22071

THE TI 994A
USER’S GUIDE

CAROL ANN CASCIATO AND DONALD J. HORSFALL

The TI 99/4A
User’s Guide

Carol Ann Casciato and Don Horsfall are the principals in Interna-
tional Technical Communications, Inc., a computer systems research
and consulting firm in the Philadelphia area. For the last 12 years,
they have done management and systems consulting, research, and
writing for a variety of Fortune 500 clients.

Their first exposure to professional writing came when they pro-
duced more than 25 manuals for a large technical documentation
project. Since that time, they have written in-depth computer industry
research reports, detailed technical product analyses, and manuals for
microcomputer manufacturers.

When not reading, writing, or consulting on computers, Carol Ann
prepares elaborate chocolate desserts and cares for her large collec-
tion of exotic plants. Don’s interests include science fiction, restoring
his Victorian home, and collecting space art.

The TI 99/4A
User’s Guide

Carol Ann Casciato
and
Donald). Horsfall

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

~ Copyright © 1983 by Howard W. Sams & Co., Inc.
Indianapolis, IN 46268

FIRST EDITION
FIRST PRINTING—1983

All rights reserved. No part of this book shall be

reproduced, stored in a retrieval system, or transmitted

by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher.

No patent liability is assumed with respect to the use

of the information contained herein. While every precaution
has been taken in the preparation of this book, the

publisher assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from

the use of the information contained herein.

International Standard Book Number: 0-672-22071-7
Library of Congress Catalog Card Number: 86-61067

Edited by Welborn Associates
Illustrated by R. E. Lund

Printed in the United States of America.

PREFACE

In the last year, millions of home computers were sold. As an
owner of a T1.99/4A, you are yourself one in a million.

This is a guidebook for new owners of the Tl 99/4A. Its pur-
pose is to introduce you to the many options available for im-
proving and expanding your Ti 99/4A.

We touch on many topics in this book. We do this because
new computer owners need a broad survey of many new ideas
to orient themselves in an unfamiliar territory.

It is often difficult to understand the world of computers. We
ease you into this world, explaining what common computer
jargon means. We give you information so that you can get what
you need, for the best possible price, in the Tl marketplace and
in the overall computer market.

We give you the best sources for computer information, pro-
grams, and education to help you get the most out of your TI
99/4A.

We also explore such things as buying additional software,
writing your own, and the fundamentals of the exotic features of
the TI 99/4A (graphics, sound, and voice). This review is in-
tended as a survey of what you can do with your Tl 99/4A—a
survey that allows you to choose the things that you find interest-
ing or useful from the vast array of possibilities.

Most of you will want to add to your Tl 99/4A at some time.
We tell you what the add-on pieces do and how much they cost.
We provide the information you need to make reasonable plans
for expanding your system.

We give you some tips on handling your Tl 99/4A and the
equipment and supplies that you use with it.

PREFACE

For those who are interested, we have included an
introduction to some of the technical aspects of the Tl 99/4A. We
discuss bytes, bits, K's, RAM, ROM, addresses, the 9900 micro-
processor, hexadecimal, and other mysterious words.

And, finally, to get you started with sound and graphics on
your Tl 99/4A, we have included several programs. Enter the
programs and see how they work. Then, customize them to meet
your own needs. Maybe change the wording in the questions.
Maybe change the song in the sound programs. These programs
were tested so you can be sure they will work (if you don’t make
any typing errors entering them).

CAROL ANN CASCIATO
DONALD J. HORSFALL

List of Trademarks
UCSD Pascal and UCSD p-System —Regents of the University of
California

MultiPlan —MicroSoft, Inc.

PLATO —Control Data Corporation

Tl 99/4A and the various products—Texas Instruments, Inc.
DEC —Digital Equipment Corporation

TEXNET —Service Mark of Texas Instruments Inc.

The Source—Service Mark of Source Telecomputing Corporation, a
subsidiary of Reader’s Digest Association, Inc.

Note

Throughout this book, reversed letters (e.g., EIDE)
designate keystrokes. That is, when this designation is
used, it means the reversed letters are a single keystroke
on the keyboard (or keys that are pressed simultaneously

to produce a desired result) instead of being input as
individual characters.

CONTENTS

CHAPTER 1
FIRST THINGS .. it e e i 13
1.1 Introduction ...ttt e 13
1.2 Some Common Problemsccciviiiininnn. 14
1.3 TheKeyboardc.coiiiiiiiiiiiiiiiiiiia... 18
1.4 QGettinglInto It i, 22
CHAPTER 2
How DOES YOUR TI WORK? it i i e 25
2.1 How Much Do You Have to Know About
How a Computer Works?coviiiiiiiiiiiinennn, 25
2.2 MEMOMY .ottt et e e 25
2.3 The Central Processing Unitcccvviiiiiinnnennnn. 32
2.4 AAAressing ...t 33
2.5 TMS9900 Assembly Languagecoviiinnnnnnn.. 34
2.6 Dedicated Chipscviiiriiiiiiiii i, 35
2.7 PrOgrams . .. 36
CHAPTER 3
SOFTWARE: MAKE ITORBUY IT 41
3.1 WhatlsSoftware?oiiiiiiiiiii . 41
3.2 Making Your OwWn ...t 42
3.3 What You Need to Write Your Owncccvuen... 43
3.4 The Language of ChoiCecoviviiiriiiiiiiinnnn.. 46
3.5 Packaged Softwareiiiiiiii 49
3.6 BuyingSoftwareo 51
3.7 WheretoBuy Software i, 55

CONTENTS

CHAPTER 4
You, Too, CAN BE A PROGRAMMER:
BASIC ON YOUR Tl ..ottt iiaaaennn 57
4.1 BASIC OVEIVIEW .\ ivvtiiiii i iiiiiiiii e iinaeaaeneeeens 57
4.2 Standard TEBASICouiieiieiiiiiiiiiiiiiaiaienneans 58
4.3 Extended BASICciiuitiiniiiiiiiiiiiiiiiiiaaaanans 58
4.4 BASIC Operating Modesccoviiiiiiinieneeneeenens 60
45 BASICElements.......cccvvinmnreiiiiiiiiiiiiiineennannnns 60
4.6 Entering BASIC Programs............coiviiiiiiiineiinnninnns 62
4.7 Editing a BASIC Programooiiiiiniiniiinieeneennens 63
CHAPTER 5
EXPANDING YOUR SYSTEM .. iviviiiiiiiieenaeneeataeanenenns 67
5.1 Building a Systemcooiiiiiiiiiiii 67
5.2 Whatls a Peripheral? ... 68
5.3 Nonexpansion-System Peripheralsoooiinen. 69
5.4 Expansion System Peripheralsooiiiiin 73
5.5 The Hexbus Peripherals...............cooiiiiiiiiine, 80
5.6 Planning for EXpansionc..ceoeiiiiiiiiiiiiiinaan 83
5.7 Buying Hardwarecooiiiiniiiiiiiiiiiiiianens 85
5.8 Typical System EXpansionscoiiiiiiiiiiiinnen 87
CHAPTER 6
BeYOND BASIC: OTHER PROGRAMMING LANGUAGES 95
6.1 Programming Languages for the TI 99/4A 95
6.2 Extended BASICc.iniiniiiiiiiiiiiiiienieaneeaeaans 96
6.3 LOGO Il ittt it aa e 97
6.4 9900 Assembly Languagecoiiiiiiiiiiiiiiiiiaen 98
6.5 UCSD Pascalcvvviiiiiniiiiiiiii i iiiiiiiieneanes 100
6.6 PILOT .\ttt e 101
6.7 FORTH ..ttt ittt ainieaaees 101
6.8 CONCIUSIONS .+ .\ttt et i i aai e aiaaees 102
CHAPTER 7
GRAPHICS ittt tiee e ieee e tene e eanaasnaneaeensenns 103
7.1 Screen Controlooueiit i e 103
7.2 Display Resolutioncooiiiiiiiiiiiiiiiinennns 104
7.3 C0lOrS oottt e i e 104
7.4 Display MOdES ...ttt 105
AT T2 - R 111
7.6 CONCIUSIONS .. \vvtteiieteeie i iiiiieeeaaneeeeens 112
CHAPTER 8
SOUND ON YOUR Tl ..ottt 113

8.1 The Sounds of Your Tlvuiiiiiiiiiianniiiinnnnns 113

CONTENTS

8.2 Making Soundst 114
8.3 SPEECH ...t 123
CHAPTER 9
GOOD PROGRAMMING PRACTICEScovvvinnnnnnnnnnnnnnnn 127
9.1 Good Programmersveuvuuennienineennneennneeennnnn 127
9.2 Meaningful Namesc.oiiiiiiiiiiiiiiiiiniannn, 128
93 BeUserFriendlycooviiiiiiiiiiiiiiiiiiiiiiannn, 129
9.4 Include Remarkscoviiiiiiiiniinniereieennnens 131
9.5 Taking Care of Your Programs and Data Files 131
9.6 Back Up Your Files..........cooiiiiiiiiiiiiiiiiiiiiinnnnn 132
APPENDIX A
WHERE TO LOOK FOR MORE INFORMATIONccuvuunnnn. 135
A.1 International 99/4 User's Groupcovvvveeeeennnnnn. 135
A2 99er Magazinec.oviiiiiiiniiiii i 135
A.3 Other Home Computer Magazinesc.c.ccuu... 136
APPENDIX B
PROTECTING YOUR INVESTMENTottt it iiiiiiieineenen 139
B.1 Static Electricitycovviiieeiinniiiieeeannnn. e 139
B2 Water ... e e 139
B3 Magnetsc.c.uuuniiiiiiiiii et e 140
B4 Heato i i e e e e e 140
B.5 Expansion Box Tabscciiiiiiiiiiiiieennnnnnnn. 140
APPENDIX C
SOME BASIC PROGRAMSttt iiieie e inennennnnnnns 141
C.1 Tic-Tac-Toe Programsccvvriineernnnennnnenennnnnns 141
C.2 Sprite Editor Programccoeiiiiiiiiiinniiinnneeenn, 141
C.3 Twinkle Programoiiitiiiiiii i 150
C.4 HotCross Buns Programcciviiiiiiiiinnnnnnnnn. 152
APPENDIX D
GLOSSARY OF COMPUTER TERMS ...\ tiiiiieeeeenennnnnnn. 155
APPENDIX E
Tl BASIC AND EXTENDED BASIC COMMANDS,]
STATEMENTS, AND FUNCTIONSttt ittt iiiiiinennann 159

FIRST THINGS

You are reading this book because you have a Tl 99/4A home
computer. We will try to make it easy for you to use your compu-
ter to do what you want it to do.

In this chapter, we tell you where you can find more informa-
tion about your Tl 99/4A and products for it, where to learn
programming, and some of the common problems beginners
encounter with the Tl 99/4A.

1.1 INTRODUCTION

This book is a guidebook designed to help you through the com-
plex maze of new ideas, new components, and new software that you
will find for your Tl 99/4A.

We provide advice (and warnings) that you would expect to hear
from friends experienced in the computer field. It's the kind of stuff
that you should know before you buy any more equipment or
software.

We don't intend to replace the information that comes with your
computer. The manuals that come with your computer tell you how
to connect your equipment and start it up. Read the installation in-
structions you get with the computer—and follow the instructions.

We hope you will enjoy your experiences with your home compu-
ter and use this book as a way to plan for its continued use and
expansion.

13

14 THE Tl 99/4A USER’S GUIDE

CASSETTE POWER

BACK OF YOUR TV BACK OF YOUR Tl 99/4A
o] '

CONNECT TO
YOUR VHF ANTENNA

Fig. 1-1. Connecting rf modulator to computer and tv set.

1.2 SOME COMMON PROBLEMS

Before we go any further, there are some problems with the TI
99/4A that are so common we have to discuss them right away. We
are not talking about the intricacies of programming. We are talking
about mechanical mistakes relating to the cassette cables, the joy-
sticks, and the keyboard.

1.2.1 Connecting Your TV

If your tv has the standard two-wire antenna connector, called a
300-ohm connector, you can easily hook up the rf modulator that
comes with the Tl 99/4A. Fig. 1-1 shows you how to connect the rf
modulator to a tv with standard antenna connections.

Many newer tv sets come cable ready. They don’t have a 300-ohm
two-wire connector. If you have one of these you will need a:

300- to 75-ohm converter

These are only $3.00 to $5.00 and you can find them at many
electronics and appliance stores (Radio Shack is a good source). Fig.
1-2 shows you how to connect a 300- to 75-ohm converter to your rf
modulator.

FIRST THINGS 15

300 TO 75 OHM CONVERTER

E MODULATOR
TV ANTENNA

CHANNEL
4 3

Fig. 1-2. Connecting rf modulator to a 300 to 75 ohm converter.

If your tv runs off a coax cable, you need a:
75- to 300-ohm converter

Fig. 1-3 shows you how to use the 75- to 300-ohm con-
verter to connect your input coax cable to the rf modulator.
If you also have a cable-ready tv, you need a 300- to
75-ohm converter as shown in Fig. 1-2.

1.2.2 Joystick and Cassette Cables

Problem number one is the cassette cable and the joysticks have
the same type of connector.

Plug the cassette cables and joysticks into the correct places on the
Tl 99/4A or they will not work.

16 THE TI 99/4A USER’S GUIDE

VHF ANTENNA CONNECTION
ON YOUR TV

MODULATOR -
76 70 300 TV ANTENNA

OHM
CONVERTER 8

Fig. 1-3. Connecting rf modulator to a 75 to 300 ohm converter.

The cassette cable goes into the back of the console. The joysticks
go into the left side (nearest the Q key) of the console. Fig. 1-4 shows
you the various connections on the sides and back of your Tl 99/4A.

1.2.3 Attaching a Cassette Recorder

And then there’s the cassette cable itself. The five wires, on two
leads, can connect to two recordets. On the Tl 99/4A, the:

Cassette attached to the 3-wire lead is called CS1
Cassette attached to the 2-wire lead is called CS2
Red lead to the microphone jack (MIC)

Black lead to the remote jack

White lead to the speaker jack (monitor)

The red lead (in the microphone jack) is used to write data and
programs on the cassette tape.

The black lead (in the remote jack) is used for remote control op-
eration (starting and stopping) of the cassette recorder—Not all cas-
sette recorders have a remote control capability. If your recorder does

FIRST THINGS 17

CONNECT JOYSTICK OR
JOYSTICK ADAPTER HERE

i /\

= | R K

CONNECT CASSETTE P&NER CONNECT RF MODULATOR OR
CABLES HERE MONITOR CABLE HERE

e o =

CONNECT SPEECH SYNTHESIZER OR
HEYBUS INTERFACE OR PERIPHERAL
EXPANSION INTERFACE HERE

Fig. 1-4. Tl 99/4A connections.

not have a remote jack, just ignore the black lead. All this means is
you will have to start and stop the tape manually.

The white lead (in the speaker or monitor jack) is used to read data
from a cassette tape. The CS2 connection does not have a white lead,
which is why you cannot read from a cassette on CS2.

1.2.4 Using Cassette Tapes

There is nothing magic about computers and cassette tapes. If you
have a recorder, you know how to record music on a tape. Cassette
tapes with programs are not really different from cassette tapes with
songs. Just like when you re-record a song, if you write over a pro-
gram, it's gone. There is no way to recover the original program.

Rule 1: Remember where you put it.

When you write a program or data to a tape, remember to look at
which side (1 or 2) of the tape you are recording on. If your recorder
has a tape counter (the numbered wheel that moves as the tape
moves), keep a list of what you have on the tape and where it is.

18 THE Tl 99/4A USER’S GUIDE

Rule 2: Follow the leader.

Many cassette tapes have long leaders—you cannot record on the
leader. Make sure the cassette tape is past the leader before you try to
save something on it.

Rule 3: Recorders don't pick sides.

Sometimes people become confused about the difference between
cassette recorder one (CS1) and side one of a tape. Just remember:
you read and write on the tape and to/from the recorder. You read
from and write to recorder CS1. You write to recorder CS2. You write
on tape side one or tape side two.

Rule 4: Forget bargains.

Don’t buy cheap tape! Use good quality cassette tapes no longer
than 60 minutes—30 minutes is better.

Data recording is much more sensitive to bad recording than audio
recording is. Cheap tapes will disappoint you.

Rule 5: Be kind to your tapes.

Store your tapes properly. They should be in a cool, dry place
away from magnetic fields. Don’t put them on top of the console or
the television.

1.2.5 Joystick Interference

Even if you have the joystick plugged into the correct connector
(on the left side of the TI 99/4A console), it still might not work right.

When you use the joysticks, the key (lower left
corner of the keyboard) MUST be in the up or unlocked position.
Otherwise, you will not be able to get objects to move in the up
direction.

1.3 THE KEYBOARD

Since you use the keyboard to communicate with your computer
—it's how you ““talk” to your Tl 99/4A—you should be aware of
what it is and what its keys mean. We cover the keyboard in some
detail, with special emphasis on the and keys.

1.3.1 Keyboard Layout

The TI 99/4A has a Qwerty keyboard layout (that is the one where
the letters on the top row are arranged QWERTYUIOP). The Tl 99/4A

FIRST THINGS 19

keyboard is a full ASCII keyboard, capable of generating all the ASCII
character codes. This may not mean much to you now, but it means a
great deal to someone writing advanced software for the Tl 99/4A.

If you don’t know how to type, you can learn how. It's much easier
to get your programs into the computer once you know how to type.
You don’t have to be the fastest typist in the world. You just have to
remember where the keys are. And, however, it may seem at times,
they really don’t move around the keyboard.

Fig. 1-5 shows you what the keyboard looks like. You will notice
some extra keys (like a key and a key) and that
some keys are darker than the rest. The outlined keys work with the
key, which we will talk about a little later.

You can enter both upper and lower case letters from your Tl 99/4A
keyboard. If you want upper case letters or the special characters on
the top row of the numbers, hold down the key when you
press the letter or number.

You can use the key to make your keyboard enter
only upper case letters. You still get the numbers (not the special
characters above the numbers) when you have the

key locked.

RED DOT YELLOW DOT GREY DOT

Fig. 1-5. Keyboard diagram.

20 THE Tl 99/4A USER’S GUIDE

1.3.2 The Key and the Letter Keys

The key is called the function key. It is located in the
lower right corner of the keyboard and has a gray dot on its front.

The key works a lot like the key. When you
hold down the key and press another key that has a gray
character on the front of it, you get whatever is on the front of the
key. For example, if you hold the key and the P key, you
will get a double quote ().

1.3.3 The Key and Overlays

The key also works with the number keys. Several thin
plastic strips, called overlays, came with your Tl 99/4A console.
These overlays fit into the slot above the numbers on your console.

Most of the overlays have two rows of squares (one above each
number) and two dots. The top row has a red dot and the bottom row
has a gray dot. You activate the row with the gray dot using the
key, which has a gray dot on its front.

You put an overlay into the holder above the number row so that
the squares line up with the number keys. The leftmost square should
be over the 1 key.

One overlay is different—it has a row of squares and a row with
words in the squares. Fig. 1-6 shows you what these two overlays
look like. The one with the words printed on it is important. You use
this one often and may want to copy the words to other overlays.

When you press the key and one of the numbers, you get
the action represented by the word above the number. This means
you use only a single keystroke to tell your computer to do some
things like insert characters or erase the line.

Some programs use the values for the numbers to do

DEL | INS |[ERASE |CLEAR | BEGIN [PROC'D] AID | REDO | BACK QUIT | Gray

Fig. 1-6. Keyboard overlays.

FIRST THINGS 21

something. You can receive the values sent by the keys in
BASIC programs and use these keys for special tasks.

Games, for example, may say ‘‘Press or W If
you don’t know that you are supposed to hold down the FCTN key
while you press 6 ([N) or 9 (IEXEM), you will probably have
some trouble understanding why your computer is not obeying your
- commands. Table 1-1 shows you the commonly used functions for
the number keys.

Remember to hold down the key when you want to use
one of these functions.

But BEWARE. One key causes you to lose whatever you have in
your computer’s memory. When you press the key and the
BBl (equals) key, you will QUIT whatever you are doing and your
computer will return to the main screen (the one that you see when
you first turn it on).

If you are entering or running a BASIC program and you hit the
BBl key, you lose it all. You suddenly find yourself look-
ing at the main title screen.

1.3.4 The Key
The key works in much the same way as the
key, except that it causes different codes to be sent. As with the

and keys, you hold down the key while
pressing another key.

Some programs, like the Terminal Emulator and Editor/Assembler,
use the key along with other keys to get special control
codes from you.

Table 1-1 FCTN/Number Keys

Key What It Does

FCTN 1 DELETE (delete a character)

FCTN 2 INSERT (insert a character)

FCTN 3 ERASE (erase what's on the line)

FCTN 4 | CLEAR (stop the BASIC program at whatever statement it's currently
running)

FCTN 5 | BEGIN (used by some programs)

FCTN 6 | PROCEED (used by some programs)

FCTN 7 | AID (used by some programs)

FCTN 8 | REDO (used by some programs)

FCTN 9 BACK (used by some programs)

FCTN = | QUIT (stop everything and return to the main title screen)

22 THE Tl 99/4A USER’'S GUIDE

You will notice that the key has a red dot on it. This cor-
responds to the red dot marked row on the overlay that slides into
the slot above the number keys. Programs that use the key
usually provide a special overlay for you to use. When you hold
the key down and press one of the number keys, you get
what's shown in the red dot line of the overlay you are using.

1.4 GETTING INTO IT -

Now that you have got your computer up and running, where can
you get information to help you use your Tl 99/4A more effectively?
From an amazing number of places.

1.4.1 The International 99/4 User’s Group

You can join the International 99/4 User’s Group. Their address is
listed in Appendix A. Write to them for more information. It's really
worth the $12.00 per year.

The User’s Group prints a newsletter that tells you what other users
are doing, has reviews of new products, and gives you programming
tips. There are about eight newsletters per year. They also send out
new product announcement bulletins whenever significant new
products are announced. So you will always know what to expect.

The User’'s Group-has a wonderful Software Exchange Program for
Owner Written and Translated Software. Many Tl 99/4A users have
sent them programs in Tl BASIC, Tl Extended BASIC, 9900 Assembler,
or TI LOGO. You can get copies of these programs on tape, disk, or
paper for a modest price. If you send them programs—working pro-
grams, that is—you get free any four programs in their library.

The User’s Group has an information and referral service that helps
you get answers to hardware and software questions. You call and get
an answer right away.

And, on top of all that, the User's Group offers discounted prices
on all Texas Instruments products. How can you go wrong?

1.4.2 Local User’s Groups

Wherever there are computers, you will find users banding together
into local user’s groups. These user’s groups can be a wonderful
source of information, both on programming and on products.

There is usually a mix of novice, intermediate, and advanced users
in any group. The more knowledgeable users in the group are always
ready to help and teach those who know less. If you want to learn

FIRST THINGS 23

more about your Tl 99/4A, joining a local user’s group is an easy,
inexpensive, way to do it.

Check in your area for a Tl 99/4A User’s Group. The International
99/4 User’s Group has a list of local groups that you might want to
get. Usually, the computer stores in your area know of at least.one
user’s group. You may even want to start one.

1.4.3 Magazines

Another wonderful way to learn more about your Tl 99/4A is
through 99’er Magazine. The address is listed in Appendix A. You
may find the magazine at some newsstands.

99’er Magazine describes itself as ““Covering the Tl 99/4A and
other Texas Instruments Personal Computer Products.” And it does,
wonderfully.

Every month you will get a well-written magazine that discusses
only the Tl 99/4A and other TI computers. So you will get information
geared to your computer, not to home computers in general. There
are articles for novices and for experienced programmers. And there
are always several programs that you can enter and run yourself.

Other home computer magazines also cover the Tl 99/4A, though
not in as great detail as 99’er Magazine. Look over the selection at
your newsstand and pick those you feel comfortable reading. Ap-
pendix A lists some home computer magazines that have covered the
TI 99/4A.

Don't think that you have to find magazines that write directly
about the TI. You will learn a lot from reading about what computers
can do. And a lot of free programs are sitting around in these maga-
zines, just waiting for you to enter them into your computer. Entering
programs from magazines is a great way to learn more about your
computer and how BASIC works. Just remember to ‘‘translate’’ from
whatever BASIC to Tl BASIC when you enter the programs.

1.4.4 Education

Some people will want to learn more about programming. There
are good BASIC and other courses available directly from TI. You can
also try local computer stores or community colleges for courses in
BASIC, LOGO, and other popular languages.

We already discussed the learning opportunities available from
joining a local Tl 99/4A user’s group.

24 THE Tl 99/4A USER’'S GUIDE

There are books that teach BASIC programming that you might find
helpful. Go to your local bookstore and browse. See which ones you
feel comfortable with and try them. When you review them, look for
many examples. It's easiest for a new programmer to learn from
examples.

You can learn a lot from friends who already have Tl 99/4As or
who know how to program (even if they have some other type of
computer). They will be able to help you over some of the rough
spots you hit when you are just starting out.

HOW DOES YOUR
TlI WORK?

In this chapter, we tell you something about how the Tl works,
how it thinks about your programs and data, and a little bit about
thinking like a computer.

2.1 HOW MUCH DO YOU HAVE TO KNOW ABOUT HOW A
COMPUTER WORKS?

You don’t have to understand how the Tl 99/4A works in order to
use it. If you don’t care one little bit (heh, heh—that's a sample of
bad computer humor for you) how it works, don’t read this chapter.

Many people who buy the TI 99/4A would like to know at least
something about what goes on inside the mysterious little box. There
is a widespread belief that this knowledge is so arcane as to exclude
ordinary mortals entirely and forever from obtaining it. Don’t believe
a word of it. This is nothing more than propaganda put out by “ex-
perts’” who confuse everyone by using jargon words they don’t ex-
plain.

In the sections that follow, we will define some common com-
puterese terms and tell you something about what is inside your Tl
99/4A, what those magic words—memory, RAM, ROM, 16K—
mean, and why you would want to count in binary or hexadecimal.

2.2 MEMORY

The memory we are talking about is the type that comes on little
silicon chips inside your Tl 99/4A. There is another kind of memory,

25

26 THE Tl 99/4A USER'S GUIDE

sometimes called mass memory or external storage, that lives outside
the Tl 99/4A—on a cassette tape or a disk.

The first question most people ask about a home computer is
““How much memory?"”. Those who are a little more knowledgeable
also ask ““What kind?”’. So we will answer those questions right away.
Your Tl 99/4A console has:

16K of RAM and 26K of ROM

There, isn’t that enlightening? It is if you know what memory is,
what a “K" is, what “RAM"’ is and what “ROM" is. If you don't, it's
just so much gibberish.

2.2.1 Ks, RAMs, and ROMs

A K’ is a measurement of the amount of memory you have in
your computer:

1K = 1024

Why this funny number? you might ask. Well . . . it's because 1024
is 2 raised to the tenth power (as in 2'%). Computers deal naturally in
numbers that are powers of 2, even if people don't.

“’K'" was chosen because it's close enough to 1000 not to matter
and 1000 is a number that people can get a handle on pretty easily.
Anyway, if you think of a K as being about 1000, you will be doing
the same thing computer professionals do.

Now you know. A K is about 1000. So what are you counting? You
are counting bytes, where:

1 byte = 1 character

Thus, 1K of storage holds a little more than 1000 characters (letters,
digits, and punctuation marks) or somewhere around 40 lines of
“average’’ BASIC code.

Obviously, the more Ks you have, the larger and more complex the
programs you can run. To be useful to you, those Ks must be RAM.

There are two types of memory, RAM and ROM. These words are
mnemonics:

ROM is Read Only Memory
RAM is Random Access Memory

ROM cannot be written to. That is where it gets its name—Read
Only Memory. It already has a program permanently stored in it. The

HOW DOES YOUR TI WORK? 27

26K of ROM in the Tl 99/4A holds, mostly, the Tl BASIC interpreter
(more about that later) and a thing called the operating system.

RAM can be both written to and read from. The 16K of of RAM in
your Tl 99/4A is used to hold your programs and other changeable
items, like what is displayed on the screen, or the color of the char-
acters. Unlike ROM, RAM forgets everything when you turn off the
power.

If you add a Memory Expansion card to your Tl 99/4A, you get an
additional 32K of RAM for your programs to use. If you add the
Mini-Memory Module, you add another 4K of RAM.

2.2.2 Bits and Binary

Memory comes in smaller pieces than a byte. The fundamental unit
of memory is the bit (binary digit):

1 byte = 8 bits

What is a bit? Physically, a bit is a small cell on a silicon memory
chip. That small cell either has an electrical charge, or does not have
a charge. If it has a charge, it is “on,” and if it does not, it is ““off.”

Therefore, a bit can be one of two things: on or off. We write these
states like this:

an ““on’’ bit is written as a 1
an ““off”” bit is written as a O

Ultimately, everything in every computer in the world is reduced to
bits and to on or off, 1 or 0. You can’t do much with a single bit, but
you can do a great deal with a lot of them. In the console RAM of
your Tl 99/4A you have a lot of them:

131,072 bits of memory

2.2.3 Counting

What do you do with bits? You can, for example, count. You know
how to count. From before calculators, remember:

012345678910

When you count this way, you are counting in the decimal system,
which is based on 10 unique digits, 0 through 9—amazingly enough
the same as the number of fingers you have.

But suppose you are a computer. You don’t have 10 unique digits,
you only have two—0 and 1. How do you count then? The same
way as with 10. You just write it a little differently:

28 THE TI 99/4A USER’S GUIDE

011011100 101 110 111 1000 1001 1010 binary
is the same as
01 2 3 4 5 6 7 8 9 10 decimal

Binary counting is based on two, just as decimal is based on 10.
For example, suppose you count the fingers on one hand and write
the result in both binary and decimal:

101 fingers binary
or
5 fingers decimal

No matter what the numbers look like, you have the same number of
fingers. It does not make much difference whether you write the
number in binary or in decimal. ~

Of course, once you count something in binary, you can easily (if
you are a computer) convert it into decimal for printing or to display
on the screen.

2.2.4 Making Characters

The other thing you can do with bits is make characters. Characters
are letters, digits, and punctuation marks that appear on your screen.
Each character occupies one byte, or 8-bits. The 8 bits are set to a
unique on/off pattern for each character, much like Morse code has a
unique set of dots and dashes for each letter.

The choice of which pattern to use for which character was de-
cided, rather cleverly, and published as the ASCII character codes. In
Table 2-1, you will see that you can look at each character either as a
bit pattern or as a numeric value. A

We said the ASCII codes were cleverly constructed. Isn’t it nice that
the numeric values of the letters correspond to their order in the al-
phabet. This makes it very easy to arrange (sort) character data into
alphabetic order; you simply compare the numeric values of the
character codes.

2.2.5 More Counting—Hexadecimal

Although the computer actually thinks in binary, binary is not a
very convenient way to write numbers. It's an awful lot of ones and
zeros to write and you could very easily make a mistake. Not to
mention trying to read a number.

We could use decimal—and usually do—instead, but decimal
numbers don't fit very well on an 8-bit binary base. Look at these
examples of 8-bit binary numbers:

HOW DOES YOUR TI WORK? 29

11000101 = 197 decimal
or
00011111 = 31 decimal

As you can see, there is no natural correspondence between a bi-
nary number and its decimal counterpart. Since a fundamental unit of
your computer’s memory is the 8-bit byte, it would be nice to have a
compact way to write numbers so that they correspond directly to the
bits in the byte.

That's done with hexadecimal numbers. You have already seen that
binary is a numbering system based on 2. Hexadecimal is a number-
ing system based on 16. The binary system has two digits; the deci-
mal system has 10 digits; and the hexadecimal system has 16 digits.

Hexadecimal digits begin with the familiar O to 9. But that’s only
10 digits—we need 16. The originators of the hexadecimal system
could have invented six entirely new characters, never seen before.
Fortunately they were not that stupid. To maintain compatibility with
existing hardware—like printers for example—they chose to use the
letters A to F to represent the new hexadecimal digits. Here’s the way
you would count in hexadecimal:

0123456789 A B C D E F hexadecimal
is the same as
012345678910 111213 14 15 decimal

So what? you might well ask. Well, it turns out that a single
hexadecimal digit can represent any 4-bit value, like this:

0000 = 0 1000 = 8
0001 =1 1001 = 9
0010 = 2 1010 = A
0011 =3 1011 = B
0100 = 4 1100 = C
0101 =5 1101 =D
0110 = 6 1110 = E
o111 =7 1111 =F

One hexadecimal digit represents a 4-bit value, called a nibble.
(What else would you call half a byte?) It follows that any two
hexadecimal digits can represent the value of an 8-bit byte. Our pre-
vious decimal/binary examples become:

11000101
00011111

C5 hexadecimal
1F hexadecimal

30 THE T1 99/4A USER’S GUIDE
Table 2-1 ASCIlI Codes for Characters
Character Bit Pattern Decimal Value Hexadecimal Value

(space) 00100000 32 20
! 00100001 33 21
" 00100010 34 22
00100011 35 23
$ 00100100 36 24
% 00100101 37 25
% 00100110 38 26
! 00100111 39 27
(00101000 40 28
) 00101001 41 29
* 00101010 42 2A
+ 00101011 43 2B
! 00101100 44 2C
- 00101101 45 2D
. 00101110 46 2E
\ 00101111 47 2F
0 00110000 48 30
1 00110001 49 31
2 00110010 50 32
3 00110011 51 33
4 00110100 52 34
5 00110101 53 35
6 00110110 54 36
7 00110111 55 37
8 00111000 56 38
9 00111001 57 39
: 00111010 58 3A
; 00111011 59 3B
< 00111100 60 3C
= 00111101 61 3D
> 00111110 62 3E
? 00111111 63 3F
@ 01000000 64 40
A 01000001 65 41
B 01000010 66 42
C 01000011 67 43
D 01000100 68 44
E 01000101 69 45
F 01000110 70 46
G 01000111 71 47
H 01001000 72 48
| 01001001 73 49
) 01001010 74 4A
K 01001011 75 4B
L 01001100 76 4C
M 01001101 77 4D
N 01001110 78 4E
O 01001111 79 4F
P 01010000 80 50
Q 01010001 81 51
R 01010010 82 52

HOW DOES YOUR TI WORK?

Table 2-1-(Cont.) ASCIHl Codes for Characters

31

Character Bit Pattern Decimal Value Hexadecimal Value
S 01010011 83 53
T 01010100 84 54
U 01010101 85 55
\" 01010110 86 56
w 01010111 87 57
X 01011000 88 58
Y 01011001 89 59
VA 01011010 90 5A
[01011011 91 5B
\ 01011100 92 5C
] 01011101 93 5D
" 00101011 94 SE
_ 01011111 95 5F
* 01100000 96 60
a 01100001 97 61
b 01100010 98 62
C 01100011 99 63
d 01100100 100 64
e 01100101 101 65
f 01100110 102 66
g 01100111 103 67
h 01101000 104 68
i 01101001 105 69
j 01101010 106 6A
k 01101011 107 6B
| 01101100 108 6C
m 01101101 109 6D
n 01101110 110 6E
o 01101111 111 6F
p 01110000 112 70
q 01110001 113 71
r 01110010 114 72
S 01110011 115 73
t 01110100 116 74
u 01110101 117 75
\Y 01110110 118 76
w 01110111 119 77
X 01111000 120 78
Yy 01111001 121 79
z 01111010 122 7A
{ 01111011 123 7B
I 01111100 124 7C
} 01111101 125 7D
~ 01111110 126 7E

(DEL) 01111111 127 7F

32 THE TI 99/4A USER’S GUIDE

Remember we said the value of the byte was important in some
circumstances while the pattern of the bits was important in others.
With hexadecimal, we have a method to express both the value and
the pattern of a byte in a simple two digit number.

