

YOUR FIRST TI-99/4A PROGRAM

•

Rodnay Zaks

Illustrated by Daniel Le Noury

SYBEX

Berkeley • Paris • Dusseldorf

The author is indebted to the

many persons of the SYBEX
editorial and production
departments who have
watched every detail of the
preparation of this book and
have contributed to its final

appearance. In particular,
Salley Oberlin, Eric Novikoff,
and Joel Kreisman have con

tributed many valuable
improvements to the form and
contents of the original manu
script, verifying and challeng
ing assertions, statements,
and programs, and thus con
tributing in a major way to the
clarity and accuracy of this
book.

Every effort has beui i made to sup
ply complete and accurate informa
tion. However, SYBEX assumes no
responsibility for its use, nor for any
Infringements o* patRnts or other
rights of third parties wMch would
result.

© 1984 SYBr:\ Inc 2344 SixTh
Street, Borxc.ey. CA $W* World
right* rese.'v«.-1 w«: nart o- lh»«* publi
cation fray u?. '-red ,r " --.t.-'eval
system, tren-r../. J or ,.:ofeduced
in any way, ir.cH.ano but rot limited
to photocopy, photograph, magnetic
or other record, vithout the prior
agreement and written permission of
the publisher.

Libraryof Congress Card Number:
83-50962

ISBN 0-89588-157-8

First Edition 1983

Printed in the United States of

America

10 987654321

Cover art &drawings: by Daniel Le Noury

Speaking
BASIC

Introduction 1

Programming 2

The BASIC

Interpreter 4

What is BASIC? 6

Which BASIC? 7

Your Computer 8

Computers
and Syntax 13

Communicating
with Your
Computer

Introduction 14

Using the Keyboard 16

Speaking BASIC 20

A Longer Program 28

Summary 33

Exercises 34

Calculating
with
BASIC

Introduction 36

Printing Numbers 38

Scientific Notation 39

Doing Arithmetic 40

Printing Formats 43

Application
Examples 45

Summary 46

Exercises 46

Memorizing
Values
and Using
Variables

Introduction 49

The Input Statement 50

The TwoTypes
of Variables 53

Assigning a Value
to a Variable

(the LET Statement) 58

The Variable

Counter Technique 64

Summary 66

Exercises 67

Writing
A Clear
Program

Introduction 68

The REM Statement 70

Multiple Statements on a
Line 171

Using Blanks 71

Improving the
Display 72

Shortcut Input 73

Selecting
Variable Names 74

Proper
Line Numbering 74

Summary 78

Exercises 79

Making
Decisions

Automating
Repetitions

Creating
a Program

Introduction 81 Introduction 104 Introduction 121

The IF Statement 82 The IF/GOTO Algorithm Design 122

An Arithmetic Drill 90
Technique 106

Flowcharting 126

The GOTO

Statement 94

IF Statement

Revisited 96

The FOR...

NEXT Statement 109

Sum of the First

N Integers 111

Coding 134

Debugging 136

Documentation 138

Counting Ones 97
Tables of Values 112 Summary 140

Arithmetic Drill
Lines of Stars 113 Exercises 141

Revisited 99 Advanced Loopi ng 114

Validating Additional

the Input 99 Features 118

Mileage Summary 119
Conversion 100

Exercises 119

Birthday 101

Summary 102

Exercises 103

Case Study:
Metric
Conversion The Next Step Appendices

Introduction 143 Introduction 163 Answers to

Selected Exercises 171
Designing What Can You Do

the Algorithm 144 With BASIC? 164 Tl BASIC

Reserved Words 176
Flowcharting 144 Improving Your

Coding 151
Skills 164 BASIC Glossary 177

More BASIC 165 Index 180
Testing 158

Conclusion 169
Summary 160

Exercises 161

Preface

Hundreds, perhaps thousands, of books have been written about
programming.

Why another one? Simply because the audience has changed.
In the past, using programming languages such as BASIC was the
privilege of the few who had access to computers. Programmers
were a small elite group. This is no longer the case. The majority of
computer users today have little or no technical background. They
use computers for fun, education, business, or their profession.

This book addresses this new group of users. Not only does it
look different, but it is different. It is intended for the beginner and
thus assumes that the reader has no prior technical knowledge.
Personal computers have made BASIC the most widely used and
most accessible computer language ever. This book is for
everyone—whether aged 8 or 88—who wants to learn quickly how
to get started in BASIC with their TI-99/4A computer.

The author believes that all new computer users who want to
learn how to write their own programs in BASIC are enthusiastic and
young, or young-at-heart. They want a simple, straightforward, edu
cational approach to learning BASIC. That is the approach of this
book: It is designed to make learning to program in BASIC on the
TI-99/4A easy and fun.

Furthermore, this book aims at teaching you the essentials of
BASIC in just a few hours. You should be writing your first BASIC pro
gram within one hour. And within a few hours, you should know
enough to start writing useful and meaningful programs.

Time is passing... let's begin.
The author wishes you a pleasant journey along the magical path

to knowledge.

RodnayZaks
Berkeley, September 1983

How To
Read
This Book

This is an educational book. You should read every chapter in
sequence and understand each one before you continue on to the
next. I have provided exercises at the end of each chapter to help
you test your new skills. Do as many of them as you can. Answers
to selected exercises are provided in Appendix C at the end of this
book.

If you have a TI-99/4A computer, try all the programs. Totruly
learn and remember, you must practice and experiment. This book
will bring you the skills and knowledge you need to get started—but
remember, nothing can substitute for experience.

The main goal of this book is to get you started programming
your TI-99/4A in BASIC quickly and effectively. To achieve this goal
and make your path simple, I have had to make choices; therefore
this book does not describe every feature or concept of BASIC—just
the important ones.

It is my hope that with this book you will understand everything
quickly, and that in no time at all you will be writing your first BASIC
programs, and appreciating and enjoying the power of your new
programming skills.

What You
Will Learn

Chapter One explains the language of computers and introduces
you to the heroes of this book: the Computer, the Interpreter, the
Program, the Instructions, and other characters of the cast.

Chapter Two shows you how to communicate with your computer,
using the resources of the keyboard and the display. You will learn
to type your first BASIC programs and execute them.

Chapter Three shows you how to perform calculations with BASIC.

Chapter Four helps you write programs that can be used repeat
edly. In addition, you will learn how to use variables correctly and
effectively.

Chapter Five shows you how to make your programs clear and
readable.

Chapter Six shows you how to make complex decisions based on
logic and values.

Chapter Seven explains how to automate repetitive tasks, using
program loops.

Chapter Eight shows the correct method for designing a program
from the algorithm to the working, documented program—including
designing the flowchart.

Chapter Nine helps you apply all these concepts to a practical case
study.

Chapter Ten helps you examine the next step to programming
expertise.

The appendices A, B, and C offer answers to selected exercises, a
list of common reserved words, and a glossary.

If you are ready, let's open up the family album and I'll introduce you
to the heroes of this book...

-

V

Meet
Our
Heroes

Featuring(going clockwise).
Dino the Programmer,
the BASIC Interpreter
standing on his friend
the Computer, the Program
Snake, the mischievous
Bug, two Variables,
Program Instructions
ready to walk to their
assigned spot, and the
indispensable flowchart
on which Dino rests ...

Oops, our bug seems to
be up to something!

Sorry...
our mischievous
Bug did itagain.
So much for
a group shot...

This is the BASIC Interpreter. When awake, he
resides in yourComputer's memory. Hisjob is
to translate your instructions to the computer.
He willhelp you in any way he can.

This is your friend the Computer—at your
command.

Neverforget this face. This is a Bug. He will
make your lifemiserable. Do your utmost to
keep him away fromyourprograms.

No, thisis no monster—it's the Program
Snake. He's made up of instructions. You'll
learnto assemble him. He's very tame once
you know him. Just keep Bugs away from him.

TheFamily Album

This is Dino. He's friendly and, although he has
no formal education, he willshow you how
simple itis to write BASIC programs.

This is a numeric variable. His coat is labeled
withhis name, and he has a value imprintedon
him. He's unhappy because he wants to go
back to his reserved box in the memory.

Here are the BASIC instructions, ready to join
the Program Snake.

This is yourbest friend, the Flowchart. He'll
help you design programs thatwork.

Iclaimed in the preface that "You
will be writing BASIC programs
within one hour."—so, why start with
a chapter on concepts and defini
tions? Aren't we wasting time? On
the contrary: Our purpose is to learn
and retain information, and true
learning requires depth of under
standing. The information presented
in this chapter will help you better
understand what programming is,
how a BASIC program is executed,
and the vocabulary of computers.

Before we begin writingour first
program, there are a few important
definitions and concepts you should
learn. Once you understand these
terms, Ican explain what happens
and what to do, in a simple yet

accurate manner, and you should be
able to follow along easily. So read
this chapter carefully to ensure that
you truly understand what you are
doing—and won't just be hitting
keys.

We will begin by learning how to
give instructions to a computer—this
is called programming. Next, we will
explain the need torprogramming
languages, such as BASIC. Then we
will discuss what a BASIC interpreter
is, and we will explore the history
of BASIC, its dialects and its uses.
Finally, we will examine the com
ponents of a computer system and
learn some of the technical jargon
used to describe these components.

Programming

Yourcomputer is a machine designed to process information—both
textual and numerical. For example, you can make your computer
display words and sentences on a screen—this is known as tad
processing—or you can make it convert a weight expressed in ounces
into itsvalue in grams—this is knownas numericalprocessing. In or
der to make your computerperform thisprocessing, it isnecessary
to issue instructionsin a format or "language" it understands.
Each computer can only "understand" (i.e., recognizeand exe
cute) a small number of different instructions (say, a few hundred).

Instructions that a computer can understand directly are called
inachine language instructions. These instructions are stored in binary
format, i.e., in groupsofO's and l's in the computer's memory.
Each 0 or 1 is calleda bit, and a group of eight bits is called a byte.

A sequenceof instructions that accomplishes something useful is
called a program. (A sequenceof instructions that accomplishes
nothing is an error.) Yourcomputer executesa program by execut
ing each instruction in turn. Unfortunately, writing a computer
program (a sequenceof instructions) in machine language, i.e., in
binary form, is a slowand tedious process.

Ideally, we would like to be able to give spoken or written com
mands in everyday language (say, in English) to the computer and
have it execute them. But, this is not possible since a computer
cannot understand any of the usual languages—whether spoken or
written. The reason for this is quite simple: A computer executes
orders strictly and exacdy; it is logical and precise; and it requires

Learn how to

give instructions
to your computer!

clear, unambiguous instructions in the proper sequence and form.
The problem with a spoken language lies in the language itself—
sentences can be ambiguous and often their meanings can depend
on context, such as facial expressions or gestures. This type of
communication cannot be interpreted by a computer.

Even carefully written English remains insufficiendy precise for
a computer. For example, you cannot tell a computerized robot to
"go to the kitchen and boil an egg," and expect results, unless the
robot has been programmed to know its way around your kitchen.
A robot has to be trained (or programmed) before it can operate in
an environment like ours. And, even if a robot is trained to know

its way around^our kitchen, it may not be successful in a friend's
kitchen, because things may be located in different places. Remem
ber, communication with a computer must be clear, precise and
unambiguous.

It is for this reason that simplified "languages" were invented to
communicate with computers. Recall that the binary language
(also known as machine language) is the easiest language for a
computer to understand. However, this language is hardly practi
cal for people. Therefore, other languages have been invented to
facilitatecommunications. These languages resemble common
English and are called high-level languages.

For effective and clear communication with a computer, only a
limited number of English words may be used, as predefined com
mands. In addition, sentences or statements that specify instructions
to a computer must obey strict grammatical rules, called the syntax
of the language. The combination of a restricted vocabulary and
a syntax is called a programming language. BASIC is one such
language.

In summary, aprogramming language is a collectionof rules (the
syntax) and words and symbols (the vocabulary) that allow you to
issue instructions to a computer in a format that can be understood
exactly. A sequence of such instructions is called a program.

Here is an example. Suppose we want to

add 2 + 2

and display the result. Using BASIC, we would write:

1 R = 2 + 2

2 PRINT R

where R stands for "result."

"/ love BASIC!
Please speak BASIC to me."

"Remember me?

I'm the program and
I'm made up
of instructions."

"Remember me? I'm

the BASIC interpreter,
ready to translate
your instructions to
the computer. I'm
a program, and I'll
reside in your
computer's memory."

But wait ... we said earlier that the only language that a com
puter can understand directly is machine language; and we are now
issuing instructions to a computer in a language close to English.
Isn't there a contradiction?

There is no contradiction. Indeed, the bare computer cannot
understand BASIC direcdy, or for that matter, any other high-level
programming language (a language that uses English-like sen
tences). Therefore, to be understood by a computer, a program
written in a high-level language, such as BASIC, must be interpreted
by a special program, called quite appropriately an interpreter. In
other words, you speak BASIC to your computer via an interpreter.
Therefore, in order to execute a BASIC program, your computer
must have a BASIC interpreter. Let's now learn what an
interpreter does.

The BASIC Interpreter
A BASIC interpreter reads each BASIC instruction you type at the
keyboard, analyzes it, and uses its own special procedures to carry
it out. This process is completely invisible to you (i.e., it takes place
inside your computer). Once you activate the interpreter program
on your computer, for all practical purposes, your computer can
speak BASIC. Your computer can speak other programming lan
guages as well (if the appropriate interpreters are provided).

There are several kinds of BASIC interpreters. Here we will
explain the type you have on your TI-99: a resident interpreter.

A resident BASIC interpreter is provided on most small com
puters, including your TI-99. This interpreter is called resident
because it resides permanendy in die memory of the computer. On
the TI-99, it is available immediately, whenever the computer is
turned on. Once the BASIC confirmation symbol (orprompt (>))
appears on your screen, you know that the computer is ready to
execute your BASIC instructions for you.

A resident interpreter generally has one drawback: it can pro
vide only a minimal version of BASIC. Since a resident interpreter
is "built-in" to the permanent memory of a computer, it must be
kept small in size, since the total memory size of a computer is
limited. The memory of a computer must contain the programs,
including the BASICinterpreter, and also provide sufficient space
for computations, system management, and data to be operated
on. These space requirements limit the size, and therefore restrict
the complexity, of the resident interpreter. On computers that come
with a small amount of memory, the resident interpreter is often a
"tiny BASIC" that imposes limits on what you can do with it.

"When I'm in the memory,
your computer speaks BASIC."

A "mini" or "tiny BASIC," therefore, has fewer features and
conveniences than a "full" or "extended BASIC." A usual limita

tion of a "mini-BASIC" is that it operates on integers only; that is,
it does not handle fractional numbers. Such a version of BASIC is

also called an "integer BASIC." By contrast, an improved version
of BASIC that also handles fractional numbers is calleda "floating
point BASIC." This feature is highly desirable ifyou plan to do
computations.

The BASIC interpreter resident in your TI-99/4A has some of
the features found in more powerful,^m// or extended BASICs, includ
ing floating-pointnotation. It is sufficientfor learning how to pro
gram in BASIC, at least for the purposes of this book. Later on, if
you learn to write more complex programs, however, you may find
that you want facilities not provided by the TI-99/4A resident
BASIC interpreter.

Let us now explain what BASIC is, how it was invented, and the
resulting dialects.

What is BASIC?

High-level languages were invented to make it easier for a user to
give instructions to a computer, that is, to program it. Over the
years, hundreds of programming languages have been invented.

In the early days computers were used primarily for scientific
purposes, and the early programming languages were designed to
facilitate numerical computations. Thus, the granddaddy of lan
guages, FORTRAN ("FORmula TRANslator"), was designed pur
posely to specifynumerical computations. FORTRAN, however,
suffered from many drawbacks, and many newlanguageswere
invented. BASIC was one such language; COBOL, APL and Pascal
were others that became widely used.

The invention of BASIC represented a major breakthrough.
BASIC was designed to be simple and easy to learn. In addition, it
was interactive. Let's see what this means.

BASIC stands for BeginnersAll-purpose Symbolic Instruction
Code. It was invented in 1964byJohn Kemeny and Thomas
Kurtz at Dartmouth College, working under a National Science
Foundation grant. The goalof the authors was to design a lan
guage that could be used easilyby a beginner. They succeeded in
reaching this goal. To this day, BASIC is one of the easiest pro
gramming languages to learn.

Because BASIC was designed to be interactive—in fact it was the
first interactive language—a user couldinteract with the program
at a terminal, rather than submit batches of perforated IBM cards,
as with older languages. BASIC originally ran on the GE225 time
sharing system at Dartmouth College. Terminals were available
throughout the campus, and many users could access the computer
simultaneously.

The success of BASIC was rapid. General Electric (GE) immedi
ately decided to use it commercially. Kemeny and Kurtz published
the firstbookon BASIC in 1967. And, HewlettPackard (HP)and
Digital Equipment Corporation (DEC) decided to make BASIC
available on most of their computers.

BASIC offers two major advantages over languages like FOR
TRAN:

1. For a user: BASIC is the easiest language to learn, especially
for a beginner.

2. For a manufacturer: BASIC is theeasiest language to provide
on a computer. Since the language issimple, the interpreteris
also simple andrequires only a small amount ofmemory.

