concerned with the Microproces