If you do any work with re-defining the image of characters or with
sprites (moving graphics objects), you must be familiar with
hexadecimal numbers in their pattern indentification role. Chapter 7
talks about graphics in more detail. (To re-define characters, you use
the CHAR subprogram in BASIC.)

2.3 THE CENTRAL PROCESSING UNIT

Inside every computer lives a brain called the Central Processing
Unit (CPU). This is the part of your computer that actually does the
work, faithfully carrying out your instructions like a dear, old,
feeble-minded retainer.

The most important thing for you to remember about the CPU is it’s
a moron. It does nothing you don’t tell it to do. And it does
everything you do tell it to do. No matter how ridiculous that may be.

If you have written a program (those little examples from the book
don’t count), you will understand this. For those who haven’t, we will
give you an example. If you are writing a tax program and you tell the
computer to subtract your personal deduction from your birth date, it
will do it without a complaint.

2.3.1 The TMS9900 in Your TI 99/4A

The CPU in your Tl 99/4A is a very sophisticated 16-bit micro-
processor called the TMS9900. The Tl 99/4A and its predecessor, the
Tl 99/4, are the first home computers in their price range to include
16-bit mircroprocessors.

The advantage of a 16-bit processor is not apparent unless you are
programming in Assembly Language. For those who know something
about this, the TMS9900 processor features:

® 16 general purpose 16-bit registers
e 5 very flexible addressing modes
® 16-bit hardware multiply and divide

If you don’t know what this means, don’t worry about it. These are
standard features in most 16-bit microprocessors, but completely un-
heard of in the world of 8-bit microprocessors most frequently found
in home computers.

HOW DOES YOUR TI WORK? 33

So it's fancy. What does it mean to you if you don’t intend to pro-
gram in Assembly Language? It means that software developers who
have to program in Assembly Language will like doing it on the TI
99/4A, and so produce a pile of nice, useful, fun programs for you.

2.4 ADDRESSING

Addressing is what a computer does when it references something
in its memory. There is a limit to the amount of memory a computer
can access and that limit depends on the number of bits it uses to
count memory locations. The Tl 99/4A uses 16 bits to count memory.

Memory is arranged into a continuous, long string of bytes. Each
byte has a unique number—called an address —assigned to it (much
like each apartment in an apartment building has its own number).
For the Tl 99/4A, addresses range from:

0 to 65,535 decimal
or
0000 to FFFF hexadecimal
or
0000000000000000 to 1111111111111111 binary

This is a range of 64K bytes. Now if you add up all the memory
you can hang on your Tl 99/4A, including that in cartridges, you will
find it amounts to a lot more than 64K.

Take, for example, Extended BASIC. The cartridge contains 36K of
memory. It can directly use 24K of the 32K Expansion Memory and
about 12K of the memory in the console. On top of that, it has 8K
(the balance of the 32K Expansion Memory) to use for running As-
sembly Language routines. That comes to 80K and does not even
count operating system support routines and device handlers in your
Tl 99/4A console memory.

To fit all that into 64K, computer designers use a trick. They keep
some of the memory “off to the side/” When it's needed, it's brought
in and used. When it's not, it's left off to the side. You don’t really
have to understand how this is done; you just have to know that it is
done on your Tl 99/4A.

2.4.1 Program Cartridges and Memory

Those cartridges, from Tl and other sources, that plug into the con-
sole slot usually contain machine language programs embedded in
ROM (Read Only Memory). One exception is the Mini-Memory Car-

34 THE TI 99/4A USER’S GUIDE

tridge, which contains 4K of RAM (Random Access Memory) in addi-
tion to 10K of various sorts of ROM.

When you plug in one of these cartridges, the memory in it be-
comes part of the TMS9900 microprocessor’'s memory at addresses
6000 to 7FFF hexadecimal (24,576 to 32,767 decimal). That's 8K
(8192) bytes of memory.

In addition to this directly addressable TMS9900 memory, car-
tridges often contain quantities of GROM (Graphics Read Only
Memory). GROM is one of those ““off to the side’”” memories that the
9900 can access only through some special procedures. (For those of
you who may be interested, and who may know something about
this, GROM is accessible as a memory mapped device.)

2.5 TMS9900 ASSEMBLY LANGUAGE

A microprocessor can only understand instructions written in its
own language—machine language. Machine language is written in
binary (ones and zeros) and is just about impossible for any person to
understand.

The machine language instructions that a microprocessor under-
stands are called it's instruction set. The TMS9900 has a powerful
instruction set that makes it easier to program than some other
microprocessors. To make it easier for people to use the power of
machine language instructions without the incredible task of talking
in ones and zeros, computer designers developed Assembly Lan-
guage. And the TMS9900 has a very rich language.

Assembly Language programs are converted into machine code (or
object code) by a program called the Assembler. There are two As-
semblers for the Tl 99/4A. There is the full Editor/Assembler package
that requires expanded memory and a disk drive and there is the
mini-Assembler that comes in the Mini-Memory cartridge. If you
would like an introduction to Assembly Language, or if you want to
write some small Assembly Language subprograms, the Mini-Memory
cartridge is the least expensive way to go.

We are not going to try to teach you 9900 Assembly Language.
That needs a whole book by itself. We do not want to give you some
idea of what an Assembly Language program looks like, so we have
included this little example of TMS9900 Assembly Language. This
example shows you how to add two 16-bit signed numbers together:

HOW DOES YOUR Tl WORK? 35

NUMI DATA >0068 first number to add
NUM2 DATA >00CC second number to add
A @NUM1,@NUM2 add the value at NUM1 to

the value at NUM2 and put
result in NUM2

NUM1 and NUM2 are labels. Labels have a value equal to the
address of the statement they are attached to.

DATA is an Assembler directive that tells the Assembler program to
reserve a two byte area with a value stored in it. In this example, the
values are >0068 and >00CC hexadecimal, or 104 and 206 dec-
imal. The “>"" sign indicates the number that follows is a hexadeci-
mal value.

A is the add instruction. It tells the computer to add the value at
(@) label NUMT1 to the value at label NUM2 and place the result at
NUM2, ‘

This is a very simple example of Assembly Language programming,
really only a fragment of an Assembly Language program. If you want
to do something ambitious, like write to a cassette tape, it becomes a
lot more complicated. Many things that BASIC does for you auto-
matically, you have to do for yourself when you program in Assembly
Language.

Still, there’s a definite feeling of command of the machine and its
substantial resources when you succeed in getting an Assembly Lan-
guage program to run. If you want to get into the nitty-gritty of it all,
Assembly Language, for all its problems and frustrations, is how to get
there.

2.6 DEDICATED CHIPS

The Tl 99/4A console actually contains three processors. We have
already discussed the general purpose TMS9900 microprocessor. The
other two processors are called dedicated chips because they perform
only one task:

e the TMS9918A is the Video Display Processor.
e the TMS9919 is the Sound Generator Controller.

The TMS9918A spends all its time maintaining the picture you see
on your screen. In fact, it is this chip that gives the Tl 99/4A its name.
The older Tl 99/4 was equipped with the TMS9918 Video Display
Processor, which lacked some of the features of the newer
TMS9918A.

36 THE Tl 99/4A USER’'S GUIDE

Maintaining the screen image on any computer system is a full
time, specialized, job. We examine the TMS9918A in more detail in
Chapter 7, Graphics.

Just as maintaining the screen is a specialized job, so is making
sounds. So, the TMS9919 Sound Generator Controller is included in
the console. We talk more about this chip in Chapter 8, Sound.

Some of the peripherals that you buy also contain dedicated chips.
Most notable of these is the TMS5200 Voice Synthesis Processor in
the Speech Synthesizer peripheral.

2.7 PROGRAMS

Not. all programs are equal. Some are directly executed by the
TMS9900 microprocessor while others are only indirectly executed.

Those directly executed by the 9900 microprocessor are machine
language programs. You can create a machine language program with
the Editor/Assembler, the Mini-Memory Module, or with a compiler
like FORTH.

These products all produce object code (machine language in-
structions) that can be loaded and run with no other program be-
tween it and the 9900 microprocessor (see Fig. 2-1).

You will notice that BASIC is not in this group. That's because
BASIC is an interpreted language, as is Pascal, PILOT, and LOGO
(see Fig. 2-2). We will talk mostly about BASIC here, but the others
are very much the same.

BASIC programs are stored in memory in a form very close to the
way they appear on the screen. The major difference is that the
BASIC keywords are tokenized. This means that rather than storing
the full text of the keyword, like GOTO, the BASIC editor turns it into
a one- or two-byte hexadecimal value. The GOTO keyword, for in-
stance, is stored internally as the two-byte hexadecimal sequence 86
C9 so that the statement:

800 GOTO 720
becomes
0320 86C9 02D0 00

The 0320 is the line number of the statement (800); the 86C9 is the
tokenized form of the GOTO statement; 02DO is the line number to
go to (720); and the 00 is an end of statement indicator.

Most of the variable names and constants in a statement appear
similar to the way you typed them. Obviously, this stuff cannot exe-

HOW DOES YOUR TI WORK?

93800 CPU

MACHINE LANGUAGE
STATEMENTS

EDITOR/ MINI MEMORY
ASSEMBLER MODULE COMPILER
[
YOUR ASSEMBLER YOUR ASSEMBLER YOUR PROGRAMS
PROGRAMS STATEMENTS (FOR EXAMPLE, FORTH)

Fig. 2-1. Object code diagram.

BASIC INTERPRETER

r
|
i
1
i
i
]

1
1
]
i
! | (A mACHINE LANGUAGE PROGRAM)
|

]

I
]
]
]

]

I
1
]

1
1
L

Fig. 2-2. Interpreter diagram.

37

cute directly on the 9900 CPU—it’s not even close to machine lan-

guage.

The BASIC program is actually executed by another program called
the TI BASIC interpreter. Your Tl 99/4A includes 26K of ROM, a good
part of which is taken up by the Tl BASIC interpreter.

The TI BASIC interpreter fetches your coded BASIC statements from
memory, decodes them, and does what they say. It is also an editor,
allowing you to enter and change BASIC programs, and a file handler with
facilities for saving and retrieving programs stored on cassette or disk.

. "£9L'T€ 0V 89L'TE—
aSues ayl ul s1dqwinu 3joym aq Isnw A3y} Inq ‘s;aquinu jutod
Suneoy; 10 salAq 1ySie 0y pasoddo se ‘Aiowaw JO sa}Aq oMy AJuo e}
siaquinu 133a3juj "sadA) ejep se8ajur Suisn Aq Atowaw Jo junowe ajqe
-13pISUOD B 3ABS UBD NOA ‘siaquinu jJo sAewre adie| ainbas jey; suon
-e)ndwod Buiop 3se NOA J| °JjasiN0A asn Alowaw afeuew ISNW NOA

*3asn aAle u) Jou Alowaw
Aue 13A0231 0} ,109)100 adequed,, e sa0p JajRidiul 3y ‘Alowsw
JO 1IN0 UNJ NOA J| “papaau si 3§ se pajedo||e si ‘ajdwexa Joj ‘ejep Sulng
-19121d13)U1 3y} AQ pajpuey S| $32IN0sa) Alowaw jo Juswadeurw ||y

INIWIDVNVW AMOWIW

‘panwi| AsaA si saunnos poddns ayy ul Suipuey Jowu3 ‘way) 0}
sjuawn8ie ayy aduelse Ajjnjased Jsnw NOA Inqg ‘s|qejieAe ale saunNos
Hoddns awog 'j|as1N0A suoisiaAu0d ay) wiopad pue dn 135 Isnw NOA

!

(TVA Pue $3HD) suonduny ysnoiyy Jo (sjuaw
-31e3s 1NdNI PUe INIdd Ul) Aj[[ediewOoNe pajpuey ale JewIo) Jaje
-Ieyd 0} JLBWINU O DLBWNU O} JAJDBIRYD WOI) BJep JO SUOISIDAUOD)

NOIS3¥IANOD viva

*Ajoresedas uni pue
Papeo| uay} “1B|quassy ay) YySnouy} passadoud aq Isnw sjUBWBLe)S ||y

‘Aj91eIpawwi payndaxs pue pajaidiaiul
S131 1J2qWINuU 3Ul| B JNOYIIM PUBLULIOD IO JUSLUAEIS B J3JUD NOA UYM

SANVWWOD ANV SINIWILVIS 40 NOILNDIXT ILVIAIWWI

‘uonndaxa weiSoud ui Jaje| |UN UOIDNAS3P Y} JSAODSIP
JOU pue sease AIOWSW [eDNLD JSAO |[B UM 0) Ased s ‘swesSoid
J9|quiassy JO aunjeu ay) JO dsNed3g °SI|ELIBA JNOA JO anjeA 3y} je
%00] 0} Aem Asea Ou s1 213y 'SI018 UMO INOA asouSelp pue den nox

‘paddois 31 a1aym Juawalers ay) woly wei30id INOA JO UOHNIAXD BN
-a1 pue ‘wesSoid noA 33ueyd pue je 00| ‘s9|qelIeA JNOA 3ulwexd
NoA §137 "usaIds 3y} 0)‘adessaw Joud ue sjuud pue sioud || sdes

DNITANVH 30343

13[qIdssy

Jlisve

uosuedwo) JIquidssy/IISVE Z-T 2jqel

*8uiop jo ajqeded si vi/66 11 Yl SulyiAiana op ued noA ‘A|snoinqO

*10ssa204d
-01DIW 0066 Y1 Ul 3|qejieAe dnawyue Jadajul paads ydiy ay) Jo
‘Ajiqeded soiydes8 jo aBues ||y 3yl asn ‘s|dwexa 10y Jouued NOA
‘wesBoud DISyg © ul [enualod s,y/66 |1 INOA JO |e 3sn Jouued NOp

S3¥NLVId v/66 1L 1TV OL SSIDDV

*IN200 ey} SI0LD 3|1y Aue 3|puey pue 10} OO| Os|e
ISNW NOA 'sJaynq piod3l |ed130| pue (Sgvd) SR20|q |0AQU0D ulejulew
pue pjing o} noA Suuinbas ‘xajdwod aiow yonw si Suipuey 3|14

‘0119
Buissadoid e 198 noA ‘Jou ase Asy) 1 {Aem |e1dads e ul payewsoj aq o)
sajy si sannbas DISyg "peas Jouued DISyg 1Byl S|y ale auay) ‘puey
JBYI0 3yl UQD "DISVYg WOl WAy} 3Isn O} JIPIO Ul SIDIAIP 3saY} Inoqe
4oNW Mouy O) Paau J,uop NOA ‘Asea ssadde 3y Z€Z-Sy pue ‘1duud
“Asip ‘ade} ayew J1NNI PUB ‘INI¥d ‘NIJO siudwaels DISvg 3yl

ONITANVH 314

‘paads uonndaxa asinbas Ajdwis sweiBoid awog "a8enue| pajidwod
Jayjoue IO ‘19|quassy Ul S1UM O} uoseas pool e sy siyy ‘wesdoisd
DISVg 9|qesedwod e uey) Jaisey sawil 00OZ Se Ydnw se andaxa ued
weJSoud i3|quiassy ue ‘suonenyis awos uj “AppRinb AzeA uni swesd
-04d J3|qUIBSSY USNLIM-[|9M ‘BPOD BulydeW 0066 dANBU Ul unndax]

‘NOA 0} 3|qISIAUI JUBWUOIIAUS BUlYdeW V/66
11 3Y} JO s)ielap ay) Supjew pue ‘123102 SI 31 aINS 3ew O} PajnNdaxa
S|) Se jJusawaels A1aAd Je S3ujoo| ‘noA Joy 10| e saop 3 ‘weidoid
Jayloue Suiuuns weisSoid e ‘|je saye ‘sl)| ‘MO|s AjpANeal si DISYg

ad3ads NOLLND3IX3

*JO1I3 3y} XIj PIP NOA Jayldym 33s usy} AJuo pue)i 3|quiasse-al

‘a|1y @8en8ue| 924N0s J9|qWasSY [BUISLIO 3y} JIPa IsnW NOA Aeme Jysu
11 UnJ-31 pue aul| e ¥pa Isnl Jouued NOA ‘JOLIS 3y} SI JUIY) NOA JeyMm 1o
‘10113 3y} puly op NOA UBYAA 3sn 0} 3BPa|MoU) JO 30| & 3xnb sanbas
“31 1nq Ajnn 8uiS8ngap awn-uns e spoddns Jajquiassy ‘weiSoid a8ens
-ueT A|qIassy UE Ul JOLI3 U JO asned 3y} 31e(0sI 0] JNDIIP USYO S,3|

‘PaINJaXa S| JUSBWSIEIS Y} B10§3q JaqUINU Jusw)e}s Yoea suud jeyy
puewWOd JDvy| e suoddns DISyg ‘1oud d180| e puy noA djpy of
)1 3IND3X3-91 AjSjelpawiwl pue 1042 3y} 1931103 0} weiSoid ay pa
ued noA Jo ‘weiosd ay) Jo uonNIaAXa JNNILNOD PUE San|eA djqeLieA
a8ueyd ued nop ‘weisdoud INOA ul S3|qRLIBA JBYI0 Aue 1O ‘)udwalels
3y} UI SI|GELIBA JO JUSIUOD 3yl INIYd UBD NOA "Pa|iej Jey) Juswalels
3y} JO Jaquinu 3y} noA soAIS 1a1RadIB)Ul BY) ‘SINDD0 JOLD UB USYAA
‘wesBoud DSy € (Ul sioud 3y} puy) 3ngap o) Asea Ajaaijesedwod s 3|

1304dNS DNIDONEIa

1I)quIdssy

Jlisvd

uospedwo) 13|quIdssy/DISYg —3IU0D-Z-7 3|qeL

40 THE Tl 99/4A USER’S GUIDE

Although it's much slower executing than a machine language
program, there are many things you can do with BASIC that are im-
possible to do with an assembled or compiled language. For exam-
ple, you can enter a BASIC statement with no line number and it is
executed immediately. This is possible only with an interpreted lan-
guage. Table 2-2 contains a comparison of some of the features of the
BASIC interpreter and the Assembler.

In general, compiled and assembled languages require you to
know much more than do interpreted languages. This is especially
true in the area of program debugging.

SOFTWARE:
MAKE IT OR BUY IT

For the beginner and expert alike, software is the most myste-
rious and difficult part of any computer system. The Tl 99/4A is
no exception.

In this chapter, we look at the options you have for finding
software that does what you want and getting it up and running
on your Tl 99/4A.

3.1 WHAT IS SOFTWARE?

Software is the instructions, sometimes called programs, that tell
your computer what to do. Although it cannot be seen or touched,
software is the most important part of any computer system. Without
instructions to get your computer to do what you want, all you have
got is a pile of highly refined sand.

Software is classified into two broad categories:

® Operating system software controls the entire machine environ-
ment, providing uniform access to and control of peripherals,
such as disks, tapes, printers, the keyboard, and the screen.

® Applications software is what you buy or write to make your
computer do what you want. Word processors, instructional
programs, and arcade games are all examples of applications
software.

Many business microcomputers are supplied with an operating sys-

41

42 THE T1 99/4A USER’'S GUIDE

tem that must be loaded from disk before the computer can be used
to run applications software.

In contrast, most home computers, including the Tl 99/4A, supply
an operating system that is built into the computer in ROM. The ad-
vantage of an operating system in ROM is that you don’t need to buy
a disk to use the machine. Simply turn it on and it's ready to run.

With the T1 99/4A, you have a choice only when it comes to appli-
cations software. The Question is: should you make your own
software (write it in BASIC or another language), or should you buy
packaged software to do the job you want done?

3.2 MAKING YOUR OWN

You probably bought your Tl 99/4A assuming you would learn how
to write programs in BASIC.

If you have not, or don’t intend to, learn programming (or if your
7-year-old has humiliated you so badly that you will never try again),
you obviously are not going to make any software. You folks can
proceed right to the section on buying it.

For those of you who can program, who think you can program, or
who would like to learn, take note. Writing small, special purpose
programs, entering and running programs from books, and fiddling
with these programs is a heck of a lot of fun. Writing a major and
complex system, with ambitious goals, is hard and lengthy work.
(Why do you think those programmers make so much money?)

3.2.1 Where to Begin

Regardless of your real (or imagined) level of proficiency, any pro-
gram that you can copy out of a book is an excellent choice.

Is this programming? you say. Yes. For the novice programmer, it is
instructive; for the experienced programmer, it is fast and less wear-
ing than starting from scratch.

As you enter the program, you learn how it works. This is a good
way to discover programming techniques and tricks that you might
never learn on your own. This applies equally to experienced, even
professional, programmers.

Study the program as you enter it. Critique it. See how it was de-
signed (put together). Did the author use meaningful variable names?
Is the thing a tangle of GOTO statements (GOTO statements make a

SOFTWARE: MAKE IT OR BUY IT 43

program more difficult to follow)? Do you see other, perhaps better,
ways of doing some of the things it does?

The most important thing to look for, though, is ways to expand it,
add features to it, make it do exactly what you want it to do. This is
where the learning stops and the programming begins.

If you are a beginning programmer, modifying a program that you
know works is the best way to learn. If you make a change and the
program no longer works, you can be pretty certain why it does not.
And you will know which statements have the highest probability of
containing errors—those you changed.

When you make any changes, no matter how trivial, to a program,
you can introduce errors that are either syntax errors or logic errors.
Syntax errors are statement format errors and are easy to find. Your
computer tells you what it does not like. Logic errors, on the other
hand, often require a bit of detective work on your part to find out
why the program’s suddenly not doing what you want it to do.

3.2.2 What Should You Program?

As a general rule, you should program only what you cannot find
already programmed, but want desperately. For example, if you need
to keep track of the player statistics of all of the pitchers in the Na-
tional League with batting averages over 300, you can write a pro-
gram in Tl BASIC to do that.

If, on the other hand, you need an object-code-generating Ex-
tended BASIC compiler, forget it. Even if you know what an object-
code-generating Extended BASIC compiler is, it would take a first
class Assembler programmer years, full time, to write it.

You should also consider the amount of time and effort involved in
designing, writing, and debugging even a relatively straightforward
application program. On your first attempt to write your own
program, you will discover how stupid your computer really is. The
darn thing does exactly what you tell it to do—not what you meant
to tell it.

The important point is to pick projects that are manageable, given
your level of knowledge and experience and the amount of time you
have to work on them.

3.3 WHAT YOU NEED TO WRITE YOUR OWN

The Tl 99/4A computer (console) contains all you really need to
write simple programs for yourself. This implies that you don’t need

44 THE TI 99/4A USER’S GUIDE

to save the program once you run it. You may have copied it from a
book and so can re-enter it if you ever want to run it again. Or
perhaps it has served its purpose and you no longer need it.

You can store your programs—whether copied or created—onto
the cassette for later recall, providing the programs are not very large
and don’t require significant amounts of data. Cassettes are fairly reli-
able (if you have a decent cassette recorder) and cheap, but they are
slow.

3.3.1 Minimum System

Working with just the console and a cassette recorder is possible
for writing short programs or for copied programs many screens (a
screen is 24 lines of 28 characters) long. However, if you are creating
your own programs, or making major modifications to an existing
program, you are going to want a hardcopy (a printed listing of the
program).

It simply is not possible to debug (get running without errors) any
very long program—say, more than 6 or 7 screens—without a
printed listing of the program. You cannot really see how the parts of
the program interact when you are looking at the program one screen
at a time. Of course, the actual limit depends on whether you copied
most of the program out of a book (you can look there for some of the
listing), on how complicated the program is, and on how much ex-
perience you have.

To get hardcopy, you need a printer. Fortunately, the Tl 99/4A
allows you to use almost any printer available in the marketplace (we
talk about expanding your system in Chapter 5). Of course, a printer
is not limited to printing program listings. Anyone doing anything
very substantial will probably need to print the results from the pro-
gram anyway.

So, the bottom line for doing anything at all complicated is:

® The Tl 99/4A console
® A cassette recorder (to store programs and data)
® A printer (to list your programs and data)

3.3.2 More Ambitious Programming

The more ambitious you become, and the less time you have to
spend, the more you will begrudge the limited memory available in
the console and the fumbling and delay involved in using a cassette.

The 16K of memory in the console seems like a lot when you get

SOFTWARE: MAKE IT OR BUY IT 45

it—and indeed it is. But some programs just cannot run in 16K. They
may require large data arrays, or maybe they are just very long and
complicated programs. The only answer to this is to get the 32K
Memory Expansion card for your Expansion Box (take a look at Chap-
ter 5 for more information on this).

Of course, it's not as simple as that (it never is). The console Tl
BASIC does not know how to use the extended memory. For that, you
need Extended BASIC (or another of the advanced languages avail-
able for your Tl 99/4A).

This is not as bad as it seems. Extended BASIC is a genuine ad-
vance, not only over Tl BASIC but also over any BASIC available on
any low-cost home computer. Extended BASIC is an excellent pro-
gramming language and we talk more about it in the next section and
in Chapter 4.

Now that you-have the memory to do the job, you will want to cut
the delay and inefficiency inherent in using cassettes. The only way
to do that is to get a disk drive. Fortunately, since you have already
got the Expansion Box, this is not outrageously expensive, only mildly
so. And worth every penny of it.

The disk drive offers three main advantages over the cassette:

1. Data or program transfer from the TI 99/4A to a disk is about 30
times faster than the same transfer to a cassette.

2. Files (programs) on a disk are directly, or randomly, accessible.
No search through a tape, no keeping track of tape counter
numbers, no endless fast-forwards. All you do is plop the cor-
rect disk in and seconds later you are running your program.

3. If you are working on a large program or if you have a lot of
data for a program, you should regularly make copies to protect
yourself from accidental destruction of the original. This is so
cumbersome using cassettes that you find you don’t do it. Even
with only one disk, backing up (making security copies of) key
program and data files is easy and takes only a few minutes.

As with any job, proper tools make the work easier, faster, better,
and more enjoyable. This applies doubly to programming—proper
tools not only make it easier, faster, better, and more enjoyable, they
make it possible. For those with advanced programming ambitions,
you will need:

® Memory Expansion card (so you will have 48K for your pro-
grams and data)
® A printer (for program and data listings)

46 THE Tl 99/4A USER’S GUIDE

e A disk drive and controller (for easier and faster storage of pro-
gram and data)
® An advanced language processor (i.e., Extended BASIC)

3.4 THE LANGUAGE OF CHOICE

Most of you will undoubtedly use BASIC in all the programming
you do. There are some places, though, where your Tl 99/4A offers
you a better, or more appropriate, choice depending on the applica-
tion you are going to program.

As we write this, the Tl 99/4A supports the following languages:

Tl BASIC

Extended BASIC

UCSD Pascal

PILOT

LOGO I

FORTH

TMS9900 Assembly Language

Because the 9900 microprocessor in the Tl 99/4A is a powerful
16-bit chip, other languages are likely to appear (it's easier, and more
rewarding, for software developers to write language processors for
powerful machines).

We have a review of these languages in Chapter 6 where we
discuss their strengths, weaknesses, and appropriateness to a given
task. Here, we will tell you what's available to help you in your pro-
gramming.

3.4.1 BASIC

TI BASIC and Extended BASIC are suitable for most common pro-
gramming on the Tl 99/4A. If you need a little more help, you can get
the Programming Aids I, Il, and Il BASIC language assist packages
from TI. These give you things like a sort, file dump, and merge that
make it easier to manage and ‘debug programs.

34.2 LOGO I

LOGO Il is something else altogether. A delightful introductory
programming language developed at MIT, LOGO uses graphics and
sound to effortlessly introduce children to the concepts of program-
ming and logic. LOGO is so entertaining, as it instructs, that children

SOFTWARE: MAKE IT OR BUY IT 47

sit for hours manipulating “‘turtles” and other moving objects (sprites)
on the display.

Although it was intended for young children, it's not bad for
computer-shy adults either. It not only teaches computer concepts,
but also teaches logic, geometry, and determined problem solving.

LOGO is not, however, a general purpose programming language.
It's great for graphic displays, but no good at all for balancing your
checkbook.

3.4.3 Assembly Language

The final choice, of course, is TMS9900 Assembly Language. Why
bother with Assembly Language? It's difficult to learn, tedious to
write, a pain to debug, and requires you to know a great deal about
how the Tl 99/4A actually works.

You bother with Assembly Language because it’s fast. Some appli-
cations, like many arcade games, absolutely require fast response
from the program.

BASIC and Pascal, two other general purpose languages available
on the Tl 99/4A, are interpretive. This means that the code you write
is not translated directly into 9900 machine language. Instead, it is
translated into an intermediate format that is interpreted by the lan-
guage processor as the program executes. This puts another level be-
tween your program and Tl 99/4A machine language, slowing execu-
tion significantly.

You may also need access to some facilities of your machine that
are not available through BASIC or Pascal. Some graphics functions,
for example, are accessible only from Assembly Language.

And, of course, there is space. An Assembly Language program is
much more compact than a corresponding BASIC or Pascal program.
An Assembly Language program can use as much as 52K of RAM—
16K in the Tl 99/4A, 32K in the Memory Expansion card, 4K in the
Mini-Memory Module—for program and data storage, significantly
more than BASIC or Pascal. (Remember, you use Extended BASIC
from a cartridge. You cannot use both the Mini-Memory cartridge and
the Extended BASIC cartridge at the same time.)

Despite these advantages, going 100% Assembly Language is only
for the dedicated. But, you have an alternative. Extended BASIC and
Pascal both allow you to link to subroutines written in Assembly Lan-
guage. Thus, you can obtain many of the advantages of Assembly
Language, while retaining the ease-of-programming and debugging
support of BASIC or Pascal.

48 THE TI 99/4A USER’S GUIDE

3.4.4 Pascal

UCSD Pascal, which requires the Pascal P-Code card in your Ex-
pansion Box, is an industry-wide standard Pascal language interpre-
ter. So what? you might ask. The wonderful thing about UCSD Pascal
is that it is totally transportable. You can take a UCSD Pascal program
from IBM'’s latest mega-mainframe computer with 64 million bytes of
memory executing 25 million instructions per second and, with no
changes at all, run exactly the same program in your Tl 99/4A. (Well,
maybe some changes to fit into the smaller memory you have.)

So when should you use Pascal? Well, if you are a Computer Sci-
ence major, you might need Pascal to do your homework. If you are
developing software for sale to a market broader than just the Ti
99/4A crowd, UCSD Pascal is a good choice because it's im-
plemented on an enormous number of machines. It also has some
very nice support for program development.

But, it's expensive. You may have to buy it to support another
package that you want to use on your Tl 99/4A. For example, PILOT
requires the P-Code card. If you don’t need Pascal for something else
though, Extended BASIC is a lower cost and quite viable alternative.
With the extensions that Tl has put into it, Extended BASIC is nearly
as powerful as Pascal, makes more direct use of the Tl 99/4A hard-
ware, and is easier to learn.

3.4.5 PILOT

PILOT is a special purpose language for creating Computer Aided
Instruction (CAl) programs. PILOT is itself written in UCSD Pascal and
so requires the P-Code card to run. If you are a teacher, or just inter-
ested in computer aided instruction, PILOT is a good choice for
generating CAl courses. As with UCSD Pascal, courses created using
PILOT are completely transportable to many other machines.

PILOT is not a general purpose programming language. You should
use it only if you are interested in Computer Aided Instruction pro-
gramming.

3.4.6 FORTH

FORTH is a new language from Tl targetted firmly on the third
party software development crowd. It is a fully compiled language
that is translated into 9900 machine code. It is, therefore, an alterna-
tive to writing in Assembly Language.

FORTH is an excellent systems development language but it’s very

SOFTWARE: MAKE IT OR BUY IT ~ 49

difficult to learn. Use FORTH only if you intend to produce market-
able software—and are a very talented programmer.

3.5 PACKAGED SOFTWARE

Purchasing software is certainly the easiest—and for some people,
the only—way of getting it. Purchased software comes from software
publishers in units called packages. A single software package can be
one or several programs and may include data files.

The applications software packages you can buy for the Tl 99/4A
consist of a program or programs designed to perform a specific
function or set of related functions.

The primary thing to remember about all microcomputer software
is: you run it as it comes. There is very little you can do to tailor a
package to your needs and almost no support from software pub-
lishers for any kind of change. This is the only way to keep costs low
enough for you to afford their products.

And software for the Tl 99/4A is incredibly cheap. Most pro-
grams—even those in Command Cartridges—cost less than $100. If
you can get the software on cassette or disk, it typically costs from
$10.00 to $50.00.

The TI 99/4A has an enormous amount of software available to run
on it. More than 1500 software packages are available in

Arcade games

Board game simulations
Thought games (adventure type games)
Early education

Secondary education

Personal finance

Spreadsheet analysis programs
Communications

Word processing

Graphics

Science and engineering
Business accounting

Mailing list processing

This is only a small sample of the rapidly growing library of
software available for the Tl 99/4A. '
Much of this software is published by Texas Instruments itself. This

50 THE Tl 99/4A USER’S GUIDE

software is written either internally or under special arrangement with
cooperating software publishers and is generally of very high quality.

The microprocessor in the TI 99/4A (the TMS9900) is a first rate
16-bit microprocessor that offers a powerful instruction set. This does
two things. First, it makes the Tl 99/4A attractive to software devel-
opers because it’s easier to write for a powerful microprocessor than
for a weak one. And second, it makes it possible to implement things
on the Tl 99/4A that would be very difficult, or impossible, to imple-
ment on less capable microcomputers.

To illustrate this point, consider three highly regarded software sys-
tems that are available in Tl 99/4A versions:

® The UCSD, Pascal P-Code system, an advanced design system
normally found on business microcomputers and originally
created for minicomputer systems.

® MicroSoft’s MultiPlan, a super-sophisticated spreadsheet analysis
program that was named software product of the year by
InfoWorld (a first class industry newspaper that you can often
find in computer stores).

® More than 400 of Control Data Corporation’s widely acclaimed
Plato series of computer aided instructional programs. This
software was developed on giant mainframe computers for more
than a decade before it was moved to the Tl 99/4A.

A number of independent software houses (companies that write
programs for sale) are also producing programs for the Tl 99/4A.
Many of these companies entered the Tl 99/4A software market when
fewer than 100,000 TI 99/4As had been sold. By the middle of 1983
there were more than one million Tl 99/4As out there. This kind of
growth will draw many new companies into the Tl 99/4A software
marketplace.

This is good news for those of us who own Tl 99/4As. We will have
much more software to choose from—and a little price competition
never hurt anyone.

On the other hand, it also means you have to beware of software
that has been cobbled together too quickly, with shoddy design and
insufficient testing. And, of course, who can forget the great failing of
home computer software—crummy documentation (instruction
manuals).