A third factor contributed to the enormous success of BASIC:

theadvent oflow-cost microcomputers. When microcomputers
became widely available in the late 1970's, BASIC became the uni
versal programming language on these small computers. Because
the BASIC interpreter for a simplified version ofBASIC requires
only4K (4,096bytes) ofmemory, even the smallest computers
couldaccommodate a resident BASIC. (Remember that a resident
BASIC refers to an interpreter stored in the permanent memoryof
thecomputer.) The larger morerecent computers havelarger
memories (64K and more—where IK refers to 1,024 bytes) and
can, thus, provide more powerful versions of BASIC.

Today BASIC isusedon almost allcomputers. Over the years
manufacturers have added extensions and "features" to the lan

guage, so that todaythe BASIC language isprobably the most non
standard computer language. No two BASICsare the same. In
fact, BASIC hasbecome a family oflanguages and isno longera
single language. Although many standards have been proposed,
none has succeeded, and none is likely to succeed at this late date.
Does this mean then that you must relearn BASIC on each com
puter? Not quite. Once you know the essentials of BASIC that are
common to all versions, you can easily learn the enhancements that
each versionoffers. AllBASICs have essentially the same core of
instructions. You will learn more about theseinstructionsas you
read on in this book.

Which BASIC?
The version of BASIC you will be using with your computer was
developedby TexasInstruments (TI for short). In this book we will
refer to this version as "TI BASIC."

As you type in and run the programs in this book, you will
become skilled in the main capabilities of TI BASIC. More
advanced features, such as color graphics and sound, will not be
covered here.

Now that we understand more about programming languages in
general and BASIC in particular, let's learn more about your com
puter and how it processes information.

Your Computer

Yourcomputer processes information and communicates with you
viaa keyboard and a screen, plus maybe a printer. The keyboard is
used to send information to the computer. Every time a key is

"I'm robust, helpful
and friendly once
you know me."

pressed, the electronic code corresponding to the character for that
key is sent to the computer, where it is recognizedand acted on, or
ignored. The keyboard is your input device; it provides information
to the computer.

"This is my keyboard."
7 need an input from you
to know what to do."

A television screen or monitor displays information generated by
the program. Normally, each character you press at the keyboard
will appear on the screen. It is first sent to the computer, then
"echoed" to the screen. Generally, there is no direct connection
between the keyboard and the screen. Allcommunications go
through the computer. This is illustrated below.

The keyboard sends information
to the screen through the computer

10

With the TI-99/4A, the computer proper is integrated with the
keyboard. The screen is separate. Depending on your investment,
your computer system may also include a cassette recorder and/or
disk units, and a printer.

Regardless of whether you have these extras or not, the com
puter proper includes a processing unit (the central processing
unit), a memory, and several interfaces (the electronics for connect
ing printers and other devices). Let's examine these three elements.

The central processing unit (CPU) fetches program instructions,
one instruction at a time, from the memory and executes them.
The CPU requires fewcomponents. These components are called
integrated circuits or "chips." All microcomputers use a micropro
cessor chip as the main element of the CPU. A typical chip is shown
in the drawing below.

The memory stores the programs and all the information that the
programs manipulate, read, or generate during their execution. To
execute a program, the program must first be placed in the com
puter's memory. For example, if a program is originally stored on a
cassette or a diskette, it must be transferred into the computer's
memory. This is called loading the program. There must be enough
memory inside the computer to accommodate the largest program
size, plus the data the program will manipulate.

Two types of memories are present in your computer: ROM and
RAM. The "normal" type of memory that you will use to store
your program is the RAM or random access memory. RAM is a
read/write memory: information may be written into RAM and
read from it. A RAM looks just like the microprocessor shown
below except that there is a different chip inside. Unfortunately, in

"This is a microprocessor chip.

the present state of the technology, this type of memory is volatile:
the contents of RAM disappear once the power is turned off. This is
why, at the end of a session, you must always store your program
on a nonvolatile medium, such as a cassette or a diskette, if you
want to keep it.

The TI-99/4A's BASIC interpreter is stored in the computer's
ROM. ROM stands for read-only memory. This type of memory
has been permanendy loaded with programs by the manufacturer
and cannot be changed. It is nonvolatile and is never erased. As
well as the resident BASIC interpreter, it contains a special pro
gram, the monitor, which is needed to communicate with the com
puter once it is turned on.

If your ROM contains nothing, die computer would not know
what to do when you pressed the keys on your keyboard. At a min
imum, your ROM must contain a monitor. This program exam
ines the information sent by the keyboard, and reacts to it by

Your computer will
do nothing untilyou enter
a program in its memory

11

The monitor program
runs all the time,
ready to perform all
common chores

performing housekeeping actions, such as starting the resident
BASIC interpreter or loading a program from a cassette.

You cannot use the ROM to store any other programs. All other
programs that you enter on your computer are loaded into RAM.
You can also purchase program cartridges for your computer. In
these cases, the programs are stored in ROM chips inside the
cartridge.

At least two additional devices are commonly connected to a
computer: a mass memory and a printer. These devices connect
through the interfaces—the electronics required to connect special
devices. The mass storage device may be a cassette recorder and/or
one or more disk drives. (Note: Both of these devices use a mag
netic medium to record information and can store much more

information than the internal electronic memory of the computer.)
These special devices require a specific interface in the computer
box that allows them to communicate with the computer. Your
TI-99 computer has built-in interfaces (couplings) for a tape re
corder and for the wired remote controllers ("joysticks"). How
ever, a separate interface unit is generally required to connect one
or more disk units to the computer. The TI Thermal Printer has
the necessary interfaces built into it.

A printer is required to obtain a permanent printout of programs
or results. A printer is an output device, just like a TV screen or moni
tor, and specific instructions are provided in BASIC to send informa
tion to either the display or the printer.

Finally, a modem is another deviceoften used. A modem allows
you to communicate withanother computer or terminal over ordi
nary telephone lines. It isuseful when usinga commercial network
or for accessing data banks (collections of information).

We have now learned the required vocabulary. Beforewe go on to
Chapter2and startusing die computer, one word ofcaution is in order.

Computers and Syntax
Computersare fast, patient, and accurate. They do onlywhat they
are told to do, and they do it exacdy. In order to communicate
successfully withyour computer you must be exact. If you make an
error or a mistake in writinga BASIC instruction, you will not dam
age anything in thecomputer, but your programwill not execute
successfully. It will generally stopand say: "syntax error."

Recall that the syntax is the set of rules that specify the correct
way to writea BASIC instruction. Syntax rules are rigid. For exam
ple, you may not usean approximate spelling. If the rules specify a
period, you may not use a commaor a semi-colon instead. Each
character is rigidly interpretedby the computer and has a precise
meaning. Any deviation will mean failure, or, at the very least,
unexpected results.

Remember that ifyou do not obey the rules exacdy, your pro
gramwill probably not run. Do not attempt to be creative. The
rules are simple, straightforward, and easyto follow when writing
program instructions. It isbest to save your creativity for the overall
program design and for planningdie tasks youwish to accomplish.
In short, it is important that you carefully follow the instructions
and recommendations given in this book.

'Remember.

be exact."

13

Communu
Your

In this chapter, you will learn how to
communicate with your computer.
You will learn to issue BASIC in

structions and make the computer
display words and sentences. The
information exchanged between
you and the computer will include
programs (instructions in BASIC that
you send) and data (the numbers
and characters that you send or
receive).

You will first learn how to use the

keyboard of a computer, so that
you can start sending instructions.
In particular, you will learn how to

move the cursor around the screen,
and how to correct typing errors. You
will then issue your first instructions
in BASIC and make the computer
display messages on the screen.
You will learn the difference between

immediate and deferred execution.

Finally, you will learn the steps in
volved in writing a simple program
and in executing it.

By the end of this chapter, you
should be familiar with the basic

skills required to communicate with
your computer.

mating with
Computer

Learn about

the keyboard

Using The Keyboard

The TI-99's keyboard looksjust like a regular typewriter keyboard,
except that it has extra keys. Most of its features are similar to those
found on other computers, but it does have a few unique ones. The
main keys are:

1. the letters of the alphabet (A through Z)

2. the digits 0 through 9

3. symbols, such as =, +,*,", and

4. a "carriage return" key marked ENTER

5. a SHIFT key and a "control" key marked CTRL

6. a "function" key marked FCTN and an ALPHA LOCK key.

We will now examine the role and the use of all these keys.

Characters, Numbers, and Symbols

The purpose ofeach letter, number, and special symbol key isobvi
ous. These keys are usedfor the same purposes as on a regular
typewriter.

Enter (Carriage Return)
On a typewriter, the carriage return leveror key performstwo
actions: it returns the carriage to the beginningof a line, and it
advances the paper to the next line. Hence its name. On your
TI-99, however, the ENTER key moves the cursor to the beginning
of the next line on the screen. (The cursor is a blinking, black
squarethat indicates the next position at which a character will be
displayed on the screen.) It iscalled the ENTERkey, because its
main function is to ENTER a character or a line of text or data into

the computer's memory.
In any case, each instruction to the computer, includingBASIC

instructions, must be terminated with an ENTER. The ENTER
means, "enter the line into memory." In fact, anything you type on
a lineisignored by thecomputer untilyou press ENTER. This
way, you can correct any errors you may have made, before you
enter the line into the computer's memory.

ENTERS are used only at typing time. Although necessary, an
ENTER is not stored as part of a program instruction. In this intro
ductory chapter, to help you learn, wewill show all the characters
you must type, anddisplay a symbol indicating ENTER at theend
of each line. This symbol will appear as -p.

Remember: youmust press the ENTER key to transmit an
instruction to the computeror elsenothing will happen. Similarly
when the computerlater asks you for values, you enter each
response by pressingENTER as well.

Shift
The SHIFT key works similarly to theoneon a typewriter. It allows
you to shift between the upper- and lowercase symbols diat appear

17

18

on the keys. Except for the letter keys, most keys have two symbols
printed on them, a lower one and an upper one. As long as you
don't press the shift key, the lower symbol will be generated when
the key is pressed. When you press SHIFT together with a key, the
upper symbol will be generated. With the letter keys, you normally
generate lowercase and uppercase letters. Your TI-99 keyboard
normally generates lowercase letters. In most cases, TI BASIC
accepts either uppercase or lowercase letters. Because there are
exceptions, throughout this book we will use only uppercase letters
in our programs. You can use lowercase letters for comments and
text.

To generate uppercase letters on your TI-99, you must depress
the ALPHA LOCK key. Depressing this key allowsyou to lock
die keyboard into the uppercase position. (It only affects letters,
however.)

Let's now practice what we have just learned. Go to your key
board, and hit keys at random. Press any key; you won't damage
anything. Use the SHIFT key and watch the characters being dis
played on the screen. Now, press ENTER, and see what happens.

Control
The control (CTRL) key is provided to issue frequendy used com
mands to your computer in shorthand. It does not exist on type
writers. The CTRL key is used like the SHIFT key: by holding it
down and pushing another key on the keyboard at the same time.
This is called generating a control character. For example, "CTRL
A" is generated by holding down the CTRL and A keys simultane
ously. This is a convenient way to generate a command or control
code—by pressing only two keys.

On the TI-99, the CTRL key is used primarily for telecommuni
cations and with some software programs. We will not use any con
trol codes in this book.

The Function Key

The function (FCTN) keyon the TI-99 isvery important. It serves
two main purposes. First, it is used in conjunction with some of the
letter keys to generate certain symbols. Second, it is used in con
junctionwith the number keys to producespecial functions. Let's
examine each of these in turn.

If you lookat your computer's keyboard, you will notice that

some of the letter keys have symbols on the front. For example, the
I key has the ?, the P key has the ", and the O key has the '. To
generate these symbols, you must hold down the FCTN key and
press the appropriate letter key. Thus, to produce the double quota
tion mark ("), you must hold down the FCTN key and, while hold
ing it down, press the P key. You will also notice that the keys E, S,
D, and X have up, left, right, and down arrows on them. Holding
down the FCTN keyand simultaneouslypressing one of these keys
will move the cursor in the direction of the arrow. You can use this

function to correct typing mistakes.
To use the FCTN key to produce special functions, you should

have the "keyboard overlay" in its proper place. The keyboard
overlay is the strip of plastic with the words "DEL, INS, ERASE,
CLEAR ..." printed on it. It is placed in the recessed area direcdy
above the number keys. Pressing the FCTN key in conjunction
with the number key produces the function described on the over
lay. Let's look at some of these.

FCTN = (QUIT) Pressing the FCTN key and the key with the
equals sign causes the computer to leave TI BASIC and return to
the master computer tide screen. This erases anything you may
have had in the computer's memory.

FCTN 2 (INS) Pressing the FCTN key and the 2 key allows
you to insert characters immediately to the left of the cursor.

FCTN 1 (DEL) Pressing the FCTN key and the 1 key allows
you to delete whatever character the cursor is over.

FCTN 3 (ERASE) Pressing the FCTN key and the 3 key
causes the entire line you are on to be erased.

FCTN 4 (CLEAR) This key acts like the "break" key on other
computers. Pressing the FCTN key and the 4 key will stop any pro
gram from running.

The other special functions (BEGIN, PROC'D, AID, REDO, and
BACK)are used with TI game cartridges and will not be discussed
here.

The Cursor

Recall that thecursoris thesolid, black squareon thescreen that
shows your current position. It blinks so that you cansee it easily.
Here is a cursor showing you where you areon thescreen after you
have typed HELLO:

> HELLO I

19

20

Learn to move

the cursor

on the screen

Aswe havesaid, by movingthe cursor back and forth and up and
down on thescreen, you can typeover charactersand modify any
text you have typed previously. This is a great convenience for
making changes. Youwill use the cursor extensively to correct
typing errors.

You may now want to go back to your keyboard and practice
some of the things you have just learned. When you feel reasonably
familiar with your keyboard, come back and learn how to issue
BASIC instructions to the computer.

Speaking BASIC

To speak BASIC with your computer you need a BASIC interpreter
in die memory. Since your computer has a built-in (resident) BASIC
interpreter, you do not have to do anything to activate it.

When you turn on your TI-99 computer, you willsee on your
screen the TI logo, and the instructions "READY — PRESSANY
KEY TO BEGIN." After you press a key, your screen willdisplay
die options that are available to you. The number of selections will
depend upon whether or not you have a cartridge installed and/or
other peripherals connected to your TI-99. In any case, you will
have the first option, "PRESS 1FOR TI BASIC." When you press
the 1 key, the TI BASIC interpreter is activated, and a confirma
tion, or prompt, appears on the screen:

TI BASIC READY

"TI BASIC" is the name given to the interpreter. > is the
prompt, a message from the BASIC interpreter, meaning, "I'm
ready. Go ahead and tell me what to do." As soon as you see this
symbol, you know that the BASIC interpreter is ready and waiting
for your instructions.

We will now proceed, assuming that:

1. The TI BASIC interpreter has been activated.

2. The BASIC prompt used by your interpreter (the > symbol)
appears on your screen. If the prompt does not appear, press
ENTER and see what happens. If this does not work, turn
your computer off, and restart it.

We will now issue our first BASIC instruction to the computer.
Type the following (exacdy as it appears here):

PRINT "HELLO"

The screen should look like this:

TI BASIC READY

> PRINT "HELLO" •

The > on the left is the prompt telling you that the BASIC inter
preter is waiting for an instruction. The characters on the right
have just been typed by you. Nothing should happen yet. Do you
remember why?

This is because you must hit the ENTER key to enter your instruc
tion. Now press ENTER. Your screen should look like this:

TI BASIC READY

> PRINT "HELLO"

HELLO

The interpreter has received your instruction and has immedi
ately executed it by displaying HELLO as requested. Next, the

21

22

interpreter displays a new prompt (>), telling you it is ready for a
new instruction.

Let's examine our first BASIC instruction more closely:

PRINT "HELLO"

This instruction has two parts: PRINT and "HELLO". PRINT
is a reserved word that has a specific meaning to the BASIC inter
preter. "HELLO" is the message to be PRINTed. It must be
enclosed in quotes. You can use any message within the quotes.
Let's try another. Type:

PRINT "TEST NUMBER 2" -p

The following should appear on your screen:

> PRINT "TEST NUMBER 2"

TEST NUMBER 2

> •

_i

Try again. Display your own message, but remember: if you for
get one of die quotes or if you misspell PRINT, it will not work, and
you will get an error message. Go ahead; try it. You won't damage
anything.

You may now be wondering why this instruction is called
"PRINT" when in fact it merely displays, and does not print, the
information on your screen. Even ifyou have a printer connected
to your computer, nothing will be printed. You have probably
guessed the reason. The early terminals were typewriter-like, and
in fact, did print (not display) the information. And, although the
technology has changed, the BASIC instruction has not. Another
BASIC instruction is now used to send information to the printer,
rather than to the display.

Before we proceed, make sure that the BASIC prompt appears
on your screen, i.e., that the BASIC interpreter is ready to accept
another command. If the prompt does not appear, you cannot exe
cute a BASIC command. Try pressing ENTER or FCTN CLEAR,
or if that doesn't work, try restarting your system.

'RUN!"

We will now write our first BASIC program, rather than just exe
cute a single instruction or "statement." Type the following:

10 PRINT "HELLO" p
20 PRINT "HOW ARE YOU?" p
30 END^

Your screen should look like this:

/ —N

10 PRINT "HELLO"

20 PRINT "HOW ARE YOU?"

30 END

>•

- _>

You may be surprised that nothing has happened. The computer
merely responds with a > . These three lines are more than just
three BASIC statements. They constitute a short BASICprogram.
Note that each line begins widi a number; this number is called a
line number or label. It tells the computer that we want to write a
complete program, and not execute each instruction immediately.
Now, type:

RUNp

'How does this work?"

24

You should now see on your screen:

f —
~^<

HELLO

HOW ARE YOU?

* * DONE * *

> •

-^

How does this work? We first created a three-line program and
stored it in memory, a line at a time, by pressing ENTER. We
then executed the program by typing: RUN. This is the normal
way of writing and executing a program. We will follow this proce
dure from now on. All lines willbe preceded by a numerical label,
and the program will be executed automatically in the order of the
labels.

If at any time you type an unlabeled BASIC statement in re
sponse to a > , the statement will be executed immediately; it will
not be memorized. This is called the immediate mode or command mode

in TI BASIC. If at any time you type a labeled BASIC statement in
response to a > , the statement willbe memorized when you hit
ENTER, but not executed until you type RUN. This is called the
deferred mode. Let's demonstrate how this works.

Our three-line program has been stored in memory. It can be
executed any number of times, expanded or modified. Now, type:

RUN ^

again, and you should see:

c - —>

HELLO

HOW ARE YOU?

* * DONE * *

>•

^ *

Let's now examine the computer's memory and display its con
tents. To do this type:

LIST7

and you should see the following displayed on your screen:

r- —>

10 PRINT "HELLO"

20 PRINT "HOW ARE YOU?"

30 END

>•

l J

Your program is listedon the screen as it is stored in the computer's
memory.

To demonstrate the difference between immediate and deferred

instructions, type:

PRINT "GOOD BYE" n

25

26

You see on the screen:

> PRINT "GOODBYE"

GOOD BYE

>•

Now type:

USJp

again, and you should see on your screen:

^

10 PRINT "HELLO"

20 PRINT "HOW ARE YOU?"

30 END

>•

l ^

The new direct instruction: PRINT "GOOD BYE" is nowhere to
be seen. It has not been memorized.

Ifyou haven't used
a line number,
the instruction is gone!

Program Summary

In summary, an immediate statement is executed as soon as you
type it. It is not stored in the computer's memory, and you will
need to type it every time you want to execute it. This facility is
called the immediate execution mode. In practice, this mode is used
infrequendy—generally when you want to verify some values after
a program has stopped. Feel free to experiment by typing BASIC
instructions and see what happens.

When a line is preceded by a label, the mode is called the deferred
execution mode. In this mode, each line of the program is stored
away in die computer's memory. When a complete program has
been typed in, you simply issue the RUN command, and the entire
program will be executed. Remember that when you turn the com
puter off, the contents of the RAM memory disappear, including
any program you may have typed. If you wish to keep your pro
gram for later use, you must save it on a cassette or diskette.

Each line of a BASIC program must start with a label. The label
specifies the order in which the line will be executed. Thus, line 10
will be executed before line 20.

The END statement, line 30 in our example, is optional with
TI BASIC, but required with older BASICs. The END statement
tells the interpreter that it has reached a legitimate END, rather
than an accidental one, during execution.

The computer
executes each
instruction

in turn

27

Don't confuse

number 0 and
letter O

28

As a final detail, note that the digit 0 must look different from
the letter O. The traditional way to avoid confusion is to show the
digit 0 as ©—an O overstrickenwith a slash. On the TI-99 key
board, the number 0 is overstriken with a slash. However, it does
not appear this way on your screen. On your screen, the number 0
has rounded edges, whereas the letter O has square corners.

A Longer Program

RUN and LIST are called commands. They are reserved words used
by themselves to specifyspecial actions carried out by the computer
system, or more exacdy by the interpreter. These commands are
also part of BASIC. We will progressively learn more statements
and commands as we continue through this book.

Let's now write a more complete program, using the PRINT
statement and the NEW command. Type the following:

NEWp

Then:

LIST-,

Nothing happens. There is no longer any program in the memory.
The NEW command clears the computer's memory. Now type:

NEW^
10 PRINT "THIS"p
20 PRINT "\S"p
30 PRINT "ANOTHER" p
40 PRINT "EXAMPLE" p
50 EHDp

Let's find out what this program docs. Type:

RUN^

You should now see on your screen:

c ^v

THIS

IS

ANOTHER

EXAMPLE

* * DONE * *

>•

V J

Our program displays the text as expected. Let's verify that the
program has been stored correcdy in memory by typing:

LISTp

You should now see on your screen:

/• — N

10 PRINT "THIS"

20 PRINT "IS"

30 PRINT "ANOTHER"

40 PRINT "EXAMPLE"

50 END

>•

\^_ A

The NEW command has been used to clear the memory of the
computer, i.e., to erase it, to make room for the new program. If the

29

30

NEW command is not used, the new statements would erase and

replace any older statement with identical labels previously typed
into memory. This could lead to errors since old statements might
be "leftover" in a new program. If you do not use NEW, then every
time you type a statement with the label 10, the new version will
automatically erase any older version of that statement. But,
beware, if you had previously written a statement with the label 15,
then typed in the above program without a NEW, the statement
"15" would remain in the computer's memory and would auto
matically be incorporated into your new program in sequence
(since the label 15 is not used in the new program). Let us demon
strate this. Type:

15 PRINT"* ****'p

Then:

RUNp

Your screen should look like this:

THIS

IS

ANOTHER

EXAMPLE

* * DONE * *

As you can see, the new PRINT statement, labeled 15, has been
automatically inserted in the older program after statement 10.
Let's list the program. Type:

USXp

Your screen should look like this:

- \

10 PRINT "THIS"

15 PRINT "*****"

20 PRINT "IS"

30 PRINT "ANOTHER"

40 PRINT "EXAMPLE"

50 END

>•

^

You just verified that statement 15is now part ofyour program.
Remember that every time you type a program statement with a
label, it is automatically insertedin the memory of the computer in
the proper sequence.

We will now demonstrate that when you use a label number that
already exists, your newstatementwill automatically erase the pre
vious one. Let's now use this feature to erase statement 15. Type:

15 PRINT " "^

Then:

RUN^

Your screen should look like this:

THIS

IS

ANOTHER

EXAMPLE

* * DONE * *

As you cansee, yournew PRINT statement with thelabel 15 has
superseded the previous one. Verify it by typing:

LISTp

Your screen should look like this:

"^

10 PRINT "THIS"

15 PRINT " "

20 PRINT "IS"

30 PRINT "ANOTHER"

40 PRINT "EXAMPLE-

50 END

! >•

>-

To avoid accidents, whenever you write a new program, you
should use the NEW statement to clear your computer's memory
and avoid interferenceby "leftover" statements from previous use.

31

32

"That's how
I erase!"

Let's nowerasestatement 15.There are many waysto do this.
Here we will type:

15

This statement merely consists ofa label. This iscalled an empty
statement. Statement 15doesnothing, except erase any previous ver
sion. Nowtype RUN. You should see the following on your screen:

• —N

THIS

IS

ANOTHER

EXAMPLE

* * DONE * *

> •

^ J

Be careful. Thisfeature canbedangerous. Ifyou type:

by accident, you will erase the previous version ofstatement 20,
andreplace it with an "empty" statement that does nothing. To
avoid surprises, always verify your program listing prior to
execution.

Summary

We have now learned how to write elementary BASIC programs
that display information on the screen. We have written a BASIC
program using labeled statements. We have discussed why pro
grams should be preceded with the NEW command and termi
nated with the END statement. We have seen that a program is
stored automatically in the computer's memory as it is entered,
and that it can be executed by typing the RUN command. We have
also seen how a program listing can be displayed with the LIST
command.

We have learned that the execution of program statements is in
the order of the labels. If you duplicate a label number either inten
tionally or by mistake, the new statement will automatically erase
any previous statement with the same label number. Also, if at any
time you add a line with a new label, the interpreter will automati
cally insert it in its proper sequence within the program.

In this chapter, we have introduced many new concepts. If you
truly want to learn how to program, it is essential that you start
practicing what you have learned. Several self-test exercises follow.
You are strongly encouraged to try them out. Answers to selected
exercises are given at the end of this book.

33

34

Exercises
2-1: Writea program that prints the following: "HAVE AGOOD DAY'

2-2: Write a program that prints:

AAAAA

CCC

DD

E

2-3: Write a program that prints:

TITLE

2-4: Define the following terms:

a. label

b. deferred execution

c. immediate execution

d. empty statement

e. cursor

f. control key

g. reserved word

h. prompt

2-5: Why is "PRINT" used as a command to display on the screen?

2-6: Can youexecute a wholeprogram bytyping statements one at a time in
the immediate mode?

2-7: Why use NEW before typing a new program?

2-8: Can youtype labeled program statements out of sequence?

2-9: Give examples of some Tl BASIC commands.

2-10: Is the following statement a validway to display the word EXAMPLE?

PRINT EXAMPLE

2-11: What is the use of the ENTER key?

2-12: Explain howto erase statement 20 in a program.

2-13: Ifyou have already typed statement 30 and wish to substitute a new
statement 30, do you have to erase the old one first?

2-14: Write a program that displays the following:

TTTTTT H H EEEEEE

H H EE

H H EE

HHHH EEEE

H H EE

H H EE

H H EEEEEE

TT

TT

TT

35

Calculal

In this chapter, we will start using
numbers. We will display them
and add, subtract, multiply, and
divide them. We will learn to perform
computations using the simple
arithmetic operators, and we will
describe the other important built-in
operators in BASIC.

ing with

"I'llshow you
more ways to
print numbers.

38

Printing Numbers

So far we have only printed text. Let's now print a number. Type:

PRINT 3 -p

The result should be:

Recall from our discussion in Chapter 2 that this statement is in the
immediate mode, where an instruction does not need to be pre
ceded by a label and is executed immediately. In this chapter, we
will write all of the examples in the immediate mode, so that you
can execute them by pressing only a few keys.

Notice that in BASIC, numbers do not need to be enclosed in
quotes, only text. The use of quotes allows the interpreter to easily
differentiate between user-provided text and the BASIC reserved
words, such as PRINT. The text inside the quotes is called a string,
and a string may include numbers.

Let's now try to print several large numbers, say 100, 1000,
10000, etc. When you try to print a number with more than ten
digits, you will notice that something odd happens—a decimal
point appears to the right of the first digit, an "E" appears after the
last digit, followed by a plus sign and a number. Your TI BASIC
interpreter has converted your number into scientific notation.
We'll discuss scientific notation shortly.

Your BASIC interpreter allows you to use decimal numbers.
Type:

PRINT1.5 p

You now see 1.5displayed on your screen. In computerjargon,
decimal numbers are calledfloating-point numbers. A BASIC inter
preter that allows the use of floating-point numbers is calleda
floating-point BASIC.

Scientific Notation

Let's discuss decimal numbers further. Aswith integers, in thecase
ofdecimal numbers, the interpreter will onlyretaina setnumberof
digits. For example, the correct value of one third is:

0.33333333333 ... (etc.)

Inside the computer, this value may be stored as:

0.33333333 (eight significant digits areretained besides thezero)

The correct value issaid tohave been truncated (cut) to eight digits.
(Note: This is anapproximation, butit isgenerally sufficient.)

Your BASIC interpreter allowsdecimal numbers; it also uses a
scientific representation for these numbers. When a number becomes
very large or very small, it willbe displayed in scientificnotation to
save space.

Here is an example:

3.2 E +06

means

3.2 x 106 = 3200000

106 means 10 to the power 6, i.e., 10 multiplied 5 times by itself:

10 x 10 x 10 x 10 x 10 x 10 = 1000000

Similarly

1.12E-07

means

1.12 x 10"7 = 0.000000112

10 "7 means 1/10 to the power 7, i.e., 1/10 multiplied 6 times by
itself(1/10 is 10"').

Using scientific notation, your TI BASIC interpreter can handle
numbers as small as -9.99 x 10",27 and as large as 9.99 x 10127!

39

'You need more practice."

40

Doing Arithmetic

Let's now perform simple arithmetic calculations. Type:

PRINT 2 + 2 -p

The result appearing on your screen should be:

C J
Wehavejust performed our first arithmetic computation. The

addition symbol, + , is calledan operator. An operator is a symbol
that represents an operation to be performed on one or more oper
ands. BASIC provides five built-in arithmetic operators:

-
(minus)

+ (plus)

* (multiplication)

/ (division)

A or ** (exponentiation or power)

Now try this example. Type:

PRINT 2 * 3 -p

The result should be 6. The * symbol is the symbol formultiplica
tion. The usual multiplication symbol, x , could be confused with
the letterX, so programminglanguagesuse the * symbol instead.

Here are other examples of valid arithmetic statements:

PRINT 1 + 2*3p

The result is

C
PRINT 3 - 2 p

The result is

1

PRINT 8/2 p

The result is

PRINT 1+2 + 3 + 4p

The result is

10

J

D

D

Since TI BASIC allows decimal numbers, the following statement is
also legal:

PRINT (6/3 + 12/4)/2p

The result is

2.5

Note that parentheses have been used in this example to clarify the

41

42

grouping of operations. Let's try another example. Type:

PRINT 2 + 3 + 4/27

The result is:

The division (/) was performed first on the 4. This is due to the
fact that in BASIC, ifgiven a choice (i.e., if parentheses are not
used), the division (/) or the multiplication (*) will take place
before the addition (+) or the subtraction (-). If you had intended
to divide the group 2 +3 + 4 by 2, then it would have been
necessary to type:

PRINT (2 + 3 + 4)l2p

The result would then be:

4.5 J
The division would then have been performed on the group (2+3
+ 4). It is good practice to use parentheses freely, to avoid any con

fusion. For example, the following expression (or group of values
and operators)

1+2*3 x3
4 + 5

could be translated into the followingBASIC expression:

((1 + 2 + 3)/(4 + 5)) *3

or

(1 + 2 + 3)/(4 + 5) * 3

because execution proceeds from left to right when operators have
the same precedence (standing), i.e., the division occurs here be
fore the multiplication.

If you were to write the followingin BASIC:

(1+2 + 3)/((4 + 5) *3)

it would be equivalent to:

1+2 + 3

(4 + 5) x 3

Use parentheses to denote groups. Be sure to make sure there is
always a matching right parenthesis for each left one.

Let's now use our new computing skill to display useful values.

Printing Formats

If you type:

PRINT "TWO TIMES THREE IS", 2 * 3 p

The result will be:

TWO TIMES THREE IS

6

In the above PRINT statement, we have mixed text and numbers,
separated by a comma. More precisely, we have used an expression,
2*3, rather dian a number. Now, type:

PRINT "TWO TIMES THREE IS, 2 * 3" p

and you will get:

CTWO TIMES THREE IS, 2*3)
This is a valid BASIC statement, but not the one you had intended.
Remember, everything within quotes is displayed literally. The
commaor semicolon must be outside the quotes to work correcdy.

A PRINT statement may be used to print several items on the
same line. The items must, however, be separated by a semicolon
or a comma. A semicolon will result in a small space between the
items being printed, whilea comma willresult in a larger space.
Like a tab stop on a typewriter, the comma symbol is used to create
tabs, i.e., fieldson the screen. This technique is convenient for dis
playing tables.

Let's try this new feature. Type:

PRINT 1;2;3p

Your display should show:

1 2 3

Now type:

PRINT 1,2,3 p

Your display should show:

1

)
43

Only feed
reasonable numbers

to your program

44

Let's now compute the sales tax for a sale of $1234. The tax rate
is 6.5 %. The statement is:

PRINT "SALESTAX IS"; 1234 * 6.5/100 p

The result is:

SALES TAX IS 80.21 J
We could also type:

PRINT "SALES TAX IS"; 1234 * 0.065 p

and we would obtain the same result. There are many equivalent
ways to write a program.

You can print many items on a line. Look:

PRINT 1;2;3;4;5;6;7;8;9;"MANY ITEMS" p

The screen will show:

1 23456789

MANY ITEMS

We have now learned how to perform simple arithmetic computa
tions, and how to display the results. Let's use this new skill to solve
some simple problems.

Application Examples

Let's compute a car's mileage in miles per gallon. The mathemati
cal formula is:

MILEAGE = DISTANCE (in miles) * GAS (in gallons)

Let's assume that the distance was 510 miles and the amount of

gasoline used was 20.2 gallons. Here is the statement written in
BASIC:

PRINT "MILEAGE IS"; 510/20.2 ; "MPG" p

For metric readers we will now convert this into liters per kilo
meter. One gallon is 3.8 liters. One mile is 1.6 kilometers. The
consumption in liters per kilometer is:

PRINT "GAS CONSUMPTION IS"; (20.2 * 3.8)/ (510 * 1.6) ; "LPERKM'p

Here is another simple problem. Given a temperature in Fahr
enheit, the Celsius equivalent is computed by the formula:

CELSIUS value = (FAHRENHEITvalue - 32) x 5/9

To compute the Celsiusequivalent of 79° F, type:

PRINT "79 DEGREES F = "; (79 - 32) * 5/9; "DEGREES C" p

The result is:

79 DEGREES F = 26.11111111

DEGREES C

To be complete, note that 5/9 has not been enclosed in parentheses,
as it does not matter whether * or / is executed first.