SOFTWARE: MAKE IT OR BUY IT 51
3.6 BUYING SOFTWARE

Buying software is always a risky business. There is a lot of good
stuff out there, but there is also a lot of trash. You can even, some-
times, make a mistake buying the good stuff (buying a Maserati is not
the best choice if all you need, or know how to drive, is a Chevette).

With this in mind, we present the following Software Acquisition
Rules, whose main thrust is: look carefully before you buy.

Rule 1. Decide exactly what you want the software to do for you.

If you are buying a game, you want to be entertained. Make sure
you will be. If the game is for your child, make sure your child is old
enough to understand it, but not too old to be bored by it.

If you are buying something to manage your investments or per-
sonal finances, take a look at the size of your holdings or the com-
plexity of your personal finances. Buy a software product that is con-
sistent with your real requirements (don’t forget to factor in some
realistic growth).

Sometimes a software package comes looking for you. You see it at
a friend’s house, or in an advertisement on tv, or in a magazine.
Don't rush right out and buy it! There may be other packages avail-
able that do the same thing, except better, or cheaper. Look around
first, compare it to other packages, then decide.

The object here is get a good idea of your actual needs before you
go looking. It will be much less confusing to you if you do.

Rule 2. Decide how much you want to spend.

Great rule, this one. It's very easy to get mesmerized by your
friendly neighborhood software salesperson demonstrating this really
terrific software package. The thing’s got 87 bells and 9 whistles—
you pay for every one.

While you are deciding what you want the software to do for you,
also consider what it's worth to you to get it done. Most software for
the Tl 99/4A costs between $15.00 and $200 for each individual
package. A full system of integrated programs might cost more than
that by the time you add up the separate costs of all the pieces.

Another component of cost, that we talk about in Rule 9, is the
additional hardware requirements of some packages. For example,
the LOGO language (about $75.00 at discount) requires the 32K
Memory Expansion card. That means, at a minimum, you have got to

52 THE Tl 99/4A USER'S GUIDE

buy the Expansion Box and the Memory Expansion card—more than
$300 at discount prices.

Rule 3. Read the reviews.

If you don’t already subscribe to (or at least regularly purchase) a
variety of microcomputer magazines, start now. These publications
run frequent reviews of new or updated software packages. In gen-
eral, the quality of the reviews is good and the integrity of the re-
viewers quite high. _

If you can locate a review of the software package you are plan-
ning to buy, you will often find that most of your work has been done
for you.

Rule 4. Evaluate and compare the capabilities of the software pack-
ages you are interested in.

By this time, you have decided the minimum requirements for the
software package you want. It's simple then to compare those re-
quirements to the capabilities of a particular package.

You may not always be able to find exactly what you need in some
application areas. The art is in finding which of the available pack-
ages provides most of what you need.

Rule 5. Check for any related software products that might be of use
to you later.

Some individual software packages are a single piece of a larger
system of applications packages. For example, you can buy an indi-
vidual early learning program (as a Command Cartridge) that is but a
single entry in an entire spectrum of similar early learning programs.
This applies to some games as well, like adventure type games.

Knowing of related products that may be of use to you is especially
important when you are trying to decide between two or more very
similar software packages. It may just tip the balance in favor of the
package with better related products.

Rule 6. It better be easy to use.

Ease-of-use must be one of your major concerns in evaluating any
software for your Tl 99/4A. You will receive little support or training
in the use of the software, so it had better be easy to learn and ex-
tremely user friendly.

SOFTWARE: MAKE IT OR BUY IT 53

There is often a trade-off between the power and complexity of the
package and its ease-of-use. If you genuinely need the power, then
you may have to accept a more difficult to use package.

Beware! Powerful packages are not the only ones that can be
enormously difficult to use. As you gain software experience, you will
be amazed to see how the simplest, most straightforward, applica-
tions are approached in the most difficult and obscure manner possi-
ble. This is the fault of the package designer.

Avoid packages that make simple things difficult to do.

Now you know you need user friendly software. So, how can you
tell? Look for these qualities:

e User friendly software leads you through the application in an
easy way that anyone familiar with the application—not the
software package—can understand.

e User friendly software never deserts you in a moment of need. It
intercepts errors, explains them in terms you can understand,
then offers you a chance to fix the problem (if possible).

e User friendly software never destroys your data, and, further-
more, does everything possible to keep you from doing so.

Rule 7. Read the documentation.

Good documentation is essential for all but the most trivial of
packages. Documentation is the bridge between you and your appli-
cation package. It should be well written, well organized, nicely pre-
sented, complete, and appropriate to the intended reader. If it's an
educational package for your child, the manual should not baffle you.

Look for examples. You can learn a lot from the examples in a
manual, even if the examples are not exactly what you need. A mar-
ginal manual can be usable if it includes good examples; good man-
uals always include good examples.

In a manual longer than 30 pages, you should certainly expect to
find an index. It should not be one of those keyword-only indexes
either—they send you flipping all through the manual looking for
what you need. The entries should tell you what you will find at the
indicated page.

If the package is not adequately documented, reject it.

The documentation on TI's own packages is pretty good, though
not always as complete as it could be. Documentation from indepen-
dent software publishers is variable. Check carefully, before you buy.

54 THE Tl 99/4A USER’S GUIDE

Rule 8. Test run the software if at all possible.

Many retailers have Tl 99/4A systems set up and will let you test
any of the software they sell. Try it out. See how you like it.

While you are running it, look for “’bugs’ (errors in the program).
Try it with the kind of data that you expect to be using. After you have
seen how it runs, try to make the program fail. Give it wrong answers,
tell it to do something stupid, and see how it handles the errors.

It's difficult to tell whether a package contains errors. If you know,
or can get the names of, people who already have the package, you
can ask them whether they have had any problems. As a general rule,
new products contain some errors not revealed in testing. A package
that has been in use for a year is probably error free.

Rule 9. Find out how much hardware the package needs.

Hardware requirements for application packages vary widely. Most
game cartridges need only the Tl 99/4A console to run. The Editor/
Assembler, however, requires the Memory Expansion card and a disk
drive. '

Determine these requirements before you buy a package. You may
find that you are not really interested in the software if you are not
ready to invest in the hardware required to run it.

Be careful of listed “minimum requirements.!” The minimum may
not be sufficient for your purposes or the package may be operating
at such a handicap that it takes forever to do its job. For example, the
Personal Record Keeping cartridge will work with a cassette data file,
but it's slow if you have a lot of data to store.

Rule 10. Evaluate the support you will get.

As we have already said, software for home microcomputers is in-
expensive. And software publishers cannot provide a lot of support
for their users. Some software houses do offer some support.

With much of the software you buy, you won’t need any support. If
you do think you will need help, look at the support before you buy.

Many software publishers provide a “‘hot line” for you to call with
questions concerning their products. Think up a question and try out
the hot line service. If you cannot get an answer, or if the answer is
wrong, or if you cannot get through at all, look elsewhere. Some
software houses staff these positions with inexperienced people who
know little about their products.

SOFTWARE: MAKE IT OR BUY IT 55

3.7 WHERE TO BUY SOFTWARE

You buy software in much the same way that you buy hardware. If
you expect, or need, support from your dealer then you must buy
your software from a reputable, knowledgeable, computer dealer. If
you don’t need help from a dealer and you want to save some
money, order your software from a discount store or a mail order
house.

You will pay more at a computer store, but buying retail affords you
the opportunity to test the program before you take it home. Some
retail dealers have sample Tl 99/4A systems set up in their stores so
that you can test software. If your retailer won't let you test it before
you buy it, find another dealer.

If you cannot find a better retailer, you might as well order the
software through the mail. A retailer who won't let you test a software
package probably is not going to offer you much support anyway.

Discount store and mail order buying are definitely the cheapest
ways to get software. You can expect 20% to 40% off the list price for
software purchased this way.

Mass market discount stores often have very good prices on
software. An advantage to buying in discount stores is taking the
software home with you, instead of waiting for it to be delivered.

If you are looking at software at discount prices, remember to
compare both prices and shipping and handling charges. There are
wide differences between mail order houses in these ‘“‘additional’”
charges that can make one a much better deal than the other.

There are a few things to watch out for when buying software:

® Make sure the software is the most recent version of the pack-
age. For example, LOGO Il is out but there may be some old
versions kicking around.

® Make sure you know the list price before you order. Some ad-
vertisements just plain lie. They scream ‘“We have the lowest
prices around”’ and then charge full list price for their software.

3.7.1 The Ethics of Discount Buying

A few final words about buying software. Be ethical and reason-
able. Don’t go into a computer store and spend a lot of the staff’s
time trying out the various products you want to buy and then order
the software from a mail order house. This is not good business and
will cost you in the long run.

56 : THE TI 99/4A USER'S GUIDE

Computer stores provide a valuable service along with their prod-
ucts. They provide support for those computer owners who need the
help. You should not take advantage of this service without repaying
them by buying their products.

If you are purchasing from a discount store or a mail order house,
do whatever research you need to. Try the package out at a friend’s
house. Join a computer club and get whatever information you need.
Read the reviews. Just don’t waste the time of the computer store
staff.

YOU, TOO, CAN BE A
PROGRAMMER:
BASIC ON YOUR TI

In this chapter, we talk about writing simple programs in
BASIC and explain the differences between TI BASIC (the one
that comes in the 99/4A) and Extended BASIC (that you buy in a
cartridge).

We don’t intend here to teach you everything you need to
know to write BASIC programs. What we will do is tell you what
you can expect to be able to do and what you will need to do it.

4.1 BASIC OVERVIEW

BASIC, Beginners All Purpose Symbolic Instruction Code, is the
programming language most often used on home computers today.
BASIC is relatively easy to learn, yet powerful enough that you can
write substantial programs in it.

Like any programming language, BASIC is a set of instructions that
tell your computer what to do. Texas Instruments provides a standard
TI BASIC in ROM as part of the Tl 99/4A Home Computer and, for
more advanced programming tasks, an Extended BASIC cartridge.

If you really intend to do a lot of BASIC programming, you should
get Extended BASIC. The additional features in Extended BASIC make
it much easier to design and write BASIC_programs, especially am-
bitious BASIC programs.

57

58 THE Tl 99/4A USER’S GUIDE
4.2 STANDARD TI BASIC

The standard Tl BASIC that comes in ROM in your Tl 99/4A con-
sole conforms to the American National Standard for Minimal BASIC.
TI BASIC offers features beyond the minimal standard, like:

e Color graphics: you control up to 16 colors and can create
user-definable characters.

® Sound: you control the duration (0.001 to 4.25 seconds), vol-
ume, and frequency of three independent tones, plus eight
“periodic’’ or ““white’’ noises. The frequency varies from 110 to
44,733 hertz (Hz) for tones. .

® Joystick control: you determine the position of the joystick levers
and the condition of the joystick fire buttons (pressed or not
pressed).

® Special keyboard scanning routines: let you trap control char-
acter codes and/or split the keyboard into two (right and left)
sections for multiple control (as in a two player game).

® Special screen control and graphics routines: let you easily
define new characters, set character colors, and write at specific
screen positions.

® Arrays: can have up to three dimensions.

® [ine Editor: is built in and easy to use and includes automatic
line numbering and resequencing.

These are only some of the excellent features available in standard
T1 BASIC. TI BASIC represents a good BASIC language set. It is more
than sufficient for solving beginning programming problems.

However, Tl BASIC cannot use more than the 16K of memory that
comes in the Tl 99/4A console. If you want, or need, to write pro-
grams larger than 16K, you must use Extended BASIC.

4.3 EXTENDED BASIC

While the TiI BASIC that comes with the Tl 99/4A is a very good
version of BASIC, you may find that you need an even more powerful
version. Texas Instruments developed their Extended BASIC language
to take full advantage of many of the sophisticated features in the Tl
99/4A Home Computer.

One important feature of Extended BASIC is that you can use the
32K Memory Expansion card. Programs that are stored and run in this
memory can be larger, and often execute faster, than those run from
the standard 16K RAM in the Tl 99/4A console.

YOU, TOO, CAN BE A PROGRAMMER: BASIC ON YOUR TI 59

Extended BASIC can access up to 48K—the 16K that comes in the
TI 99/4A plus the 32K from the Memory Expansion card. After every-
thing is taken out, you end up with about 36,000 bytes of program
and data space under Extended BASIC. This does not count the ap-
proximately 8000 bytes available for Assembler programs that you

can

link to from Extended BASIC.

Extended BASIC comes in a cartridge and offers these
enhancements to the standard Tl BASIC:

Sprites: you define up to 28 independent graphics figures that
can be moved around on the screen.

Speech: your BASIC programs can speak through the Speech
Synthesizer Peripheral.

Extended memory support: lets you use more than the 16K RAM
that comes in your computer. You can access up to 48K with the
32K Memory Expansion card.

Multiple statements on one line: make it easier to enter pro-
grams, saves space since only the first statement on a line needs
a line number, and results in faster execution of the program.
More functions: like MAX, MIN, and PI.

Arrays: of up to seven dimensions (increased from three).

Error handling: lets you control error or warning conditions and
take appropriate action within your program.

IF-THEN-ELSE enhancements: allows you to enter multiple
statements after the THEN and ELSE keywords, instead of only
line numbers.

Assembly Language subroutine support: you can load and link to
TMS9900 Assembly Language routines. You will need the
Editor/Assembler to enter Assembly Language statements.
Named subroutines with local variables and passed parameters:
make it easier for you to write programs using the most modern
structured programming methods.

Enhanced input/output statements: including formatted printing
and cursor positioning control.

Merging of programs: allows you to store commonly used
routines on disk and merge them automatically into new pro-
grams as you write them.

Most programs written in TI BASIC will run in Extended BASIC. You
should be aware of these differences between Tl BASIC and Extended
BASIC:

60 THE Tl 99/4A USER'S GUIDE

e [f you have only the console memory to use, the maximum size
of an Extended BASIC program is 864 bytes smaller than the
maximum size of a Tl BASIC program.

e Extended BASIC has some additional keywords that may conflict
with variable names already in your program.

e The multiple statement option in Extended BASIC will conflict
with Tl BASIC PRINT statements that use :: (two colons) to indi-
cate skip two lines. (In this case put a space between the colons,
like this :).

4.4 BASIC OPERATING MODES

As you use BASIC, you do different things at different times. Some-
times you get your program from a cassette tape. Sometimes you
make changes to a particular line in a program. At other times you
RUN a program.

Tl BASIC lets you do these things by operating in three modes:

® In Command mode, you type commands, without line numbers,
and the command is executed as soon as you press the
key.

® In Program mode, you type statements that include line num-
bers, making them part of a program. The statements are not
executed until you RUN the program.

® In Edit mode (see Section 4.7), you change lines in your pro-
gram.

4.5 BASIC ELEMENTS

Some BASIC elements work only in Command mode, others only
in Program mode. But they all have a customary use that classifies
them as one of the following:

© Commands
o Statements
® Functions

Appendix E lists the TI BASIC and Extended BASIC commands,
statements, and functions with a brief description of each.
4.5.1 Commands

Commands do something to your program or disk files. Commands
do not operate directly on your data.

YOU, TOO, CAN BE A PROGRAMMER: BASIC ON YOUR TI 61

When used in Command mode, commands are executed im-
mediately after you press the key. Some commands can
also be used as statements, that is, as part of a BASIC program.

RESEQUENCE is an example of a command that can’t be used as a
statement. You use RESEQUENCE like this:

RESEQUENCE
or
RESEQUENCE 1000,50

DELETE is an example of a command that can be used as a state-
ment. You use DELETE as a command like this:

DELETE ““DSKI.AFILE”

You use DELETE as a statement in a program, like this:
500 DELETE “DSKI.AFILE”

or
900 DELETE “DSK2.” & FILENAME$

4.5.2 Statements

Statements are part of a program. They are executed when the
program is RUN. Some statements can also be used as commands,
that is, entered and run directly from the keyboard—not as part of a
BASIC program.

In Tl BASIC, each statement included in a program must be entered
on its own line, with its own line number. Extended BASIC lets you
put more than one statement on a line.

Most BASIC statements can also be used as commands. For exam-
ple, you use PRINT statements as commands in Immediate mode like
this:

PRINT A+B

or
PRINT (750.59—255.36+45.93)*.34

You use PRINT statements in programs like this:
100 PRINT “HI THERE”

or
950 PRINT “THE TOTAL IS ’; ANSWER

Some BASIC statements, like GOSUB and GOTO, cannot be used
as commands because they are meaningless outside the context of a
program. (Without a line number, where would you GOTO?)

62 THE Tl 99/4A USER’S GUIDE

4.5.3 Functions

Functions perform an operation and return an answer as though
they were a variable in your program. Functions cannot stand alone.
You must use them as part of a statement or command in the same
way as you would use any other variable.

Functions can appear in commands and statements. For example,
the square root function (SQR) can be used like this:

100 A=SQR (B"2 + C"2)

or in Immediate mode

PRINT SQR(256 + 398)

4.6 ENTERING BASIC PROGRAMS

You enter a BASIC program when you type it into your computer’s
memory. You can enter a BASIC program in either of these ways:

® Type a line number and one space followed by the BASIC state-
ment, like this:

100 REM THIS IS A REMARK STATEMENT

or
1230 A = 4.5678

e Type the NUMBER (or NUM) automatic line numbering com-
mand and, optionally, the starting line number and increment
values, like this:

NUMBER

or

NUM

(The first line number is 100 and the line numbers are
incremented by 10.)

Or, like this:

NUMBER 250,25

or
NUM 250,25

(The first line number is 250 and the line numbers are
incremented by 25.)

Continue to enter BASIC statements until your program is complete
or until you want to make changes to what you have already entered.
You use the Editor (described below) to make changes to the program
in memory. Program Listing 4-1 shows how to enter a program.

YOU, TOO, CAN BE A PROGRAMMER: BASIC ON YOUR TI 63

Listing 4-1. Entering a BASIC program.
Tl BASIC READY
>NUM 500,25<ENTER>
500 FOR | = 1 TO 16<ENTER>
525 CALL SCREEN (l) <ENTER>
550 NEXT | <ENTER>
575 <ENTER>
>RUN<ENTER>

Note: Things written like THIS are what the Tl 99/4A says. Things written like THIS are
what you type in. <ENTER> means you press the key..

Whatever you do, remember to save the program on tape or disk if
you want to use it again without re-typing the entire program.

CAUTION: BE CAREFUL WHEN YOU PRESS THE Bl KEY! The
BBl key can do two things, depending on whether you are hold-
ing down the key or the key when you press the
B key.

IF YOU PRESS Bl . you will return to the first (main title)
screen and lose the program in memory.

If you want to insert an = (like in A = B) MAKE SURE THAT
YOU ARE HOLDING DOWN THE KEY WHEN YOU
PRESS THE BN KEY.

You will make typing errors as you enter your programs. To correct
those errors, you use the line editor commands shown in Table 4-1.
Notice that you hold down the key (just like a
key) while pressing another key to perform these editing functions.

4.7 EDITING A BASIC PROGRAM

Your Tl 99/4A has a built-in editor so that you can make changes to
your BASIC programs. Once a program, or part of a program, is in
memory, you use the editor by entering one of the following:

® EDIT line-number <ENTER>

® line-number BB (up-arrow)
® line number (down-arrow)

After you enter one of these commands, you will see the line that
you asked for (line-number) displayed on your screen. You can make
any changes that you want to the line or delete the line.

64 THE TI 99/4A USER’S GUIDE
Table 4-1 Line Editing While Entering BASIC Programs
Key Function
ENTER Enter the program line. The line you are typing (line number and
statement) is entered into the program currently in your computer’s
memory.
FCTN D | Forwardspace one character. Move the cursor one character position
(right-arrow) | to the right. No changes are made to any characters the cursor moves
past. You use the FCTN D key to position your cursor when you want
to add or delete characters on the line you are currently typing.
FCTN E Works just like the ENTER key. The program line you just typed is put
(up-arrow) | into your computer’s memory.
FCTN S Backspace one character. Move the cursor one character position to
(left-arrow) | the left. No changes are made to any characters the cursor moves
past. You use the FCTN S key to position your cursor when you want
to add or delete characters on the line you are currently typing.
FCTN X | Works just like the ENTER key. The program line you just typed is put

(down-arrow)

into your computer’s memory.

FCTN 1 Delete one character. Delete the character under the cursor. You
(DEL) usually use the FCTN S or FCTN D key to position the cursor to the
character you want to delete.
FCTN 2 Insert characters. Insert characters at the cursor position. You can use
(INS) the FCTN S or FCTN D key to position the cursor to the position
where you want to insert the characters. Unlike the other FCTN keys,
INS puts you into Insert Mode, allowing you to insert as many char-
acters as you need.
FCTN 3 Erase the entire line. Does not erase the line number if you are in
(ERASE) automatic line numbering mode (NUMBER command).
FCTN 4 Clear the current line. Cancels the line you are typing. If you are in
(CLEAR) automatic line numbering mode, FCTN 4 erases the current line and
takes you back to command mode.
FCTN = Quit. Leave BASIC and return to the main title screen. Memory is
(QUIT) erased. If you have files opened, they are not closed. Use a BYE

command if you want your files closed. Remember, you lose the
program in memory if you have not saved it.

Several keys have a special meaning when you use them as func-
tion keys (hold down the key and the other keyboard key at
the same time) in EDIT mode. Table 4-2 shows the keys you use to
edit TI BASIC and Extended BASIC programs. Table 4-3 shows the
extra editing function available in Tl Extended BASIC.

YOU, TOO, CAN BE A PROGRAMMER: BASIC ON YOUR TI

65

Table 4-2 TI BASIC and Extended BASIC EDIT Mode Function Keys
Key Function
ENTER |Enter the program line. The line you are editing (line number and
statement) is entered into the program currently in your computer’s
memory.
FCTN D | Forwardspace one character. Move the cursor one character position

(right-arrow)

FCTN E
(up-arrow)

FCTN S
(left-arrow)

FCTN X
(down-arrow)

FCTN 1
(DEL)

FCTN 2
(INS)

FCTN 3
(ERASE)

FCTN 4
(CLEAR)

FCTN =
QUM

to the right. No changes are made to any characters the cursor moves
past. You use the FCTN D key to position your cursor when you want
to add or delete characters on the line you are currently editing.

Enter the current line and edit the next lower numbered line. If there
are no lines in the program that have lower line numbers, leave Edit
Mode. This is very useful when you are “‘stepping” through a pro-
gram making changes.

Backspace one character. Move the cursor one character position to
the left. No changes are made to any characters the cursor moves
past. You use the FCTN S key to position your cursor when you want
to add or delete characters on the line you are currently editing.

Enter the current line and edit the next higher numbered line. If there
are no lines in the program that have higher line numbers, leave Edit
Mode. This is very useful for ““stepping’ through a program when you
are making changes.

Delete one character. Delete the character under the cursor. You
usually use the FCTN S or FCTN D key to position the cursor to the
character you want to delete.

Insert characters. Insert characters at the cursor position. You can use
the FCTN S or FCTN D key to position the cursor to the position
where you want to insert the characters. Unlike the other FCTN keys,
INS puts you into Insert Mode, allowing you to insert as many char-
acters as you need.

Erase the entire line. Does not erase the line number.

Clear the current line. Erases the current line and takes you back to
command mode.

Quit. Leave BASIC and return to the main title screen. Memory is
erased. If you have files opened, they are not closed. Use a BYE
command if you want your files closed. Remember, you lose the
program in memory if you have not saved it.

66 THE T1 99/4A USER’S GUIDE

Table 4-3 Additional Extended BASIC EDIT Mode Function Keys

Key Function

FCTN 8 | Print the contents of the most recently entered line and prepare to
(REDO) | edit the line. The last line that you entered is redisplayed. You can
change any of the data on the line, including the line number. This
makes it easy to enter several lines that are similar or to move state-
ments.

4.7.1 Renumbering the Lines in Your BASIC Program

After you make changes to your program, you will notice that your
formerly orderly line numbers are now rather messy. It's easier to
make changes to a program with nicely sequenced line numbers.

You can easily renumber your program’s statements with a RESE-
QUENCE (RES) command. Renumbering, or resequencing, your
BASIC program adjusts all of the line numbers so that the line num-
bers begin at the initial value you want and increase by the increment
value you specify.

You resequence the BASIC program currently in your computer’s
memory by entering:

RES

which starts the line numbers at 100 and increments them by 10.
If, instead, you want to start your line numbers at 500 and incre-

ment them by 50, you enter:
RES 500,50

All the line numbers in your program are adjusted to the new
values. Any line numbers in GOTO or GOSUB statements are also
adjusted to reflect the new (changed) line numbers.

EXPANDING YOUR
SYSTEM

There are many peripherals available for the Tl 99/4A. You
don’t need every peripheral for your computer, but it’s often
difficult to know just what you should buy.

In this chapter, we tell you what peripherals are available for
your Tl 99/4A, explain what they do, and give you some sugges-
tions on how you can expand your system.

5.1 BUILDING A SYSTEM

When you consider expanding your system, think of your Tl 99/4A
in the same way that you think of a component stereo system. First,
you buy the basic parts, a receiver as the start of a stereo system, the
T1 99/4A console as the start of your computer system. You then add
peripherals and software to your Tl 99/4A, just as you would add a
turntable, speakers, and records to your stereo system.

The choices you make in expanding your computer system are
similar to the choices you make in expanding a stereo system. Some
people want more speakers; others would rather have an open-reel
tape deck. Some of you will want more memory; others, a printer.

Most of us cannot afford to buy every piece we want all at one
time. We have to plan our purchases, buying first those pieces that
meet our immediate needs, or our limited budget.

67

68 THE TI 99/4A USER’S GUIDE
5.2 WHAT IS A PERIPHERAL?

A peripheral is something that you attach to your Tl 99/4A console
to make it do more for you. Peripherals increase the capabilities of
your computer system and include things like:

Cassette recorders

Joysticks

Disk drives

The Peripheral Expansion Box
Printers

Modem

You have probably already bought some peripherals for your TI
99/4A. Maybe you bought the joysticks, or the cassette cables and a
recorder. These are useful, inexpensive peripherals that nearly every-
one buys.

Each peripheral is designed to do something extra for you, like let
you rapidly store and retrieve your programs and data, produce
printed output, or communicate over the telephone lines.

5.2.1 Classifying Peripherals
The Tl 99/4A supports the following kinds of peripherals:

e Those that connect directly to the Tl 99/4A console
e Those that fit into the Peripheral Expansion Box

e Those that connect to the Peripheral Expansion Box
® Those that connect to the Hexbus Interface

T! developed the Peripheral Expansion System (Expansion Box) to
make it easier for you to add new equipment and to lower the cost of
the peripherals. Some of the older non-Expansion Box peripherals are
still available. These plug into the side of the TI 99/4A console. How-
ever, they are more expensive than the corresponding Expansion Box
peripherals and may be discontinued in the future. .

The newly introduced Hexbus Interface lets you add low cost pe-
ripherals like a printer/plotter and Wafertape to your Tl 99/4A. These
peripherals are lower in cost than the Expansion Box peripherals and
have less capability. They are a good way to expand your system
without spending a lot of money.

EXPANDING YOUR SYSTEM 69

5.2.2 Some Precautions

We talk about the peripherals in a general sense in this book. We
don’t intend to replace the documentation that comes with each pe-
ripheral, especially the installation instructions.

Every peripheral comes with an instruction book. Read these books
before you attempt to use the peripheral. And follow the instructions
for installation.

5.3 NONEXPANSION-SYSTEM PERIPHERALS

Some Tl 99/4A peripherals connect directly to the Tl 99/4A console
itself. These nonexpansion-system peripherals include:

® RF Modulator (TV Adapter)

Color Monitor and Cable

Solid State Speech Synthesizer
Wired Remote Controllers (Joysticks)
Cassette Cables

5.3.1 The RF Modulator (TV Adapter)
and Your Television

If you have your Tl 99/4A hooked up to your television, you know
about the rf modulator. It's the attachment that lets your Tl 99/4A
write characters and draw pictures on your television screen.

The rf modulator turns the RGB (Red-Green-Blue) signal coming
from the Tl 99/4A console into a standard broadcast tv signal. If you
are using a regular television, you must use an rf modulator. You can
skip the f modulator if you have a monitor that accepts RGB signal
input.

If your television is a cable-ready version, you will have to get an
adapter from your local electronics store. The adapter is inexpensive
($3.00 to $5.00) and fits between your television and the rf modulator
connections.

You don’t need a color television if you don’t want to see the colors
available through your Tl 99/4A. The rf modulator works perfectly
well with a black-and-white set.

5.3.2 The Color Monitor and Cable

Tl, along with several other manufacturers, offers high quality color
monitors that draw clearer, brighter images than you can get on an

70 THE Tl 99/4A USER’S GUIDE

ordinary color television. Color monitors directly accept the RGB
signals generated by the Tl 99/4A console.

If you have a monitor, you will not need an rf modulator. You will
need the special monitor cables to connect your Tl 99/4A to the color
monitor.

5.3.3 Solid State Speech Synthesizer

Your Tl 99/4A has a great advantage over many of the other home
computers available today. It can talk to you through its Speech Syn-
thesizer. Fig. 5-1 shows you what it looks like.

The speech synthesizer produces sounds like a voice. This means
that you can write or buy programs that talk to you. Very young chil-
dren can use the Tl 99/4A with educational programs that talk to
them.

Many software packages are designed to use the speech synthe-
sizer, including educational software, the Terminal Emulator, and
some games.

The console Tl BASIC cannot use the speech synthesizer. If you
want to write programs that talk, you will need one of these:

e Extended BASIC
® Speech Editor
e Editor/Assembler

Fig. 5-1. Solid state speech synthesizer.

EXPANDING YOUR SYSTEM 71

5.3.4 Joysticks or Wired Remote Controllers

TV's Wired Remote Controllers (called joysticks by arcade gamers)
connect directly to the left side of your Tl 99/4A console (the side
nearer the Q key).

Many games use the joysticks to control the action on the screen.
TI's joysticks come in a set of two which connect through a single
connector to the TI 99/4A console. These are very sturdy joysticks
that children love. However, some adults find them too small for their
hands.

Other manufacturers make adapters that let you connect almost
any joystick to your TI 99/4A. Fig. 5-2 shows you what some of the
adapters and joysticks look like. Simply plug the adapter into the
joystick connector on the left side of the console and plug the non-TI
joysticks into the adapter.

You can choose whatever joysticks you want to connect to your Tl
99/4A if you get an adapter. You can even use two different models
for those of you who have strong preferences.

Remember, no matter which joysticks you decide to use, you must

Fig. 5-2. Joysticks and adapters.

72 THE TI 99/4A USER’'S GUIDE

have the Alpha Lock key in its unlocked position when you are using
the joysticks. If you have it Alpha Locked, your joysticks cannot move
an object “up” on the screen (toward the top of the screen).

5.3.5 Cassette Cables and Cassette Recorders

You will need some way to store your own programs and data, and
some way to get purchased programs into your Tl 99/4A. The
cheapest way to do that is with the cassette cables.

The cassette cables let you use just about any cassette recorder
with your Tl 99/4A. You don’t need a special recorder, though some
recorders work better than others.

Fig. 5-3 shows you what the cassette cables look like. Notice that
there are two sets of leads. These two leads let you connect two re-
corders to your Tl 99/4A at the same time. Tl calls the cassette re-
corders CS1 and CS2.

Recorder CS1 connects to the lead with three plugs (red, black, and
white). If your recorder does not have a remote jack outlet, use the
red and white plugs and ignore the black plug. You can read from
and write to recorder CS1.

Recorder CS2 connects to the lead with two plugs (red and black).
You can only write to recorder CS2.

You don’t need to buy a special recorder for your Tl 99/4A. If you
are buying a new recorder, try to get one with a treble control be-
cause your Tl 99/4A likes high treble better than bass.

TO RECORDER CS 2
WHITE (WRITE ONLY)

TO RECORDER CS!
(READ AND WRITE)

Fig. 5-3. Cassette cables.

EXPANDING YOUR SYSTEM 73

5.4 EXPANSION SYSTEM PERIPHERALS

Most peripherals are part of the TI 99/4A Peripheral Expansion Sys-
tem. The Peripheral Expansion System starts with the Peripheral Ex-
pansion Box and the Peripheral Expansion Interface card, the link be-
tween the Tl 99/4A and the Expansion System.

The Expansion Box can hold up to eight ““cards’’ (one of them must
be the Expansion Interface card) and one expansion system disk drive.
Most of the cards connect external peripherals, like a printer, modem,
and disk drives, to your computer.

There are some very good reasons for getting the Expansion Box:

® It takes much less space and is far more manageable than string-
ing out individual peripherals.

® |t costs less than buying many individual peripherals.

® The design makes it easy for you to include non-TI peripherals in
your system.

We will describe the most common components of the Peripheral
Expansion System:

Peripheral Expansion Box

Memory Expansion Card

Disk Controller Card and the Disk Manager Cartridge
Expansion System Disk Drives

External Disk Drives

RS-232 Interface Card

Printers

Modems

5.4.1 Peripheral Expansion Box

We cannot talk about the Peripheral Expansion System without first
talking about the Peripheral Expansion Box and the Peripheral
Expansion Interface card. Fig. 5-4 shows you what the Expansion Box
looks like.

Why do you want one of these boxes, you ask? What good is it? It
holds all the other peripheral expansion interface cards and it con-
nects some peripherals, like the printer and modem, to the console.

The Expansion Box comes with its own Peripheral Expansion Inter-
face card. The Expansion Interface card is what really communicates
with the computer. Other cards available for the Expansion Box are:

74 THE TI 99/4A USER’S GUIDE

® Memory Expansion
e Disk Controller

® RS-232 Interface

e P-Code

5.4.2 Memory Expansion Card (32K)

Your Tl 99/4A comes with 16K of RAM, more than enough for you
to learn to program in BASIC and to use much of the cartridge, disk,
and cassette software available.

But sometimes you cannot get by with only 16K. If you decide to
use Tl LOGO, PILOT, PLATO, or UCSD Pascal, you will need more
memory. Some other software packages, like Multiplan or Tl Writer,
also require more memory.

If you use the Editor/Assembler, the Mlnl-Memory Module, or Ex-
tended BASIC, you can write programs that access more than 16K.
The standard BASIC that comes with your Tl 99/4A can only access
the memory (16K) included in the console.

You can add 32K more memory to your basic system by using the
Memory Expansion card, shown in Fig. 5-5. This gives you a total of
48K of RAM.

There are several manufacturers, besides Tl, making memory ex-
pansion cards to fit the Expansion Box. These may not be as sturdy as
the ones from TI, but they are a good deal cheaper.

5.4.3 Disk System

Disk drives are wonderful devices that hold 90,000 characters of
programs and data on a single sided disk. Other manufacturers offer
double sided drives. These drives record data on both sides of the

Fig. 5-4. Peripheral expansion box.

EXPANDING YOUR SYSTEM 75

Fig. 5-5. Memory expansion card.

disk and store 180,000 characters per disk. You can read from and
write to a disk drive about 30 times faster than to a cassette.

Unfortunately, disk drives are relatively expensive. If you are stor-
ing small amounts of data, you can just as well use a cassette. You do
face one cassette limit when you start writing large programs—the
largest program you can write to a cassette is 12K. There are no such
program size limits with a disk.

Some programs are only available on disk. And some applications
require a disk. The Editor/Assembler package, for example, is only
available on disk.

Disk drives are not as easy to connect to your system as the cas-
sette. You need the Disk Controller Interface card for the Expansion
Box. The Disk Controller Interface card “‘talks” to your computer and
your disk drive. You can attach up to three disk drives to one disk
controller card.

You get the Disk Manager cartridge with the Disk Controller card.
This handy cartridge makes it easy to:

Format disks

List the names of the files on a disk
Rename files

Delete files

Copy files

Make backup copies of a disk

First you get the Expansion System Disk Drive that fits into the right
side of the Expansion Box.
We must warn you about installing this drive. Someone with adult

76 THE Tl 99/4A USER'S GUIDE

sized hands will say very nasty things about disk drives before they
finish installing this one. (You could ask a 6 year old to make the
connections—that’s about the size hands you need.) If you have no
talent for things mechanical, get your drive from a store that will in-
stall the drive in your Expansion Box.

Once you have your disk system working, you may want to get
another drive. Since your Disk Controller will handle up to three
drives, each additional drive after the first is less expensive than the
first (you don’t need to buy another controller card).

You can fit only one disk drive into the Expansion Box. You need
external disk drives (like the one shown in Fig. 5-6) for your second
and third drives.

You connect the external disk drives to the Disk Controller card tab
that sticks out the back of the Expansion Box. Make sure that you get
the cables you need to do this.

At this time, several companies are offering Tl-compatible disk
drives at very attractive prices. If you decide to get one of these
drives, make sure that the salesperson guarantees that it will work
with your Tl 99/4A.

5.4.4 RS-232 Interface Card

The RS-232 Interface card fits into the Expansion Box and has a
special tab that fits out the back of the box. This tab has a 16-pin
parallel port and a 25-pin serial port. Ports are the communications
channels between the RS-232 card and an external device, like a

Fig. 5-6. External disk drive.

EXPANDING YOUR SYSTEM 77

printer. Some printers use a parallel communications interface and
others use a serial interface. Modems use the serial interface.

Because it's an industry-standard interface, the RS-232 Interface
card gives you a wide choice of industry-standard peripherals (like
printers, plotters, and modems). You are not limited to peripherals
offered by TI. You pick what you like best, and can afford, from the
multitude of products available in the larger computer peripherals
marketplace.

You can get a “/Y"’ cable for the serial port on your RS-232 Interface
card. The Y cable lets you connect two serial devices to the single
serial port. You can, therefore, connect up to three devices (one paral-
lel, two serial) to a single RS-232 Interface card.

You can put two RS-232 Interface cards into the Expansion Box. If
you do want to use two RS-232 cards, you must have the second card
permanently modified at a Texas Instruments Service Facility or order
a modified card.

5.4.5 Printers

Your Tl 99/4A talks to printers through the RS-232 Interface card.
You can use either a “parallel printer” (one that attaches to the
RS-232 8-bit, 16-pin parallel port) or a “‘serial printer’” (one that at-
taches to the RS-232 8-bit, 25-pin serial port). These are standard
microcomputer printer connections.

You have an amazing variety of industry-standard printers to
choose from. Fig. 5-7 shows you what two different printers look like.
Printers are divided into these general categories:

® Dot-matrix printers form the characters out of a bundle of little
wires that make ‘‘dots.”

® Fully formed character printers use a typing element on a “’daisy
wheel” with the letters on the ends of the “petals’’; some print-
ers of this type use a ““thimble’”” or a “’ball” instead of a “‘daisy
wheel.”

The TI printer is a medium priced, dot matrix printer that prints
upper and lower case characters and graphics characters. There are a
number of similar printers on the market. Look at and choose the one
you like best (and can afford).

You will most likely buy a dot matrix printer. Fully formed char-
acter printers are relatively slow and very expensive.

Dot matrix printers vary widely in their printing capabilities and the
quality of the characters they print. Printers come with an enormous

78 THE TI 99/4A USER’S GUIDE

Fig. 5-7. Printers.

mix of features. This mix determines the price of the printer. Some
features to look for in a dot matrix printer are:

e The number of dots that form a character determines the
readability of the printing and the characters that can be printed.
Too few dots means only upper case characters, or lower case
characters with no descenders (the part of letters like p, g, y, and
g that extends below the line).

® The speed of the printer affects both the quality of the printing
and the price of the printer. Many printers operate at more than
one speed, with a reduction in print quality as speed increases.

® Some printers use friction feed, which is unreliable for printing.
long listings. Others use tractor feed or pin feed mechanisms that
are more reliable.

EXPANDING YOUR SYSTEM 79

e Some printers accept only 8% inch wide paper. Others use up to
14 inch wide paper. Watch out for printers that require special
paper. Special paper can be hard to get and very expensive.

® Graphics, special character sets, variable character size, color
printing, and proportional spacing are among the many acces-
sory features available.

You can find dot-matrix printers for as little as $200 or as much as
$3000. The price depends on what mix of features and speed you
choose.

The choice of printer is very much a choice of what you want to
look at on the printed output. If you cannot easily read the letters that
your printer prints, the printer is useless.

Before you buy a printer, ask to see something that has been
printed on the one you like. If you cannot read it or if you don't like
the way it looks, check other printers in the same price range.

5.4.6 Modems

A modem (Modulator-Demodulator) is the communication inter-
face between your computer and another computer. Modems take
information from your computer, translate it into data that can be sent
over telephone lines, and send it. On the other end, a modem does
the reverse, taking the information from the telephone line and trans-
lating it so that the computer can understand it.

Modems look like small boxes with or without places for you to put
your phone. Fig. 5-8 shows you two commonly available styles.

You use a modem when you want your Tl 99/4A to act like a ter-
minal to another computer. You need a modem to use services like
TEXNET or The Source and you need the Terminal Emulator cartridge
to make your Tl 99/4A behave like a terminal.

The modem connects to the RS-232 Interface card through a serial
port. You cannot use a modem without the RS-232 Interface card.

TI's modem has a place to put the phone handset (the part you
hold when you talk on the phone). Other modems connect directly to
the universal connectors (those little square connectors) on the
phone.

Several manufacturers make modems specifically for the Tl 99/4A.
You can use any standard modem that communicates at the correct
speed (up to 300 baud at this time).

You may find a real bargain in modems as more and more people
hook their home computers into services like The Source. Manufac-

80 THE Tl 99/4A USER’'S GUIDE

Fig. 5-8. Modems.

turers sometimes offer free connection to such a service when you
buy their modem.

5.5 THE HEXBUS PERIPHERALS

Ti’'s Hexbus interface lets you connect relatively low cost Hexbus
peripherals to your Tl 99/4A. The Hexbus peripherals are small (about
4.5 inches (114 mm) wide, 5.75 inches (146 mm) deep, and 1.5
inches (38 mm) high) and stackable.

Right now, you can get these Hexbus peripherals:

e Hexbus Interface
® Wafertape Drive
e Four Color Printer/Plotter-
® RS-232 Interface

Tl plans to introduce serveral more Hexbus peripherals including
other printers and a modem.

EXPANDING YOUR SYSTEM 81

5.5.1 The Hexbus Interface

The Hexbus Interface shown in Fig. 5-9 attaches to your Tl 99/4A
on the right side (where the Speech Synthesizer or Peripheral Expan-
sion Interface attaches).

The Hexbus Interface lets you connect any Hexbus Peripheral to
your Tl 99/4A.

Fig. 5-9. Hexbus interface attachment.

5.5.2 The Wafertape

The Hexbus Wafertape digital tape drive and Wafertape tape shown
in Fig. 5-10 give you a reasonably priced, sequential random-access
storage device.

The Wafertape is a digital recording medium (unlike a cassette tape
which is not digital). Reading from and writing to a Wafertape is
much faster and more reliable than using an audio cassette. Another
important feature of the Wafertape is that you can store and retrieve
files by name, just as you can on a disk. You cannot store or retrieve
audio cassette files by name.

Wafertapes come in various lengths from 5 to 50 feet (1.5 to 15 m).
You can store up to 48K bytes of programs and data files on a single
50-foot (15 m) Wafertape.

5.5.3 The Four-Color Printer/Plotter

The Hexbus four-color printer/plotter shown in Fig. 5-11 is a
plain-paper printer/plotter. This peripheral gives you an inexpensive
way to have hardcopy listings of your programs and data.

82 THE TI 99/4A USER’S GUIDE

You can write anything that you can draw on your screen onto the
roll of paper. The printer/plotter can use up to four different pens
(usually black, red, blue, and green) when drawing or printing its
characters.

[TEXAS INSTRUMENTS WAFERTAPE |

[TEXAS INSTRUMENT PRINTER/PLOTTER I

O

Fig. 5-11. Hexbus four-color printer/plotter.

5.5.4 The RS-232 Interface

The Hexbus RS-232 Interface lets you connect peripherals like
printers and modems to the Hexbus. The Hexbus RS-232 Interface
looks like the other Hexbus peripherals—a small metallic box.

You can also get the Hexbus RS-232 interface with a parallel output
port so you can connect parallel printers to the Hexbus. The Hexbus

EXPANDING YOUR SYSTEM 83

RS-232 interface lets you connect a modem and/or printer to your Tl
99/4A without having to invest in the Expansion Box.

5.6 PLANNING FOR EXPANSION

Everyone who gets a home computer wants to expand it sooner or
later. But, not everyone will want, or need, to expand their systems in
the same way.

We are going to discuss some common ways to expand your sys-
tem, using a planned approach to purchasing your hardware and
software.

5.6.1 What It Costs

It's often difficult to decide what you want next. There are any
number of wonderful peripherals that you really need.

To talk about buying equipment, we have to talk prices. Depending
on various market factors, you will often find equipment at substan-
tially lower prices than the suggested list prices from Texas Instru-
ments. The equipment prices we quote in this book are typical dis-
count prices for Tl 99/4A peripherals.

As an example of what things will cost, Table 5-1 shows you some
(1983) suggested list prices and some commonly available discount
prices. '

You can see that there is quite a difference between the suggested
list prices and currently available discount prices. You will also find
specials in your local stores or through the ads from reputable mail
order establishments in the popular home computing magazines and
newspapers.

Chart 5-1 lists the components of a well-equipped system. At list
price, this equipment would cost about $2500—a real investment.
However, at currently available discounted prices, the same equip-
ment would cost about $1780, a savings of $720 (or 29%).

5.6.2 Tl Versus Non-TI Peripherals

Your Tl 99/4A uses a standard RS-232 interface to talk to its printer
and modem. This means you are not locked into buying TI peripher-
als and you can often find a reasonably priced substitute.

The obvious choices for non-Tl peripherals are the printer and
modem. But you might also consider non-TI cards for the Expansion
Box. The easiest to find are substitute Memory Expansion cards, for
about half the list price of the Tl card.

84 THE Tl 99/4A USER’'S GUIDE

Table 5-1 Peripherals and Estimated Costs

Suggested Average Discount
Item List Price Price
Cassette Cables $ 1495 $ 12.00
High Resolution 10-inch Monitor $399.95 $320.00
Peripheral Expansion System $249.95 $175.00
RS-232 Card $174.95 $125.00
Disk Controller Card $249.95 $175.00
Tl Expansion System Disk Drive $399.95 $275.00
Tl External Disk Drive $499.95 $375.00
Non-TI External Disk Drive — $250.00
Tl Memory Expansion Card
(32K RAM) $299.95 $215.00
Non-Tl Memory Expansion Card — $150.00
P-Code Card $249.95 $180.00
Solid State Speech Synthesizer $149.95 $100.00
TI Telephone Coupler Modem $224.95 $163.00
Non-TI Modem — $100.00
Tl Impact Printer $750.00 $500.00
Non-T! Dot Matrix Printer — $200.00 through
$1500.00
Non-TI letter quality printer — $400.00 through
$3000.00
Terminal Emulator Il Cartridge $ 49.95 $ 35.00
Hexbus Interface $ 59.95 $ 48.00
Hexbus Printer/Plotter $200.00 $160.00
Hexbus Wafertape © $140.00 $119.00
Wafertapes (50 foot) $ 8.00 —
Hexbus RS-232 Interface $100.00 $ 81.00
Chart 5-1

Peripherals in a Well-Equipped System

Expansion Box
Disk Controller Card
Expansion System Disk Drive
Printer
Memory Expansion (32K) Card
RS-232 Interface Card
Telephone Coupler (Modem)
Terminal Emulator Il Cartridge
Extended BASIC Cartridge
Cassette Cables
Cassette Recorder

Should you buy Brand X equipment? You are taking some chances
if you do, but usually this equipment is reliable and guaranteed. It's
almost impossible to go wrong with printers as long as you buy a well
known brand.

EXPANDING YOUR SYSTEM 85

With modems, you cannot go wrong if you make sure that the
modem will work with the TI—TI uses an industry-standard modem.
Be careful that you don’t get a nonstandard modem specifically made
for another home computer.

You will find information on industry-standard peripherals in any of
the microcomputer magazines listed in Appendix A.

5.7 BUYING HARDWARE

You can buy hardware in many places—computer stores, discount
stores, department stores, toy stores, mail order. And, while you are
looking, you will find a wide range of prices for the same item.

But before you go buying anything, ask yourself some questions.
Should you go for the cheapest price? Do you really want to order
through the mail? Do you need a lot of help putting equipment to-
gether? What if there is a problem and the equipment does not work?
Who fixes it?

5.7.1 Assess Your Mechanical Talents

The way you buy hardware depends a great deal on the level of
experience you have with computers and the mechanical skills you
have. Usually, computer users (and not only new home computer
users) fit into one of these categories:

® Mechanically adept, experienced computer user who can easily
put together components and has some experience with com-
puters in general.

® Mechanically inept, experienced computer user who has some
experience with computers but little, if any, mechanical skill.
This user would find it painfully difficult and incredibly boring to
do anything more than turn on equipment.

® Mechanically adept, inexperienced computer user who has little,
if any, experience with computers but has a lot of mechanical
ability. This user would typically find it easy and fun putting
together components, having no difficulty with connecting pe-
ripherals to the Tl 99/4A.

® Mechanically inept, inexperienced computer user who has little
experience with computers and finds putting the components to-
gether a horrible experience. This user typically spends hours
attaching the rf modulator to the television antenna leads.

86 THE TI 99/4A USER’S GUIDE

Don’t worry about which category you fit into. Just be honest. If
you are inexperienced, admit it. You will save yourself a lot of
trouble.

The amount of experience you have with computers in general de-
termines how much help you need when deciding which parts to
buy. Obviously, if you have more experience you are able to make
these decisions more easily than someone who is just beginning to
use computers and who does not really know what's available.

Your level of mechanical skill makes a great difference in whether
you can buy equipment through the mail. If you cannot assemble it
yourself or find someone to assemble it for you (a family member or a
friend), you will have to buy at retail stores and get the salesperson’s
help.

5.7.2 Where to Buy Hardware

Discount stores have great prices and little, if any, help after (or
even before) the sale. You go into the store, pick up the box with
whatever you are buying, pay for it, and walk out. No one will put
the pieces together for you. No one will be able to answer any ques-
tions about the peripherals.

Computer stores usually sell at list price. This is more than you
would pay at a discount store but you get some service in a computer
store. You will find salespeople who know what the peripherals do
and what they are good for. You will get answers if you have prob-
lems. You might even get help putting the pieces together. You pay for
this extra service, but it's worth it if you need the help.

If you need a lot of assistance, don’t go for the cheapest prices. You
are better off paying slightly more and getting the help you need.

Once you have gained some experience (and the ability to diag-
nose and solve any problems that occur), you can look for bargains
through mass market retailers and mail order firms. When you buy
this way, you get equipment in sealed factory cartons and no help.
Reputable firms will exchange damaged items; find out whether the
firm you are dealing with has a reasonable exchange policy before
you buy. '

Local and national user’s groups often offer special deals on hard-
ware and software.

5.7.3 Maintenance

There is not much maintenance for home computers. Service cen-
ters are expensive to maintain, so most service is on a mail-in basis.

EXPANDING YOUR SYSTEM 87

Solid state components, like the Tl 99/4A console and the Expan-
sion cards, are very reliable. The general rule for solid state equip-
ment is: If it does not fail in 90 days, it probably will not.

Mechanical peripherals are more likely to cause problems. Printers
are the chief offenders here. Disk drives will sometimes cause prob-
lems, though far less often than printers.

If you buy Tl peripherals, you get a reasonable warranty and TI will
replace or repair the equipment if there is a problem. When you need
repairs, Tl has the facilities to do them.

What if you buy from someone else? Be sure that they will replace
the equipment if it does not work or that they have some way to
repair it. Sending your printer to some repair center thousands of
miles away and then waiting for months to get it back is not consid-
ered good service. Find out what's in store for you before you put out
your money.

5.8 TYPICAL SYSTEM EXPANSIONS

To help you decide the best way for you to expand your system, we
have included a number of different cases, each designed to meet 'a
specific goal.

We will also look at these expansion plans to give you some ideas
how to expand your system:

Using your Tl to play arcade and adventure-type games
Running educational software in cartridges and TI LOGO I
Running the PLATO system

Using your Tl as a terminal to an office computer or an on-line
service like TEXNET

5. Creating the ultimate system for a super programmer

HWN =

Each case will show you:

® A brief description of the reasons for expanding the system

® A list of equipment needed and an approximate cost (at cur-
rently available discount prices)

® A suggested expansion plan, showing one way to reach the
ultimate system in several small steps.

As we write, Tl has announced, but not released, a set of peripher-
als that were designed for its Compact Computer. You can also
use these Hexbus peripherals on the Tl 99/4A if you buy the Hexbus
interface (about $60.00 list).

88 THE TI 99/4A USER’'S GUIDE

The two most significant Hexbus peripherals that Tl has shown so
far are the Wafertape (about $140 list) and the four color printer/ plot-
ter (about $200 list). They also have an RS-232 interface and have
promised another printer and a modem for the Hexbus. These pe-
ripherals are significantly cheaper than those for the Peripheral Ex-
pansion System mainly because they avoid the initial cost of the Ex-
pansion Box.

These Hexbus peripherals can serve as low-cost or higher-
performance alternatives to standard Tl 99/4A printers, cassette tapes,
disk drives, and modems.

Case 1: You want to use your Tl 99/4A to play both arcade type and
adventure type games.

You bought your Tl 99/4A because you liked its action-based ar-
cade games and the word-based adventure games.

There are some very good games for the Tl 99/4A. All the action
games from TI can use either keyboard input or joystick control, but
most people prefer to use the familiar joysticks. So, one expansion
item is a set of joysticks.

Don’t think that it's easy to buy joysticks either! TI's set of two
joysticks (which TI calls ““Wired Remote Controllers’) are sturdy, reli-
able, and rather small. Children find them wonderful. Adults, in the
throes of fighting aliens or escaping through a maze, often grip the
joysticks too tightly and suffer painful hand cramps.

What to do? Get an adapter and whatever joysticks your hands and
wallet like best. Several companies make adapters that let you use
any joystick you want. Then you can choose whatever kind of joy-
stick you like best, maybe two different models for the different needs
of family members. A

Still in the world of game playing, you may find yourself buying
cassette cables. Many adventure games have a cartridge that decodes
your commands and a tape (or disk) that describes one of several
games. The least cost alternative is to use the cassette based software
and get the cassette cables. You may have to purchase a cassette
recorder if you don’t already have one. You can choose from a wide
variety of readily available recorders.

A higher performance alternative to the cassette tape is the Hexbus
Wiafertape. It's much faster than a cassette and you can access your
adventure game files or save files by name.

Many companies offer games on disk. Some of the games need
either the Mini-Memory Module or the Extended BASIC cartridge to

EXPANDING YOUR SYSTEM 89

run. If you want to play any of these games, you need the disk system
and cartridges.

So, to play games on your Tl 99/4A, you would need this equip-
ment:

® Joysticks (about $24.00 discount) or an adapter ($18.00 to
$25.00) and whatever joysticks you want ($10.00 and up).

® Cassette cables (about $12.00 discount) and a cassette recorder
($30.00 and up).

® As an alternative to the cassette and disk drive, you can get the
Wiafertape peripheral (about $140 list) and the Hexbus interface
(about $60.00 list).

® Only if you get games that need them, Extended BASIC (about
$80.00 discount) or the Mini-Memory Module (about $80.00 dis-
count).

® Only if you are going to play games that come on disk or that
require more memory, the Expansion Box (about $175 discount),
a Disk Controller card (about $175 discount), an Expansion Sys-
tem Disk Drive (about $275 discount), and/or Memory Expansion
card (about $215 discount).

This is not an extremely expensive expanded system, by any means
(unless you get carried away and need the disk and memory). How-
ever, you might reasonably purchase your equipment in this order:

1. Get the joysticks so you can play the action games.

2. Get the cassette cables when you get your first game that comes
on a cassette. Get a cassette recorder now, if you don’t have
one.

3. Get the Extended BASIC cartridge or the Mini-Memory Module
when you get the first game that requires one of these.

If you stop here, you will spend somewhere around $146, includ-
ing the cost of the cassette recorder.

You can improve the peformance of your system considerably for
less than $200 by getting the Hexbus interface and the Wafertape
drive.

If you find that you are really interested in playing the more elabo-
rate games, get the Expansion Box, Memory Expansion card, Disk
Controller card, and an expansion system Disk Drive for an addi-
tional cost of about $840.

This last purchase is definitely not required for you to have a great
time playing games on your Tl 99/4A.

90 THE Tl 99/4A USER’'S GUIDE

Case 2: You want to run some of the cartridge-based educational
software.

Suppose you want to take advantage of the superb educational
software available for the Tl 99/4A and you don’t really want to get
into much programming of your own.

Most of the cartridge-based software is self-contained so you will
not need anything besides the cartridge. However, some software,
especially that written for very young children, requires the Speech
Synthesizer.

The LOGO |l package requires more memory than the 16K that
comes with your Tl 99/4A. You will have to get the Memory Expan-
sion card, for which you need the Expansion Box.

To run the various educational packages, you will need:

® Fducational cartridges ($15.00 to $80.00 each, discount)

® The Speech Synthesizer (about $100 discount)

® The Expansion Box (about $175 discount) and Memory Expansion
card (about $215 discount)

You can expand your system in a number of ways, depending on
what you want to do first. The least expensive way is to start with the
cartridge-based software that does not require any support and then
move on to getting LOGO II. You could purchase equipment in this
order:

1. Some educational cartridges
2. The Speech Synthesizer

If you stop here, you can run most of the cartridge-based educa-
tional programs and you will have spent $100 plus the cost of what-
ever cartridges you buy.

If you want to use LOGO |Il, you need the Expansion Box and
Memory Expansion card for an additional cost of about $460, includ-
ing the LOGQ 1l cartridge. (You may be able to find a stand-alone
32K memory expansion unit for as little as $160. This is probably a
good deal if you don’t want to get a disk drive. It will allow you to
run LOGO Il for about $240.)

When you run LOGO I, you generate programs. It's nice, though
not necessary, to save the programs you write. A cassette tape is usu-
ally quite satisfactory for this or you could go for the higher perform-
ance and ease-of-use of the Hexbus Wafertape drive.

EXPANDING YOUR SYSTEM 91

Case 3: You wént to run the PLATO educational software (that's
written for grades kindergarten through high school).

You can run the wonderful PLATO programs that were originally
developed by Control Data Corporation to run on very large com-
puters. Tl offers a wide range of course material running under the
PLATO system, starting with courses for kindergarten children and
going all the way through high school. (Anyone who completes the
entire series of high school PLATO courses should be able to qualify
for a GED diploma.)

The PLATO software is offered only on disks, so you will need:

® Expansion Box (about $175 discount)

® Memory Expansion card (about $215)

e Disk Controller card (about $175 discount)

® Expansion System Disk Drive (about $275 discount)
® PLATO cartridge (about $50.00)

There is no way to phase this in. If you want to run PLATO, you
have to buy the whole thing all at once. Get the Expansion Box,
Memory Expansion card, Disk Controller card, Expansion System
Disk Drive, and PLATO cartridge.

This expansion plan cannot be reduced and will cost about $890.
This does not include the cost of the individual PLATO courses,
which run about $40.00 per course disk.

Case 4: You want to use your Tl 99/4A as a terminal to an office
computer and to access on-line services like TEXNET.

You want access to the on-line services like TEXNET, The Source,
or Dow Jones. You need:

® Expansion Box (about $175 discount)

® RS-232 Interface card (about $125 discount)

e Telephone Coupler or Modem (about $100 discount)
e Terminal Emulator Il cartridge (about $35.00 discount)

There is no way to use your Tl 99/4A as a terminal without all of
the pieces mentioned above. You can, however, look for alternate
modems if you want to save some money.

This expansion plan looks like:

1. Get the Peripheral Expansion Box, RS-232 Interface card, some
modem, and the Terminal Emulator Il cartridge.
2. Sign on to one or more of the on-line services, like TEXNET.

92 THE T1 99/4A USER’S GUIDE

The communications capability will cost about $435, not including
the sign-up costs for the services. Several modem manufacturers give
free sign-ups to The Source when you buy their modem.

Tl has announced a modem for their Hexbus interface. This
modem is due for release in late 1983 and may provide a much less
expensive path to communications. We estimate the cost of the Hex-
bus interface and Hexbus modem that you would require to be about
$160 total. Look for this alternative when you are ready to buy.

Case 5: You are going to be a super programmer.

You get the basic Tl 99/4A console and find that you (or your child)
are really interested in programming. It's a great hobby and you really
enjoy the act of programming. You want to expand your system to
support ambitious programming.

Some fundamentals about programming. If you want to do any-
thing complex, you need a fast storage device (disk) and a printer.
More memory is a good idea, too. To meet these requirements you
get:

® Fxpansion Box (about $175 discount)

® Memory Expansion card (about $215 discount)

® RS-232 Interface card (about $125 discount)

® Printer (TI's is $500 discount, though you can spend as little as
$200 for a cheap dot matrix printer)

Disk Controller card (about $175 discount)

® Expansion System Disk Drive (about $275 discount)

This is a costly expansion plan. The equipment listed here costs
about $965 plus a printer (figure on about $400). You should be cer-
tain that you really want to do some significant programming before
you spend this much money.

Once you have bought the equipment, you have to decide what
languages you want to use. If you want to stay with BASIC, you
should get the Extended BASIC cartridge (about $80.00 discount).

You may also want to do some Assembler work. You can do light
Assembler programming (small routines for use with Tl BASIC or Ex-
tended BASIC) with the Mini-Memory Module (about $80.00 dis-
count). For more ambitious Assembler work, you will need the
Editor/Assembler (about $75.00 discount).

EXPANDING YOUR SYSTEM 93

5.8.1 Your Own System

These examples are just that—examples. Everyone has different
needs when it comes to expanding his or her computer. Only you
can decide what you need and when you need to buy it.

We would like to stress that you plan for expansion. It's very easy
to get caught up in getting new “toys” and end up with a set of
mismatched items—things that are great but not what you need. So,
follow these steps when you are going to get more components:

Decide what you want to do.

Find out what peripherals you need to meet that objective.
Find out what the various peripherals cost.

See if you can “phase in” your equipment purchase. Maybe
you can buy one or two items now and the rest in few weeks or
months.

5. Make an equipment purchase plan and stick to it. Don’t get
carried away by the bells and whistles that salespeople show
you. Decide what you want. Make revisions to your plans if you
see something that really is better. And stick to your own plans.

ron o

BEYOND BASIC:
OTHER PROGRAMMING
LANGUAGES

In this chapter, we tell you what languages are available for
the T1 99/4A and show you situations where other languages are
more appropriate than BASIC. Most of these other programming
languages require some system expansion, such as more mem-
ory, disks, or the P-Code card.

Our objective is to give you some idea of the structure and
suitability of the other languages you can use on your Tl 99/4A.

6.1 PROGRAMMING LANGUAGES FOR THE TI 99/4A

The Tl 99/4A offers you access to many different programming lan-
guages. This is not typical of many home computers. On the Tl 99/4A
you can use Tl BASIC or:

e Extended BASIC

LOGO 1l

9900 Assembly Language
UCSD Pascal

PILOT

FORTH

But what's wrong with Tl BASIC? If you want to use another lan-
guage, you have to take the time and trouble to learn it, just as you
did with TI BASIC. Why not use Tl BASIC for everything?

95

96 THE TI 99/4A USER’S GUIDE’

For most common applications Tl BASIC (the one that comes in the
Tl 99/4A console) is perfectly adequate. If your programs are not too
large, if they don’t need animated graphics, and if they don’t depend
on fast execution (like arcade games do), Tl BASIC is fine for you. You
can forget about all these other languages and enjoy yourself with Tl
BASIC. (Though, you might want to get Programming Aids | to gain
fancier control of the screen.)

On the other hand, you may be hitting the limits of TI BASIC. Some
problems you may face are:

® Not enough memory (despite your best efforts to conserve it) to
get your program running.

® Limited access to the Tl 99/4A graphics capabilities, especially
Sprites (moving objects on the screen).

® Tl BASIC is too slow to do what you need.

® BASIC is not well suited for younger programmers.

® You want access to the full power of your Tl 99/4A.

These same obstacles confront users of many of today’s home
computers. Unfortunately for most of them, there is no way around
these obstacles. Fortunately for you, Tl 99/4A users have many ways
around them.

In the following sections, we will take a look at each of the lan-
guage offerings for the Tl 99/4A. We will give you some idea when
and where to use these languages and how much time, talent, and
money they require.

6.2 EXTENDED BASIC

If we are talking about Beyond BASIC, then why include Extended
BASIC? Because Extended BASIC is such an incredible advance over
Tl BASIC that it deserves consideration as an alternative to proceed-
ing, for example, to Pascal or Assembly Language.

Chapter 4 contains more information on Extended BASIC. You
should read that chapter to find out exactly what extensions are in
Extended BASIC. Some highlights are:

® Multiple statements per line save memory and contribute to faster
execution.

® Location controlled screen input and output allow you to do
“forms’’ (sometimes called “‘full screen’’) oriented applications
like you see in banks and airline reservation systems.

BEYOND BASIC: OTHER PROGRAMMING LANGUAGES 97

® Formatted output allows you to generate professional looking re-
ports.

® Enhanced error handling lets you take control of and correct er-
rors that occur during execution.

® Improved program control structures (IF-THEN-ELSE and named
subroutines with true parameter passing and local variables)
make it easier to write complex programs and result in more reli-
able, tighter code.

o Full Sprite control (up to 28 moving objects on the streen) niakes
it possible to write arcade style games and educational programs
for children.

® Easy access to the Speech Synthesizer.

® Access to the Memory Expansion card so that you can write
larger programs.

® Direct and easy access to Assembly Language routines means
you can write some support routines in Assembler to improve
program execution time or do things not possible in BASIC.

With these facilities, Extended BASIC represents a real alternative
to the other advanced programming languages available for your Ti
99/4A. It's cheaper than Pascal, easier to learn than Assembly Lan-
guage or FORTH, and faster and more general purpose than LOGO
or PILOT.

Its only slight limitation is an inability to access the advanced
graphics modes possible on the TMS9918A Video Display Processor
(that is the chip that handles the screen display). If you really need
high resolution graphics, you will have to use Assembly Language or
FORTH.

6.3 LOGO Il

LOGO is a delightful, dynamic language designed at MIT
specifically for children. LOGO makes heavy use of sprites, graphics,
and sound in an easily learned language that even younger children
can master.

If you, or someone in your family, is computer-shy, LOGO is the
language for you. As it entertains, it teaches problem-solving logic,
geometry, spacial relationships, perserverance, and mental discipline.
Not bad for a turtle that crawls around on the screen leaving a trail
behind it.

98 THE Tl 99/4A USER’'S GUIDE

LOGO Is easy to use. Consider this example of how you activate a
sprite:

TELL SPRITE 10 (activates sprite 10 and causes it to
obey the commands that follow)

CARRY :ROCKET (tells sprite 10 to take the shape of
a rocket)

SETCOLOR :WHITE (makes sprite 10 white)

SETHEADING 90 (prepares the sprite to go to the
right)

SETSPEED 20 (starts the sprite moving at speed
20)

Children, especially, love LOGO because it's something they can
work at and master. It's highly interactive, very much into graphics,
and a lot of fun to play with.

If you have children, you need LOGO. If you buy LOGO, be sure
to get LOGO Il. LOGO Il is much better than the original LOGO and
includes a lot of new features. LOGO requires the Memory Expansion
card.

6.4 9900 ASSEMBLY LANGUAGE

Assembly Language is the closest you can (or want to) come to
pure machine code. Each statement in an Assembly Language pro-
gram is translated into a single machine instruction. (Not very many
programmers think in the ones and zeros that make up real machine
code, or the “easier’” hexadecimal notation, either.)

Even simple tasks in BASIC—like writing some data to a cassette or
adding two numbers—translate into many instructions and a lot of
detail work in an Assembly Language program.

So why bother with Assembly Language? Mainly because it's very
powerful and very fast.1Assembly Language lets you use all the
capabilities of the TI 99/4A, including such features as ultra-high-
resolution, Bit-Mapped graphics and interrupt handling.

For some games—Parsec is an example—you have got to write in
Assembly Language. Nothing else is fast enough or flexible enough to
handle all the action.

Another valuable use for Assembly Language is in subroutines that
you call from BASIC or Pascal. The Assembly Language routine can
carry out tasks impossible to do in the other language. Sometimes it
takes too long for BASIC or Pascal to do something you need done

BEYOND BASIC: OTHER PROGRAMMING LANGUAGES 99

quickly. An Assembly Language subroutine can make short work of
the job.

Texas Instruments offers two ways for you to get Assembly Lan-
guage programs into your Tl 99/4A:

e The Mini-Memory cartridge
e The Editor/Assembler package

6.4.1 Mini-Memory Cartridge

The Mini-Memory cartridge includes a line-by-line assembler and
is the less expensive alternative. All you need is the cartridge (about
$80.00 discount).

You enter the Assembly Language program one line at a time. Each
line is translated and stored in memory as it is entered. Obviously,
you are not about to develop extensive Assembly Language systems
this way. But it's a good way to create those small service subroutines
that are so handy when called from BASIC.

The Mini-Memory approach is also an inexpensive way for you to
get a feel for Assembly Language programming. If you find you like
programming in Assembly Language, proceed to the more expensive
Editor/Assembler.

6.4.2 The Editor/Assembler

The Editor/Assembler package is a full 9900 Assembly Language
program development system. It includes an Assembler that produces
relocatable object code and a relocating linking loader that resolves
external references between independently assembled programs.

All this probably does not mean much to you unless you are an
experienced Assembly Language programmer. It's important to point
out, though, that these facilities are extremely sophisticated and
entirely unique in a low cost home computer. They promote use of
highly modular system designs, thus making it easier to write Assem-
bly Language programs.

The Editor/Assembler is not cheap. It's not so expensive by
itself—about $75.00 discount—but it requires the Memory Expan-
sion card and at least one disk drive. If you intend to do anything
beyond the trivial, you will also need a printer and the RS-232 card
that goes with it.

100 THE TI1 99/4A USER’'S GUIDE

6.5 UCSD PASCAL

- Pascal is one of those elegant languages developed shortly after the
philosophy of “structured programming” gained widespread accep-
tance in professional programming circles. It is widely used in pro-
gramming courses at colleges and universities because it introduces
many concepts not present in less sophisticated languages.