45

46

Summary

In this chapter, we have learned how to perform arithmetic compu
tations and how to display text and results on the same line. We
have used this new skill to automate the computation of simple
formulas by writing one-line BASIC statements.

So far we have specified all the values within the BASIC state
ment itself. What we now want to do is first write a program, then
supply values repeatedly from the keyboard so different values can
be used with the program without having to rewrite it. We will ac
complish this with variables. This is the topic of the next chapter.

Exercises

3-1: Write a BASICstatement that computes:

5 + 6

1+2 + 3

3-2: Write a BASIC statement that computes:

1
1 +1/2

1 + Vz

3-3: Write a BASICstatement that computes the Fahrenheit equivalent of
20° C.

3-4: Given a speed of 100 km per hour, compute the equivalent speed in
m.p.h. (1 mile = 1.6 km)

3-5: Compute the number of seconds in a day, a week, a month, and a
year.

3-6: Assuming an average speed of 55 m.p.h., compute the time needed
to travel 350 miles.

3-7: Assuming 365 days in a year, compute the number of days you have
lived so far.

3-8: Compute the equivalent annual salary for a person, given the:

a. weekly pay (there are 52 weeks in a year)

b. biweekly pay (multiply by 26)

c. monthly pay

d. hourly pay (multiplyby 2080)

47

Memorizinc
Usii

Values and
ig Variables

In this chapter, we will learn to write
programs that can be used repeat
edly, without change, and that will
display different results, depending
on the data supplied at the key
board. So far, to obtain the result of
an arithmetic computation, such as
2 + 3, we have had to include in the
program statement the numbers to
be operated on. We will now learn to
write programs that can be executed
with different data each time. The

programs will specify the operations
to be performed. The data will be
supplied at the keyboard by the user
at the time the program is executed.
This makes the program reusable.

In addition, we will introduce the
concept of a variable and learn how
to use two new statements: INPUT

and LET.

Let's now begin by learning how
to supply information to a program
while it is running.

50

The INPUT Statement

Type the following program. (Note: we will no longer display p
to indicate ENTER at the end of each line):

10 INPUTA

20 PRINT A; 2 * A; 3* A

30 END

Now execute this program by typing RUN, as usual. Your screen
should look like this:

A "?" appears on your screen with a blinking cursor next to it to
remind you to type in the input.

Now, type in a number, say 3. Terminate your input by pressing
the ENTER key as usual. Your screen should now show:

On INPUT, your
computer accepts
numbers and letters

3 6 9

* * DONE * *

Your program has been executed. Let's see what happened. The
first line was:

10 INPUTA

This statement asked you to provide a number at the keyboard.
The program displayed a ?, and stopped—waiting for your input.
The value 3 you supplied was then read and stored in A. "A"
is called a variable. It is a name used to store a value. Formally, a
variable is a name given to a memory location. Examples of some
variable names are: A, B, C, F, Zl, G2. TI BASIC allows variable
names with up to 15 letters as well, for example: INTEGER1,
SUM, TAX, RESULT.

The second statement was:

20 PRINT A; 2 * A; 3 * A

This statement resulted in the printing of 3, 2 * 3, 3 * 3, or:

3 6 9

Using the INPUT statement, it is also possible to enter several
values at the same time. Here is an example. Type:

10 INPUTA.B

20 PRINT A; A * 2; B; B*2

30 END

Now run the program. You should see the usual "?" appearing on
your screen. Type two numbers, say 2 and 3, separated by a
comma, then press return. The result is:

2 4 3 6 D
Let us examine what happened. The first line of the program

was:

10 INPUTA.B

This statement resulted in a request for two values from you,
which were then stored in die variables A and B. Remember that

variables are names of memory locations. The contents of A and B
were initially empty, but they became 2 and 3, respectively.The
second statement of the program was:

20 PRINT A; A * 2; B; B*2

51

52

This statement resulted in printing the values: 2,2*2,3,3*2,
or:

2 4 3 6

Let's try running this program again. This time try typing:

5.8

and the results should be:

C5 10 8 16 D
We can use this program repeatedly and obtain new results by typ
ing in new values at the keyboard. We have made our program
reusable by using variable names (A and B), instead of explicit
values.

In order to make this program truly reusable, let's now improve
its style and readability. Supposethat wewant to save the program,
and run it again in severaldays. Wemight forget what it does or we
might not remember how many values we must supply. We can
rewrite the program to display this information on the screen. Here
is an improved version:

10 PRINT "A PROGRAM TO MULTIPLY"

20 PRINT "ANY TWO NUMBERS BY 2"

30 PRINT "TYPE TWO NUMBERS"

40 INPUT A.B

50 PRINT "FIRST NUMBER :"; A, "DOUBLE :"; 2 * A

60 PRINT "SECOND NUMBER :"; B, "DOUBLE :"; 2 * B

70 END

and here is the resulting display: (Note: throughout this text, we
will display data provided by the user in boldface type.)

r -\

A PROGRAM TO MULTIPLY

ANY TWO NUMBERS BY 2

TYPE TWO NUMBERS

? 5,7

FIRST NUMBER : 5

DOUBLE : 10

SECOND NUMBER : 7

DOUBLE : 14

- ^

We have now learned how to supply numeric data to the pro
gram by using the INPUT statement. We have also introduced the
concept of variable. Let's now learn how to use these techniques
effectively and how to develop more complex programs.

"Hello Numeric,
I'm a string.
I store a chain
of characters.
You can easily
recognize me—
look at

my antennas!"

The Two Types of Variables

There are two types ofvariables in BASIC: numeric and string. Nu
meric variablesrepresent numbers; string variables represent text.
These two typesof variableslookdifferent; a string variable has a
"$" at the end of the name. They are also used differendy. For
example, you can add numbers, but not text. Let's first learn
about numeric variables, then about string variables.

Numeric Variables

Let's learn the rules for naming a numeric variable; then we will
learn how to use these variables effectively. We have already used
two numeric variables, called A and B, at the beginning of this
chapter. We gave them a value by inputting numbers from the key
board. Let's now learn how to name a variable.

When naming a variable, all BASICs, including the original
Dartmouth BASIC, allow the use of one letter, optionally followed
by a single number. TI BASIC allowsany combination of letters
and numbers up to 15 characters. However, a numeric variable
name must start with a letter. Here are examples of valid TI BASIC
variable names:

A (one letter)

Z (one letter)

Al (one letter and one digit)

B2 (one letter and one digit)

ALPHA (five letters)

R2D2 (two letters and two numbers)

53

Every variable
must have a name

54

With this definition, the following names are not legal:

12 (does not start with a letter)

1B (must start with a letter)

ABCDEFGHIJKLMNOP (too many characters)

The advantage of short names is to reduce the size and complex
ity of the BASIC interpreter. The disadvantage is that short names
are difficultto remember. For example, the long name RESULT
is more descriptive and memorable than the short name R. To
improve readability, TI BASIC allows long names, i.e., a sequence
of characters. You may use any number of consecutive letters fol
lowedby optional digits, up to a maximum length of 15characters.
For example, the following are legal longer variable names:

WINNER STUDENT1

LOSER STUDENT2

RESULT STUDENT14

SUM CASE24

The followingare not legal:

3TIMES (starts with a digit)

A-ONE (illegal symbol)

'I'm a string variable.
I contain text.
My name ends with a $.

Clearly a program with long, explicit variable names is more
readable. In this chapter, we will use both short and long names, so
that you can get usedto both conventions. Remember that long
names are simply a matter ofconvenience and will not affect the
program in any way.

There is one more restriction on names: you cannot use a name
that is a reserved word, i.e., a name that has a meaning to your BASIC
interpreter. For example, you may not use LIST, END or RUN as
variable names. (Note: a list of reserved words appears at the end
of thisbook, as well as at the end of the reference manual for your
BASIC interpreter.) TI BASIC alsoprohibitsyou from usinga
reserved word as the first part of a variable name. To be safe, it is
best never to use a reserved word as any part of a variable name.

Now that we know how to create legal names for numeric vari
ables, let's learn how to givea name to a pieceof text known as a
string.

String Variables

First, let us introducestrings. Here are examplesofstrings:

"RESULT"

"THIS IS AN EXAMPLE"

"MY NAME ISJOHN"

"25 TIMES 4 = "

Note that a string is normally enclosed in quotes; otherwise, it
could be confused with a variable name. A string may contain any
sequence ofcharacters, except the quotation symbol. The lengthof
a string is limited to 256 characters.

Let us now introduce string variables. When the value stored in
a variable is text (that is, a string), rather than a number, the vari
able is called a string variable.

A string variable's name isjust like a numeric variable's name,
except that it must have a "$" at the end. Here are some valid short
string variable names:

Al$

B5$

Since TI BASIC allowslong names, here are several more valid
names:

NAMES

FIRSTS

CITY$

UNIT25$

55

56

Let's now illustrate the use of string variables, with a program
that greets the user by name.

10 PRINT "I AM HAL, THE COMPUTER"

20 PRINT "FIRST NAME";

30 INPUT FIRST$

40 PRINT "LAST NAME";

50 INPUT LASTS

60 PRINT "HELLO, "; FIRSTS; " "; LASTS; "!"

70 PRINT "NOW I KNOW YOUR NAME"

80 PRINT "I LIKE "; FIRSTS; " AS A FIRST NAME."

90 END

Here is a sample run. Note that the characters you type appear
here in boldface type.

*"

I AM HAL, THE COMPUTER

FIRST NAME? JOHN

LAST NAME? SULLIVAN

HELLO, JOHN SULLIVAN!

NOW I KNOW YOUR NAME!

I LIKE JOHN AS A FIRST NAME.

<•

You can now communicate with your computer! Let's point out
some of the basic features of this program. Let's start with line 20:

20 PRINT "FIRST NAME";

Note that this line is terminated with a semicolon. The semicolon

means "display the next character immediately after this text." The
result of statement 20 and your response to statement 30 is:

FIRST NAME? JOHN

If you had written:

20 PRINT "FIRST NAME"

with no semicolon at the end, the result would have been:

FIRST NAME

?JOHN

Naturally, you may chooseeither way. The format is a matter of
preference. But remember, if you want the characters you type to
appear on the same line as the preceding message, use a semicolon
at the end of the PRINT statement. Otherwise, the next position
on the screen will be the beginning of the followingline.

Now that we know more about numeric and string variables,
let's use them as we continue our dialogue with Hal, the computer.

Let's add the following to our program:

90 PRINT "THIS YEAR (2 DIGITS)";
100 INPUT CURRENTYEAR

110 PRINT "WHICH YEAR WERE YOU"

120 PRINT "BORN (2 DIGITS)";
130 INPUT YEARBIRTH

140 PRINT "DEAR "; FIRSTS; ", THIS YEAR"

150 PRINT "YOU ARE OR WILL BE";

CURRENTYEAR - YEARBIRTH

160 END

Hereisa sample dialogue. Again, thecharacters you type are
shown in boldface type.

THIS YEAR (2 DIGITS)? 83

WHICH YEAR WERE YOU

BORN (2 DIGITS)? 50

DEAR JOHN, THIS YEAR

YOU ARE OR WILL BE 33

Let us examine the program in detail. The statement

90 PRINT "THIS YEAR (2 DIGITS)";

prints the obvious message. Again a semicolon is used so that the
twodigitswill be displayed on the same line. In the next statement,

100 INPUT CURRENTYEAR

CURRENTYEAR isa numeric variable. The value83 that you
typed will be read into it. From now on, whenever the name CUR
RENTYEAR is used, the value 83 will be substituted automatically
by the BASIC interpreter. This will happen in statement 130.

The two statements

110 PRINT "WHICH YEAR WERE YOU"

120 PRINT "BORN (2 DIGITS)";

are just like statement 90. Note the semicolon at the end. The
statement

130 INPUT YEARBIRTH

isjust like statement 100. YEARBIRTH is a new numeric variable.
It will soon contain the value 50. In statement 150 we use this vari

able name. Note thatthevalue 50 issubstituted automatically by
the interpreter. Let's examine this:

140 PRINT "DEAR "; FIRSTS; ", THIS YEAR"

150 PRINT "YOU ARE OR WILL BE";

CURRENTYEAR - YEARBIRTH

57

58

When these statements are executed, the following is displayed:

DEAR JOHN, THIS YEAR

YOU ARE OR WILL BE 33

Let's break this display down and examine it.

DEAR

(This iscalled a literal string. A literal string isa string that ispart ofa
program statement.)

JOHN

(This is the string value tfiai is read atdie keyboard and stored inthe string
variable named FIRSTS. It remains there as long asyoudon't use the
NEW command orenter a new value into FIRSTS.)

THIS YEAR YOU ARE OR WILL BE

(This isanother literal string.)

33

(This is tlie result of: CURRENTYEAR - YEARBIRTH, i.e.,
83 - 50 = 33.)

In typing and examining this program, you may already have
developed some frustrations. For example, you may have wanted
to enter actual dates, including the day and month, so that you can
compute your age, as of today. However, this requires comparing
today's month and day with that of the birthdate's. To do this, we
must learn about a new BASIC statement, the

IF (condition) THEN (do)

statement. We'll discuss this statement in detail in Chapter 7. An
other thing that you might want to do is to design the program so
that it executes repeatedly (so that you don't need to type RUN
everytime). We'll learn how to do this in Chapter 6, when we dis
cuss the GOTO statement.

Now that we are familiar with both numeric and string variables,
let's learn how we can use them in a longer program—first, by
assigning a value to a variable, then by using the counter technique.

Assigning a Value to a Variable
(The LET Statement)

So far, the only way we have given a value to a variable has been
with the INPUT statement. For example, when the followingstate
ment is executed:

20 INPUT A

you type in a value, such as 5.2 (followedby a p), and the value
of A is then 5.2.

There is, however, another way to assign a value to A. This is
called the assignment statement. Here is an example:

10 A = 5.2

This statement assigns the value 5.2 to A as part of the program, so
that you do not have to supply it from the keyboard. Youmight
also write:

10 B = 1

20 C = 2

30 A = B + C

As you can see, the value of A will be set at 2 +1 =3 when state
ment 30 is executed.

In earlier BASICs, the assignment statement must start with the
reservedword LET. In such BASICs, this example would be writ
ten as:

10 LET B = 1

20 LET C = 2

30 LET A = B + C

The purposeof the LETstatementwas to simplify the designof the
interpreter by telling it explicidy that the statement isan assign
ment statement. The LET statement is optional in TI BASIC.
Eliminating it eliminatesone step for the programmer when writ
ing such statements.

"Z, I want you to hold this value!"

59

60

Let's now show the value of the assignment statement. We will
examine two examples. In both examples, we will compute the
sum and the average of two numbers. Here is our first program,
without the assignment statement:

10 PRINT "GIVE ME TWO NUMBERS"

20 PRINT "I WILL COMPUTE THEIR"

30 PRINT "SUM AND AVERAGE"

40 PRINT "1ST NUMBER:";

50 INPUT A

60 PRINT "2ND NUMBER:";

70 INPUT B

80 PRINT "THE SUM OF"; A; "AND"; B;

90 PRINT "IS: ";

95 PRINT A + B

100 PRINT "THEIR AVERAGE IS:";

105 PRINT (A + B)/2

110 END

And here is a typical run:

GIVE ME TWO NUMBERS

I WILL COMPUTE THEIR

SUM AND AVERAGE

1ST NUMBER:? 24

2ND NUMBER:? 41

THE SUM OF 24 AND 41

IS: 65

THEIR AVERAGE IS: 32.5

Notice that the expression A + B is repeated twice in the PRINT
statements. This isjust a minor inconvenience. However, in a
longerprogram, this would increase the probability of typinger
rors. In addition, if we were to change the program to use a differ
ent formula, much rewriting would be needed.

Here is an equivalent program that uses an intermediate variable,
called SUM, to store the result. It is easier to read, and less error
prone.

10 PRINT "GIVE ME TWO NUMBERS"

20 PRINT "I WILL COMPUTE THEIR"

30 PRINT "SUM AND AVERAGE"

40 PRINT "1ST NUMBER:";

50 INPUT A

60 PRINT "2ND NUMBER:";

70 INPUT B

80 SUM = A + B

90 AVERAGE = SUM/2

100 PRINT "THEIR SUM IS:";

105 PRINT SUM

You just verified that statement 15is now part of your program.
Remember that every time you type a program statement with a
label, it is automaticallyinserted in the memory of the computer in
the proper sequence.

We will now demonstrate that when you use a label number that
already exists, your newstatementwill automatically erase the pre
vious one. Let's now use this feature to erase statement 15. Type:

15 PRINT ".

Then:

RUNp

Your screen should look like this:

THIS

IS

ANOTHER

EXAMPLE

* * DONE * *

Asyou cansee, yournew PRINT statement with thelabel 15 has
superseded the previous one. Verify it by typing:

LISTp

Your screen should look like this:

/"

10 PRINT "THIS"

15 PRINT " "

20 PRINT "IS"

30 PRINT "ANOTHER"

40 PRINT "EXAMPLE"

50 END

> •

^
j

To avoid accidents, whenever you write a new program, you
should use the NEW statement to clear your computer's memory
and avoid interferenceby "leftover" statements from previous use.

31

32

"That's how

I erase!"

Let's now erase statement 15. There are many ways to do this.
Here we will type:

15

This statement merelyconsists ofa label. This is called an empty
statement. Statement 15does nothing, excepterase any previousver
sion. Now type RUN. You shouldsee the following on your screen:

r \

THIS

IS

ANOTHER

EXAMPLE

* * DONE * *

> •

v j

Be careful. Thisfeature canbedangerous. Ifyou type:

20p

by accident, youwill erase theprevious version ofstatement 20,
and replace itwith an "empty" statement thatdoes nothing. To
avoid surprises, always verify your program listing prior to
execution.

Summary

We have now learned how to write elementary BASIC programs
that display information on the screen. We have written a BASIC
program using labeled statements. We have discussed why pro
grams should be preceded with the NEW command and termi
nated with the END statement. We have seen that a program is
stored automatically in the computer's memory as it is entered,
and that it can be executed by typing the RUN command. We have
also seen how a program listing can be displayed with the LIST
command.

We have learned that the execution of program statements is in
the order of the labels. If you duplicate a label number either inten
tionally or by mistake, the new statement will automatically erase
any previous statement with the same label number. Also, if at any
time you add a line with a new label, the interpreter will automati
cally insert it in its proper sequence within the program.

In this chapter, we have introduced many new concepts. If you
truly want to learn how to program, it is essential that you start
practicing what you have learned. Several self-test exercises follow.
You are strongly encouraged to try them out. Answers to selected
exercises are given at the end of this book.

33

34

Exercises
2-1: Writea program that prints the following: "HAVE AGOOD DAY."

2-2: Write a program that prints:

AAAAA

BBBB

CCC

DD

E

2-3: Write a program that prints:

T I T L E

2-4: Define the following terms:

a. label

b. deferred execution

c. immediate execution

d. empty statement

e. cursor

f. control key

g. reserved word

h. prompt

2-5: Why is "PRINT" used as a command to display on the screen?

2-6: Can you execute a whole program by typing statements one at a time in
the immediate mode?

2-7: Why use NEW before typing a new program?

2-8: Can you type labeled program statements out ofsequence?

2-9: Give examples of some Tl BASIC commands.

2-10: Is the following statement a validway to display the word EXAMPLE?

PRINT EXAMPLE

2-11: What is the use ofthe ENTER key?

2-12: Explain how to erase statement 20 in a program.

2-13: Ifyou have already typed statement 30 and wish to substitute a new
statement 30, do you have to erase the old one first?

2-14: Write a program that displays the following:

TTTTTT H H EEEEEE

TT H H EE

TT H H EE

TT HHHH EEEE

TT H H EE

TT H H EE

TT H H EEEEEE

35

Calculal

Inthis chapter, we will start using
numbers. We will display them
and add, subtract, multiply, and
divide them. We will learn to perform
computations using the simple
arithmetic operators, and we will
describe the other important built-in
operators in BASIC.

ing with

"I'llshow you
more ways to
print numbers.

38

****. *

Printing Numbers

So far we have only printed text. Let's now print a number. Type:

PRINT 3 -p

The result should be:

j
Recall from our discussion in Chapter 2 that this statement is in the
immediate mode, where an instruction does not need to be pre
ceded by a label and is executed immediately. In this chapter, we
willwrite all of the examples in the immediate mode, so that you
can execute them by pressing only a few keys.

Notice that in BASIC, numbers do not need to be enclosed in
quotes, only text. The use of quotes allows the interpreter to easily
differentiate between user-provided text and the BASIC reserved
words, such as PRINT. The text inside the quotes is called a string,
and a string may include numbers.

Let's now try to print several large numbers, say 100, 1000,
10000, etc. When you try to print a number with more than ten
digits, you will notice that something odd happens—a decimal
point appears to the right of the first digit, an "E" appears after the
last digit, followed by a plus sign and a number. Your TI BASIC
interpreter has converted your number into scientific notation.
We'll discuss scientific notation shortly.

YourBASIC interpreter allows you to use decimal numbers.
Type:

PRINT 1.5 p

You now see 1.5 displayed on yourscreen. In computerjargon,
decimal numbers are calledfloating-point numbers. A BASIC inter
preter that allows the use of floating-point numbers is calleda
floating-point BASIC.

Scientific Notation

Let's discuss decimal numbers further. Aswith integers, in the case
ofdecimal numbers, the interpreter will only retain a set number of
digits. For example, the correct value of one third is:

0.33333333333 ... (etc.)

Inside the computer, thisvalue may be stored as:

0.33333333 (eight significant digits areretainedbesides thezero)

The correct value issaid to have been truncated (cut) toeight digits.
(Note: Thisisan approximation, but it isgenerally sufficient.)

Your BASIC interpreter allowsdecimal numbers; it also uses a
scientific representation for these numbers. When a number becomes
very largeor verysmall, it will be displayed in scientific notation to
save space.

Here is an example:

3.2 E +06

means

3.2 x 106 = 3200000

106 means 10 to the power 6, i.e., 10 multiplied 5 times by itself:

10 x 10 x 10 x 10 x 10 x 10 = 1000000

Similarly

1.12E-07

means

1.12 x 10"7 = 0.000000112

10"7 means 1/10 tothepower 7, i.e., 1/10 multiplied 6 times by
itself(1/10 is 10-1).

Usingscientific notation, your TI BASIC interpreter can handle
numbers as small as -9.99 x 10"l27 and as large as 9.99 x 10127!

39

"You need more practice."

40

Doing Arithmetic

Let's now perform simplearithmetic calculations. Type:

PRINT 2 + 2 p

The result appearing on your screen should be:

We havejust performed our first arithmetic computation. The
addition symbol, + , iscalled an operator. An operator isa symbol
that represents an operation to be performed on one or more oper
ands. BASIC provides five built-in arithmetic operators:

-
(minus)

+ (plus)

* (multiplication)

/ (division)

* or * * (exponentiation or power)

Now try this example. Type:

PRINT 2 * 3 p

The result should be 6. The * symbol is the symbol formultiplica
tion. The usual multiplication symbol, x , could be confused with
the letterX, so programminglanguagesuse the * symbol instead.

Here are other examples of valid arithmetic statements:

PRINT 1 + 2* 3p

The result is

PRINT 3 - 2 p

The result is

C1

PRINT 8/2 p

The result is

PRINT 1 + 2 + 3 + 4 p

The result is

C10

1

J

Since TI BASIC allows decimal numbers, the following statement is
also legal:

PRINT (6/3 + 12/4)/2p

The result is

(2.5 3
Note that parentheses havebeen used in this example to clarify the

41

42

grouping of operations. Let's try another example. Type:

PRINT 2 + 3 + 4/2 p

The result is:

(')
The division (/) was performed first on the 4. This is due to the
fact that in BASIC, if given a choice (i.e., if parentheses are not
used), the division (/) or the multiplication (*) will take place
before the addition (+) or the subtraction (-). If you had intended
to divide the group 2 +3 + 4 by 2, then it would have been
necessary to type:

PRINT (2 + 3 + 4)/2^

The result would then be:

4.5

The division would then have been performed on the group (2+3
+ 4). It is good practice to use parentheses freely, to avoid any con
fusion. For example, the followingexpression (or group of values
and operators)

1+2+3 x3
4 + 5

could be translated into the following BASIC expression:

((1 + 2 + 3)/(4 + 5)) *3

or

(1+2 + 3)/(4 + 5) *3

because execution proceeds from left to right when operators have
the same precedence (standing), i.e., the division occurs here be
fore the multiplication.

If you were to write the followingin BASIC:

(1+2 + 3)/((4 + 5) *3)

it would be equivalent to:

1+2 + 3

(4 + 5) x 3

Use parentheses to denote groups. Be sure to make sure there is
always a matching right parenthesis for each left one.

Let's now use our new computing skill to display useful values.

Printing Formats

If you type:

PRINT "TWO TIMES THREE IS", 2*3p

The result will be:

TWO TIMES THREE IS

6]
In the above PRINT statement, we have mixed text and numbers,
separatedby a comma. More precisely, we have used an expression,
2*3, rather than a number. Now, type:

PRINT "TWO TIMES THREE IS, 2 * 3"p

and you will get:

TWO TIMES THREE IS, 2*3

This is a valid BASIC statement, but not the one you had intended.
Remember, everything within quotes is displayed literally. The
comma or semicolon must be outside the quotes to work correcdy.

A PRINT statement may be used to print several items on the
same line. The items must, however, be separated by a semicolon
or a comma. A semicolon will result in a small space between the
itemsbeingprinted, while a comma will result in a larger space.
Like a tab stop on a typewriter, the comma symbol is used to create
tabs, i.e., fieldson the screen. This technique is convenient for dis
playing tables.

Let's try this new feature. Type:

PRINT 1;2;3p

Your display should show:

(123)
Now type:

PRINT 1,2,3^

Your display should show:

r ^

1 2

3

V

43

Only feed
reasonable numbers
to your program

44

Let's now compute the sales tax for a sale of Si 234. The tax rate
is 6.5%. The statement is:

PRINT "SALESTAX IS"; 1234 * 6.5/100 p

The result is:

SALES TAX IS 80.21]
We could also type:

PRINT "SALES TAX IS"; 1234 * 0.065 p

and we would obtain the same result. There are many equivalent
ways to write a program.

You can print many items on a line. Look:

PRINT 1;2;3;4;5;6;7;8;9;"MANY ITEMS" p

The screen will show:

1 23456789

MANY ITEMS

We have now learned how to perform simple arithmetic computa
tions, and how to display the results. Let's use this new skill to solve
some simple problems.

Application Examples

Let's compute a car's mileage in miles per gallon. The mathemati
cal formula is:

MILEAGE = DISTANCE(in miles) + GAS (in gallons)

Let's assume that the distance was 510 miles and the amount of

gasoline used was 20.2 gallons. Here is the statement written in
BASIC:

PRINT "MILEAGEIS"; 510/20.2 ; "MPG" p

For metric readers we will now convert this into liters per kilo
meter. One gallon is 3.8 liters. One mile is 1.6 kilometers. The
consumption in liters per kilometer is:

PRINT "GAS CONSUMPTION IS"; (20.2 * 3.8)/(510 * 1.6) ; "LPERKM"p

Here is another simple problem. Given a temperature in Fahr
enheit, the Celsius equivalent is computed by the formula:

CELSIUS value = (FAHRENHEITvalue - 32) x 5/9

To compute the Celsius equivalent of 79° F, type:

PRINT "79 DEGREES F = "; (79 - 32) * 5/9; "DEGREES C" p

The result is:

79 DEGREES F = 26.11111111

DEGREES C

To be complete, note that 5/9 has not been enclosed in parentheses,
as it does not matter whether * or / is executed First.

45

46

Summary

In this chapter, we have learned how to perform arithmetic compu
tations and how to display text and results on the same line. We
have used this new skill to automate the computation of simple
formulas by writing one-line BASIC statements.

So far we have specified all the values within the BASIC state
ment itself. What we now want to do is first write a program, then
supply values repeatedly from the keyboard so different values can
be used with the program without having to rewrite it. We will ac
complish this with variables. This is the topic of the next chapter.

Exercises

3-1: Write a BASIC statement that computes:

5 + 6

1+2-3

3-2: Write a BASICstatement that computes:

1
1 +1/2

1 + Vz

3-3: Write a BASICstatement that computes the Fahrenheit equivalent of
20° C.

3-4: Given a speed of 100 km per hour, compute the equivalent speed in
m.p.h. (1 mile = 1.6 km)

3-5: Compute the number of seconds in a day, a week, a month, and a
year.

3-6: Assuming an average speed of 55 m.p.h., compute the time needed
to travel 350 miles.

3-7: Assuming 365 days in a year, compute the number of days you have
lived so far.

3-8: Compute the equivalent annual salary for a person, given the:

a. weekly pay (there are 52 weeks in a year)

b. biweekly pay (multiplyby 26)

c. monthly pay

d. hourly pay (multiplyby 2080)

47

Memorizinc
Usii

Values and
ig Variables

In this chapter, we will learn to write
programs that can be used repeat
edly, without change, and that will
display different results, depending
on the data supplied at the key
board. So far, to obtain the result of
an arithmetic computation, such as
2 + 3, we have had to include in the
program statement the numbers to
be operated on. We will now learn to
write programs that can be executed
with different data each time. The

programs will specify the operations
to be performed. The data will be
supplied at the keyboard by the user
at the time the program is executed.
This makes the program reusable.

In addition, we will introduce the

concept of a variable and learn how
to use two new statements: INPUT

and LET.

Let's now begin by learning how
to supply information to a program
while it is running.

50

The INPUT Statement

Type the following program. (Note: we will no longer display p
to indicate ENTER at the end of each line):

10 INPUTA

20 PRINT A; 2 * A; 3* A

30 END

Now execute this program by typing RUN, as usual. Your screen
should look like this:

A "?" appears on your screen with a blinking cursor next to it to
remind you to type in the input.

Now, type in a number, say 3. Terminate your input by pressing
the ENTER key as usual. Your screen should now show:

On INPUT, your
computer accepts
numbers and letters

3 6 9

* * DONE * *

Your program has been executed. Let's see what happened. The
first line was:

10 INPUTA

This statement asked you to provide a number at the keyboard.
The program displayed a ?, and stopped—waiting for your input.
The value 3 you supplied was then read and stored in A. "A"
is called a variable. It is a name used to store a value. Formally, a
variable is a name given to a memory location. Examples of some
variable names are: A, B, C, F, Zl, G2. TI BASIC allows variable
names with up to 15 letters as well, for example: INTEGER1,
SUM, TAX, RESULT.

The second statement was:

20 PRINT A; 2 * A; 3* A

This statement resulted in the printing of 3, 2 * 3, 3 * 3, or:

3 6 9]
Using the INPUT statement, it is also possible to enter several

values at the same time. Here is an example. Type:

10 INPUTA.B

20 PRINT A; A * 2; B; B*2

30 END

Now run the program. You should see the usual "?" appearing on
your screen. Type two numbers, say 2 and 3, separated by a
comma, then press return. The result is:

2 4 3 6

Let us examine what happened. The Firstline of the program
was:

10 INPUTA.B

This statement resulted in a request for two values from you,
which were then stored in the variables A and B. Remember that

variables are names of memory locations. The contents of A and B
were initially empty, but they became 2 and 3, respectively. The
second statement of the program was:

20 PRINT A; A * 2; B; B*2

51

52

This statement resulted in printing the values: 2,2*2,3,3*2,
or:

2 4 3 6

Let's try running thisprogram again. This time try typing:

5,8

and the results should be:

5 10 8 16

J
We can use this program repeatedly and obtain new resultsby typ
ing in new valuesat the keyboard. We have made our program
reusable by usingvariable names(A and B), instead ofexplicit
values.

In order to make this program truly reusable, let's now improve
its style and readability. Suppose that we want to save the program,
and run it again in several days. We might forget what it doesor we
might not remember how many values wemustsupply. We can
rewrite the program to display this information on the screen. Here
is an improved version:

10 PRINT "A PROGRAM TO MULTIPLY"

20 PRINT "ANY TWO NUMBERS BY 2"

30 PRINT "TYPE TWO NUMBERS"

40 INPUT A.B

50 PRINT "FIRST NUMBER :"; A, "DOUBLE :"; 2 * A

60 PRINT "SECOND NUMBER :"; B, "DOUBLE :"; 2 * B

70 END

and here is the resulting display: (Note: throughout this text, we
willdisplay data provided by the user in boldface type.)

^>

A PROGRAM TO MULTIPLY

ANY TWO NUMBERS BY 2

TYPE TWO NUMBERS

? 5,7

FIRST NUMBER : 5

DOUBLE : 10

SECOND NUMBER : 7

DOUBLE : 14

v •*

We have now learned how to supply numeric data to the pro
gram by using the INPUT statement. We have also introduced the
concept of variable. Let's now learn how to use these techniques
effectively and how to develop more complex programs.

"Hello Numeric,
I'm a string.
I store a chain
of characters.
You can easily
recognize me—
look at

my antennas!"

The Two Types of Variables

There are two types ofvariables in BASIC: numeric and string. Nu
meric variables represent numbers; string variables represent text.
These two typesof variableslookdifferent; a string variable has a
"$" at the end of the name. They are also used differendy. For
example, you can add numbers, but not text. Let's first learn
about numeric variables, then about string variables.

Numeric Variables

Let's learn the rules for naming a numeric variable; then we will
learn how to use these variables effectively. We have already used
two numeric variables, called A and B, at the beginning of this
chapter. We gave them a value by inputting numbers from the key
board. Let's now learn how to name a variable.