Structured programming methods call for languages containing
block-oriented program control statements. These statements deter-
mine what other statements will be executed (like the IF. . . THEN or
ON. . . GOTO statements in BASIC). Pascal contains a multitude of
block-oriented control statements, such as:

® BEGIN ... END

o CASE

® REPEAT . .. UNTIL

® FOR ... END (like FOR . .. NEXT in BASIC)
® Internal and external procedures (subprograms)

Pascal is also what is called a ““heavily typed” language. No, that
does not mean you have to hit the keys harder. What it does mean is
that all of your variables must be explicitly declared as a certain type
(for example, a REAL number, or a fixed length character string). In-
teraction between types is then carefully controlled.

Pascal also includes advanced data types like arrays, varying length
strings, sets, and RECORDS that make it easier to solve many com-
monly encountered programming problems.

These features allow you to create clear, elegant, and more easily
debugged programs than is possible with BASIC programs.

Of course, all this is not free. Pascal is a complex language that is
less intuitive than BASIC and hence harder to learn.

To run Pascal on your Tl 99/4A you need the P-Code card and the
Memory Expansion card for your Expansion Box. This earns you the
right to execute existing Pascal programs that have been compiled for
the p-System.

If you actually want to write Pascal programs, you also need at
least one disk drive and some disk-based software. The total cost of
all this, not counting the Expansion Box, Memory Expansion card, or
disk drive, is about $350 (discount).

Pascal programs compiled under the UCSD p-System are not con-
verted to machine language. They are, instead, converted to an in-
termediate language, called p-code, that can be executed by a p-code

BEYOND BASIC: OTHER PROGRAMMING LANGUAGES 101

interpreter running on any computer. The p-code is always the same,
it's only the interpreter that changes from computer to computer.

Since the p-code interpreter is relatively cheap and easy to write,
the UCSD p-System is now running on a large number of mainframes,
minicomputers, and microcomputers. This means a UCSD Pascal
~ program developed on a DEC VAX 11/780 (a very powerful
minicomputer) can probably be run on your Tl 99/4A with no
change.

It also means that a UCSD Pascal program that you develop on
your Tl 99/4A can be easily transferred to any computer that supports
the UCSD p-System. This is what is known as program portability.

Even if a particular system does not support, or for some reason
can’t run, the UCSD p-System, many systems do support a Pascal
compiler of their own. Going to one of these compilers could require
some rewriting, but Pascal is pretty well standardized so any rewrites
should not be terribly difficult.

Although the cost to implement a full UCSD Pascal development
system on the TI 99/4A is high, you should consider the Pascal system
if you are planning to develop programs for distribution on other
systems.

You might also consider Pascal if you are a serious amateur or if
you have a precocious child with a strong interest in computer pro-
gramming. Just make sure that you choose the language most appro-
priate to the use.

6.6 PILOT

PILOT is a special purpose language that allows you to easily
develop Computer Aided Instruction (CAI) lessons. Tl PILOT includes
special instructions that let you use the Tl 99/4A’s sprites, sound, and
powerful graphics.

TI PILOT is obviously intended for teachers interested in develop-
ing powerful and creative courseware. It is not a general purpose
language.

Tl PILOT requires the Memory Expansion card, the P-Code card,
and at least one disk drive.

6.7 FORTH

FORTH is a programming language that only a professional pro-
grammer could love. It is a higher level language (higher.than As-
sembly Language) intended for serious Tl 99/4A system development.

102 THE Tl 99/4A USER’'S GUIDE

FORTH is a dense, but very flexible and expandable, language that
results in fast-executing machine code (as opposed to BASIC or
Pascal which must be interpreted). v

FORTH is for the professional systems developer or the serious (and
talented) amateur. It provides you with access to all of the power of
the 9900 microprocessor, including interrupt handling, and allows
full use of the TMS9918A Video Display Processor (that controls your
screen).

FORTH is definitely an alternative to Assembly Language.

6.8 CONCLUSIONS

No one programming language will ever be suitable for all the
possible programs that you want to write. Your best approach is to -
become comfortable with programming and then pick the languages
most suitable to your needs and talent.

GRAPHICS

In this chapter, we show you how to do some simple graphics
using Tl BASIC and discuss the other types of graphics available
on your Tl 99/4A.

The graphics processor in your Tl 99/4A is capable of much
more than TI BASIC can make it do. We tell you what software
you will need to make full use of dynamic, high resolution
graphics on your TI 99/4A.

7.1 SCREEN CONTROL

Running a screen display is a full time job for any processor. For
this reason, the screen display on your Tl 99/4A is not controlled and
maintained by its TMS9900 CPU.

Computer manufacturers include in their products dedicated spe-
cial purpose chips whose sole function is to maintain the image you
see on the screen. In the Tl 99/4A, that dedicated processor is the
TMS9918A Video Display Processor.

It is, in fact, the /A’ in this name that puts the “A” in Tl 99/4A.
The older Tl 99/4 is equipped with the TMS9918 Video Display Proc-
essor. The newer /A’ processor has more features than the older pro-
cessor.

The Video Display Processor determines:

e The quality of the display (sometimes called resolution)
® The number of colors that can appear

e The choice of display modes

e The support for sprites (moving objects)

103

104 THE T 99/4A USER’S GUIDE

No single one of these features determines the overall power and
performance of the Video Display Processor. It's the ability to com-
bine and control powerful features that determines how good a Video
Display Processor really is. The TMS9918A is one of the best.

7.2 DISPLAY RESOLUTION

Resolution is a fancy term that represents, in some numbers, the
potential quality of the image. The higher the resolution, the higher
the quality of the resulting image.

Think of resolution as the number of small squares on the screen
that you color in to make a picture. If you had, say, 20 squares across
by 10 down you could not make nearly as fine a picture as you could
if you had 200 squares across by 100 down.

Resolution is expressed in pixels (picture elements), the little
colored dots that make up a complete image on the screen. The
maximum resolution of the TMS9918A chip in your Tl 99/4A is:

256 pixels across
by
192 pixels down

Thus, the image on your screen is composed of 49,152 separate
dots. This resolution is very near the maximum that can be displayed
on an ordinary television screen.

With high resolution, you can create smooth curved lines that don’t
have that “‘stepped” look you frequently see in lower resolution im-
ages. Many games, educational programs, and business or personal
graphics programs require this high resolution.

7.3 COLORS

The Tl 99/4A can display up to 16 colors on the screen at the same
time (see Table 7-1 for a list of these colors). This is typical of most
home computers and more than adequate for nearly all applications.

The level of control you have over which colors will appear at
what locations on your screen is determined by the mode in which
you are operating.

Color control is just as important as the number of colors you can
display. We will talk more about coloring the screen when we discuss
the various TMS9918A modes later in this chapter.

GRAPHICS 105

Table 7-1 T1 99/4A Color Codes

Color Code Number
Transparent 1
Black 2
Medium green 3
Light green 4
Dark blue 5
Light blue 6
Dark red 7
Cyan (bluish green) 8
Medium red 9
Light red 10
Dark yellow 1
Light yellow 12
Dark green 13
Magenta (purplish red) 14
Gray 15
White 16

7.4 DISPLAY MODES

The Tl 99/4A can operate in any one of four different display
modes:

Graphics Mode (used by BASIC)
Text Mode

Multicolor Mode

Bit-Mapped Mode

Each mode offers a different level of control over the image on the
screen. These levels vary from the simplest text-only with very limited
color control (Text Mode) to the high resolution mode (Bit-Mapped
Mode) that lets you assign two colors to every eight pixels on the
screen. (Remember: there are 49,152 pixels on the screen.)

You can use all four modes from Assembler, but you can use only
Graphics Mode from BASIC.

In the following sections, we will give you an idea of what can be
done in each display mode. Actually doing it, though, is often very
complicated, detailed work. If you need to know how to do graphics
beyond what can be done in TI BASIC or Extended BASIC, you will
have to get the Tl Editor/Assembler package.

106 THE Tl 99/4A USER’'S GUIDE

7.4.1 Graphics Mode

Graphics Mode, the mode available from BASIC, gives you a good
deal of color control and lets you define your own 8-by-8 dot char-
acters.

In Graphics Mode, the screen is divided into:

32 columns
by
24 rows
of 8-by-8 dot characters
(768 characters)

Graphics Mode is the standard display mode for Tl BASIC and Ex-
tended BASIC. Why Graphics Mode? Why not Text Mode? Because
Graphics Mode both displays characters (letters and numbers) and
offers some support for doing screen graphics.

(If Text Mode was the standard mode for BASIC, you would only be
able to write letters and numbers on your screen. You would not be
able to do any screen graphics at all—not even simple things like
drawing colored stripes on the screen.)

Each character position on the screen is an 8-by-8 dot, two-color
image. A table in memory determines which two colors will appear
in the character. Each dot can be turned “‘on” or “‘off”’ to determine
which color to use for the dot. ““On’ dots (those set to 1) become one
color and “off”” dots (those that are 0) the other.

Fig. 7-1 shows you how to draw a letter YA’ and a heart using on
and off dots in an 8-by-8 grid. This is how character images are
formed on the screen.

You may know that the screen characters used in the Tl 99/4A have
coded values, called ASCII codes, assigned to them. These codes are
simply numbers in the range 0 to 255. ASCIl codes are sometimes
expressed as hexadecimal (base 16) values, especially in Assembler.

For example, the letter P (capital P) has the value 80 decimal (50
hexadecimal). The letter Q has the value 81 decimal (51 hexadeci-
mal). There is nothing magic about these values. They were chosen
for convenience. Isn’t it convenient that the letter Q has a value one
more than the letter P—just like in the alphabet? This makes it easy
to arrange things in alphabetical order; when you compare a ““P"’ to a
“Q", as in this BASIC statement:

IF uPu > uon THEN 500

GRAPHICS 107

Fig. 7-1. 8x8 graphics mode character definition diagrams.

You are really comparing 80 to 81, as in this statement:
IF 80 > 81 THEN 500

When these ASCII codes (representing a character) are written to
the screen as in:

PRINT “P”
or

PRINT CHR$(80)

they determine which of the 256 (0 to 255) possible 8-by-8 dot pat-
terns appears. If you write an 80 decimal (PRINT CHAR$(80)), you

108 THE T 99/4A USER’S GUIDE

get a pattern that looks like a capital P. Write an 81 instead, and you
get the pattern that looks like a capital Q.

Changing Patterns—One nice feature in Graphics Mode is you can
change the patterns that correspond to the ASCII values. You use TI
BASIC’s CHAR subprogram to change the patterns.

Suppose you don't like the letters P and Q. You think the original
designer of the alphabet made a mistake that you are going to correct.
You are going to switch the two characters. In your personal alphabet
P is going to look like the Q of everyone else’s alphabet, and vice
versa. To do that, enter the code shown in Listing 7-1.

As you can see, all the P’s on your screen suddenly become Q's,
and vice versa. But their ASCII values remain the same—it’s only the
image of the character that changes. If you compare a P to a Q (as in
IF “P” > ““Q" THEN 500) you get the same result as you did before
you exchanged their images.

Listing 7-1. Example program—Ps and Qs

100 REM THIS PROGRAM EXCHANGES THE IMAGES OF CHARACTERS
P AND Q

110 REM

120 REM THE P$ AND Q$ VARIABLES HOLD THE PATTERNS FOR
THE LETTERS

130 REM

140 P$="0078444478404040"

150 Q$="0038444444544834"

160 CALL CLEAR

170 PRINT "P Q PQ P Q P Q"

180 PRINT

190 INPUT "HIT ENTER AND WATCH THE P'S AND Q'S":X$

200 PRINT

210 REM

220 REM CALL TO CHANGE THE CHARACTER PATTERNS

230 REM

240 CALL CHAR(80,Q$)

250 CALL CHAR(81,PS$)

260 PRINT "P Q PQ P QP Q"

270 PRINT

280 INPUT "HIT ENTER AND WATCH THE P'S AND Q'S":X$

290 PRINT

300 REM

310 REM NOW CHANGE THEM BACK

320 REM

330 CALL CHAR(80,PS$)

340 CALL CHAR(81,Q$)

350 PRINT "P Q PQ P QP Q"

360 PRINT

370 INPUT "HIT ENTER TO END.":X$

GRAPHICS 109

You can use this character definition capability to create larger im-
ages on the screen built from individually tailored 8-by-8 characters.
This works very much like putting together a jigsaw puzzle but first
you have to build the pieces. The Tic-Tac-Toe program in Appendix C
shows what you can do from Tl BASIC with a few simple Graphics
Mode commands.

7.4.2 Text Mode

Text Mode is a monochrome (one screen color, one character
color), characters-only display mode. Its advantage over Graphics
Mode is that it creates a screen image that is:

40 columns
by
24 rows
of 6-by-8 dot characters
(960 characters)

In Text Mode, your color control is limited to:

® one background (screen) color
® one dot color for all characters

Text Mode is handy for displaying text data (for example, a word
processing application). In Graphics Mode, characters are written in
an 8-by-8 dot character square (see Fig. 7-1). In Text Mode, the char-
acters are formed in a 6-by-8 dot matrix, as you can see in Fig. 7-2.

This 6-by-8 matrix makes for slightly less well-formed, but still very
readable, upper and lower case characters. Fig. 7-2 shows you the
same letter ““A”’ as in Fig. 7-1, but with the lower resolution of Text
Mode. You can define your own characters in Text Mode, just as you
can in Graphics Mode.

Unlike Graphics Mode, Text Mode allows only one combination of
background/dot colors that applies to all the characters on the screen.
This is not really a limitation if you are doing genuine text work, but it
is the reason BASIC operates in Graphics Mode.

Text Mode is not available from BASIC, but is used by the Terminal
Emulator 1l (communications) and Editor/Assembler cartridges.

7.4.3 Multicolor Mode

Multicolor Mode is a medium-resolution graphics mode in which
the screen is divided into:

110 THE Tl 99/4A USER’S GUIDE

64 columns
by
48 rows
of 4-by-4 dot boxes
(3072 boxes)

You can individually assign each little 4-by-4 dot box its own color.
In Multicolor Mode you can ““draw’ a very fine -picture.

You cannot easily write normal characters to the screen as you can
in Graphics and Text Mode. If you want to write a message on the
screen, you have to “draw” the characters like you draw anything
else you put on the screen in Multicolor Mode.

To use Multicolor Mode, you will have to go to a language other
than BASIC. Assembler provides access to Multicolor Mode.

Fig. 7-2. 6x8 text mode character definition diagram.

7.4.4 Bit-Mapped Mode

Bit-Mapped Mode provides the highest resolution, most finely de-
tailed graphics possible on your Tl 99/4A. In Bit-Mapped Mode, the
screen is divided into:

32 columns
by
192 rows
of 8-dot strips
(6144 strips)

Each dot in an 8-dot strip can be one of the two colors assigned
specifically to that strip. The “on”’ dots in the strip appear as one of

GRAPHICS 111

the colors assigned to it, while the ““off”” dots appear as the other
color.

This coloring scheme allows you to draw an extremely detailed
scene.

Bit-Mapped Mode is not available from BASIC. If you need Bit-
Mapped Mode, you will have to work in a lower level language like
Assembler.

7.5 SPRITES

Sprites are those moving objects, like the little guys in Munch Man
or the ships in Parsec, that are independent of whatever else is on the
screen. The Tl 99/4A can place as many as 32 sprites on the screen at
one time. Extended BASIC supports sprites, but can handle only 28
sprites.

Sprites come in four flavors:

1. Normal sprites are the size of a character (8-by-8 dots).

2. Magnified sprites are defined like normal sprites but occupy
four character positions (in a 2-by-2 square) instead of one
(each dot becomes a 4-dot square).

3. Double sprites are the size of four characters and are defined in
a 16-by-16 dot square.

4. Magnified double sprites are defined like double sprites but are
enlarged to occupy a 32-by-32 dot square (again, each dot be-
comes a 4-dot square).

It's somewhat difficult to visualize all these options so we have
included a Sprite Editor program in Appendix C. In order to run this
program, you will need Extended BASIC. We encourage you to enter
this program and experience first hand the options you have when
creating Sprites.

Sprites also have some other fine qualities:

® Fach sprite can be any of the 16 colors.

® They can be made to move automatically in any direction over a
wide range of speeds. Your program does not have to continually
change the position of a sprite on the screen, it changes position
automatically in the direction and at the speed you set for it.

Unfortunately, sprites are not available from TI BASIC. You can
make full use of sprites from other languages, including Extended
BASIC. LOGO is one af the best languages to use to gain access to

112 THE Tl 99/4A USER’S GUIDE

sprites—it is especially good for children and very inexperienced
programmers.

You can use sprites in every display mode except Text Mode. In
Bit-Mapped Mode, you can use sprites, but you cannot use their
automatic motion feature.

Many of the games you can get for your Tl 99/4A could not exist
were it not for sprites. Parsec, for example, would not be possible
without automatic motion sprites.

Sprites are a very powerful feature. If you expect to write games or
other programs that rely on dynamic graphics, learn to use sprites.

7.6 CONCLUSIONS

Table 7-2 contains a summary of the Tl 99/4A display modes. As
you can see, the Tl 99/4A has powerful and dynamic graphics capa-
bility.

Table 7-2 Display Mode Comparison Chart

Element No. of Screen
Mode Size Color Elements
(dots) Control (rows by cols)
Graphics 8 by 8 16 sets of 32 by 24
2 colors each
Text 6 by 8 1 set of 40 by 24
2 colors
Multicolor 4 by 4 1 color 64 by 48
per element
Bit-Mapped 8by1 2 colors 32 by 192
per element

Note: Sprites are not allowed in Text Mode. Sprites are allowed in Bit-Mapped Mode, but their
automatic motion feature cannot be used.

Some of this capability is accessible from Tl BASIC, and more from
Extended BASIC. If you really want to make full use of the Tl 99/4A’s
graphics features, you will have to use Assembler.

What does this mean to those of you not interested in doing your
own graphics work? It means professional software writers have a
sufficiently powerful machine in the Tl 99/4A to produce programs
that are interesting, complex, and visually exciting.

SOUND ON YOUR TI

You can use your Tl 99/4A to generate tones, sound effects,
music, and even speech.

In this chapter, we tell you about the kinds of sounds you can
get from your Tl and what hardware and software you need to
make your Tl speak to you. We also give you a few BASIC pro-
grams that generate sounds.

8.1 THE SOUNDS OF YOUR TI

Producing sound is a specialized job that requires a dedicated,
special purpose sound chip. The sound chip included in your Ti
99/4A console is the TMS9919 Sound Generator Controller chip.

Producing speech is an even more demanding task. It requires a
very sophisticated speech synthesis chip and a series of complex
codes to represent words. The Solid State Speech Synthesizer pe-
ripheral for the Tl 99/4A contains the TMS5200 Voice Synthesis Proc-
essor chip and a stored vocabulary of more than 300 words. You can
also build your own words and have them spoken by the speech
synthesizer.

You can use BASIC or Extended BASIC (or other languages like
Assembler) to program your computer to produce these distinct
sounds:

® Music—your computer generates a tone that it sustains for a
specified time at a selected volume. You can generate up to
three tones at one time. You can make just about any musical
tone with your Tl 99/4A.

113

114 THE Tl 99/4A USER’S GUIDE

® Noise—your computer generates one of eight possible noises,
four are called “’periodic noises” and four are called “white
noises.”” You can mix one noise with up to three tones at the
same time.

® Speech—your computer talks to you through the Speech Syn-
thesizer peripheral. You need Extended BASIC or one of the car-
tridges that generate speech to use the Speech Synthesizer.

8.2 MAKING SOUNDS

The TMS9919 Sound Generator Controller chip in your Tl 99/4A
generates sounds that are:

® In the frequency range 110 to 55,938 hertz (Hz, or cycles per
second)

e Of a duration ranging from 1 to 4250 milliseconds (0.001
through 4.25 seconds)

® On a volume scale of 0 to 30 (0 is the loudest, 30 the quietest)

8.2.1 Music and Tones

Tones are sounds of a specific frequency (110 to 55,938 Hz) that
can be generated at a selected volume (0 to 30) for a specified
amount of time (1 to 4250 milliseconds). You use tones to make
music or sound effects. BASIC can generate tones only up to 44,733
Hz. This is not a real limitation because few people can hear fre-
quencies higher than 11,000 Hz.

Your computer continues executing statements while it's generating
sounds. That means that you can write programs that interact with the
user while your computer is playing music or making appropriate
game sounds.

Don’t worry about learning some special language to generate
these sounds. You can control up to three tones and one-noise at the
same time from BASIC through the SOUND subprogram. Table 8-1
shows you the frequency values for some of the musical notes.

You make tones by using the SOUND subprogram in BASIC, like
this:

CALL SOUND (duration, tone, volume)

where:
Duration is the time in milliseconds (1 to 4250).

Tone is the frequency in hertz (110 to 44,733).
Volume is the volume control (0 = loudest to 30 = quietest).

SOUND ON YOUR TI 115

It's not at all difficult to get your computer to play notes. For
example, to get the note middle C (frequency 262) played at middle
volume (15) for 2 seconds (2000 milliseconds), you:

CALL SOUND(2000,262,15)

Table 8-1 Frequencies for Musical Notes

Frequency Note Frequency Note

110.00 A 698.46 F
116.54 A flat, B sharp 739.99 F sharp, G flat
123.47 B 783.99 G
130.81 C (low O 830.61 G sharp, A flat
138.59 C sharp, D flat 880.00 A (Above high C)
146.83 D 923.33 A sharp, B flat
155.56 D sharp, E flat 987.77 B
164.81 E 1046.50 C
174.61 F 1108.73 C sharp, D flat
185.00 F sharp, G flat 1174.66 D
196.00 G 1244.51 D sharp, E flat
207.65 G sharp, A flat 1318.51 E
220.00 A (below middle C) 1396.91 F
233.08 A sharp, B flat 1479.98 F sharp, G flat
246.94 B 1567.98 G
261.63 C (middle C) 1661.22 G sharp, A flat
277.18 C sharp, D flat 1760.00 A
293.66 D 1864.66 A sharp, B flat
311.13 D sharp, E flat 1975.53 B
329.63 E 2093.00 C
349.23 F 2217.46 C sharp, D flat
369.99 F sharp, G flat 2349.32 D
392.00 G 2489.02 D sharp, E flat
415.30 G sharp, A flat 2637.02 E
440.00 A (above middle C) 2793.83 F
466.16 A sharp, B flat 2959.96 F sharp, G flat
493.88 B 3135.96 G
523.25 C (high O 3322.44 G sharp, A flat
554.37 C sharp, D flat 3520.00 A
587.33 D 3729.31 A sharp, B flat
622.25 D sharp, E flat 3591.07 B :
659.26 E 4186.01 C .

4434.92 C sharp, D flat

You can control volumes for up to three tones and one noise with a
single call to SOUND, like this:

CALL SOUND (duration,tonel,voll,tone2,vol2,tone3,vol3)

Suppose you want to play these three tones at the same time:
e Middle C for 2.5 seconds at middle votume

116 THE Tl 99/4A USER’S GUIDE

® A below middle C at low volume
® A above middle C at low volume

You do this in BASIC by:
CALL SOUND(2500,262,15,220,25,440,25)

You can tell your computer to wait until all previous sound(s) are
finished before playing its new sound, or you can tell it to stop play-
ing its current sound(s) and begin the new sound(s) immediately. To
make the new sound start immediately, you supply a negative dura-
tion (—1 to —4250).

Suppose you want to play the notes above, execute some other
BASIC statements, and, when the sounds are finished, play a middle
C at full volume for one second. In BASIC, you would use:

CALL SOUND(2500,262,15,220,25,440,25)
some other BASIC statements

CALL SOUND(1000,262,0)

If.you want to stop the previous sounds when the BASIC statements
are done executing and play a high C for 4 seconds at full volume,
you would use:

CALL SOUND(2500,262,15,220,25,440,25)
some other BASIC statements

CALL SOUND(—4000,523,0)

To help you get used to using the SOUND features of your Tl 99/4A
we have given you some programs. The program in Listing 8-1 asks
you for the frequency, duration, and volume of the note you want to
play. The program in Listing 8-2 lets you play up to three tones.

SOUN

D ON YOUR TI 117

Listing 8-1. Single tone generator example program.

100

120
140

160

180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
1000
1020
1040
1060

1080
1100
1120

1140

1160
1180
1200
1220

1240
1260

REM THIS PROGRAM SHOWS YOU HOW TO MAKE A SINGLE
TONE

REM

REM IT ASKS FOR THE DURATION, FREQUENCY, AND
VOLUME

REM AND CHECKS THAT THE VALUES ARE IN THE RIGHT
RANGES

REM

REM FIRST, TELL WHAT'S HAPPENING

REM

CALL CLEAR

GOSUB 1000

REM

REM

REM NOW, GET THE DURATION

REM

GOSUB 2000

REM

REM NOW, GET THE FREQUENCY

GOSUB 3000

REM

REM FINALLY, GET THE VOLUME

GOSUB 4000

REM

REM AT LAST, PLAY THE TONE

REM

CALL SOUND (DURATION,FREQUENCY,VOLUME)
REM

REM SEE IF MORE

REM

INPUT "TRY AGAIN? (Y/N) ":YESNOS$

IF YESNO$="Y" THEN 360
STOP

REM

REM TELL WHAT TO ENTER

REM

PRINT :"YOU CAN GET A TONE FOR 1 TO 4250
MILLISECONDS"

PRINT "(.001 TO 4.25 SECONDS)"

PRINT

PRINT "IF YOU ENTER A POSITIVE VALUE (1 TO
4250), THE TONE WAITS UNTIL THE CURRENT TONE ENDS"
PRINT :"A NEGATIVE VALUE (-1 TO -4250) MEANS

THE TONE STARTS IMMEDIATEL Y"

PRINT :"YOU CAN GET A FREQUENCY FROM 110 TO 44733"
PRINT "PEOPLE CAN'T HEAR MUCH ABOVE 11000"

PRINT

PRINT "YOU CAN GET A VOLUME OF 0 TO 30 (0 IS
LOUDEST) "

PRINT

RETURN

118

THE Ti 99/4A USER’S GUIDE

Listing 8-1. Cont—Single tone generator example program.

2000
2020
2040
2060
2080
2100
2120
2140
2160

REM

REM GET THE DURATION

REM

INPUT "ENTER THE TIME (-4250 TO 4250) ":DURATION
REM

REM CHECK FOR CORRECT VALUES

REM .

IF DURATION<-4250 THEN 2280

IF DURATION>4250 THEN 2280

2180 REM

2200
2220
2240
2260
2280
2300
2320
2340
2360
2380
3000
3020
3040
3060

REM GOOD VALUE

REM

RETURN

REM

REM BAD VALUE

REM

PRINT

PRINT "TIMES MUST BE BETWEEN -4250 AND 4250"
PRINT

GOTO 2060

REM

REM NOW, GET THE FREQUENCY

REM

INPUT "ENTER FREQUENCY (110 TO 44733) ":FREQUENCY

3080 REM

3100
3120
3140
3160
3180
3200
3220
3240
3260
3280
3300
3320
3340
3360
4000
4020
4040
4060
4080
4100
4120
4140
4160
4180
4200
4220
4240

REM CHECK FOR CORRECT VALUE
REM

IF FREQUENCY<110 THEN 3260
IF FREQUENCY>44733 THEN 3260

REM

REM GOOD VALUE

REM

RETURN

REM BAD VALUE

PRINT

REM

PRINT "FREQUENCY MUST BE BETWEEN 110 AND 44733"
PRINT

GOTO 3060

REM

REM GET THE VOLUME

REM

INPUT "ENTER THE VOLUME (0 TO 30) ":VOLUME
REM

REM CHECK FOR GOOD VALUE
REM

IF VOLUME<QO THEN 4260

IF VOLUME>30 THEN 4260
REM

REM GOOD VALUE

REM

RETURN

SOUND ON YOUR TI 119

Listing 8-1. Cont—Single tone generator example program.

4260 REM

4280 REM BAD VALUE

4300 REM

4320 PRINT

4340 PRINT "VOLUME MUST BE BETWEEN 0 AND 30":"TRY
AGAIN"

4360 PRINT

4380 GOTO 4060

4400 END

To get started playing real music, try the programs in Appendix C
called Twinkle and Hot Cross Buns.

8.2.2 Noises

You also use the SOUND statement to make these noises by using
a negative tone value (-1 to —8):

® Three “‘periodic noises” (—1 to —3)

® One periodic noise that varies with the frequency of the third
tone in the SOUND statement (—4)

® Three ““white noises’”’ (—5 to —7)

® One white noise that varies with the frequency of the third tone
in the SOUND statement (—8)

Each set of four noises starts with the highest pitch in the set and
gets progressively lower. That means that noise with a tone —3 is
lower in pitch than the noise with a tone —1. Similarly, —7 tone
noise sounds lower than —5.

It's impossible to describe what a noise is. You have to hear it to
know what it is. You use the noises to make sound effects. The white
noises are especially good to make explosion sounds. Listing 8-3
gives you a small program that lets you try out the various noise ef-
fects.

You can mix noise and tones by using a noise value (—1 to —8) for
the frequency or tone variable in the CALL SOUND statement. You
can also control up to three tones and one noise in a single CALL
SOUND statement like this:

CALL SOUND (duration,tonel,vel1,tone2,vol2,tone3,vol3,noise,vol)

120

THE Ti 99/4A USER’S GUIDE

Listing 8-2. Multiple tone example program.

100
120
140

160

180
200
220
240
260
280
300
320

340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740

760
780
800
820
840
860
1000
1020
1040
1060

1080

REM THIS PROGRAM SHOWS YOU HOW TO MAKE TONES
REM

REM IT ASKS FOR THE DURATION, FREQUENCY, AND
VOLUME

REM AND CHECKS THAT THE VALUES ARE IN THE RIGHT
RANGES

REM YOU CAN ENTER UP TO THREE TONES AND VOLUMES
REM

REM FIRST, TELL WHAT'S HAPPENING

REM

CALL CLEAR

GOSUB 1000

REM HOW MAY TONES

INPUT "HOW MANY TONES DO YOU WANT (1 TO 3)"
:NUMTONES *

IF (NUMTONES<1)+ (NUMTONES>3)THEN 380

GOTO 460

PRINT "PLEASE ANSWER CORRECTLY."
GOTO 320

REM

REM

REM NOW, GET THE DURATION

REM

GOSUB 2000

REM

REM NOW, GET THE FREQUENCIES AND VOLUMES
ON NUMTONES GOSUB 5000,6000,7000

REM

REM AT LAST, PLAY THE TONE

REM

ON NUMTONES GOTO 660,700,740

CALL SOUND (DURATION,FREQL,VOL1)

GOTO 760

CALL SOUND (DURATION,FREQ1,VOL1l,FREQ2,VOL2)
GOTO 760

CALL SOUND (DURATION,FREQ1,VOL1l,FREQ2,VOL2,FREQ3,
VOL3)

REM

REM SEE IF MORE

REM

INPUT "TRY AGAIN? (Y/N) ":YESNO$

IF YESNO$="Y" THEN 320

STOP

REM

REM TELL WHAT TO ENTER

REM

PRINT "YOU CAN PLAY UP TO THREE TONES AT THE SAME
TIME" :

PRINT :"TONES CAN PLAY FOR 1 TO 4250 MILLISECONDS
(.001 TO 4.25 SECONDS)")

SOUND ON YOUR TI 121

Listing 8-2. Cont—Multiple tone example program.

1100
1120
1140
1160

1180
1200
2000
2020
2040
2060
2080
2100
2120
2140
2160
2180
2200
2220
2240
2260
2280
2300
2320
2340
2360
2380
3000
3020
3040
3060
3080
3100
3120
3140
3160
3180
3200
3220
3240
3260
3280
3300
3320
3340
3360
4000

PRINT "IF YOU ENTER A POSITIVE VALUE (1 TO
4250) , THE TONE WAITS UNTIL THE CURRENT TONE ENDS"
PRINT "A NEGATIVE VALUE (-1 TO -4250) MEANS

THE TONE STARTS IMMEDIATELY "

PRINT :"YOU CAN GET A FREQUENCY FROM 110 TO 44733
-- BUT PEOPLE CAN'T HEAR MUCH ABOVE 11000"
PRINT :"YOU CAN GET A VOLUME OF 0 TO 30 (0 IS
LOUDEST) "

PRINT

RETURN

REM

REM GET THE DURATION

REM

INPUT "ENTER THE TIME (-4250 TO 4250) ":DURATION
REM

REM CHECK FOR CORRECT VALUES

REM

IF DURATION<-4250 THEN 2280

IF DURATION>4250 THEN 2280

REM

REM GOOD VALUE

REM

RETURN

REM

REM BAD VALUE

REM

PRINT

PRINT "TIMES MUST BE BETWEEN -4250 AND 4250"
PRINT

GOTO 2060

REM

REM NOW, GET THE FREQUENCY

REM

INPUT "ENTER FREQUENCY (110 TO 44733) ":FREQUENCY
REM

REM CHECK FOR CORRECT VALUE

REM

IF FREQUENCY<110 THEN 3260

IF FREQUENCY>44733 THEN 3260

REM

REM GOOD VALUE

REM

RETURN

REM BAD VALUE

PRINT

REM

PRINT "FREQUENCY MUST BE BETWEEN 110 AND 44733"
PRINT

GOTO 3060

REM

122 THE TI 99/4A USER’S GUIDE

Listing 8-2. Cont—Multiple tone example program.

4020 REM GET THE VOLUME

4040 REM

4060 INPUT "ENTER THE VOLUME (0 TO 30) ":VOLUME

4080 REM

4100 REM CHECK FOR GOOD VALUE

4120 REM

4140 IF VOLUME<O THEN 4260

4160 IF VOLUME>30 THEN 4260

4180 REM

4200 REM GOOD VALUE

4220 REM

4240 RETURN

4260 REM

4280 REM BAD VALUE

4300 REM

4320 PRINT

4340 PRINT "VOLUME MUST BE BETWEEN 0 AND 30":"TRY
AGAIN"

4360 PRINT

4380 GOTO 4060

4400 END

5000 REM

5020 REM GET ONLY ONE TONE AND VOLUME

5040 REM

5060 GOSUB 3000

5080 FREQ1=FREQUENCY

5100 GOSUB 4000

5120 VOL1=VOLUME

5140 RETURN

6000 REM

6020 REM GET TWO TONES AND VOLUMES

6040 REM

6060 PRINT "FOR THE FIRST TONE"

6080 GOSUB 3000

6100 FREQ1=FREQUENCY

6120 GOSUB 4000

6140 VOL1=VOLUME

6160 PRINT "FOR THE SECOND TONE"

6180 GOSUB 3000

6200 FREQ2=FREQUENCY

6220 GOSUB 4000

6240 VOL2=VOLUME

6260 RETURN

7000 REM

7020 REM ‘GET THREE TONES AND VOLUMES

7040 REM

7060 PRINT "FOR THE FIRST TONE AND VOLUME"

7080 GOSUB 3000

7100 FREQ1=FREQUENCY

7120. GOSUB 4000

7140 VOL1=VOLUME

7160 PRINT "FOR THE SECOND TONE AND VOLUME"

SOUND ON YOUR Ti 123

Listing 8-2. Cont—Noise generator example program.