When naming a variable, all BASICs, including the original
Dartmouth BASIC, allow the use of one letter, optionally followed
by a single number. TI BASIC allows any combination of letters
and numbers up to 15 characters. However, a numeric variable
name must start with a letter. Here are examples of valid TI BASIC
variable names:

A (one letter)

Z (one letter)

Al (one letter and one digit)

B2 (one letter and one digit)

ALPHA (five letters)

R2D2 (two letters and two numbers)

53

Every variable
must have a name

54

With this definition, the following names are not legal:

12 (does not start with a letter)

1B (must start with a letter)

ABCDEFGHIJKLMNOP (too many characters)

The advantage of short names is to reduce the size and complex
ity of the BASIC interpreter. The disadvantage is that short names
are difficult to remember. For example, the long name RESULT
is more descriptive and memorable than the short name R. To
improve readability, TI BASIC allows long names, i.e., a sequence
of characters. You may use any number of consecutive letters fol
lowed by optional digits, up to a maximum length of 15 characters.
For example, the following are legal longer variable names:

WINNER STUDENT1

LOSER STUDENT2

RESULT STUDENT14

SUM CASE24

The following are not legal:

3TIMES (starts with a digit)

A-ONE (illegal symbol)

'I'm a string variable.
I contain text.

My name ends with a $.

Clearly a program with long, explicit variable names is more
readable. In this chapter, we will use both short and long names, so
that you can getused to both conventions. Remember that long
names are simply a matter of convenience and will not affect the
program in any way.

There isone more restrictionon names: you cannot use a name
that is a reserved word, i.e., a name that has a meaning to your BASIC
interpreter. For example, you may not use LIST, END or RUN as
variable names. (Note: a listof reserved words appears at the end
of thisbook, as well as at the end of the reference manual foryour
BASIC interpreter.) TI BASIC alsoprohibitsyou from using a
reserved word as the first part of a variable name. To be safe, it is
bestnever to usea reserved word as any part of a variable name.

Now that we know how to create legal names for numeric vari
ables, let's learn how to givea name to a pieceof text known as a
string.

String Variables

First, let us introducestrings. Here are examples of strings:

"RESULT"

"THIS IS AN EXAMPLE"

"MY NAME ISJOHN"

"25 TIMES 4 = "

Note that a string is normally enclosed in quotes; otherwise, it
could be confused with a variable name. A string may contain any
sequence ofcharacters, except the quotation symbol. The length of
a string is limited to 256 characters.

Let us now introduce string variables. When the value stored in
a variable is text (that is, a string), rather than a number, the vari
able is called a string variable.

A string variable's name isjust like a numeric variable's name,
except that it must have a "$" at the end. Here are some valid short
string variable names:

R$

All

B5S

Since TI BASIC allowslong names, here are several more valid
names:

NAMES

FIRSTS

CITYS

UNIT25S

56

Let's now illustrate the use of string variables, with a program
that greets the user by name.

10 PRINT "I AM HAL, THE COMPUTER"

20 PRINT "FIRST NAME";

30 INPUT FIRSTS

40 PRINT "LAST NAME";

50 INPUT LASTS

60 PRINT "HELLO, "; FIRSTS; " "; LASTS; "!"

70 PRINT "NOW I KNOW YOUR NAME"

80 PRINT "I LIKE "; FIRSTS; " AS A FIRST NAME."

90 END

Here is a sample run. Note that the characters you type appear
here in boldface type.

I AM HAL, THE COMPUTER

FIRST NAME? JOHN

LAST NAME? SULLIVAN

HELLO, JOHN SULLIVAN!

NOW I KNOW YOUR NAME!

I LIKE JOHN AS A FIRST NAME.

You can now communicate with your computer! Let's point out
some of the basic featuresof this program. Let's start with line 20:

20 PRINT "FIRST NAME";

Note that this line is terminated with a semicolon. The semicolon

means "display the next character immediately after this text." The
result of statement 20 and your response to statement 30 is:

FIRST NAME? JOHN

If you had written:

20 PRINT "FIRST NAME"

with no semicolon at the end, the result would have been:

FIRST NAME

?JOHN

Naturally, you may choose either way. The format is a matter of
preference. But remember, if you want the characters you type to
appear on the same line as the preceding message, use a semicolon
at the end of the PRINT statement. Otherwise, the next position
on the screen will be the beginning of the followingline.

Now that we know more about numeric and string variables,
let's use them as we continue our dialogue with Hal, the computer.

Let's add the following to our program:

90 PRINT "THIS YEAR (2 DIGITS)";
100 INPUT CURRENTYEAR

110 PRINT "WHICH YEAR WERE YOU"

120 PRINT "BORN (2 DIGITS)";

130 INPUT YEARBIRTH

140 PRINT "DEAR "; FIRSTS; ", THIS YEAR"

150 PRINT "YOU ARE OR WILL BE";

CURRENTYEAR - YEARBIRTH

160 END

Here isa sample dialogue. Again, thecharacters you typeare
shown in boldface type.

THIS YEAR (2 DIGITS)?83

WHICH YEAR WERE YOU

BORN (2 DIGITS)? 50

DEAR JOHN, THIS YEAR

YOU ARE OR WILL BE 33

Let us examine the program in detail. The statement

90 PRINT "THIS YEAR (2 DIGITS)";

prints the obvious message. Again a semicolon isused so that the
twodigitswill be displayed on the sameline. In the next statement,

100 INPUT CURRENTYEAR

CURRENTYEAR isa numeric variable. The value83 that you
typed will be read into it. From now on, whenever the name CUR
RENTYEAR is used, the value 83 will be substituted automatically
by the BASIC interpreter. This will happen in statement 130.

The two statements

110 PRINT "WHICH YEAR WERE YOU"

120 PRINT "BORN (2 DIGITS)";

are just like statement 90. Note the semicolon at the end. The
statement

130 INPUT YEARBIRTH

isjust like statement 100. YEARBIRTH is a new numeric variable.
It will soon contain the value 50. In statement 150 we use this vari

ablename. Note that the value50 issubstitutedautomatically by
the interpreter. Let's examine this:

140 PRINT "DEAR "; FIRSTS; ", THIS YEAR"

150 PRINT "YOU ARE OR WILL BE";

CURRENTYEAR - YEARBIRTH

57

58

When these statements are executed, the following is displayed:

DEAR JOHN, THIS YEAR

YOU ARE OR WILL BE 33

Let's break this display down and examine it.

DEAR

(This iscalleda literal string. A literal string isa string that ispart ofa
program statement.)

JOHN
(This is the string value that isread atthe keyboard and stored in the string
variable named FIRSTS. It remains there as long asyoudon't use the
NEWcommand or enter a new value into FIRSTS.)

THIS YEAR YOU ARE OR WILL BE

(This isanother literal string.)

33

(This is the result of: CURRENTYEAR - YEARBIRTH, i.e.,
83 - 50 = 33.)

In typing and examining this program, you may already have
developed some frustrations. For example, you may have wanted
to enter actual dates, including the day and month, so that you can
compute your age, as of today. However, this requires comparing
today's month and day with that of the birthdate's. To do this, we
must learn about a new BASIC statement, the

IF (condition) THEN (do)

statement. We'll discuss this statement in detail in Chapter 7. An
other thing that you might want to do is to design the program so
that it executes repeatedly (so that you don't need to type RUN
everytime). We'll learn how to do this in Chapter 6, when we dis
cuss the GOTO statement.

Now that we are familiar with both numeric and string variables,
let's learn how we can use them in a longer program—first, by
assigning a value to a variable, then by using the counter technique.

Assigning a Value to a Variable
(The LETStatement)

So far, the only way we have given a value to a variable has been
with the INPUT statement. For example, when the followingstate
ment is executed:

20 INPUT A

you type in a value, such as 5.2 (followed by a p), and the value
of A is then 5.2.

There is, however, another way to assign a value to A. This is
called the assignment statement. Here is an example:

10 A = 5.2

This statement assigns the value 5.2 to A as part of the program, so
that you do not have to supply it from the keyboard. You might
also write:

10 B = 1

20 C = 2

30 A = B + C

As you can see, the value of A will be set at 2 + 1 =3 when state
ment 30 is executed.

In earlier BASICs, the assignment statement must start with the
reservedword LET. In such BASICs, this example would be writ
ten as:

10 LET B = 1

20 LET C = 2

30 LET A = B + C

The purposeof the LETstatementwas to simplify the designof the
interpreterby telling it explicidy that the statement is an assign
ment statement. The LET statement is optional in TI BASIC.
Eliminating it eliminatesone step for the programmer when writ
ing such statements.

"Z, / want you to hold this value!"

59

60

Let's now show the value of the assignment statement. We will
examine two examples. In both examples, we will compute the
sum and the average of two numbers. Here is our first program,
without the assignment statement:

10 PRINT "GIVE ME TWO NUMBERS"

20 PRINT "I WILL COMPUTE THEIR"

30 PRINT "SUM AND AVERAGE"

40 PRINT "1ST NUMBER:";

50 INPUT A

60 PRINT "2ND NUMBER:";

70 INPUT B

80 PRINT "THE SUM OF"; A; "AND"; B;

90 PRINT "IS: ";

95 PRINT A + B

100 PRINT "THEIR AVERAGE IS:";

105 PRINT (A + B)/2

110 END

And here is a typical run:

r

GIVE ME TWO NUMBERS

I WILL COMPUTE THEIR

SUM AND AVERAGE

1ST NUMBER:? 24

2ND NUMBER:? 41

THE SUM OF 24 AND 41

IS: 65

THEIR AVERAGE IS: 32.5

^

V. J
Notice that the expression A + B is repeated twice in the PRINT

statements. This isjust a minor inconvenience. However, in a
longer program, this would increase the probability of typing er
rors. In addition, ifwe were to change the program to use a differ
ent formula, much rewriting would be needed.

Here is an equivalent program that uses an intermediate variable,
called SUM, to store the result. It is easier to read, and less error
prone.

10 PRINT "GIVE ME TWO NUMBERS"

20 PRINT "I WILL COMPUTE THEIR"

30 PRINT "SUM AND AVERAGE"

40 PRINT "1ST NUMBER:";

50 INPUT A

60 PRINT "2ND NUMBER:";

70 INPUT B

80 SUM = A + B

90 AVERAGE = SUM/2

100 PRINT "THEIR SUM IS:";

105 PRINT SUM

110 PRINT "THEIR AVERAGE IS:";

115 PRINT AVERAGE

120 END

Two new variables are used:

80 SUM = A + B

90 AVERAGE = SUM/2

Using additional variable names has two advantages: the pro
gram is clearer, and it is easier to modify. For example, let's assume
that we now want to modify this program to obtain the average of
three numbers. To do this, we would type:

72 PRINT "3RD NUMBER:";

74 INPUT C

80 SUM = A + B + C

90 AVERAGE = SUM/3

We would leave the rest of the program unchanged. We have sim
ply read in a third number, and modified the formulas at a single
location. Here is the complete program:

10 PRINT "GIVE ME TWO NUMBERS"

20 PRINT "I WILL COMPUTE THEIR"

30 PRINT "SUM AND AVERAGE"

40 PRINT "1ST NUMBER:";

50 INPUT A

60 PRINT "2ND NUMBER:";

70 INPUT B

72 PRINT "3RD NUMBER:";

74 INPUT C

80 SUM = A + B + C

90 AVERAGE = SUM/3

100 PRINT "THEIR SUM IS:";

105 PRINT SUM

110 PRINT "THEIR AVERAGE IS:";

115 PRINT AVERAGE

120 END

And a typical run:

GIVE ME TWO NUMBERS

I WILL COMPUTE THEIR

SUM AND AVERAGE

1ST NUMBER:? 5

2ND NUMBER:? 3

3RD NUMBER:? 10

THEIR SUM IS: 18

THEIR AVERAGE IS: 6

61

62

We have now learned two methods for associatinga value with a
variable:

•• We can use the INPUT statement—where a value is supplied
at RUN time, i.e., when the program is executed.

•• We can use the assignment statement—where a value or a
method to compute the value (a formula) is stored within the
program itself.

The first method (using the INPUT statement) should be used
when you expect that the value explicitly supplied to the variable
(that is, not a computed value) willbe different every time the pro
gram is executed.

The second method (using the assignment statements) should
be used whenever you are using a formula to compute the value
of the variable, or whenever you expect the explicit value (i.e., not
a computed value) to remain the same every time the program is
executed.

Let's now learn the complete rules for writing an assignment
statement.

The Syntax of an Assignment
The rules (or syntax) for writing an assignment statement are sim
ple. The general form of an assignment statement is:

< variable> = < expression>

There must always be a variable on the left and an expression on
the right. More precisely, an expression is:

• a number or a variable, or

• a number or a variable followed by an operator (such as
+ , -,*,/), and another expression.

Here are a few sample expressions:

3 (a number)

A (a variable)

2+2 (number, operator, number)

A + 2 (variable, operator, number)

A + B * 3 (variable, operator, expression)

Expressions may be enclosed in parentheses, for example:

3 + (A + 2) / 2

B + ((C * 2) + (D / 2)) / 4

Youmay want to think of an expressionas a value, or as some
thing that will be computed and willresult in a value (in other
words, as a formula for computing a value).

The equal (=) signused in an assignmentstatement is not inter
preted the sameas in standard mathematics. In an expression it
means "receives the value of." For example, you may write:

10 A = 1

20 A = A + 1

(The expression A = A + 1would be meaningless or absurd in
ordinary mathematics.)In BASIC, after statement 20 isexecuted,
the value ofA willbe 1 (the previous value ofA) + 1 = 2. Re
member that in an assignmentstatement in TI BASIC, the = sign
means that the variable on the left receives the value of the expres
sion on the right.

Here are examples of valid assignment statements:

A = -3+2 (-3isanegativeinteger)

B = A + 1

C =(2*3) +(A/B)

AVERAGE = SUM / INTEGER

SQUARE = A**2

X = B**2 = (4*A*C)

Let's examine this last assignmentand verifythat it satisfies our
definition:

B ** 2

is

<variable> <operator> <number>

followed by

_ (4 * a * C)

i.e.,

<operator> <parenthesizedexpression counting as a value>

Inside the parentheses:

4* A*C

is

<number> <operator> <variable> <operator> <variable>

Yes, it is a valid expression.

63

64

"Let's play
counter!"

The following assignments, however, are not valid:

B + C = SUM

2 = A

SUM = B + C (D / 3)

(AVERAGE) = (B + C) / 2 (no parenthesis allowed on the left)

A = (missing value on the right)

Finally, note that at the time an assignment isexecuted, allvari
ables on theright ofthe = sign must have received a value. If you
write

10 B = 2

20 SUM = B + C

30 INPUT C

the program will fail at line 20, since C does not have a value. You
probably meant to write:

10 B = 2

20 INPUT C

30 SUM = B + C

We've nowlearned the syntaxofassignments. Let's use thisnew
skill and introduce an importanttechnique that uses assignments:
thecounting technique. We will useit in many ofour programs.

(only one variable (not an expression)
on the left ofthe = sign)

(tfiere must be a variable, not a value
on the left)

(missing operator after C)

The Variable Counter Technique
Remember thata variable issimply a namegiven toa memory
location. A value can bestored ina memory location byusing an
INPUT statement or an assignmentstatement (=). In thisexample,

'm a counter variable."

we want to change the value of a variable repeatedly, in order to
count events. The technique we will use to do this is called the vari
able counter technique.

Let's now demonstrate how successive assignments can change
the value of the variable N. Type the following in the immediate
mode:

N = 1

The value is automatically stored in N. Let's verify that it is. Type:

PRINT N

The value 1 appears. Now type:

N = 2

N now contains 2. Type:

PRINT N

The response is:

2

The value 2 has been substituted for the value 1 in N. Type:

N = 3

Now type:

PRINT N

and verify that the value 3 has been stored in N. The mechanism
works. We will soon use this technique to count events. In other
words, a variable can be used as an event counter. Here is a pre
view of an advanced program that counts how many times you
supply a number at the keyboard. It stops when you hit zero.

10 SUM = 0

20 SUM = SUM + 1

30 PRINT "ENTER ANY NUMBER"

40 PRINT "TYPE 0 TO STOP";

50 INPUT VALUE

60 PRINT "YOU HAVE ENTERED"

70 PRINT SUM; "NUMBERS"

80 IF NUMBER < > 0 THEN 20

90 END

Later on in Chapter 6, we will examine statements like statement
80 in greater detail. The statement means: IF VALUE is not

66

equal to (< >) zero, THEN execute statement 20. Here is a typical
run:

f —>

ENTER ANY NUMBER

TYPE 0 TO STOP? 5

YOU HAVE ENTERED

1 NUMBERS

ENTER ANY NUMBER

TYPE 0 TO STOP? 1

YOU HAVE ENTERED

2 NUMBERS

ENTER ANY NUMBER

TYPE 0 TO STOP? 0

YOU HAVE ENTERED

3 NUMBERS

N^ J

In this program, the value of SUM is initialized to 0 in the first state
ment. It increases by one every time a new number is entered.
This is a counter variable. We will see many examples of this tech
nique as we write more programs. Later, we will learn how to tune
up such a program, if we don't want to have 0 count as a number
when we stop the program.

Summary

In this chapter we have learned to write programs that can be used
repeatedly. These programs will supply new results depending on
values provided at the keyboard. We have achieved this by using
variables and assigning values to them in various ways.

A variable should be thought of as a name given to a memory
location in which a value or text may be stored or accumulated.

We have learned to change the contents of a variable by using an
INPUT or assignment statement. We can now write a simple pro
gram that automates a dialogue or a simple computation.

However, our programs now consistendy exceed ten lines. They
have become long. Let's keep them clear. In the next chapter,
before proceeding any further and learning new tools and tech
niques, we will learn how to write a clear program.

Exercises
4-1: Read four numbers at the keyboard and display the total, the aver

age, and the product of the four numbers.

4-2: Are the following variable names valid?

a. 24B e. ALPHA2D i. PI

b. B24 f. EXAMPLE j. 3$

C A+B g. INPUT k. THREE

d. APLUSB h. INPUT1 I. NAMES

4-3: Writea program that asks the name of the user and says: "ITHINK I
KNOW A(name here)!"

4-4: Write a program that requests:

— the name of an object

— the name of a piece of furniture

— the name of a friend

then says: "DOES YOUR FRIEND (name) HAVE A(object) ON A(piece
of furniture)?"

4-5: Write a programthat requests the color of youreyes, then says: "I
LIKE (color) EYES."

4-6: Are the following assignments valid:

a. A + 1 = A d. B + C = A

b. A = A + A + A e. 3 = 2+1

C A = B + C f. INTEGER = FIRST + LAST * 2

67

Writing a Cl<

So far, we have written short pro
grams using three different types
of statements: PRINT, INPUT, and
assignment (=). We have also
learned how to write simple arith
metic expressions. In the chapters
that follow, we will learn new tech
niques and statement types, and we
will write longer programs. Before
we proceed, however, let's learn
to make our programs clear and
readable.

Making a program readable is im
portant. Ifyou write a program today
and wish to use it or change it in a
few days, itwill probably take you
some time to remember and under

stand what the program does, and
how. As a rule, plan in advance and

make each program as readable as
possible as soon as you write it. The
purpose of this chapter is to help you
improve your program readability.

We will examine seven techniques:

1. The use of the REM statement (to
introduce remarks in a program)

2. The use of multiple statements on
one line

3. The use of blanks within a statement

4. The use of the "empty PRINT" and
the CALL CLEAR statements (to
improve the display on the screen)

5. The use of the "shortcut INPUT"

statement (to reduce the number of
lines in a program)

6. The selection of meaningful names
for variables

7. The proper line numbering.

We will now describe each technique
in turn.

arPrI

70

The REM Statement

Here is an example using the REM statement:

10 REM * * * ADDITION PROGRAM * * *

20 PRINT "GIVE ME TWO NUMBERS:";

30 INPUT FIRST, LAST

40 PRINT "THEIR SUM IS: ";

45 PRINT FIRST + LAST

50 END

The REM statement is used to make the program more readable
by introducing comments in the text. This statement is ignored
by the interpreter when the program is executed and has no effect
on the program. Here is an additional example ofa remark you
could use:

25 REM NOW READ THE TWO NUMBERS

and here is the resulting program

10 REM * * * ADDITION PROGRAM * * *

20 PRINT "GIVE ME TWO NUMBERS:";

25 REM NOW READ THE TWO NUMBERS

30 INPUT FIRST, LAST

40 PRINT "THEIR SUM IS:";

45 PRINT FIRST + LAST

50 END

REMarks are

invisible to
the interpreter

"See how a few stars
make my program
more readable."

For improved readability, you may want to use stars, dashes, or
other symbols:

10 REM * * * ADDITION PROGRAM * * *

60 REM SECOND PART

100 REM = = = = =GRAND FINALE= = = = =

200 REM $$$$$CHANGE THIS SECTION LATER$$$$$

Multiple Statements on a Line

Some BASICs allow you to write two or more statements on the
same line, separated by a colon. However, TI BASICdoes not offer
this facility. Each instruction must appear on its own line.

Using Blanks

With the exception ofnames, strings,or input data, blanksare
generally ignoredby BASIC. For example, you may write:

20 PRINT4 + 2*3

However, a statement like thisishard to read. Tofacilitate reading
backyour program, useblanksliberally. Use blanks:

• after each reserved word, such as PRINT andINPUT.

Here are examples:

50 PRINT 4

60 INPUT VALUE

before andafter each operator.

71

72

Here are examples:

30 PRINT 4 + 2*3

40 RESULT = A1 / ((B - C) * D)

You may alsowant to use blanks before a reserved word, to align
or indent statements in your program. Here is an example:

10 PRINT "TEN"

20 PRINT "TWENTY"

90 PRINT "NINETY"

100 PRINT "ONE HUNDRED"

200 PRINT "TWO HUNDRED'

Without the two leading blanks in lines 10, 20, and 90, the pro
gram would look like this:

10 PRINT "TEN"

20 PRINT "TWENTY"

90 PRINT "NINETY"

100 PRINT "ONE HUNDRED'

200 PRINT "TWO HUNDRED1

Finally, here is an example of using blanks within a REM state
ment to even further facilitate reading:

THIS PROGRAM MAINTAINS MY INVENTORY

COPYRIGHT MYSELF 1982

THESE ARE THE VARIABLES:

C IS THE COLOR (1 TO 10)

U IS THE NUMBER OF UNITS (UP TO 1000)

S IS THE SIZE (1 TO 50)

CST IS THE UNIT COST

R IS THE RETAIL PRICE

Q IS THE REORDER QUANTITIES

Note how the blanks are used to enhance readability. You may not,
however, add blanks in the middle of a reserved word, a variable
name, or during a response to INPUT, unless the blanks are part of
a string.

1 REM

2 REM

3 REM

4 REM

5 REM

6 REM

7 REM

8 REM

9 REM

Improving the Display
Two new techniques can be used to improve the way your results
look on the screen: the CALL CLEAR statement and the empty
PRINT statement.

The CALL CLEAR statement clears the screen at the time it is

used. Youmay want to start each new program with:

10 CALL CLEAR

Use blanks liberally

Here is a trick you may want to use. At the end of your pro
gram, you can write:

110 CALL CLEAR

120 LIST

This will clear the screen and list the entire program—after it is
executed.

The empty PRINT statement can be used to display a blank line.
You simply type:

50 PRINT

and a blank line will be displayed. If you want to skip three lines on
the screen, type:

50 PRINT

60 PRINT

70 PRINT

Shortcut INPUT

Everytime you use an INPUT statement, you should prompt
the user of the program by explaining what to enter. Here is an
example:

50 PRINT "TYPE TWO INTEGERS";

60 INPUT AGE1, AGE2

73

74

The sequence PRINT-INPUT is used so often that TI BASIC allows
a shortcut INPUT statement, and you may write:

50 INPUT "TYPE TWO INTEGERS" : AGE1, AGE2

which is equivalent to the two statements above. This shortcut
technique reduces the typing required and shows clearly what will
be displayed on the screen. When using this technique, however,
be sure to include the colon after the prompt as shown above. If
you omit it or use a different separator (such as a semicolon), the
system might lock up and you will lose your program.

Selecting Variable Names

You should always selectvariable names so that you can easily
remember what the name represents. Otherwise, you may find it
difficult to write a long program, and you may make many acci
dental errors. Also, ifyour variable names are not clear, you may
find that at a later date you are unable to figure out what your
program does.

TI BASIC allowsmultiple letter names, so use them. Here is
an example showing the use of variable names that are easy to
remember.

10 REM HERE ARE THE VARIABLES FOR THE SECOND NUMBER

20 REM RESULT FOR THE RESULT

30 REM FIRST FOR THE FIRST NUMBER

40 REM LAST FOR THE LAST NUMBER

Two main restrictions apply:

• TI BASIC restricts you to a maximum of 15 characters.

•• You may not use a reserved word, such as PRINT, REM or
INPUT, as a variable name.

It is a good idea to identify all your variable names at the begin
ning of each program, as well as any formulas or equations you will
be using.

Proper Line Numbering
So far in thischapter we have numbered linesby multiples of 10:

10 (statement)

20 (statement)

30 (statement)

Keep itsimple!

You may, however, use any sequence you want, as long as you
use positive integers, and you do not go over the 32,767 limit for
ine numbers. For example, you may write:

1 (statement)

2 (statement)

3 (statement)

100 (statement)

200 (statement)

300 (statement)

75

76

We have taken the precaution to leave a regular gap between
consecutive statement numbers so that we can easily add correc
tions or improvements later on. For example, here is version 1
of a program:

10 REM * MULTIPLICATION PROGRAM *

20 PRINT "GIVE ME 2 NUMBERS";

25 INPUT N1.N2

30 PRINT "THE PRODUCT IS: ";

35 PRINT N1 * N2

40 END

We now want to clarify the program and improve the display. To
do this, we will type the following additional statements:

5 CALL CLEAR

15 PRINT "THIS IS AN AUTOMATIC"

16 PRINT "MULTIPLICATION PROGRAM"

17 PRINT

36 PRINT

The new statements will be inserted automatically. Let's now list
the result:

5 CALL CLEAR

10 REM * MULTIPLICATION PROGRAM *

15 PRINT "THIS IS AN AUTOMATIC"

16 PRINT "MULTIPLICATION PROGRAM"

17 PRINT

20 PRINT "GIVE ME 2 NUMBERS";

25 INPUT N1.N2

30 PRINT "THE PRODUCT IS";

35 PRINT N1 * N2

36 PRINT

40 END

Here is a sample run of our improved program:

THIS IS AN AUTOMATIC

MULTIPLICATION PROGRAM

GIVE ME 2 NUMBERS? 12, 15

THE PRODUCT IS 180

If you plan to make many corrections, or add many statements,
you may want to leave large gaps in your line numbering, and use
for instance:

10 (statement)

50 (statement)

60 (statement)

100 (statement)

TI BASIC has a special command called RESEQUENCE that
will automatically renumber all the lines in your program with an
increment of 10. This is very useful in a long program where you
may run out of sequential numbers when inserting a "patch," or
correction.

77

78

TI BASIC has another special command called NUMBER that
can help you with line numbering when you are writing a pro
gram. When you type in the command NUMBER followed by two
numbers, separated by a comma, your computer enters the num
ber mode and automatically generates line numbers for you. The
first number tells the computer what line number to start with. The
second number determines the increment between numbers. For

example, entering the command NUMBER 10,10 will cause the
computer to start with line number 10; each successive line number
willbe ten more than the one before it (that is, 10, 20, 30, etc.).

If you do not specifythe starting line number and the increment
between numbers, NUMBER will start with line number 100 and
10 will be used as the increment.

To end the automatic generation of line numbers and leave the
number mode, press ENTER immediately after the generated line
number is displayed. The "empty" line will not be added to your
program.

Summary

Writing programs that work involves one key ingredient: disci
pline. It is important to be as orderly and organized as possible
when writing programs. Shortcuts increase the probability of mis
takes. In particular, take the time to clarify your programs and
your displays. In this chapter we have described and stressed the
techniques necessary to write clear programs.

As you write programs in BASIC, you should make every effort
to follow the suggestions offered in this chapter. It is essential that
you acquire good programming habits, or elseyour programs may
be unreadable, or may not even work, as you begin writing more
and more complex programs.

Exercises

5-1: Describe techniques that improve the readability of the display.

5-2: Are the following legal?

a. A = A + 1 d. SUM = 2 + (3 + (4/5))/2

b. A = A + 1 e. IN PUT VALUE

c. PRINT ALPHA+ 2 f. SUM= 2 2 + 33

5-3: Explain why most INPUTS should have a prior message.

5-4: Write three examples of shortcut INPUTS.

5-5: Why use REMs?

5-6: What is the value of A after these two statements:

30 A = 3

40 REMA = 4

79

Making [

.:•_ -V-.v'-^-^-^yfi?^ /TC^

decisions

••''•

So far, we have learned how to com

municate with the computer and
how to perform simple arithmetic.
However, our programs have been
somewhat dull, and we could easily
have performed the same tasks by
hand. This is because we have used

only the elementary resources of the
computer. We have not taken advan
tage of the more advanced re
sources. For example, computers
are particularly good at performing
two tasks: making complex deci
sions (based on logic and values)
and executing repetitive tasks many
times in a short period of time. This

is what we will learn to do in this and

the following chapter. In particular,
we will learn how to make decisions.

Our programs will become "intelli
gent," as they decide what to do.

In BASIC, program decisions are
made by testing a value, using the IF
statement. If the test succeeds, one
part of the program is executed. If it
fails, another part is executed. We
will now learn how to use the IF

statement to perform tests. We will
also learn to use the GOTO state

ment to force the program to exe
cute a group of instructions out of
numerical sequence.

82

Look at Dino's
puzzled expression.
He will go one
of two ways.

The IF Statement

The IF statement is written:

IF (condition) THEN (line number)

Here is an example:

IF I = 1 THEN 110

The effect of this statement should be clear: IF the value of the

variable I is equal to 1 at the time this statement is executed, THEN
line 110 is executed. If I is not equal to 1, nothing happens and the
next statement in the program is executed.

I = 1 is called a logicalexpression. The expression I = 1 is true
when I is equal to 1; otherwise, it isfalse.

The IF . . . THEN statement allows you to test the value of an
expression and execute one statement or another—that is, to make
a decision—depending on the results of the test. Here is another
example:

10 INPUT I

20 IF I = 1 THEN 25

23 IF I < > 1 THEN 30

25 PRINT "ONE"

30 END

Now run this program. Type " 1" at the keyboard. Your screen
should look like this:

f ^

RUN

?1

ONE

* *DONE* *

k. *

Run this program again. Type "2" at the keyboard. Your screen
should look like this:

^
>RUN

?2

* *DONE* *

^

This time no message was printed in response to the 2.
Let's now teach our program to recognize the numbers 1

through 3:

10 REM THIS PROGRAM RECOGNIZES THE NUMBERS 1 TO 3

20 PRINT "TYPE AN INTEGER:";

25 INPUT INTEGER

30 IF INTEGER = 1 THEN 35

32 IF INTEGER < > 1 THEN 40

35 PRINT "ONE"

40 IF INTEGER = 2 THEN 45

42 IF INTEGER < > 2 THEN 50

45 PRINT "TWO"

50 IF INTEGER = 3 THEN 55

52 IF INTEGER < > 3 THEN 60

55 PRINT "THREE"

60 END

Let's run the program. Here are two typical runs as they appear on
the screen (with emphasis added):

>RUN

TYPE AN INTEGER:? 3

THREE

* *DONE* *

>RUN

TYPE AN INTEGER:? 5

* *DONE* *

V -<

83

84

We can make

the program
jump out
of sequence

This is good, but not yet perfect. Ideally, when we type 5, we
would like the program to respond with something like:

I DON'T KNOW THIS NUMBER.

or else request a new integer. We do this as follows:

10 INPUT I

20 IF I = 1 THEN 50

30 PRINT "YOU DID NOT TYPE A 1"

40 END

50 PRINT "YOU TYPED A 1"

60 END

Run this program and type " 1" at the keyboard. Your screen
should look like this:

'

>RUN

?1

YOU TYPED A 1

* *DONE* *

~>

v_ _>

/ 'm the bug.
Igot you.

Run the program again, and typea "2" at thekeyboard. Your
screen should look like this:

>RUN

?2

YOU DID NOT TYPE A 1

* *DONE* *

Our program has become "intelligent," i.e., it givesan appro
priate message whether or not the input is 1. You may be wonder
ing ifwe couldhave achieved the same result using the original
form of the IF statement. Let's try it:

10 INPUT I

20 IF I = 1 THEN 25

25 PRINT "THIS IS A ONE"

30 PRINT "THIS IS NOT A ONE"

40 END

Now, run this program and type a 1at the keyboard. The display
is the following:

>RUN

?1

THIS IS A ONE

THIS IS NOT A ONE

* *DONE* *

It doesnot work. Regardless of the success or failure of the IF, the
next statement following it in the program (statement 30 here) is
executed.

In this example, weFirst get thecorrect message as the IF is
executed:

THIS IS A ONE

Then thesecond message isprintedanyway:

THIS IS NOT A ONE

The new form of the IF statement:

IF I = 1 THEN 50

eliminates this problem. We will use this statement frequendy in
our programs.

85

86

\^r....--

A successful IF forces
the Interpreter
to activate the instruction

Let's now take a closer look at the IF statement so that we can

fully utilize it. The general form of the IF . . . THEN statement is
the following:

IF (logicalexpression) THEN (line number)

Let's now examine logical expressions and executable statements
in turn.