7180 GOSUB 3000

7200 FREQ2=FREQUENCY

7220 GOSUB 4000

7240 VOL2=VOLUME

7260 PRINT "FOR THE THIRD TONE AND VOLUME"
7280 GOSUB 3000

7300 FREQ3=FREQUENCY

7320 GOSUB 4000

7340 VOL3=VOLUME

7360 RETURN

8.3 SPEECH

Not only can you generate music and arcade type sounds on your
Tl 99/4A, but, with the optional Speech Synthesizer Peripheral, you
can make your computer talk!

Many educational cartridges, and more and more game cartridges,
are using the Speech Synthesizer. You just plug in the appropriate
cartridge and listen to your computer talk. It's that easy. Or, you can
write programs to make your computer say what you want it to.

You control speech on your Tl 99/4A by attaching the Speech Syn-
thesizer Peripheral and:

e Using one of the cartridges that use the Speech Synthesizer
e Using the Speech Editor cartridge

® Programming in Extended BASIC

® Programming in a lower level language like Assembler

You cannot get your computer to talk to you using Tl BASIC unless
you have the Speech Editor cartridge.

If you get the Extended BASIC cartridge, it's very easy to get your Tl
99/4A to talk. Extended BASIC has two speech-related subprograms:

® SAY makes your Speech Synthesizer ‘‘talk!” Extended BASIC
supplies 373 numbers, words, letters, and phrases.

® SPGET gets the codes needed to produce speech on the Speech
Synthesizer. You can make up your own words this way.

124 THE Ti 99/4A USER’'S GUIDE

Listing 8-3. Noise generator example program.

100 REM THIS PROGRAM SHOWS YOU HOW TO MAKE ONE NOISE

120 REM

140 REM IT ASKS FOR THE TIME, FREQUENCY, AND VOLUME

160 REM AND CHECKS THAT THE VALUES ARE IN THE RIGHT
RANGES

180 REM

200 REM FIRST, TELL WHAT'S HAPPENING

220 REM

240 CALL CLEAR

260 GOSUB 1000

280 REM

300 REM NOW, GET THE TIME

320 REM

340 GOSUB 2000

360 REM

380 REM NOW, GET THE TYPE OF NOISE

400 GOSUB 3000

420 REM

440 REM FINALLY, GET THE VOLUME

460 GOSUB 4000

480 REM

500 REM AT LAST, PLAY THE TONE

520 REM ’

540 CALL SOUND (DURATION,NOISE,VOLUME)

560 REM

580 REM SEE IF ANY MORE

600 REM

620 INPUT "TRY AGAIN? (Y/N) ":YESNO$

640 IF YESNO$="Y" THEN 340

660 STOP
1000 REM
1020 REM TELL WHAT TO ENTER
1040 REM
1060 PRINT :"YOU CAN GET A SOUND FOR 1 TO 4250
. MILLISECONDS"
1080 PRINT " (.001 TO 4.25 SECONDS)"
1100 PRINT
1120 PRINT "IF YOU ENTER A POSITIVE VALUE (1 TO
4250) , THE SOUND WAITS UNTIL THE CURRENT ONE ENDS"
1140 PRINT :"A NEGATIVE VALUE (-1 TO -4250) MEANS

THE SOUND STARTS IMMEDIATELY"

1160 PRINT :"YOU CAN GET ANY OF 8":" BACKGROUND NOISES
WHERE"

1180 PRINT "-1 TO -4 ARE PERIODIC NOISES AND -5 TO -8
ARE WHITE NOISES"

1200 PRINT

1220 PRINT "YOU. CAN GET A VOLUME OF 0 TO 30 (0 IS
LOUDEST) "

1240 PRINT

1260 RETURN

SOUND ON YOUR TI

Listing 8-3. Cont—Noise generator example program.

2000
2020
2040
2060
2080
2100
2120
2140
2160
2180
2200
2220
2240
2260
2280
2300
2320
2340
2360
2380
3000
3020
3040
3060
3080
3100
3120
3140
3160
3180
3200
3220
3240
3260
3280
3300
3320
3340
3360
4000
4020
4040
4060
4080
4100
4120
4140
4160
4180
4200
4220
4240

REM

REM GET THE DURATION

REM

INPUT "ENTER THE TIME (-4250 TO 4250)
REM

REM CHECK FOR CORRECT VALUES

REM

IF DURATION<-4250 THEN 2280

IF DURATION>4250 THEN 2280

REM

REM GOOD VALUE
REM

RETURN

REM

REM BAD VALUE
REM

PRINT

" :DURATION

PRINT "TIMES MUST BE BETWEEN -4250 AND 4250"

PRINT

GOTO 2060

REM

REM NOW, GET THE TYPE OF NOISE
REM

INPUT "ENTER NOISE TYPE(-1 TO -8) ":NOISE

REM

REM CHECK FOR CORRECT VALUE
REM

IF NOISE<-8 THEN 3260
IF NOISE>-1 THEN 3260
REM

REM GOOD VALUE

REM

RETURN

REM BAD VALUE

PRINT

REM

PRINT :"NOISE VALUE MUST BE BETWEEN -1 AND -8"

PRINT

GOTO 3060

REM

REM GET THE VOLUME
REM

INPUT "ENTER THE VOLUME (0 TO 30) ":VOLUME

REM

REM CHECK FOR GOOD VALUE
REM

IF VOLUME<O THEN 4260

IF VOLUME>30 THEN 4260
REM

REM GOOD VALUE

REM

RETURN

125

126 THE TI 99/4A USER’S GUIDE

Listing 8-3 Cont—Noise generator example program.

4260 REM

4280 REM BAD VALUE

4300 REM

4320 PRINT

4340 PRINT "VOLUME MUST BE BETWEEN 0 AND 30":"TRY
AGAIN"

4360 PRINT

4380 GOTO 4060

4400 END

GOOD PROGRAMMING
PRACTICES

Some people consider programming to be an art while others
consider it a science. In practice, it's a mixture of both. Pro-
gramming can be easy and fun if you follow some simple, rea-
sonable rules.

In this chapter, we tell you about some programming practices
that make it easier to write and maintain programs.

9.1 GOOD PROGRAMMERS

Programming requires a number of skills, many of them very prac-
tical. For example, it's a lot easier to enter your programs if you can
type since you interact with your computer through its keyboard.

Being a good programmer means that you can write a program that
tells the computer exactly what you want it to do. And, more impor-
tantly, you can later make changes to correct problems or make the
program even better.

Some good programming rules are:

Use meaningful variable names.

Include remarks in your programs.

Be user friendly.

Keep track of your programs and data files.
Back up files.

127

128 THE TI 99/4A USER’S GUIDE
9.2 MEANINGFUL NAMES

Data that gets manipulated in a program is stored in variables.
Variables in programs have names and you are the one who chooses
what every variable is called. Using meaningful variable names
makes it a whole lot easier for yod to know what is going on in your
programs.

You can use up to 15 characters for your variable names. Unlike
the BASICs on many other home computers, TI BASIC and Extended
BASIC have few restrictions on the names that you choose for your
variables. You cannot, of course, choose a name for a variable that is
assigned as the name of one of Tl BASIC's or Extended BASIC’s com-
mands, statements, or functions.

It's a lot easier to know what is going on in a program if you name
your variables so that they have some meaning. Choose useful names
like:

RATIO, NAME$, PERCENT, YEAR%
instead of meaningless names like:
ZZ, X%, Y2, R$

Maintenance is that wonderful process of making a program better.
Sometimes it involves adding new features. Other times, it's needed
to correct problems. No matter how wonderful you think your pro-
gram is today, you will probably want to change it sooner or later.

When you are making changes later, you will really appreciate
having taken the time to name your variables with some type of rea-
sonable names in the beginning. Anyone who has programmed for
any time has seen programs that have statements like this:

A=B+C

When the programmer wrote that statement, he or she knew what
A, B, and C represented. Later, he/she wants to make a change to this
wonderful program. What was it A, B, and C stood for? It would be
easier to tell what was going on if the statement had been:

PAYMENT = PRINCIPAL + INTEREST

If you find that you are running out of space, you will have to
shorten some names. You may want to make a “‘dictionary”” in
REMark statements at the beginning of your program telling you what

GOOD PROGRAMMING PRACTICES 129

the shorter names stand for. The statement above could be shorter,
and still easily understood:

PMT = PRIN + INT

9.3 BE USER FRIENDLY

A user friendly program tells you what is going on and helps you
run the program. Whatever you enter as input is explained. Errors are
“trapped”’ and you are told what happeped.

In general, a user friendly program is written so that you don’t feel
lost when something unusual happens. This takes some care in the
programming and you will find yourself becoming more user friendly
‘as you gain experience. You will see what errors occur most often
and learn how to trap them.

For example, take a relatively simple program like the one in List-
ing 9-1. This program is supposed to help you balance your
checkbook.

Do you have any idea what the program in Listing 9-1 is doing?
What are you entering as data? How do you end it? What is it writing
out on the screen? Suppose, instead, that the program looked like the
one in Listing 9-2.

The program in Listing 9-2 has a lot more statements which means
more typing on your part. But, when you want to make changes, you
can read the remarks and see what the program is doing, what type of
input you need, and what type of output you should expect. And,
when you run the program, it tells you what it expects you to enter.

The program in Listing 9-2 also contains some error checking code.

Listing 9-1. Unfriendly checkbook program example.

100 INPUT "BEG VAL ":BEG
110 NEWV=BEG

120 INPUT "POS VAL ":VL
130 IF VL=0 THEN 170
140 NEWV=NEWV+VL

150 PRINT NEWV

160 GO TO 120

170 INPUT "NEG VAL ":VL
180 IF VL=0 THEN 220
190 NEWV=NEWV-VL

200 PRINT NEWV

210 GOTO 170

220 PRINT "DONE"

230 END

130 THE Tl 99/4A USER’'S GUIDE

Listing 9-2. Friendly checkbook program example.

100 REM THIS PROGRAM BALANCES A CHECKBOOK

110 REM FIRST, ENTER THE INITIAL BALANCE

120 REM NEXT, ENTER DEPOSITS, ONE AT A TIME, 0 WHEN
DONE

130 REM NOW, ENTER CHECKS, ONE AT A TIME, 0 WHEN DONE

140 REM BAL = INITIAL + DEPOSITS - CHECKS

150 PRINT "THIS PROGRAM":": BALANCES YOUR CHECKBOOK.": :

160 INPUT "DO YOU WANT INSTRUCTIONS? (¥/N) " : YESNO$

170 IF YESNO$="N" THEN 230

180 PRINT :"1 ENTER THE INITIAL BALANCE."

190 PRINT :"2 ENTER YOUR DEPOSITS,":" ONE AT A TIME":"
ENTER A 0 WHEN YOU'RE DONE"

200 PRINT :"3 ENTER YOUR CHECKS,":" ONE AT A TIME":"
ENTER A 0 WHEN YOU'RE DONE"

210 PRINT

220 REM GET THE INFO YOU NEED

230 INPUT "INITIAL BALANCE --> ":INITIAL

240 BALANCE=INITIAL

250 REM NOW, GET THE DEPOSITS

260 PRINT "ENTER YOUR DEPOSITS":" (0 WHEN DONE"

270 INPUT "DEPOSIT --> ":DEPOSIT

280 IF DEPOSIT=0 THEN 390

290 IF DEPOSIT>0 THEN 350

300 PRINT "YOUR DEPOSIT WAS NEGATIVE"

310 INPUT "IS THIS CORRECT? (Y/N)":YESNO$

320 IF YESNO$="Y" THEN 350

330 PRINT "PLEASE RE-ENTER."

340 GOTO 270

350 BALANCE=BALANCE+DEPOSIT

360 PRINT "CURRENT BALANCE: " ;BALANCE

370 GOTO 270

380 REM NOW PROCESS THE CHECKS

390 PRINT "ENTER YOUR CHECKS.":" 0 WHEN DONE"

400 INPUT "CHECK AMOUNT --> ":CHECK

410 IF CHECK=0 THEN 520

420 IF CHECK>0 THEN 480

430 PRINT "YOUR CHECK WAS NEGATIVE."

440 INPUT "IS THIS CORRECT? (Y/N)":YESNOS$

450 IF YESNO$="Y" THEN 480

460 PRINT "PLEASE RE-ENTER."

470 GOTO 400

480 BALANCE=BALANCE-CHECK

490 PRINT "CURRENT BALANCE: ";BALANCE

500 GOTO 400

510 REM DONE, PRINT FINAL BALANCE

520 PRINT "DONE PROCESSING.":"FINAL BALANCE IS ";
BALANCE

530 END

GOOD PROGRAMMING PRACTICES 131

You cannot enter a negative amount for a deposit or check without
it's being caught as a possible error. You know how to tell the pro-
gram when you are done entering deposits and want to enter checks.
And when you are done entering checks and want a final balance.

9.4 INCLUDE REMARKS

Remarks have a place in every program. Tl BASIC's REM statement
lets you put whatever you want into your program. BASIC ignores
REM statements when it processes your program but you will not.

You should use REM statements to tell you:

What the program is supposed to be doing

What the input is

What to expect as output

Any special information

What the variables mean (especially if there is something special
going on)

REMarks take room in your computer’s memory. Each character in
a remark takes up one character of your computer’s memory. For
relatively small programs like the ones shown in Listings 9-1 and 9-2,
you will not have to worry about running out of memory.

When you start writing larger, more complicated programs, you
may have to make your remarks a bit more cryptic. But put them in
anyway, cryptic as they may look. You will find it easier to read one
strange looking statement than to try to figure out what many lines of
code are doing.

Shortened remarks may not be as understandable, but you can still
get some idea of what is going on:

10 REM BALANCES CHECKBOOK, ENTER INIT BAL, DEPS,

CHECKS
20 REM 0 FOR END OF DEPS, CHKS

9.5 TAKING CARE OF YOUR PROGRAMS AND DATA FILES

You store your programs and data files on cassettes or disks, called
media. Treat your storage media carefully.

e Never put your tapes and disks near a magnet.
e Keep the tapes and disks in a cool, dry place.
e Write gently on disk labels with a marker.

132

THE Tl 99/4A USER’S GUIDE

® Never use a pencil to write on a disk label —the graphite can get

on the disk surface and your computer may not be able to read
the disk.

® Never use a ball point pen to write on a disk label —you will

make grooves in the recording surface and your computer may
not read the data.

® Always put some identification on a tape or disk.
® Keep a log of what is where.

All tapes and disks look alike on the outside. Only your computer
can read what is on them. Make up some naming conventions for
your tapes and/or disks.

It's easy to keep a log of what you stored where. Some people use
a notebook and add or remove pages as necessary. Others get a
binder with dividers and keep really good records. Take your choice.
But do something.

Label your tape or disk with a number, a letter, a name, or some-
thing. Then, in your notebook, record what is on the tape or disk.
Chart 9-1 shows you what information you might want to keep in
your log.

Chart 9-1 Data/Program Logbook Example

Tape Number PGMSO01
Date Written 11/20/82

File# Tape Counter Description
1. 15 a program that balances a checkbook
2. 95 a game program that plays checkers
(pretty bad)
3. 159 my check data from 10/82

Disk Number DSK15
Date Written 12/25/82

File Name Description

CHECKPGM an updated checkbook program
CHECK1282 check data for 12/82

CHECKERS a checkers game that | got from a magazine
GRAPHS a graphics program from a textbook
CHECK1182 check data for 11/82

9.6 BACK UP YOUR FILES

When you have a tape or disk that contains important data or pro-
grams, you should make a backup (or copy) of the tape or disk. This

GOOD PROGRAMMING PRACTICES 133

ensures that you will have a copy when you accidentally write over
your program or your dog eats your disk.

9.6.1 Backing up Disk Files

It's very easy to back up a disk file. You don’t even have to copy an
entire disk, though you can if you want to. You can copy a single file.
You might want-to create a series of archive disks where you keep
your important programs and data.

Just follow the instructions that the Djsk Manager Module puts on
your screen. You must be careful to remember which disk is being
copied from and which one you want to write to.

Once you have copied the programs, update your log for the ar-
chive disk.

9.6.2 Backing up Cassette Files

You should also make copies of important cassette files. If you have
only one cassette recorder, you load the BASIC program into your
computer and write it to the tape. Follow the instructions about writ-
ing to a tape. Remember to update your tape log.

- WHERE TO LOOK FOR
MORE INFORMATION

This appendix tells you some places you can find more information for
your Tl 99/4A. Several sources are specific to the TI 99/4A. Others cover
home computers in general and often have articles about the TI 99/4A.

A.1 INTERNATIONAL 99/4 USER’'S GROUP

This is a wonderful organization for you to join if you own a Tl 99/4A or a
T1 99/4. They have a newsletter, software exchange, information and referral
service, new product bulletins, and discounts on TI products. Not bad for
$12.00 per year. The address is:

International 99/4 User’s Group
P.O. Box 67
Bethany, OK 73008

telephone (405) 787-8521

A.2 99ER MAGAZINE

99’er Magazine bills itself as “Covering the TI 99/4A and other Texas In-
struments Personal Computer Systems.” And it does a very good job of it. You
may be able to find 99’er at a newsstand.

For a $25.00 per year subscription fee, you get a very well written,
monthly magazine covering the Tl 99/4A in depth. There are articles for be-
ginners and experienced T! 99/4A users, covering entertainment, education,
business, professional, and home applications.

There are special “‘mini-magazines’”’ in every issue covering computer

135

136 THE Tl 99/4A USER’S GUIDE

gaming (both arcade and adventure), LOGO, and portable computing. They
also have in-depth reviews of hardware, software, and books.

Every issue has several programs that you can enter. They offer the pro-
grams in an issue on cassette for $10.00 to $12.00 if you are a subscriber.
This means that you won’t have to enter (and debug your errors in) the pro-
grams in the magazine.

99’er Magazine’s address is:

99’er Magazine
P.O. Box 5537
Eugene, OR 97405

telephone (503) 485-8796

A.3 OTHER HOME COMPUTER MAGAZINES

There are a wealth of magazines written for the home computer user. Some
magazines in this category are written for small business or professional
users. We are only giving you the names of those magazines which cover
home computer use—not small business use and not extremely technical
topics. '

These magazines can be found at many newsstands. Look at several and
see which ones are most comfortable for you to read. You will often find
articles on the Tl 99/4A in these magazines and several are beginning to have
monthly columns dedicated to the TI 99/4A. You will see a lot of ads for
equipment in these magazines.

Even if you don't see articles specifically for the Tl 99/4A, you will often
find BASIC programs in these magazines. You can enter the programs (mak-
ing whatever changes are needed to translate to TI BASIC) and get essentially
free software. In the process, you will learn more about programming and
about BASIC.

This is by no means a complete list of home computer magazines. The
descriptions are those of the magazines themselves. Look for others at news-
stands near you.

CompuKids Magazine

description: ““A computer magazine for beginners’’
address: P.O. Box 874
Sedalia, MO 65301
telephone: 1-800-822-KIDS
subscription: $17.00 per year
issues: monthly
COMPUTE!
description: “The Leading Magazine of Home, Educational, and Rec-

reational Computing’’

WHERE TO LOOK FOR MORE INFORMATION 137

address: P.O. Box 914
Farmingdale, NY 11737

telephone: 1-800-334-0868

subscription: $20.00

issues: monthly

creative computing

description: “the #1 magazine of computer applications and software’”’
address: P.O. Box 5214
Boulder, CO 80321
subscription: $19.97
issues: monthly
BYTE
description: ““the small systems journal”
address: Subscription Department
P.O. Box 590
Martinsville, NJ 08836
subscription: $21.00
issues: monthly

Popular Computing

address: Subscription Department
P.O. Box 307
Martinsville, NJ 08836

subscription: $11.97

issues: monthly

Personal Computing

address: P.O. Box 2941
Boulder, CO 80321
subscription: $11.97
issues: monthly
Microcomputing
address: Subscription Department
P.O. Box 997
Farmingdale, NY 11737
subscription: $24.97

issues: monthly

PROTECTING YOUR
INVESTMENT

The Tl 99/4A and the Peripheral Expansion System are remarkably sturdy.
Texas Instruments is a large industrial company that builds things to industrial
quality standards. Part of the reason for the hardiness of the Tl 99/4A and its
peripherals is that it is intended for use in schools. The care it receives in the
school room is likely to be less considerate than the care you are likely to
give it in your own home.

There are a few things, though, that you should watch out for.

B.1 STATIC ELECTRICITY

Static electricity is the biggest hazard to your Tl 99/4A, indeed, to all com-
puters. It's fast and strikes without warning.

The results can be devastating. Static electricity literally blasts the sensitive
chips, burning them out or weakening them so they fail sooner.

The T1 99/4A is most vulnerable to static when you are inserting a cartridge
into the console.

The Peripheral Expansion System is most vulnerable when you are insert-
ing a peripheral card into its slot.

Note: Touch something metal to ground yourself before you insert a car-
tridge or peripheral card into your Tl 99/4A!

B.2 WATER

Your Ti 99/4A and its Expansion Box are electrically powered.

Spill a cup of coffee, can of soda, or glass of milk into it and it's all over.

This is a particular hazard when younger children are using your computer
(running the wonderful LOGO). A friend of ours has a policy (applied equally

139

140 THE Tl 99/4A USER’'S GUIDE

to adults and children) of not allowing liquids on the same table as the com-
puter. If you want a drink, you have to walk away from the Tl 99/4A and you
cannot bring the drink back with you.

If you spill a liquid into your Tl 99/4A while it’s turned off, you should be
all right. If it's sticky, wipe it off with a damp cloth. Let it dry before you turn
it on!

B.3 MAGNETS

Tapes and disks are magnetic storage media. That means the information is
written on them as little areas of orderly magnetism.

Keep tapes and disks away from all magnetic fields!

Don't store them on your Tl 99/4A console, the Expansion Box, or on top
of your television set. All these items have power supplies in them that pro-
duce strong magnetic fields. They will quickly destroy your stored programs
and data.

B.4 HEAT

Semiconductor components are sensitive to heat. They will not fail im-
mediately unless you expose them to extreme temperatures. But, they do
weaken with repeated exposure to high temperatures.

Obviously, you should not place your Tl 99/4A on a radiator or store it in
your oven.

Keep your computer out of direct sunlight! This also applies to peripherals,
cartridges, cassette tapes, and disks. Lengthy exposure to direct sunlight is the
most common and least appreciated way to shorten the life of your invest-
ment.

B.5 EXPANSION BOX TABS

Some of the peripheral cards have a tab on them that sticks out the back of
the Expansion Box. You could, if you tried, break this off. If you succeed, you
can throw away the card.

These tabs are often connected by wires to other pieces of equipment
(printers, modems, disk drives). If you pull hard enough on these wires, you
can break off the tab. So be careful when you move this external equipment!
The best thing to do is to disconnect the wires from the tabs before you move
any equipment.

You can also trip over a wire and do the same damage. Keep wires off the
floor and out of the way.

SOME BASIC PROGRAMS

In this Appendix, we give you the source code for some BASIC programs.
You can enter the code and have working programs that show you something
about the sound and graphics capabilities of your Tl 99/4A.

The Tic-Tac-Toe program actually plays the game. If you don’t want to use
hearts and bows for the markers, then design a different marker and put it
into the program. Make changes to reflect your own likes.

The Sprite Editor program makes it easy for you to design sprites and new
characters. We used the Sprite Editor to design the heart and bow markers
you see in the Tic-Tac-Toe program. You must have the Extended BASIC car-
tridge to run the Sprite Editor.

The Twinkle program plays the familiar childhood song for you. This shows
you how to enter notes and times to play a song. The Hot Cross Buns pro-
gram plays another song for you.

C.1 TIC-TAC-TOE PROGRAM

The Tic-Tac-Toe program (Listing C-1) is a two-player game. Player one
gets the heart marker. Player two gets the bow.

The program can tell whether there is a winner or if the game is a draw.
You get a chance to play again.

C.2 SPRITE EDITOR PROGRAM

This is an interactive character and sprite editing program that requires
Extended BASIC (Listing C-2).
This program includes the following features:

® Full control over screen, character, and sprite color
® Single (8 by 8) or double (16 by 16) sized sprites
® Normal or magnified sprites

® Full editing control

141

142

THE Tl 99/4A USER’S GUIDE

Listing C-1. Tic-tac-toe program.

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
1000
1020
1040
1060
1080
1100
1120
1140
1160
1180

REM PLAY TIC TAC TOE

REM USE GRAPHICS CHARACTERS FOR PIECES
REM THIS IS A TWO PLAYER GAME
REM

CALL CLEAR

REM ** INITIALIZE GAME

DIM ROWPATS (11)

REM P$ ARRAY SHOWS PLAYER TOKENS
P$ (1) =CHRS$ (128)

P$ (2) =CHRS (136)

GOSUB 4000

REM

REM ** INITIALIZE BOARD

FOR I=1 TO 9

BOARD (I)=0

NEXT I

GOSUB 3000

REM

REM GET FIRST TWO MOVES

REM NO ONE CAN WIN IN TWO MOVES
FOR K=1 TO 2

PLAYER=1

GOSUB 1000

PLAYER=2

GOSUB 1000

‘NEXT K

REM CHECK FOR WIN ON REST OF MOVES
REM

PLAYER=2

FOR M=5 TO 9

PLAYER=3-PLAYER

GOSUB 1000

GOSUB 2000

IF WIN<>0 THEN 840

NEXT M

PRINT "THE GAME IS A DRAW"

GOTO 860

PRINT :"GOOD PLAYING "&P$ (PLAYER)
INPUT "WANT TO PLAY AGAIN (Y/N) ":Y$
IF Y$="Y" THEN 340

STOP

REM GET MOVE

INPUT "YOUR MOVE(1-9) "&P$ (PLAYER) :MOVE
IF (MOVE<1)+(MOVE>9)THEN 1140

IF BOARD (MOVE)<>0 THEN 1220

BOARD (MOVE) = (2*PLAYER) -3

GOSUB -3000

RETURN

PRINT "MOVES MUST BE 1-9"

FOR I=1 TO 250

NEXT I

SOME BASIC PROGRAMS 143

Listing C-1. Cont—Tic-tac-toe program.

1200 GOTO 1020

1220 PRINT "SQUARE ALREADY PLAYED!!"

1240 FOR I=1 TO 250

1260 NEXT I

1280 GOTO 1020

2000 REM CHECK FOR WIN

2020 REM IF BOARD=PLAYER THEN PLAYER WINS

2040 WIN=PLAYER

2060 IF ABS (BOARD (1) +BOARD (5) +BOARD (9)) =3 THEN 2260
2080 IF ABS (BOARD (4)+BOARD(5)+BOARD(6))=3 THEN 2260
2100 IF ABS (BOARD (2) +BOARD (5) +BOARD (8)) =3 THEN 2260
2120 IF ABS (BOARD (3) +BOARD (5) +BOARD (7)) =3 THEN 2260
2140 IF ABS(BOARD(1)+BOARD(2)+BOARD(3)) 3 THEN 2260
2160 IF ABS (BOARD (1)+BOARD(4)+BOARD(7))=3 THEN 2260
2180 IF ABS (BOARD (3)+BOARD (6)+BOARD(9))=3 THEN 2260
2200 IF ABS(BOARD (7)+BOARD (8)+BOARD(9))=3 THEN 2260
2220 REM NO WINNER

2240 WIN=0

2260 RETURN

3000 REM WRITE BOARD

3020 CALL CLEAR

3040 FOR ROW=1l TO 11

3060 PRINT " " s ROWPATS (ROW)

3080 NEXT ROW

3100 PRINT : :

3120 REM FILL IN BOARD

3140 FOR I=1 TO 9

3160 IF BOARD(I)=0 THEN 3360

3180 ROW=4* (INT(I/3.5)+1)+8

3200 FOR COL=I TO 1 STEP -3

3220 IF COL<4 THEN 3260

3240 NEXT COL

3260 COL=7+((COL-1) *4)

3280 IF BOARD(I)=1 THEN 3340

3300 CALL HCHAR (ROW,COL,128)

3320 GOTO 3360

3340 CALL HCHAR(ROW,COL,136)

3360 NEXT I

3380 RETURN

4000 REM INITIALIZE

4020 CALL SCREEN (14)

4040 FOR I=1 TO 14

4060 CALL COLOR(I,16,1)

4080 NEXT I

4100 CALL COLOR(3,2,16)

4120 CALL COLOR(4,2,16)

4140 CALL COLOR(13,7,16)

4160 CALL COLOR(14,5,16)

4180 CALL CHAR(59,"0000000000000000")

4200 CALL CHAR(60,"1818181818181818")

4220 CALL CHAR(61,"181818FFFF181818")

144 THE Tl 99/4A USER’S GUIDE

Listing C-1. Cont—Tic-tac-toe program.

4240 CALL CHAR(62,"000000FFFF000000"™)

4260 CALL CHAR(128,"66FFFFFF7E3C1818")

4280 CALL CHAR(136,"81C3E7FFFFE7C381")

4300 ROWPATS$ (1) ="1"&CHRS$ (59) &CHR$ (59) &CHR$ (60) &" 2" &CHR$
(59) &CHRS (59) &CHR$ (60) &" 3 " &CHRS$ (59) &CHR$ (59)

4320 ROWPATS (5)="4"&CHRS$ (59) &CHR$ (59) &CHRS$ (60) &" 5" &CHRS
(59) &CHRS$ (59) &CHR$ (60) &"6 "&CHRS (59) &CHRS$ (59)

4340 ROWPATS (9)="7"&CHRS$ (59) &CHRS$ (59) &CHR$ (60) &" 8" &CHR$
(59) &CHRS (59) &CHR$ (60) &"9 "&CHRS$ (59) &CHR$ (59)

4360 ROWA$=CHRS (59) &CHRS$ (59) &CHRS$ (59) &CHRS$ (60) &CHRS (59)
?ggk$(59)&CHR$(59)&CHR$(60)&CHR$(59)&CHR$(59)&CHR$

)

4380 ROWB$=CHRS (62) &CHRS (62) &CHRS (62) &CHRS$ (61) &CHRS$ (62)
&CHRS (62) &CHRS$ (62) &CHR$ (61) &CHRS (62) &CHRS (62) &CHRS
(62)

4400 ROWPATS (2) =ROWAS

4420 ROWPATS (3) =ROWAS

4440 ROWPATS (4)=ROWB$

4460 ROWPATS (6) =ROWAS

4480 ROWPATS (7) =ROWAS$

4500 ROWPATS (8) =ROWB$

4520 ROWPATS (10) =ROWAS$

4540 ROWPATS (11) =ROWAS$

4560 RETURN

The Sprite Editor puts a grid on the screen in which you place ! and ““X.”
Where there is an /X, the sprite is colored. Where there is a *“.’, the screen
color shows through.

The Sprite Editor commands are as follows:

C lets you change the colors of the screen, characters, and sprite.

U causes the sprite image in the upper right corner of the screen to be

updated to show the changes you have made to the sprite editing grid.

® BACK (FCTN 8) ends editing of the current sprite.

® . represents an “‘off’”” dot in the sprite image. These will be the same
color as the screen.

® X represents an ““on’’ dot in the sprite image. These will be the color you
specified for the sprite.

® A is a toggle that turns the automove feature on/off during sprite editing.

Automove is the automatic movement of the cursor after you press the

“! or “X" keys. Movement is in the direction of the last entered direc-

tion key.

M is also a toggle that alters the magnification of the sprite image.
FCIN SEDX are the standard FCTN key shifted direction arrows on the

SOME BASIC PROGRAMS 145

Listing C-2. Sprite editor program.

100
120
140
160

180
200

220
240

260
280

300
320
340
360
380
400

420
440
460
480
500
520
540
560
580
600

620
640
660
680
700
720
740
760
780
800
820
1000
1020
1040
1060
1080

OPTION BASE 1 !SET ARRAYS TO START AT CELL ONE

ON WARNING NEXT

REM

REM THIS PROGRAM CREATES A SPRITE IMAGE
INTERACTIVELY

REM

REM ITS MAIN ROUTINE IS IN LINES 100-1999 (1000 IS
THE INITIALIZATION ROUTIN E)

REM

REM THE SPRITE DISPLAY ROUTINE IS FROM LINE 2000-
2999

REM

REM LINES 3000-3999 CONVERT THE SPRITE TABLE TO A
HEXADECIMAL STRING FOR THE CAL TO THE CHAR ROUTINE
REM

REM KEYBOARD INPUT IS IN LINES 4000-4999

REM

REM THE 5000 SERIES ROUTINE SETS THE COLORS
REM

REM THE 6000 SERIES ROUTINE PRINTS THE SPRITE
DEFINITION STRING TO THE SCREEN SO THAT YOU CAN
INCLUDE IT IN YOUR PROGRAMS

REM

REM

REM

REM SPAR IS THE SPRITE DEFINITION ARRAY

REM

DIM SPAR(16,16)

CALL CLEAR

GOSUB 1000 !INITIALIZE SYSTEM

CALL CLEAR

CALL DISPRITE (SPAR(,) ,CHCOLOR,SPCOLOR,SCRCOLOR,
SPSIZE,SPDEFS$)

PRINT "DO YOU WANT TO SEE"

INPUT * THE SPRITE DATA?":Y$

IF Y$="N" THEN 720

IF ¥$<>"Y" THEN 620

CALL DUMPSPR (SPDEFS$)

INPUT "CREATE ANOTHER SPRITE?":Y$

IF Y$="N" THEN STOP

CALL DELSPRITE (#1)

IF Y$="Y" THEN 540

GOTO 720

REM INITIALIZE SPRITE VARIABLES

INPUT "USE DOUBLE SIZE SPRITES (16x16)?":Y$
SPSIZE=1

IF Y$="Y" THEN SPSIZE=3 :: GOTO 1100

IF Y$="N" THEN 1100

GOTO 1000

146

THE Tl 99/4A USER’S GUIDE

Listing C-2. Cont—Sprite editor program.

1100
1120
1140
1160
1180
1200
1220
1240
1260
1280
1300
1320
1340
1360
1380
1400
1420
1440
1460
2000

2020
2040
2060
2080
2100
2120

2140
2160

2180

2220

2240
2260

2280

2300
2320
2340

3000

3020

INPUT "DO YOU WANT MAGNIFIED SPRITES?":Y$
IF Y$="Y" THEN SPSIZE=SPSIZE+l :: GOTO 1180
IF Y$="N" THEN 1180

GOTO 1100

CALL PATTERN (#1,128)

CALL MAGNIFY (SPSIZE)

CALL CLEAR

FOR I=1 TO 16

FOR J=1 TO 16 :: SPAR(I,J)=0 :: NEXT J

NEXT I

SCRCOLOR=14 :: CALL SCREEN (SCRCOLOR)

SPCOLOR=2

CHCOLOR=16

FOR C=0 TO 12 :: CALL COLOR(C,CHCOLOR,1l):: NEXT C

CALL SETCOLOR (CHCOLOR, SPCOLOR, SCRCOLOR)

CALL CLEAR .

CALL CHAR(128,RPTS$("0",64))

CALL SPRITE(#1,128,SPCOLOR,10,176)

RETURN

SUB DISPRITE (SPAR(,) ,CHCOLOR,SPCOLOR,SCRCOLOR,
SPSIZE,SPDEF$)! DISPLAY SPRIT E ROUTINE

C$(l)="." :: C$(2)="X"

MAXI=16 !MAX SPRITE SIZE

IF SPSIZE<3 THEN MAXI=8

CALL CLEAR

FOR I=1 TO MAXI

FOR J=1 TO MAXI :: DISPLAY AT (I+2,J+1) :C$(SPAR(I,
J)+1l):: NEXT J

NEXT I

DISPLAY AT(7,19)SIZE(1l) : "COMMANDS" :: DISPLAY AT
(8,19)SIZE(1l) :"C=COLOR" :: DISPLAY AT(9,19)SIZE
(11) : "U=UPDATE"

DISPLAY AT (10,19)SIZE(1l) :"BACK=DONE" :: DISPLAY
AT(11,19)SIZE(11l):".=DOT OFF" :: DISPLAY AT(12,19)
SIZE(1l) :"X=DOT ON" 2200 DISPLAY AT(13,19)SIZE (11)
:"A=AUTOMOVE" :: DISPLAY AT(14,19)SIZE(1l): "M=CHG
SIZE"

DISPLAY AT (16,19)SIZE(1l) :"FCTN SEDX=" :: DISPLAY
AT(17,19)SIZE(11l):" DIRECTION"

CROW=3 :: CCOL=2

CALL BITOHEX (SPAR(,) ,SPSIZE,SPDEFS$)

CALL RDKEY (SPAR(,) ,RTVAL,CROW,CCOL,SPSIZE,CHCOLOR,
SPCOLOR, SCRCOLOR)

IF RTVAL=99 THEN SUBEXIT

GOTO 2260

SUBEND

SUB BITOHEX (SPAR(,) ,SPSIZE,SPDEF$) !CREATE THE
SPRITE DEF STRING FROM SPAR

SPDEF$=""

SOME BASIC PROGRAMS 147

Listing C-2. Cont—Sprite editor program.

3040
3060
3080
3100
3120
3140
3160
3180
3200
3220
3240
3260
3280
3300
3320
3340
3360

3380
3400
3420
3440

3460

3480
3500
3520
3540
3560

4000

4020
4040
4060
4080
4100

4120

4140
4160
4180

4200

4220
4240

STRTROW=1 :: ENDROW=8

STRTCOL=1

GOSUB 3300

IF SPSIZE<3 THEN CALL CHAR(128,SPDEFS$):: SUBEXIT
STRTROW=9 :: ENDROW=16

GOSUB 3300

STRTROW=1 :: ENDROW=8

STRTCOL=9

GOSUB 3300

STRTROW=9 :: ENDROW=16

GOSUB 3300

CALL CHAR(128,SPDEFS$)

SUBEXIT

FOR I=STRTROW TO ENDROW

HEXVAL=0

FOR J=0 TO 3 _

IF SPAR(I,STRTCOL+J)=1 THEN HEXVAL=HEXVAL+2"ABS
(3-3)

NEXT J

SPDEF$=SPDEF$&SEGS$ ("0123456789ABCDEF" ,HEXVAL+1,1)
HEXVAL=0

FOR J=4 TO 7

IF SPAR(I,STRTCOL+J)=1 THEN HEXVAL=HEXVAL+2"ABS
(J-7)

NEXT J _

SPDEF$=SPDEF$&SEGS$ ("0123456789ABCDEF" ,HEXVAL+1,1)
NEXT I

RETURN

SUBEND

SUB RDKEY (SPAR(,) ,RTVAL,CROW,CCOL,SPSIZE,CHCOLOR,
SPCOLOR,SCRCOLOR) |READ THE KEYS AND ACT ON
COMMANDS

MAXI=17 _

IF SPSIZE<3 THEN MAXI=9

RTVAL=0 !{INIT RETURN VALUE

D=9 !|INIT AUTOMOVE DIRECTION

CALL KEY(0,K,S):: DISPLAY AT (CROW,CCOL)SIZE(1l):
CHRS (30))

IF SPAR(CROW-2,CCOL-1)=0 THEN DISPLAY AT (CROW,
CCOL)SIZE(1l):"." ELSE DISPLAY AT (CROW,CCOL)SIZE(1)
s X"

IF K=-1 THEN 4100

DISPLAY AT(22,1)SIZE(1l)BEEP:""

IF K=ASC(".")THEN SPAR(CROW-2,CCOL-1)=0 :: DISPLAY
AT (CROW,CCOL)SIZE(1l):"."™ :: GOTO 4360

IF K=ASC("X")THEN SPAR(CROW-2,CCOL-1)=1 :: DISPLAY
AT (CROW,CCOL)SIZE(1):"X" :: GOTO 4360

IF K=ASC("U")THEN SUBEXIT

IF K=ASC("A")THEN AUTOM=1-AUTOM :: GOTO 4100

148 THE TI 99/4A USER’S GUIDE

Listing C-2. Cont—Sprite editor program.

4260 IF K=ASC("C")THEN CALL SETCOLOR (CHCOLOR,SPCOLOR,
SCRCOLOR) : ¢ GOTO 4100

4280 IF K=15 THEN RTVAL=99 :: SUBEXIT

4300 IF K=ASC("M")THEN GOSUB 4700 :: GOTO 4100

4320 IF (K<8)+(K>1l)THEN 4620

4340 D=K :: GOTO 4380

4360 ON AUTOM+1 GOTO 4100,4380

4380 IF D<>8 THEN 4440

4400 CCOL=CCOL-1 :: IF CCOL<2 THEN CCOL=2

4420 GOTO 4100

4440 IF D<>9 THEN 4500

4460 CCOL=CCOL+l :: IF CCOL>MAXI THEN CCOL=MAXI

4480 GOTO 4100

4500 IF D<>11 THEN 4560

4520 CROW=CROW-1 :: IF CROW<3 THEN CROW=3

4540 GOTO 4100

4560 IF D<>10 THEN 4620

4580 CROW=CROW+1 :: IF CROW>MAXI+1l THEN CROW=MAXI+1

4600 GOTO 4100

4620 DISPLAY AT(22,1)SIZE(1)BEEP:""

4640 DISPLAY AT(22,1)SIZE(31)BEEP:"INVALID COMMAND!"

4660 FOR S=1 TO 220 :: NEXT S

4680 DISPLAY AT(22,1)SIZE(31):"" :: GOTO 4100

4700 IF SPSIZE<3 THEN SPSIZE=3-SPSIZE ELSE SPSIZE=7
-SPSIZE

4720 CALL MAGNIFY (SPSIZE)

4740 RETURN

4760 SUBEND

5000 SUB SETCOLOR (CHCOLOR,SPCOLOR, SCRCOLOR)

5020 DISPLAY AT(23,1) :"CHANGE SCREEN COLOR?"

5040 ACCEPT AT(23,22)VALIDATE("YN"):Y$

5060 IF Y$="N" THEN 5100

5080 C=SCRCOLOR :: GOSUB 5320 :: CALL SCREEN(C)::
SCRCOLOR=C

5100 DISPLAY AT(23,1)SIZE(31l) :"CHANGE SPRITE COLOR?"

5120 ACCEPT AT (23,22)VALIDATE ("YN"):Y$

5140 IF Y$="N" THEN DISPLAY AT(23,1)SIZE(31):“" :: GOTO
5180

5160 C=SPCOLOR :: GOSUB 5320 :: CALL COLOR(#1,C)::
SPCOLOR=C

5180 DISPLAY AT(23,1)SIZE(31l) : "CHANGE CHARACTER COLOR?"

5200 ACCEPT AT(23,25)VALIDATE("YN"):Y$

5220 IF Y$="N" THEN DISPLAY AT (23,1)SIZE(31l):"" ::
SUBEXIT

5240 C=CHCOLOR :: GOSUB 5320

5260 CHCOLOR=C

5280 FOR C=0 TO 12 :: CALL COLOR(C,CHCOLOR,1l):: NEXT C

5300 SUBEXIT

5320 DISPLAY AT(22,1)SIZE(31) :"CURRENT COLOR IS";C

5340 DISPLAY AT(23,1)SIZE(31l) :"ENTER NEW COLOR."

SOME BASIC PROGRAMS 149

Listing C-2 Cont—Sprite editor program.

5360 ACCEPT AT (23,18) VALIDATE (DIGIT) :C

5380 DISPLAY AT(22,1)SIZE(31):"" :: DISPLAY AT(23,1)
SIZE(31):""

5400 IF C<l THEN GOSUB 5460 :: GOTO 5340

5420 IF C>16 THEN GOSUB 5460 :: GOTO 5340

5440 RETURN

5460 DISPLAY AT (23,1)SIZE(31)BEEP:"COLORS RANGE FROM 1
TO 16." :: FOR C=1 TO 300 :: NEXT C :: RETURN

5480 SUBEND

6000 SUB DUMPSPR (SPDEF$) !|PRINT THE SPRITE DATA

6020 PRINT : :"DATA FOR SPRITE "

6040 PRINT "IN TWO CHARACTER PIECES ->"

6060 PRINT

6080 COUNT=1

6100 FOR I=1 TO LEN (SPDEF$)STEP 2

6120 PRINT SEGS$ (SPDEFS$,I,2)&" ";

6140 COUNT=COUNT+l1 :: IF COUNT>8 THEN COUNT=1 :: PRINT

6160 NEXT I

6180 PRINT

6200 SUBEXIT

6220 SUBEND

6240 END

TI 99/4A keyboard. You move the cursor using the arrow keys, just like
editing a BASIC program.

The Sprite Editor program is an example of the power of Extended BASIC.
Much of the quality of interaction is possible only because of features in-
cluded in Extended BASIC.

The program is structured as a series of named subprograms. The main
routine runs from line 100 to 1460. The routine that begins at line 1000 is an
initialization routine.

The DISPRITE (display sprite) named subprogram begins at line 2000. This
routine sets up the initial sprite editor display, then CALLs the routines that
interact with the user and update the sprite image.

The BITOHEX (binary to hexadecimal) named subprogram that begins at
line 3000 converts the zeros and ones in the array variable SPAR (sprite array)
into the hexadecimal character string (SPDEF$) needed by the CHAR sub-
program.

The GOSUB routine that begins at line 3300 may be a bit confusing. This
routine looks at two 4-element series in array SPAR, interpreting each 1 value
as an “on” bit in the sprite image and each 0 value as an ““off” bit in the
image. The two 4-element series give the two hexadecimal digits that define
the pattern of a single row in one byte of the sprite image.

150 THE T1 99/4A USER’S GUIDE

The hexadecimal digit is determined by computing a value for each nibble
(4-bit half byte). This value can range from 0 (all “bits” off) to 15 (all “’bits”
on). This corresponds to the hexadecimal digits 0 through F.

To compute this value, you need to know that bit positions in a byte are
numbered from 7 (on the left) to 0 (on the right). It turns out, the decimal
value of an “on’ bit in any position is equal to 2 raised to the position of the
bit. That is, an “on’ bit in position 3 represents a decimal value of 2°3 (2
raised to the third power) or 8.

Once we have added together the values of all of the “‘on” bits, repre-
sented by ones in SPAR, we have an index into a string (statement 3400) of
hexadecimal digits. (We have to add one to the HEXVAL because strings don’t
start at zero.) '

Got all that? Good!

The RDKEY subprogram at line 4000 takes keyboard input from the TI
99/4A console and does as you command. Notice that you hear a beep each
time a command is accepted and two beeps when you enter an invalid
command. This is to let you know what the program is doing.

The SETCOLOR subprogram at line 5000 does just that. It lets you set the
color of the screen, characters, and sprite image.

The DUMPSPR (dump sprite) subprogram at line 6000 prints the sprite
definition string to the screen. This lets you use the string in other programs.
For example, we got the definition strings for the bow and heart used in the
Tic-Tac-Toe program from the Sprite Editor.

C.2.1 Room for Improvement

There are always ways to improve programs. Look at the Sprite Editor to
see if you can find some.

To give you an idea what to look for, we will give you some suggested
improvements that you can do yourself.

1. The SETCOLOR subprogram should give you a list of the colors and
their codes. It can do this only in the lower part of part of the screen so
as not to interfere with the sprite grid.

2. The DUMPSPR routine should be able to save the sprite data to a disk
or tape.

3. You should be able to provide an initial sprite definition string so that
you don’t have to start from scratch each time. (This involves writing a
hexadecimal to bit routine.)

C.3 TWINKLE PROGRAM

Twinkle (Listing C-3) plays the familiar song. This program is easy to
experiment with.

Try making the song play over and over by using the appropriate GO TO at
the end (GOTO 500).

SOME BASIC PROGRAMS 151

Listing C-3. Twinkle program.

100 REM TWINKLE

110 DIM NOTE(50) ,TIME (50)

120 CALL CLEAR

130 REM

140 REM BELOW ARE THE NOTES

150 REM

160 DATA 262,262,392,392,440,440,392
170 DATA 349,349,330,330,294,294,262
180 paTa 392,392,349,349,330,330,294
190 DpATA 392,392,349,349,330,330,294
200 DATA 262,262,392,392,440,440,392
210 DATA 349,349,330,330,294,294,262
220 REM

230 REM HERE ARE THE TIMES

240 REM

250 paTA 250,250,250,250,250,250,500
260 DATA 250,250,250,250,250,250,500
270 pAaTA 250,250,250,250,250,250,500
280 DATA 250,250,250,250,250,250,500
290 DATA 250,250,250,250,250,250,500
300 paTA 250,250,250,250,250,250,500
310 REM

320 REM LOAD THE NOTES

330 REM

340 FOR I=1 TO 42

350 READ NOTE (I)

360 NOTE (I)=NOTE(I)

370 NEXT I

380 REM

390 REM LOAD THE TIME FOR THE NOTES
400 REM

410 FOR I=1 TO 42

420 READ TIME(I)

430 TIME(I)=TIME(I)

440 NEXT I

450 REM

460 REM

470 REM PLAY THE SONG

480 REM

490 REM

500 FOR I=1 TO 42

510 CALL SOUND (TIME(I),NOTE(I),O0)
520 NEXT I

530 END

152 THE TI 99/4A USER’S GUIDE

Change the pitch by multiplying the NOTE in statement 360. If you multi-
ply by a number less than one (.7), you will get each note played lower. If
you multiply by a number higher than one (2 or 3.6), you will get the song
played higher. Remember, if you multiply by a number that has values after
its decimal point (like 3.5), you will change the notes, as well as the pitch for
the note.

If you use a factor in the TIME in statement 430, you will change the length
of time each note is played.

C.4 HOT CROSS BUNS PROGRAM

The Hot Cross Buns program (Listing C-4) plays the first 17 notes of the
tune with that name. Use this base program to learn more about how your TI
99/4A plays music.

If you adjust the factor in statement 250 to a higher number, you will get
the tune played with higher notes. If you adjust it lower, you will get lower
notes. If you use a factor like 3.5, you will get the tune played with other than
the correct notes. You will be surprised how different notes sound with the
same timing.

Listing C-4. Hot cross buns program.

100 REM PLAYS HOT CROSS BUNS

110 REM

120 REM PLAY ONLY 17 NOTES

130 REM

140 DIM NOTE(17),TIME(17)

150 DATA 165,147,131,165,147,131,131
160 DATA 131,131,131,147,147,147,147
170 DATA 165,147,131

180 DATA 250,250,500,250,250,500,125
190 DATA 125,125,125,125,125,125,125
200 DATA 250,250,500

210 REM ** READ THE NOTES **

220 REM ADJUST THE PITCH BY A FACTOR
230 FOR I=1 TO 17

240 READ NOTE(I)

250 NOTE (I)=NOTE(I)*2

260 NEXT I

270 REM ** READ TIME FOR EACH NOTE *¥*
280 REM MAKE THE TONES PLAY LONGER OR SHORTER TIMES
290 FOR I=1 TO 17

300 READ TIME(I)

310 TIME(I)=TIME(I)*2

320 NEXT I

330 FOR I=1 TO 17

340 CALL SOUND (TIME(I),NOTE(I),0)
350 NEXT I

360 END

SOME BASIC PROGRAMS 153

If you adjust the factor in statement 310, the tones will play for longer
(larger factor) or shorter (smaller factor) times. Adjusting this factor to some-
thing like 6.33 will make the music sound really strange.

This is only the beginning of a song. Try the base program with tones and
timing for your favorite song. Just be sure to adjust the NOTE and TIME arrays
to the appropriate values (one for each note/time pair) and put the data in the
correct DATA statements. DATA statements 150 to 170 are the tones. State-
ments 180 to 200 are the times, one for each note. If you use more than 17
notes, put the extra notes after statement 170 and before 180. Extra times go
after statement 200. And, don’t forget to adjust the FOR loops to reflect the
new number of notes and times.

GLOSSARY OF
COMPUTER TERMS

ADDRESS—A unique number assigned to each memory location (byte). The
Tl 99/4A generates addresses between 0 and 65,535—a 64K range.

ASCIl—The American Standard Code for Information Interchange is a set of
one-byte codes used by many computer systems to represent letters, digits,
punctuation marks, and special control codes.

ASSEMBLER—The program that converts Assembly Language source state-
ments into machine language for direct execution by the TMS9900 micro-
processor. Also used to refer to Assembly Language, as in ‘‘programming in
Assembler!” Compare to a compiler and an interpreter.

ASSEMBLY LANGUAGE—A low-level programming language in which each
statement translates into a single machine language instruction. This is the
most powerful language available for the Tl 99/4A and also the most
difficult to work in.

BACKUP—A secure second copy of important information. You should make
backups of all tape and disk resident data and programs that you cannot, or
don’t want to, recreate. The backup can be another tape or disk, or, less
desirable, a paper listing of the program or data.

BASIC—Beginners All Purpose Symbolic Instruction Code is the most widely
used programming language on microcomputers today. Tl BASIC conforms
to the American National Standard.

BINARY—The base 2 number system computers use to count. The binary

~ system has only two digits (0 and 1) that correspond to the “‘on’’ and “off"’
bits in a computer memory.

BIT—A single Binary Digit. A bit can be either ““on’’ (value 1) or ““off”’ (value
0) and is the fundamental unit of computer memory. For most purposes,
bits are usually arranged in groups of eight to form a byte.

155

156 THE Tl 99/4A USER’S GUIDE

BYTE—A unit of memory sufficient to store one character. A byte contains
eight bits and is the unit most commonly used to measure memory size.
The Tl 99/4A console contains 16,384 bytes of user memory.

CARTRIDGE—Contains -a program and plugs into the slot on the top right
side of the Tl 99/4A console. Cartridges contain programs stored in ROM
and are a convenient way to buy software for the Tl 99/4A.

CHARACTER—A letter, number, space, or punctuation mark. Characters in
the Tl 99/4A are stored as ASCIl codes in one byte of memory.

CHIP—A small piece of silicon containing finely etched circuitry. This is a
slang expression for an integrated circuit. There is a microprocessor chip, a
video display chip, and many memory chips in the Tl 99/4A.

COMPILER—A program that takes the source language statements of a
higher-level language (higher than Assembly Language) and converts them
into machine language for direct execution by the TMS9900 microproces-
sor. Each statement of a higher-level language, like FORTH, is translated
into more than one machine language instruction. Compare this to an as-
sembler and an interpreter.

CPU—The Central Processing Unit is the brain of the computer. The 16-bit
9900 microprocessor is the CPU in the Tl 99/4A.

DATA — Values that are manipulated by programs. There are two major types
of data in BASIC, string data and numeric data.-

DISK—A round magnetic storage medium. A disk (sometimes called a dis-
kette) works in a disk drive to store programs and data. Single sided disks
store 90,000 characters of data; double sided disks store 180,000 char-
acters.

DISK DRIVE—A fast mass storage peripheral that provides immediate access
to programs and data. A disk drive is more than 30 times faster than a
cassette recorder.

EXPANSION BOX—The first component of the Tl Peripheral Expansion Sys-
tem. It contains a power supply for the Peripheral Cards and internal disk
drive that fit into it.

EXPANSION CARDS—Circuit boards that fit into the Expansion Box. There
are expansion cards to add memory, access disks, and communicate with
other computers.

GRAPHICS — Drawing charts, graphs, or pictures on the screen. The Tl 99/4A
supports sophisticated color graphics.

HARDWARE—The physical components of your Tl 99/4A. This includes the
console, cassette cables, joysticks, disk drive—anything you can put your
hands on.

HERTZ—A frequency measurement equal to one cycle per second.

HEXADECIMAL—A base 16 numbering system commonly used in computer
systems. Hexadecimal is convenient to use because two hexadecimal digits
(0 to 9 and A to F) can represent any one byte value.

INTERPRETER—A program that interprets and executes the statements in

GLOSSARY OF COMPUTER TERMS 157

another program. BASIC is an interpreted language: the BASIC interpreter
reads a BASIC statement, analyzes it, and does what it says. Compare this
to a compiler or assembler.

MACHINE LANGUAGE—The native language of the TMS9900 microproces-
sor. Human beings do not generally program in machine language. The
closest approximation to machine language that is useful to people is As-
sembly Language, where each statement corresponds to a single machine
language instruction.

MODEM—A Modulator-Demodulator used in computer to computer tele-
phone communications. To use a modem on your Tl 99/4A, you need an
RS-232 Interface card in the Expansion Box.

MONITOR—A high quality television set. You don’t need a monitor to use
your Tl 99/4A.

OBJECT CODE—The output from the Assembler or from a compiler. Object
code is a complete set of machine language instructions ready—or nearly
ready—to be loaded and directly executed by the TMS9900 microproces-
sor.

OVERLAY —The plastic strips that fit into the slot above the number keys on
the Tl 99/4A console. The words on the overlay indicate the action
of IEEY and shifted number keys.

PACKAGE—A program or programs that perform some task. Software is sold
in units called packages.

PERIPHERAL—A piece of hardware external to the Tl 99/4A console.

PROGRAM—A set of detailed instructions that make the computer perform a
desired task. You can write programs in many languages on the Tl 99/4A,
but BASIC is the most common language.

RAM—Random Access Memory is the memory that is available for your use.
You can write to and read from RAM, but RAM forgets what you put in it
after you turn off the T1 99/4A. The Tl 99/4A console contains 16K of RAM
and the system can expand to accommodate 52K of RAM.

READ—The moving of data from an external source into Random Access
Memory. The Tl 99/4A reads data from such places as the keyboard, cas-
sette tapes, Wafertapes, the RS-232 interface, disk drives, and a telephone
modem.

ROM—Read Only Memory has a program permanently stored in it. You
cannot use ROM to store your programs. The Tl 99/4A console contains
26K of ROM most of which contains the TI BASIC interpreter. The car-
tridges you plug into the console all contain varying amounts of ROM.

RS-232—An industry-standard hardware and software communications pro-
tocol. This is a set of rules defining the way computers talk to modems,
printers, or other computers.

SOFTWARE—The instructions that make the computer do what you want.
There is a great deal of software available for the TI 99/4A.

TMS5200—The speech synthesis chip in the Solid State Speech Synthesis

158 THE TI 99/4A USER’'S GUIDE

Peripheral. This chip allows your Tl 99/4A to speak to you. It's very useful
in early learning software and in games.

TMS9900—The 16-bit microprocessor that serves as the central processing
unit in the TI 99/4A.

TMS9918A—The video display controller in the Tl 99/4A. This sophisticated
video chip maintains the image you see on the screen. It allows you to
change screen colors, draw fine color pictures, and create independent
moving objects called sprites.

TMS9919—The sound generator chip in the TI 99/4A. This chip can create
three tones and eight noises.

TRAP—The code you write to detect and report an error, sometimes before it
occurs. The BASIC interpreter traps many errors before they cause your
program to go crazy. In other languages, especially Assembly Language,
you must write your own error trapping code.

WRITE—The moving of data from Random Access Memory to an external
device. The Tl 99/4A can write data to such places as the screen, a cassette
tape, a Wafertape, disks, the RS-232 interface, a printer, and the telephone
modem.

TI BASIC AND
EXTENDED BASIC
COMMANDS,
STATEMENTS,
AND FUNCTIONS

Notation:

words in BOLDFACE AND CAPITALS are keywords that you enter
exactly as they appear

num-exp means any numeric expression, like A+B, 42.34

num-var means any numeric variable, like X, INTEREST

str-exp means any string expression, like A$, “XYZ"”,
FIRST$&MIDDLE$ &LAST$

str-var means any string variable, like Y$, NAME$

variable means any variable, string or numeric, like YES$, PAYMENT

brackets ([1) mean whatever is between the [] is optional and you don’t
have to use it if you don’t want to

ellipsis (,. . .) means that the preceding thing can be repeated as many
times as you want

device-filename means the device for cassette files (like CS1) and, for
disk files, the name of the file on the disk as well as the device name
(like DSK1.MYFILE)

ABS(num-exp)

159

160 THE Tl 99/4A USER’S GUIDE

Type: Function
Description: ABS returns the absolute value (positive value) of num-exp.
Example: PRINT ABS(-199.34)

This prints the value 199.34

ACCEPT [[AT(row,col)] [VALIDATE (datal,. . . 1)] [BEEP]
[ERASE ALL] [SIZE(expression)] :] variable

Type: Extended BASIC Statement or Command
Description: ACCEPT positions the cursor at row and col and waits for
data to be entered from the keyboard. It works somewhat
like an INPUT statement.
Example:
50 CALL CLEAR
100 PRINT “ENTER A Y OR N”
200 ACCEPT AT (22,10) VALIDATE (“YN”) : Y$
300 IF Y$ = “Y” THEN PRINT “ANSWER IS YES” :: GOTO 100
400 PRINT “ANSWER IS NO” :: GOTO 100

This ACCEPT statement positions the cursor at row 22, column 10 and
reads an answer into the string variable Y$. The VALIDATE keyword means
that the answer can be only “Y” or “N”. If the answer is Y, “ANSWER IS
YES” is printed. If the answer is N, “ANSWER IS NO” is printed. Then the
screen is cleared and the program starts over. (Press CLEAR tO
end it.) :

ASC(str-exp)
Type: Function
Description: ASC returns the ASCII value of the first character of str-exp.
Example: PRINT ASC(““ABCDEF”)

This prints 65.

ATN(num-exp)

Type: Function

Description: ATN returns the arctangent of num-exp. An arctangent is a
trigonometric function.

Example: PRINT ATN(123.45)

This prints 1.562696058

BREAK [line-num-list]

Type: Command or Statement

Description: BREAK makes the program stop until you enter a
CONTINUE command. If you use BREAK with a list of line
numbers (line-num-list), the program will stop when it

Tl BASIC AND EXTENDED BASIC COMMANDS. 161

reaches any of the lines included in line-num-list.
UNBREAK makes all BREAK commands inactive.
Example:

100 BREAK 150,200

125 PRINT “HELLO THERE”

150 PRINT “HERE | AM AT STMT 150"

175 PRINT “BACK AGAIN"

200 PRINT “AND NOW I'M AT STMT 200"

225 PRINT ““AND I'M RUNNING AGAIN"

250 PRINT “NOW I'M DONE”

275 END

This program stops at statements 150 and 200. You make it continue by
entering CON or CONTINUE.

BYE
Type: Command
Description: BYE closes all open files and leaves BASIC.
Example: BYE

Close any open files, leave BASIC, and return to the main screen.

CALL subprog-name [(parameters)]

Type: Extended BASIC Statement

Description: In Extended BASIC, you can write subprograms with
names (subprog-name) and call them with a CALL state-
ment. (You cannot write named subprograms in Tl BASIC.)
You pass values to your named subprogram through
parameters. The CALL statement transfers control to sub-
program subprog-name and passes the parameters.

Example: 100 CALL MYSUB (123.45,XYZ")

This CALL statement transfers control to the subprogram with the name
MYSUB and passes it the values 123.45 and “XYZ”. You need SUB and
SUBEND statements to create a named subprogram.

CALL CI-IAR(ASCII-code,pattern-string)
or
only in Extended BASIC
CALL CHAR(ASCII-code,pattern-string[,. . . 1)

Type: Command or Statement

Description: CHAR redefines the pattern or image associated with the
character represented by ASCll-code. The new pattern is
given in pattern-string.

162 THE Tl 99/4A USER’S GUIDE

Example: CALL CHAR(128,"“66FFFFFF7E3C1818"")

This redefines the image associated with ASCII code 128 to the dot pattern
which prints a heart (hexademical string 66FFFFFF7E3C1818).

CALL CHARPAT(ASCII-code,str-var[,. . . 1)

Type: Extended BASIC Statement or Command

Description: CHARPAT gets the pattern code (a string of hexadecimal
digits that represent the image) for the character associated
with ASCll-code and puts the pattern into str-var.

Example: CALL CHARPAT(90,PATS)

This puts the pattern code for character Z (ASCIl code 90) into the string
variable PAT$ as a series of hexadecimal digits (007C04081020407C).

CALL CHARSET

Type: Extended BASIC Statement or Command

Description: CHARSET restores the standard character patterns and
colors for the standard character set (ASCIl codes 32
through 95).

Example: CALL CHARSET

This resets the standard character set (upper and lower case letters, num-
bers, and special symbols).

CHR$(num-exp)

Type: Function

Description: CHR$ gives a one character string whose ASCIl value is
num-exp.

Example: PRINT CHR$(90)

This prints the letter ““Z" on your screen.

CALL CLEAR
Type: Statement or Command
Description: CLEAR ‘‘clears the screen” to all blank characters.

Example:
100 CALL CLEAR
200 FOR I =1 to 23 .
300 PRINT 22Z22272227227272277227277277227222727"
400 NEXT I
500 INPUT “PRESS ENTER TO CONTINUE” : Y$
600 GOTO 100

TI BASIC AND EXTENDED BASIC COMMANDS 163

This program first clears the screen and then fills the screen with Zs. When
you press JJISIIM, it clears the screen again and refills the screen with

Zs. Press to stop it.

CLOSE # file-number [:DELETE]

Type: Statement or Command
Description: CLOSE closes file file-number and, if you say DELETE, re-
moves the file from the device. You can only delete files
from a disk. If you say DELETE with a cassette file, the file
is closed but not removed from the tape.
Example:
100 CLOSE # 12
200 CLOSE # 15 : DELETE
This program closes file #12. Then it closes file #15 and deletes it.
CALL COINC(#sprite-num1,#sprite-num2,tolerance,num-var)
or
CALL COINC(ALL,num-var)
or
CALL COINC(#sprite-num,dot-row,dot-col,tolerance,num-var)
Type: Extended BASIC Statement or Command
Description: COINC detects when a sprite is at a specific position on
the screen (dot-row,dot-col) or when two sprites coincide
(are at the same dot-row and dot-col). tolerance tells how
many dots apart the sprite and position or other sprite can
be for coincidence. num-var is 0 for no coincidence and
—1 for coincidence.
Example:
100 CALL COINC (#1,#2,10,COLLIDE)
200 IF COLLIDE = 0 THEN 500
300 PRINT “SPRITES COLLIDED”
400 GOTO 999
500 PRINT “SPRITES DIDN'T COLLIDE”
999 STOP

This tells you if sprite 1 and sprite 2 are within 10 dots of each other.

CALL COLOR (char-set, foreground-color, background-color)
or
only in Extended BASIC

CALL COLOR(char-set,foreground-color,background-colorf,. . . 1)

or
CALL COLOR(#sprite-num,foreground-color|,. . .)

164 THE Tl 99/4A USER’S GUIDE

Type: Statement or Command

Description: COLOR sets the foreground and background colors for the
characters in char-set.
In Extended BASIC, COLOR also sets the color for speci-
fied sprites.

Example: CALL COLOR(5,1,5)

This COLOR command sets the colors for the characters A through G as
transparent on a light blue background. The other letters and numbers are not
changed.

CONTINUE
or
CON
Type: Command
Description: The CONTINUE or CON command resumes executing a

program after the program has executed a BREAK
statement/command, had an error occur, or you press
ST . You cannot CONTINUE a program after
you have edited it.

Example: CON

Use the CON command with the program described under BREAK.

COS(num-exp)

Type: Function

Description: COS returns the trigonometric cosine of the value num-exp
where num-exp is expressed in radians.

Example: PRINT COS(2.34)

This prints —.6955633265

DATA data-list

Type: Statement
Description: A DATA statement stores numeric and/or string data in a
program. You use a READ statement to put the values in
the DATA statement data-list into variables in your pro-
gram.
Example:
100 DATA 1,2,3,ABC,DEF
200 READ A, B
300 PRINT A
400 READ C
500 READ ST1$, ST2%

TI BASIC AND EXTENDED BASIC COMMANDS 165

600 PRINT B, C, ST2$, ST1$
700 END

This program stores three numeric values (1, 2, 3) and two string values
(ABC, DEF). The READ statements at 200, 400, and 500 put the values into
variables.

DEF fctn-name[(parameter)] = expression

Type: Statement
Description: DEF defines a numeric or string function with the name
fctn-name. You can pass a value to the function with
parameter. The value returned by the function is defined
by expression. You use a function instead of rewriting ex-
pression every place you need it. This saves space in your
program and makes it easy to change expression.
Example: '
100 DEF ACUBED (A) =A*A*A
200 A =100
300 PRINT ACUBED(A)
400 X =15
500 PRINT ACUBED(X)
600 PRINT ACUBED(2)
700 END

This shows how you define a function that is the cube of the parameter.
Statement 300 prints 1,000,000. Statement 500 prints 3,375. Statement 600
prints 8.

DELETE ““device-filename”’

Type: Command or Statement

Description: DELETE deletes file filename from device. You cannot use
DELETE with a cassette.

Example: DELETE “DSK1.OLDFILE”

This deletes file “OLDFILE” from disk DSK1.

CALL DELSPRITE (ALL)

or
CALL DELSPRITE (#sprite-numl,. . .])

Type: Extended BASIC Statement or Command

Description: DELSPRITE removes sprites from the screen. You can re-
move sprites by number (sprite-num) or remove all sprites.

Example: CALL DELSPRITE (#4,#9)

This removes sprites 4 and 9 from the screen. Any other sprites stay on the
screen.

166 THE TI 99/4A USER’S GUIDE

DIM array-name(boundi[,bound2,. . . D [,. . .]

Type: Statement or Command
Description: DIM allocates (dimensions) space for the arrays. Each array
(array-name) gets the number of elements (boundl. . .)

allocated. You can have up to 3 dimensions in TI BASIC and
up to 7 dimensions in Extended BASIC.
Example: DIM A(100), B(20,20), ST$(5,5,5)

This shows how you allocate 101 elements (0 to 100) for array A; 441 (21
x 21) for B; and 216 (6 X 6 X 6) for ST$. Remember: arrays start with
element 0 unless you say OPTION BASE 1.

DISPLAY [list]

Type: Statement or Command

Description: DISPLAY writes data in list to the screen like a PRINT
statement.

Example: DISPLAY “HERE 1 AM”’

This writes HERE | AM on your screen.

DISPLAY [[AT (row,col)] [BEEP] [ERASE ALL]
[SIZE(num-exp)] :] variable-list

Type: Extended BASIC Statement or Command

Description: This form of the DISPLAY statement writes at row,col on
your screen. You can make your computer BEEP or ERASE
the screen before printing.

Example: DISPLAY AT(15,10) BEEP ERASE ALL : “HELLO THERE!”

This erases the screen, beeps, and prints HELLO THERE! at row 15 and
column 10.

DISPLAY [options] USING str-exp [: variable-list]
or
DISPLAY [options] USING line-num [: variable-list]

Type: Extended BASIC Statement or Command
Description: This form of the DISPLAY statement writes data to the
screen using a format. You can use an IMAGE statement
for the format (line-num) or put the format (str-exp) in the
DISPLAY statement options are any options for the
DISPLAY AT statement.
Example:
100 DOLLARS = 234.5
200 DISPLAY AT(10,10) BEEP USING $###.## : DOLLARS

Tl BASIC AND EXTENDED BASIC COMMANDS, 167
This beeps and prints $234.50 at row 10, column 10.

CALL DISTANCE (#sprite-num1,#sprite-num2,num-var)
or
CALL DISTANCE (#sprite-num1,dot-row,dot-col,num-var)

Type: Extended BASIC Statement or Command

Description: DISTANCE tells you the square of the distance between
two sprites (sprite-num1 and sprite-num2) or between a
sprite and a position on the screen (dot-rowsdot-col). The
squared distance is placed in variable num-var.

Example: CALL DISTANCE (#1, #9, DIST)

This puts the square of the distance between sprites 1 and 9 in the variable
DIST.

EDIT[/ine-num]
Type: Command
Description: EDIT allows you to edit line line-num.
Example: EDIT 200

This displays line 200 of the BASIC program in memory and allows you to
make changes to it.

END
Type: Command or Statement
Description: END ends your program and stops its execution. You can

only use one END statement per program, as the last line
in your program.
Example:
100 PRINT “HI!”
200 END

This prints HI! on your screen and then stops.

EOF [(file-num)]

Type: Function

Description: The EOF function tells you if you are at the end of the file
file-num. If you are not, you get a 0. If you are, you get a
1. If there is no more room on the disk, you get a —1. The
EOF function does not work with cassette files.

Example: 100 IF EOF(2) = 0 THEN 900

This branches to statement 900 if there is still room left in file number 2.

CALL ERR (err-code,err-type [,severity,line-num])

168 THE T1 99/4A USER’S GUIDE

Type: Extended BASIC Statement or Command

Description: ERR tells you the most recent error code (err-code) and
error type (err-type). You can also get the line number
where the error occurred. Severity is always 9.

Example: CALL ERR(CODE,TYPE)

This returns the most recent error code in variable CODE and the error
type in variable TYPE.

EXP(num-exp)

Type: Function

Description: EXP returns the exponential value of num-exp. This is e*
where e =2.718281828.

Example: PRINT EXP(1.23)

This prints 3.421229536

FOR control = init-val TO end-val [STEP incr]

Type: Statement or Command

Description: FOR-TO-STEP repeatedly executes the statements between
the FOR and NEXT statements. The control variable
control starts at init-val. Each time the associated NEXT
statement is executed, control is incremented by incr or by
one (if you don’t use STEP). If control is less than end-val,
the statements between FOR and NEXT are executed

again.
Example:
100 FOR I=0 to 100 STEP 10
200 PRINT |
300 NEXT |
400 END

This prints by tens from 0 to 100.

CALL GCHAR (row,col,num-var)

Type: Statement or Command

Description: GCHAR puts the ASCII code for the character at position
row and col into num-var.

Example: CALL GCHAR(10,15,CHVAR)

This puts the ASCIl code for the character at row 10, column 15 into the
variable CHVAR.

TI BASIC AND EXTENDED BASIC COMMANDS 169

GOSUB line-num
or
GO SUB line-num

Type: Statement

Description: GOSUB transfers control to the subprogram at line
line-num.

Example:

100 GOSUB 1000

200 PRINT “AT STATEMENT 200"
300 PRINT “DONE”

400 STOP
1000 PRINT AT STATEMENT 1000"
1100 PRINT “RETURNING”
1200 RETURN
1300 END

This shows how you use a subprogram (the statements between 1000 and
1200). The GOSUB statement at 100 “calls” the subprogram at line 1000.

GOTO line-num
or
GO TO line-num

Type: Statement

Description: GOTO unconditionally transfers control to the statement at
line line-num.

Example:

100 PRINT “AT STATEMENT 100"
200 GOTO 500

300 PRINT “AT STATEMENT 300"
400 STOP

500 PRINT “AT STATEMENT 500"
600 GOTO 100

The GOTO statement at line 200 transfers control to statement 500. State-
ment 300 will never be executed unless you have a GOTO 300 statement
somewhere else in your program (like 550 GOTO 300).

CALL HCHAR (row,col,ASClI-code [repetitions))

Type: Statement or Command

Definition: HCHAR writes the character with value ASClI-code at row
row and column col. If you use a value for repetitions, you
will get that many characters written across the screen be-
ginning at row,col.

Example: CALL HCHAR(10,15,63,10)

This starts at row 10, column 15 and writes 10 2 (question marks) across
the screen.

170 THE Tl 99/4A USER’S GUIDE

IF condition THEN line-num1 [ELSE line-num2]
or
only in Extended BASIC
IF condition THEN clausel [ELSE clause2]

Type: Statement

Description: IF-THEN-ELSE determines if condition is true or false and
transfers control to line number line-num1 when the ex-
pression is true or line number line-num2 when thé ex-
pression is false.
In Extended BASIC only, you can use a statement or group
of statements instead of a line number after THEN or ELSE.

Example: IF A > B THEN 100 ELSE 200

If the value of A is greater than the value of B, statement 100 is executed
next. Otherwise, statement 200 is executed next.

IMAGE format-string

Type: Extended BASIC Statement
Description: IMAGE specifies a format in format-string for a PRINT
USING or DISPLAY USING statement.
Example:
100 IMAGE $###.##
200 DOLLS = 123.77
300 PRINT USING 100 : DOLLS
400 END

This prints the value $123.77.

CALL INIT
Type:) Extended BASIC Statement or Command
Description: INIT prepares the system to load and run an Assembly

Language §ubprogram. You use INIT with LINK, LOAD,
and PEEK statements.
Example: CALL INIT

This sets up the Extended BASIC program to load and run an Assembly
Language subprogram.

INPUT [prompt:] variable-list

Type: Statement

Description: INPUT writes a message (prompt) to the screen and reads
data into the variables in variable-list.

Example: INPUT “ENTER YOUR NAME “ : NAME$

Tl BASIC AND EXTENDED BASIC COMMANDS 171

This prints the message ENTER YOUR NAME on the screen and puts what-
ever you enter into NAME$.

INPUT# file-num : variable-list

Type: Statement

Description: INPUT# reads data from file file-num into the variables in
variable-list.

Example: 100 INPUT# 5 : NAMES$, AMOUNT

This reads from file 5 and puts the first value into the $tring variable
NAME$ and the second into AMOUNT.

INT(hum-exp)

Type: Function

Description: INT returns the integer value that is the largest integer less
than or equal to num-exp.

Example: PRINT INT(123.456+234.777)

This prints 358.

CALL JOYST(key-unit,x-return,y-return)

Type: Statement or Command

Description: JOYST tells you the position of either joystick (key-unit =
1 or 2).

Example: CALL JOYST(1,XPOS,YPOS)

This tells you the position of joystick one.

CALL KEY (key-unit,return-var,status-var)

Type: Statement or Command

Description: KEY returns the ASCIl value of the key pressed in the
key-unit.

Example: CALL KEY(2,KEYV,STAT)

This looks at the key pressed from key-unit 2 (the right side of the
keyboard). The key value is placed in KEYV. The status in STAT tells whether
any key was pressed or whether the same key was pressed as the last time
KEY was called.

LEN (str-exp)
Type: Function
Description: LEN returns the number of characters in str-exp.
Example: PRINT LEN(“ABCDEFGHIJKLMNOP”")

This prints 16, the number of letters in ABCDEFGHIJKLMNOP.

172 THE Tl 99/4A USER’S GUIDE

[LET] variable = expression

Type: Statement or Command

Description: LET assigns the value of expression to variable. The
keyword LET is an optional part of an assignment state-
ment.

Example: LET ABC=1234

This places the value 1234 into variable ABC. You could also write this
statement as:

ABC=1234

CALL LINK(‘subprog-name’’[arguments])

Type: Extended BASIC Statement or Command

Description: LINK passes control to the Assembly Language subprogram
subprog-name and passes it the arguments you specify.

Example: CALL LINK(“MYASM")

This calls the Assembly Language subprogram MYASM.

LINPUT [[#file-num] [REC rec-num] :] str-var

or
LINPUT [prompt :] str-var
Type: Extended BASIC Statement
Description: LINPUT writes the optional prompt message and reads the

data into str-var. The data must end with a carriage return.
#file-num means that LINPUT reads from file file-num in-
stead of the keyboard. The REC option allows you to read
records randomly (by number) from a disk file.

Example: LINPUT# 7 : DATALINE$

This reads a line from file 7 into DATALINES$.

LIST [[start-line] [— [end-line] 1]

Type: Command

Description: LIST lists the lines from the BASIC program in memory,
beginning with line start-line and ending with line
end-line. If you don't use start-line, the first line in the
program is used. If you don’t use end-line, the last line in
the program is used.

Example: LIST 100-200

This lists lines 100 through 200 from the BASIC program in memory.

Tl BASIC AND EXTENDED BASIC COMMANDS 173

CALL LOAD (address,bytel[,byte2, . . .]
[/’ address,byte[,byte, . . . 1))
or
CALL LOAD (‘“device-filename''[, . . .])

Type: Extended BASIC Statement or Command

Description: LOAD is used with INIT, LINK, and PEEK. LOAD brings an
Assembly Language program into the memory expansion
memory. You can also use LOAD to enter values (bytel,
byte2, etc.) into specific locations in the expansion mem-
ory beginning at location address.

Example: CALL LOAD (12000,15,16,17)

This loads three bytes into the expansion memory at locations 12000
through 12002. Location 12000 becomes 15; location 12001 becomes 16;
location 12002 becomes 17.

CALL LOCATE(#sprite-num, dot-row,dot-col[,. . .])

Type: Extended BASIC Statement or Command

Description: LOCATE moves sprite sprite-num to location dot-row and
dot-col.

Example: CALL LOCATE(#1,100,100,#4,150,150)

This moves sprite 1 to 100,100 and sprite 2 to 150,150. dot-row can be 1
through 192. dot-col can be 1 through 256.

LOG(num-exp)

Type: Function

Description: LOG returns the natural logarithm of the expression
num-exp

Example: Y = LOG(125)

This puts the value 4.828343737 into variable Y.

CALL MAGNIFY (magnification-factor)

Type: Extended BASIC Statement or Command

Description: MAGNIFY changes the size and magnification of all
sprites. magnification-factor is 1 for single sized sprites; 2
for magnified single sized sprites; 3 for double sized
sprites; and 4 for double sized magnified sprites.

Example: CALL MAGNIFY(2)

This makes all sprites single sized and maghnified.

MAX (num-exp1,num-exp2)
Type: Extended BASIC Function

174 THE T1 99/4A USER’S GUIDE

Description: MAX returns the larger of the two numeric expressions
num-exp1 and num-exp2.
Example: BIGGER=MAX(A,B)

This puts the larger of the two variables A and B into the variable BIGGER.

MERGE device.filename
Type: Extended BASIC Command
Description: MERGE brings lines from file filename on device device

and merges these lines (puts them in line number order)
into the program lines already in the computer’s memory.

Example: MERGE DSK1.SUB20

This reads the BASIC program DSK1.SUB20 and puts its lines into the pro-
gram already in memory.

MIN (num-expl,num-exp2)

Type: Extended BASIC Function

Description: MIN returns the smaller of the two numeric expressions
num-exp1 and num-exp2.

Example: SMALLER = MIN(X*2, X*Y*6.5)

This evaluates the expressions X*2 and Y*Y*6.5 and puts the smaller value
into variable SMALLER.

CALL MOTION (#sprite-num,row-vel,col-vell, . . . 1)

Type: Extended BASIC Statement or Command
Description: MOTION changes the motion of the sprite(s).
Example: CALL MOTION (#2,20,40)

This moves sprite 2 down and to the right at a slow speed.

NEW
Type: Command
Description: NEW clears the computer's memory, clears the screen,
and gets ready to accept a new program.
Example: NEW

The BASIC program in memory is erased and you can enter a new pro-
gram.

NEXT [control]
Type: Statement or Command

Tl BASIC AND EXTENDED BASIC COMMANDS 175

Description: NEXT goes with a FOR-TO-STEP statement and increments
the control value in a FOR statement.
Example: see the FOR-TO-STEP statement.

NUMBER [start-line[,increment]]
or
NUM (start-line[,increment]]

Type: Command

Description: NUMBER or NUM generates sequenced line numbers for
entering a BASIC program. start-line is 100 if you don’t say
otherwise. increment is 10 if you don’t specify a value.

Example: NUM 150,25

This prints line numbers for entering a BASIC program, starting with line
number 150 and incrementing the line numbers by 25.

OLD device[.program-name]

Type: Command

Description: OLD loads the BASIC program from device device. If you
are loading a program from a disk, you need to use
program-name.

Example: OLD CS1

This loads a program from the cassette.
OLD DSK1.MYPROG
This loads the program in file MYPROG from disk DSK1.

ON BREAK STOP

or
ON BREAK NEXT
Type: Extended BASIC Statement
Description: ON BREAK determines the action taken when a breakpoint

occurs in a program. Breakpoints may be caused by pro-
gram action (BREAK statement) or by keyboard action

(N IS

Example: ON BREAK STOP
This makes the program stop when you press (|JEINE KNIEYED -

176

Type:
Description:

Example:

THE Tl 99/4A USER’S GUIDE

ON ERROR STOP
or
ON ERROR line-num

Extended BASIC Statement

ON ERROR determines the action taken when an error
condition occurs.

ON ERROR 9900

When an error occurs, the program branches to line 9900 (where you
wrote error handling code).

Type:
Description

Example:

ON num-exp GOSUB line-num [, . . .]

Statement

ON-GOSUB transfers control to the subprogram at the line
number corresponding to num-exp. -+

ON X GOSUB 100,200,5200

This executes the subprogram at line 100 when X = 1, at 200 when X = 2,
and at 5200 when X = 3,

Type:
Description:

Example:

On num-exp GOTO line-num [, . . .]

Statement

ON-GOTO unconditionally transfers control to the line
number in the position corresponding to num-exp.

ON (X*Y)/2 GOTO 1000,9500,4000

This evaluates the expression (X*Y)/2 and branches to statement 1000
when the value is 1, to statement 9500 when the value is 2, and to 4000
when the value is 3.

Type:
Description:

Example:

ON WARNING PRINT
or

ON WARNING STOP
or

ON WARNING NEXT

Extended BASIC Statement

ON WARNING determines the action taken when a warn-
ing condition occurs.

ON WARNING STOP

The program stops when a warning condition occurs.

TI BASIC AND EXTENDED BASIC COMMANDS! 177

OPEN #file-num:device-filename [file-org][file-type]
[,open-mode] [,record-type]

Type: Statement or Command

Description: OPEN associates the specified file with number file-num
and enables the program to read/write data from/to the file.

Example: OPEN #4:DSK1.DATA, FIXED,OUTPUT

This opens disk file DATA, file number 4, as a fixed length output file.

OPTION BASE 0
or
OPTION BASE 1

Type: Statement

Description: OPTION BASE sets the lowest subscript for all arrays to
zero or one.

Example: OPTION BASE 1

This makes all arrays start with element 1 (otherwise, they start at 0).

CALL PATTERN (#sprite-num,value[, . . .])

Type: Extended BASIC Statement or Command
Description: PATTERN changes the pattern for the sprite(s).
Example: CALL PATTERN (#1,SPRPAT1$)

This makes sprite 1 have the pattern defined by string SPRPAT1$.

CALL PEEK (address,num-var-list)

Type: Extended BASIC Statement or Command

Description: PEEK places the value(s) in the address(es) into the vari-
ables in num-var-list.

Example: CALL PEEK (8000,VAR1,VAR2)

This places the value of address 8000 into VAR1 and the value of 8001 into
VAR2. :

Pl
Type: Extended BASIC Function
Description: Pl returns the value of pi as 3.14159265359.
Example: AREA = Pl * RAD * RAD

This calculates the area as pi times the radius squared.

POS (string1,string2,num-exp)
Type: Function

178 THE TI 99/4A USER’S GUIDE

Description: POS returns the position of the first occurrence of string2
in string1 starting at character num-exp in string1.
Example: WHERE = POS (“ABCDEFG” D" ,1)

This puts the value of 4 in WHERE.

CALL POSITION (#sprite-num,dot-row,dot-col [, . . . 1)

Type: Extended BASIC Statement or Command
Description: POSITION returns the positions of the sprite(s).
Example: CALL POSITION (#5,YPOS,XPOS)

This returns the position of sprite 5. Its row value is in YPOS and its col-
umn value is in XPOS.

PRINT [#file-num [,REC rec-num] :] [list]

Type: Statement or Command

Description: PRINT writes the data in list to the screen or to the file
file-num. ,

Example: PRINT “5 + 6 = “;5+6

This writes “ 5 + 6 = 11" on your screen.

PRINT [#file-num [,REC num-exp]] USING str-exp:list
or
PRINT [#file-num [REC num-exp]] USING line-num:list

Type: Extended BASIC Statement or Command

Description: PRINT USING writes the data in list to the screen or the
file file-num using the format specified in the USING
clause. (See the DISPLAY USING statement.)

Example: PRINT #9 USING $###,### : 123456

This writes the value $123,456 to file number 9.

RANDOMIZE [num-exp]

Type: Statement or Command
Description: RANDOMIZE resets the random number generator.
Example: RANDOMIZE

READ variable-list

Type: Statement or Command
Description: READ assigns values from a DATA statement to the vari-
ables in variable-list. (See the DATA statement.)

Example:
100 DATA 1,2.238,MY STRING DATA

TI BASIC AND EXTENDED BASIC COMMANDS 179

200 READ XVAL, YVAL

300 READ STRDATA$

400 PRINT YVAL, XVAL, STRDATA$
500 END

This reads the value 1 into variable XVAL, 2.238 into YVAL, and MY
STRING DATA into STRDATA$ and then prints the values.

REC [file-num]

Type: Extended BASIC Function
Description: REC returns the current record position in file file-num.
Example: PRINT REC(6)

This prints the number of the record in file 6 that will be processed with
the next PRINT, INPUT, or LINPUT statement.

REM string
Type: Statement or Command
Description: REM lets you include remarks (nonexecutable statements)

in a BASIC program. You use REMarks to tell what your
program is doing, how it operates, and what your variables
are.
Example:
200 REM THIS PROGRAM WAS WRITTEN 2/22/82
210 REM BY JOHN SMITH
220 REM THE PROGRAM CALCULATES MONTHLY PAYMENTS

This includes nonprogram information in a program.

RESEQUENCE [initial] [,increment]
or
RES [initial] [increment]

Type: Command

Description: RES or RESEQUENCE renumbers the lines in the BASIC
program currently in memory. Line numbers start at initial
(or 100) and increase by increment (or 10).

Example: RES 500,50

This renumbers the lines in the BASIC program currently in memory, be-
ginning the new line numbers at 500 and increasing them by 50.

RESTORE [line-num]
or
RESTORE #file-num [REC rec-num]

Type: Statement or Command

180 THE Tl 99/4A USER’'S GUIDE

Description: RESTORE resets the line number for DATA statement used
in the next READ statement. RESTORE# resets the current
record number for file file-num.

Example: RESTORE 200

This sets line 200 as the next DATA statement used by a READ statement.

RETURN

Type: Statement
Description: RETURN transfers program control from a subprogram to
the statement following the GOSUB or ON GOSUB
statement that called the subprogram.
‘Example:
100 GOSUB 500
150 PRINT “BACK FROM SUBPROGRAM AT 500"
200 STOP
500 PRINT “HERE | AM IN THE SUBPROGRAM"
550 PRINT “I'M GOING TO RETURN NOW"
600 RETURN
650 END

The GOSUB at line 100 “calls” the subprogram starting at line 500. The
RETURN at line 600 ends the subprogram and returns control to statement
150.

RETURN [line-num] .

or
RETURN [NEXT]

Type: Extended BASIC Statement

Description: This form of the RETURN statement is used with the ON

ERROR statement. It transfers program control after an
error occurrs,
Example: 9875 RETURN NEXT

When an error occurs and is handled with an ON ERROR statement, this
RETURN statement transfers control to the statement after the statement caus-
ing the error.

RND
Type: Function)
Description: RND returns a random number between 0 and 1.
Example: NEWVAL = OLDVAL * RND

This uses the RND function to get a number between 0 and 1 and then
multiplies the value by OLDVAL.

Tl BASIC AND EXTENDED BASIC COMMANDS 181

RPT$ (str-exp,num-exp)

Type: Extended BASIC Function
Description: RPT$ repeats the characters in str-exp, num-exp times.
Example: STRDATA$=RPT$ (“ABCDEF” 4)

This sets the string STRDATA$ to ABCDEFABCDEFABCDEFABCDEF.

RUN [line-num]
or
only in Extended BASIC
RUN [“device-filename”’]

Type: Command or Statement

Description: RUN loads and executes the program in device-filename
or begins executing the BASIC program currently in
memory, starting at line-num. If you just use RUN, the
program in memory begins executing at its first line.

Example: RUN “DSK1.NEWPROG"”

This loads the BASIC program called NEWPROG from disk DSK1 and be-
gins executing it.

SAVE device-filename
or
only in Extended BASIC
SAVE device-filename [,PROTECTED]
or
SAVE device-filename [,MERGE]

Type: Command

Description: SAVE writes the BASIC program currently in memory to
device-filename. If you are using Extended BASIC, you can
protect the program or make it a merged file (which you
use with a MERGE command).

Example: SAVE CS1

This writes the BASIC program currently in memory to the cassette recorder
CS1.

CALL SAY (word-string[,direct-string] [, . . .)

Type: Extended BASIC Statement or Command

Description: SAY makes the speech synthesizer say the word word-
string or a direct-string returned by SPGET.

Example: CALL SAY (“HELLO")

This makes your speech synthesizer say the word HELLO.

182 THE TI 99/4A USER’S GUIDE

CALL SCREEN (color-code)

Type: Statement or Command

Description: SCREEN changes the screen color to that given by
color-code.

Example: CALL SCREEN(5)

This changes the screen color to dark blue.

SEGS$ (str-exp,position,length)

Type: Function

Description: SEG$ returns a substring of str-exp. The returned string is
length characters long and begins at character position in
str-exp.

Example: SUBST$=SEG$ (“HELLO HI THERE",7,8)

This puts the string HI THERE into SUBST$.

SGN (num-exp)

Type: Function
Description: SGN returns a one if num-exp is positive, a zero if
num-exp is zero, and a minus one if num-exp is negative.

Example:
100 MYDATA = —1 * 400
200 PRINT MYDATA, SGN(MYDATA)
300 END

This prints the values —400 and —1 (because MYDATA is negative).

SIN (num-exp)

Type: Function

Description: SIN returns the sine of num-exp where num-exp is in ra-
dians.

Example: PRINT SIN(1.25)

This prints .9489846194

SIZE
Type: Extended BASIC Command
Description: SIZE prints the number of bytes of unused memory.

Example: SIZE

This tells you how much memory is not used by the program and data
currently in memory. If you use this right after a NEW command, you will see
how much memory you can use for your BASIC programs. If you use SIZE

TI BASIC AND EXTENDED BASIC COMMANDS 183

after a program has finished, you can see how much memory the program
used.

CALL SOUND (duration,freq1,vol1l, . . . ,freq4,vol4)

Type: Statement or Command

Description: SOUND controls the tone and noise generator. You get a
tone of frequency freq? at voll for duration milliseconds.
You can get up to four simultaneous tones (all for the same
duration).

Example: CALL SOUND (4000,262,0)

This plays a middle C for 4 seconds (4000 milliseconds) at loudest volume.

CALL SPGET (word-string,return-string)

Type: Extended BASIC Statement or Command

Description: SPGET gets the speech bit pattern in return-string for
word-string. ’

Example: CALL SPGET (“HELLO”,DATA1$)

This puts the bit pattern for the word HELLO into string variable DATA1S.
You use DATA1$ with the SAY statement.

CALL SPRITE (#sprite-num,char,spr-color,dot-row,dot-col

Lrow-vel,col-vell[, ...)
Type: Extended BASIC Statement or Command
Description: SPRITE activates one or more sprites. char is an ASCII

value for a character whose definition is set by PATTERN
or CHAR; spr-color is the color of sprite; dot-row and
dot-col are the location of the sprite on the screen; and
row-vel and col-vel set the speed and direction of motion
of the sprite.
Example:

100 CALL CHAR (128, “66FFFFFF7E3C1818")

200 CALL SPRITE (#15,128,6,75,75,20,10)

300 END

This makes a sprite that looks like a purple heart and starts it moving down
and to the right.

SQR (num-exp)

Type: Function
Description: SQR returns the square root of num-exp.
Example: PRINT SQR(100+525)

This prints 25.

184 THE TI 99/4A USER’S GUIDE

STOP

Type: Statement or Command
Description: STOP terminates program execution. You can use STOP
statements anywhere in your program except after sub-

programs.
Example:
100 PRINT “HELLO THERE”
200 INPUT “DO YOU WANT TO SEE ME STOP? (Y/N) " : Y$
300 IF Y$ <> “Y” THEN 600
400 PRINT “OK”
500 STOP
600 PRINT “I'LL KEEP GOING UNTIL YOU SAY TO STOP.”
700 GOTO 200
800 END

This shows you how to put STOP statements in the middle of a program.

STR$ (num-exp)

Type: Function

Description: STR$ converts num-exp into its string form. VAL works the
other way, changing a string to a numeric form.

Example: STRVAL$=STR$ (VALUE)

This converts the number in VALUE to character string format and puts the
string into STRVALS$.

SUB subprog-name [(parameter-list)]

Type: Extended BASIC Statement

Description: SUB is the first statement in a named subprogram in
Extended BASIC. You use a CALL statement to transfer
control to the subprogram. You can pass values to
subprog-name through the optional parameter-list.

Example: SUB MYSUB

This is the first statement for the named subprogram MYSUB. When you
want to use MYSUB, you CALL MYSUB.

SUBEND
Type: Extended BASIC Statement
Description: SUBEND marks the end of a named subprogram (one that
starts with a SUB statement).
Example:
100 CALL PRNT
200 STOP

300 SUB PRNT

Tl BASIC AND EXTENDED BASIC COMMANDS 185

400 PRINT “HERE | AM IN THE SUBPROGRAM"
500 SUBEND
600 END

This shows you how to use a named subprogram PRNT.

SUBEXIT
Type: Extended BASIC Statement
Description: SUBEXIT transfers control from a named subprogram to
the statement following the CALL statement for the sub-
program.
Example:
100 CALL PRNT
200 STOP

300 SUB PRNT

400 PRINT “HERE | AM IN THE SUBPROGRAM"

500 INPUT “WANT ME TO CONTINUE? (Y/N)” : Y$
600 IF Y$ <> “Y” THEN SUBEXIT ELSE 400

700 SUBEND

800 END

This shows you how to use a SUBEXIT statement to return from a subpro-
gram.

TAB (num-exp)

Type: Function

Description: TAB positions PRINT or DISPLAY statements at column
num-exp.

Example: PRINT TAB(10);"’ABC”’

This prints the letters ABC beginning at column 10.

TAN (num-exp)

Type: Function

Description: TAN returns the tangent of num-exp where num-exp is
expressed in radians.

Example: PRINT TAN(1.5)

This prints 14.10141995

TRACE
Type: Command or Statement
Description: TRACE lists the line numbers of statements before they are

executed.

186 THE TI 99/4A USER'S GUIDE

Example: TRACE

This prints the line number of each BASIC statement before the statement is
executed.

UNBREAK [/ine-num-list}

Type: Command or Statement

Description: UNBREAK removes the breakpoints for the lines in
line-num-list or “all breakpoints (if you don’t use line-
num-list). You set breakpoints with a BREAK command.

Example: UNBREAK 200,350

This removes the breakpoints set by a previous BREAK statement for lines
200 and 350. Any other breakpoints are still effective.

UNTRACE
Type: Command or Statement
Description: UNTRACE cancels a TRACE command. Line numbers are
no longer printed before the statements are executed.

Example: UNTRACE

This makes the BASIC program run as usual, without printing line numbers
before executing its statements.

VAL (str-exp)
Type: Function
Description: VAL converts str-exp to a numeric form.
Example: NUMVAL = VAL(“12.345")

This translates the string “12.345" into numeric format and puts the value
into the numeric variable NUMVAL.

CALL VCHAR (row,col,ASClI-code[,repetitions))

Type: Statement or Command

Description: VCHAR writes the character with the ASCIl value
ASClI-code at row row and column col. If you use a value
for repetitions, you will get that many characters written
‘down the screen beginning at row,col.

Example: CALL VCHAR(10,15,63,10)

This starts at row 10, column 15 and writes 10 ? (question marks) down the
screen.

TI BASIC AND EXTENDED BASIC COMMANDS 187

CALL VERSION (num-var)

Type: Extended BASIC Statement or Command

Description: VERSION returns the value of the Extended BASIC version
currently being used.

Example: CALL VERSION (BASVER)

This puts the value of the current BASIC version into variable BASVER.

INDEX

Addressing, 33
Arrays, 58
ASCII codes, 30-31
Assembler, 34
directive, 35
Assembly language, 47, 98-99

Ball, 77

BASIC, 46
assembler comparison, 38-39
extended, 96-97

Binary, 27

Bit(s), 27
mapped mode, 110-111

Cable(s)
cassette, 15-16
joystick, 15-16
monitor, 69-70
ready, 14
CAl, 101
Card(s), 73
memory expansion, 45
Cartridges
mini-memory, 99
program 33-34
Cassette
cables, 15-16, 72
files, backing up, 133

188

recorder, 16—17, 72
tapes, 17-18
Central processing unit, 32—-33
Characters, 28
Chips, 35
Color
codes, Tl 99/4A, 105
graphics, 58
monitor, 69-70
Command(s), 60-61
mode, 60
Compiler, 36
Computer aided instruction, 101
Connecting tv, 14-15
Copy files, 75
Counting, 27-28
hexadecimal, 28-32
CPU, 32-33
CTRL key, 21-22

D

Daisy wheel printers, 77
Delete files, 75
Disk
backup, 75
controller interface card, 75
double sided, 74
files, backing up, 133
identification, 132
label, write on, 132
manager cartridge, 75
single sided, 74
system, 74-76°
Display, modes, 105, 112
Dot-matrix printers, 77

INDEX 189

E J

Edit Joystick

mode, 60 cables, 15-16

functions, 65 control, 58

Editing, 63 interference, 18
Editor/assembler, 34, 99
Education, 23-24 K
Error(s) Ks, 26-27

handling, 59 Key, CTRL, 21-22

logic, 43 Keyboard

syntax, 43 layout, 18-19
Ethics, 55 scanning, 58

Expansion interface card, 73
Extended memory support, 59

L
Language, interpreted, 36
F Line
FCTN editing, 64
key, 20-21 editor, 58
and overlays, 20-21 numbering, automatic, 58
Format disks, 77 List files, 75
FORTH, 48-49, 101-102 Local User's Groups, 22-23
Frequencies, musical notes, 115 Logic errors, 43
Functions, 62 LOGO I, 46—-47, 97-98
G M
Graphics mode, 106—109 Machine language, 34
Magazines, 23
Maintenance, 86—-87
H Mechanical talents, 85-86
Hardcopy, 44 Memory, 33-34
Hardware, buy, 86 expansion card, 45, 74
Hexadecimal, 28-32 minimum system, 44
Hexbus, 68 support, 59
interface, 81 Modems, 79-80
Modulator, rf, 14, 69
Monitor
! cables, 69-70
Input, output, 59 color, 69-70
Instruction set, 34 Multicor mode, 109
Interface Multiplan, 50
card, RS-232, 76-77 Multiple statements, one line, 59
Hexbus, 81 Music, 113, 114-119
RS-232, 82-83
Interference, joystick, 18 N

International 99/4 User’s Group, 22
Interpreted language, 36 Noise, 114, 119

190

o

Object code, 36
Overlays and FCTN key, 20-21

Parallel
port, 76
printer, 77
Pascal, 48
P-code system, 50
Peripheral(s), 68
cassette recorder, 68
disk drives, 68
expansion box, 68, 73-74
joysticks, 68
modem, 68
non-Tl, 83-85
printers, 68
Ti, 83-85
Petals, 77
PILOT, 48, 101
Pixels, 104
Plato, 50
Printer(s), 77-79
plotter, four color, 81-82
Program(s), 43
cartridges, 33-34
merging, 59
mode, 60
Programming, ambitious, 44—46

RAMs, 26-27
Recorder

attaching cassette, 16—17

CS1, 72

CS2, 72
Rename files, 75
Renumbering lines, 66
Resequencing, 58
Resolution, 104
Rf modulator, 14
ROMs, 26-27
RS-232

interface, 82-83

card, 76-77

Screen control, 58
Serial
port, 76
printer, 77
Software, 41, 49
acquisition rules, 51-54
buying, 55
Sound, 58
generator controller chip, 113
Speech, 59, 114, 123
synthesizer, 36, 70
Sprites, 59, 111-112
editor, 111
Statements, 61
Syntax, errors, 43
Synthesizer, 59
speech, 70

T

Tape identification, 132
Text mode, 109
Thimble, 77

TMS9900, 32-33
Tones, 114-119

Tv, connecting, 14-15

U

ucsD
Pascal, 48, 100-101
P-code system, 50
User friendly, 129
User's group, 22

\%

Video display processor, 103
Voice synthesis processor, 36

w

Wafertape, 81
White noise, 58
Wired remote controllers, 71

TO THE READER

Sams Computer books cover Fundamentals — Programming — Interfacing —
Technology written to meet the needs of computer engineers, professionals,
scientists, technicians, students, educators, business owners, personal com-
puterists and home hobbyists.

Our Tradition is to meet your needs
and in so doing we invite you to tell us what

your needs and interests are by completing
the following:

1. 1 need books on the following topics:

2. | have the following Sams titles:

3. My occupation is:
Scientist, Engineer
Personal computerist

D P Professional
Business owner

Technician, Serviceman Computer store owner
__ Educator Home hobbyist
Student Other

Name (print)
Address

City State Zip

Mail to. Howard W. Sams & Co., Inc.
Marketing Dept. #CBS1/80
4300 W. 62nd St., P.O. Box 7092
Indianapolis, Indiana 46206 22071

THE TI 99/4A
USER’S GUIDE

® Covers the common problems that TI 99/4A owners have with
their first computer.

® Will introduce you to the many options available for improv-
ing and expanding your TI 99/4A.

® Discusses the options you have for finding software and
getting it up and running.

® Will tell you what peripherals are available for your TI 99/4A,
explain what they do, and give you some suggestions on how
you can expand your system.

B Shows how you can use your TI 99/4A to generate tones,
sound effects, music, and speech.

B Provides information on TI BASIC, Extended BASIC, LOGO II,
9900 Assembly Language, UCSD Pascal, PILOT, and FORTH.

This book is for anyone who has a TI 99/4A or who may be plan-
ning to buy one.

HOWARD W. SAMS & CO., INC.
4300 West 62nd Street, Indianapolis, Indiana 46268 USA

$11.95/22071 ISBN: 0-672-22071-7

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010

	back-cover