Logical Expressions

In our example, I = 1 is a logical expression, i.e., it can be either
true orfalse. True and false are called logical values. Here are some
examples of logicalexpressions:

I = 1 (I equals I)

I > 4 (lisgreater than 4)

INTEGER< 100 (INTEGER is less than 100)

YEAR <> 5 (YEAR isnot equal to 5)

AGE < 13 (AGE isless than 13)

A logical expression combines values orvariables with logical oper
ators. Forcompleteness, theoperators you canusewith logical
expressions are:

= equal

<> not equal

< less than

> greater than

< = less than or

equal

>= greater than or
equal

ere are some even mon

(INTEGER + 2) > 4

(AGE - 5) > = 10

((2*1 - 5)/2)< 10

2>I

(in mathematics, this is written as ^or §)

(in mathematics, this iswritten as^)

(in mathematics, this iswritten as^)

You may also write:

4 > 2 (this isalways true)

4=2 (this isalwaysfalse)

The following are not valid logical expressions:

2 < I < 0 (only one relational operator may be used)
(2 AGE - 2) < 5 (invalid expression—missing an *. This

should read: (2 *AGE - 2) < 5)

87

With some BASICs, you can combine logical expressions using
the logical operators AND, OR, and NOT. TI BASIC doesnot
have these logical operators. However, you can achieve similar
results using the two statements IF . . . THEN and IF . . . THEN
. . . ELSE. Let's examine these statements further. Suppose that
you want your program to print the message "THIS IS A
TEENAGER" if the variable AGE is greater than 12 and less
than 20. This can be accomplished using the IF . . . THEN
statement in the following way:

50 IF AGE < 13 THEN 80

60 IF AGE > 20 THEN 80

70 PRINT "THIS IS A TEENAGER"

80 END

These statements will cause "THIS IS A TEENAGER" to print
whenever AGE is greater than 12 and less than 20. If the value
of AGE is less than 13or greater than 20, the program immedi
ately jumps to line 80 and ends.

Here is another example of using the IF . . . THEN statement
to perform logical comparisons:

20 INPUT ANSWERS

30 IF ANSWERS - "YES" THEN 60

35 IF ANSWERS = "NO" THEN 60

40 PRINT "INVALID ANSWER"

60 PRINT "VALID ANSWER—LET'S PROCEED"

This program segment collects an answer in the variable
ANSWERS. (Recall that the $ at the end of the name is used to
denote a string variable, i.e., a collection of characters.) YESor
NO are the only valid answers; this program checks for the
validity of what you have typed.

Relational
operators
can be used
on variables

If you type YES, then ANSWERS = "YES" is true. State
ment 60 is executed next, and the program prints:

VALID ANSWER—LET'S PROCEED

If you type NO, the same thing happens. If you type anything
else, you are told:

INVALID ANSWER

Another statementthat isvery useful in performinglogi
cal comparisons is the IF . . . THEN . . . ELSE statement. The
general form of the IF . . . THEN . . . ELSE statement is the
following:

IF (logical expression) THEN (line number 1) ELSE (line
number 2).

Let's take a look at an example of the IF . . . THEN . . . ELSE
statement:

40 INPUT "ENTER DOLLAR AMOUNT : " : VALUE

50 IF VALUE < = 0 THEN 60 ELSE 80

60 PRINT "INVALID AMOUNT"

80 PRINT "VALID AMOUNT—LET'S PROCEED"

This program segment asks for a dollar amount and stores it in the
variable VALUE. Wewish to proceed only if the dollar amount is
positive. Line 50 looks at the number contained in the variable
VALUE. If VALUE islessthan or equal to zero, then line 60 is exe
cuted, and the program prints:

INVALID AMOUNT

If the number stored in the variable VALUE is not less than or

equal to zero, then the ELSE part of the statement is executed, and
the programjumps to line80, printing:

VALID AMOUNT-LET'S PROCEED

89

90

An Arithmetic Drill

Using our new skills, we will now develop a program that dis
plays a "menu" on the screen. Depending on the user's selec
tion, this educational program will perform additions, subtrac
tions, multiplications, or divisions.

Here is the dialogue we plan to generate on the screen:

WELCOME TO COMPUTER

TEACHER. I WILL CHECK

YOUR ARITHMETIC SKILLS

WHAT DO YOU

WANT TO PRACTICE?

-ADDITION (1)

- SUBTRACTION (2)

-MULTIPLICATION (3)

- DIVISION (4)

YOUR CHOICE:? 3

LET'S MULTIPLY

WHAT'S 2 TIMES 3:? 6

THAT'S RIGHT!

CONGRATULATIONS

"Should Ipresent
an arithmetic menu?"

Now here is the program that accomplishes this:

10 REM *MATH DRILL*

20 PRINT "WELCOME TO COMPUTER-

30 PRINT "TEACHER. I WILL CHECK"

40 PRINT "YOUR ARITHMETIC SKILLS-

50 PRINT "WHAT DO YOU"

60 PRINT "WANT TO PRACTICE?"

70 PRINT " - ADDITION (1)"

80 PRINT " - SUBTRACTION (2)"
90 PRINT " - MULTIPLICATION (3)"

100 PRINT " - DIVISION (4)"
110 PRINT "YOUR CHOICE:";

115 INPUT CHOICE

120 IF (CHOICE = 1) THEN 200

130 IF (CHOICE = 2) THEN 300

140 IF (CHOICE = 3) THEN 400

150 IF (CHOICE = 4) THEN 500

160 PRINT "PLEASE CHOOSE A NUMBER";

170 PRINT "BETWEEN 1 AND 4"

180 PRINT "GOOD BYE"

185 END

190 REM ADDITION

200 PRINT "LET'S ADD"

210 PRINT "WHAT'S 4 + 7 :";

215 INPUT INTEGER

220 IF (INTEGER < > 11) THEN 600
225 PRINT "THAT'S RIGHT!"

230 PRINT "CONGRATULATIONS"

235 END

290 REM SUBTRACTION

300 PRINT "LET'S SUBTRACT"

310 PRINT "WHAT'S 9-5 :";

315 INPUT INTEGER

320 IF (INTEGER < > 4) THEN 600

325 PRINT "THAT'S RIGHT!"

330 PRINT "CONGRATULATIONS"

335 END

390 REM - - MULTIPLICATION - -

400 PRINT "LET'S MULTIPLY"

410 PRINT "WHAT'S 2 TIMES 3 :";

415 INPUT INTEGER

420 IF (INTEGER < > 6) THEN 600

425 PRINT "THAT'S RIGHT!"

430 PRINT "CONGRATULATIONS"

435 END

490 REM - - DIVISION - -

500 PRINT "LET'S DIVIDE"

505 INPUT "WHAT IS 9"

510 PRINT "DIVIDED BY 3"

91

515 INPUT INTEGER

520 IF (INTEGER < > 3) THEN 600

525 PRINT "THAT'S RIGHT!"

530 PRINT "CONGRATULATIONS"

535 END

590 REM - - FAILURE EXIT - -

600 PRINT "THAT'S WRONG."

605 PRINT "SORRY AND GOOD BYE."

610 END

This program looks imposing in size, but it is actually quite simple.
Let's examine it.

Statements 20 to 100produce the display or "menu" on the screen.
The program checks the user's selection in statements 120 to 150
(the parentheses after each IF are not required; they are included for
readability). If the user typed " 1", then (CHOICE = 1) is true,

"Congratulations!

and statement 200 is executed next. If the user typed some
thing other than 1, 2, 3, or 4, then statement 160 is executed
and the program says:

PLEASE CHOOSE A NUMBER

BETWEEN 1 AND 4

GOODBYE

and quits (this is the END statement on line 185).
In our example, we type 3. Statement 120 fails, so statement

130 is executed next. Statement 130 fails, so statement 140 is

executed next. Statement 140 succeeds, since (CHOICE = 3) is
true, and statement 400 is executed next. Here is the corres
ponding program segment:

400 PRINT "LET'S MULTIPLY"

410 PRINT "WHAT'S 2 TIMES 3 :";

415 INPUT INTEGER

420 IF (INTEGER < > 6) THEN 600

425 PRINT "THAT'S RIGHT!"

430 PRINT "CONGRATULATIONS" :

435 END

In our example, we type 6 in response to statement 415.
When statement 420 is executed, (INTEGER< > 6) is false
since INTEGER =6. (Recall that < > means not equal to.)
Therefore, the next statement to be executed is statement 425,
and the program responds with:

THAT'S RIGHT!

CONGRATULATIONS

and quits since line 435 contained the command END.
Lookingat this program, you may quickly spot a new frus

tration: If you type a number other than 1, 2, 3, or 4 after the
menu is shown, or if you givean incorrect arithmetic answer,
the program will stopabruptly. Ideally, wewould like the pro
gram to continue. For example, it would be good if, after the
program tells the user that a number other than 1 to 4 is not
valid, it would then ask for a new choice. We would like to be
able to go back to the beginning of the program and restart it,
or more generally, to be able to go to any part of the program
next. This is possible with the GOTO statement. Let us examine
this statement.

93

94

The GOTO Statement

The GOTO statement is written as:

GOTO (line number)

It forces execution of the specified statement. Here is an example:

10 PRINT "THIS PROGRAM"

15 PRINT "RECOGNIZES 1'S."

20 PRINT "TYPE 0 TO STOP."

25 PRINT "TYPE A NUMBER:"

30 INPUT INTEGER

40 IF INTEGER = 1 THEN 60

45 IF INTEGER = 0 THEN 70

50 GOTO 25

60 PRINT "ONE"

65 GOTO 25

70 END

GOTO forces execution
of the specified statement

Here is a sample run:

THIS PROGRAM

^

RECOGNIZES 1'S.

TYPE 0 TO STOP.

TYPE A NUMBER:? 1

ONE

TYPE A NUMBER:? 5

TYPE A NUMBER:? 25

TYPE A NUMBER:? 0

v __/

Everytime you type 1the program recognizes it and spells out
ONE. Every time you typeanything else, the number is ignored
and the program requests a newvalue. The program continually
goesback to the beginning. This is calleda loop. The program is
said to loop upon itself. If you type a 0, it is detected by statement
45, and the program jumps to statement 70 and ends.

Let's now remove statement 45. The program lookslike this:

10 PRINT "THIS PROGRAM"

15 PRINT "RECOGNIZES 1'S."

20 PRINT "TYPE 0 TO STOP."

25 PRINT "TYPE A NUMBER:";

30 INPUT INTEGER

40 IF INTEGER = 1 THEN 60

50 GOTO 25

60 PRINT "ONE"

65 GOTO 25

70 END

Here is a sample run:

r

THIS PROGRAM

RECOGNIZES 1'S.

TYPE 0 TO STOP.

TYPE A NUMBER:? 2

TYPE A NUMBER:? 1

ONE

TYPE A NUMBER:? 0

TYPE A NUMBER:? •

95

'Stop this loop!"

96

Like the apprentice sorcerer, we have created a terrible problem:
this program will never stop! This is a common programming
error called an endless loop. The program may continue executing
forever. Don't worry. This will not damage anything. To stop it,
you must press the FCTN CLEAR key. Ifworse comes to worst,
and you can't remember what to do, turn your computer offand
then turn it back on again. But remember: if you turn the com
puter off, you will lose everything you have typed in so far and
have not previously saved on cassette or diskette. We will strive
to avoid this unpleasant situation by providing a normal (pro
grammed) exit for each program from now on.

Having introduced the GOTO statement, let's now go back to
our definition of the IF statement, and simplify it.

IF Statement Revisited

Recall that the form of the IF statement is

IF (logical expression) THEN (line number)

Here is an example:

IF INTEGER = 0 THEN 60

This is equivalent to:

IF INTEGER = 0 GOTO 60

GOTO 60 is an executable statement, and you will recognize
that the form

THEN 60

is simply equivalent to

GOTO 60

We will now demonstrate the use of IFs and GOTOs on pro
gram examples.

Counting Ones

In Chapter 5, weintroduced the counter technique. Let's now
use it to count the numberof1's typed in the lastprogram of
the previous section. Here is the improved program:

1 REM ONE'S COUNTER

10 PRINT "I WILL COUNT HOW MANY"

15 PRINT "SINGLE 1'S YOU TYPE."

20 PRINT "TYPE 0 TO STOP"

30 SUM = 0

35 PRINT "TYPE A NUMBER: ";

40 INPUT INTEGER

50 IF INTEGER = 0 THEN 100

60 IF INTEGER < > 1 THEN 35

70 SUM = SUM + 1

80 PRINT "ONE. TOTAL SO FAR: ";

85 PRINT SUM

90 GOTO 35

100 END

97

98

Here is a sample run:

r

1 WILL COUNT HOW MANY

SINGLE 1'S YOU TYPE.

TYPE 0 TO STOP

TYPE A NUMBER: ? 10

TYPE A NUMBER: ? 1

ONE. TOTAL SO FAR: 1

TYPE A NUMBER: ? 9

TYPE A NUMBER: ? 5

TYPE A NUMBER: ? 1

ONE. TOTAL SO FAR: 2

TYPE A NUMBER: ? 2

TYPE A NUMBER: ? 1

ONE. TOTAL SO FAR: 3

TYPE A NUMBER: ?

Let us examine the program. Statements 10through 20 display
messages:

10 PRINT "I WILL COUNT HOW MANY"

15 PRINT "SINGLE 1'S YOU TYPE."

20 PRINT "TYPE 0 TO STOP"

Statement 30 initializes the counter variable SUM to zero:

30 SUM = 0

Then the number is collected from the keyboard:

35 PRINT "TYPE A NUMBER: ";

40 INPUT INTEGER

If the number is 0, we are done:

50 IF INTEGER = 0 THEN 100

where 100 is the END statement. Let's assume that the number

was 10, and see what happens:

60 IF INTEGER < > 1 THEN 35

If the number is not 1, then we jump back to 35 and request a new
number. If the number is 1, we proceed:

70 SUM = SUM + 1

The counter variable SUM is incremented by one. Recall the
meaning of an assignment statement. You can read line 70 as:

SUM receives the new value of (old value
of SUM) + 1

At this point, SUM receives the value 0 + 1 = 1. The next two
statements are:

80 PRINT "ONE. TOTAL SO FAR: ";

85 PRINT SUM

Then the program loops back to line 35, requesting a new number:

90 GOTO 35

Arithmetic Drill Revisited
Recall that wedeveloped an arithmeticdrill program at the begin
ningof thischapter. We regretted the fact that it was too simple and
could not recycle. However, we can now make it recycle.

Since theprogram is ratherlarge, let's look at the relevant seg
ment only. First, here is the section that asks the user to select a
number between 1 and 4:

110 PRINT "YOUR CHOICE:";

115 INPUT CHOICE

120 IF (CHOICE = 1) THEN 200

130 IF (CHOICE = 2) THEN 300

140 IF (CHOICE = 3) THEN 400

150 IF (CHOICE = 4) THEN 500

160 PRINT "PLEASE CHOOSE A NUMBER";

170 PRINT "BETWEEN 1 AND 4"

180 PRINT "GOOD BYE"

185 END

And here is our improvement:

185 GOTO 110

That is all. Check it.

Now, we would also like the program to present more than one
arithmetic question. Say, we want it to ask ten different questions.
We could do this by adding GOTOs and a counter.

Validating the Input

The examples we havejust examined demonstrate an important rule
when designinga program: Whenever you request data at the key
board, do not assume that it will always be supplied correcdy. A
user might hit the wrong key, either deliberately or accidentally. To
avoid strange or erroneous program behavior, always validate the
input. If the information typed at the keyboard is not valid, generate
a politemessageand request the input again. We will perform
input validation in most of our examples.

Let's now develop two complete programs that make decisions.

100

"Watch my
input please."

Mileage Conversion
InChapter 3, we learned how to perform asimple conversion of
miles into kilometers. Here is a way to automate it:

10 REM * MILEAGE CONVERSION *

20 REM

30 PRINT "I CONVERT MILES"

35 PRINT "INTO KILOMETERS"

40 PRINT "TYPE 0 TO STOP"

45 PRINT "HOW MANY MILES ";

50 INPUT MILES

60 IF MILES = 0 THEN 100

70 KM = MILES* 1.6

80 PRINT MILES; " MILES EQUALS"

85 PRINT KM; " KILOMETERS"

90 GOTO 45

100 END

Here is a sample run:

^

I CONVERT MILES

INTO KILOMETERS

TYPE 0 TO STOP

HOW MANY MILES ? 7

7 MILES EQUALS

11.2 KILOMETERS

HOW MANY MILES ? 10

10 MILES EQUALS

16 KILOMETERS

HOW MANY MILES ? 0

Birthday

Here is one more example. Let's now improve our earlier program
that computed a person's age. You will supply today's date and the
year, month, and day you were born, and the program will tell you
your exact age. Here is the program:

10 REM * * AGE COMPUTATION * *

15 PRINT "FIRST NAME";

20 INPUT FIRSTS

25 PRINT "HELLO ";

30 PRINT FIRSTS

35 PRINT "I'LL COMPUTE YOUR AGE"

40 PRINT "WHAT IS TODAY'S DATE?"

45 PRINT "(YY/MM/DD)"

50 PRINT "ENTER THE YEAR FIRST"

55 INPUT YY

60 IF YY < 0 THEN 50

65 IF YY > 99 THEN 50

70 PRINT "THE MONTH (1 TO 12)"

75 INPUT MM

80 IF MM < 1 THEN 70

85 IF MM > 12 THEN 70

90 PRINT "THE DAY:";

95 INPUT DD

100 IF DD < 1 THEN 90

105 IF DD > 31 THEN 90

110 REM

120 PRINT "NOW GIVE ME"

125 PRINT "YOUR BIRTHDATE"

130 PRINT "YEAR (2 DIGITS):";

135 INPUT YBIRTH

140 IF YBIRTH < 0 THEN 120

145 IF YBIRTH > 99 THEN 120

150 PRINT "MONTH (1 TO 12):";

155 INPUT MBIRTH

160 IF MBIRTH < 1 THEN 150

165 IF MBIRTH > 12 THEN 150

170 PRINT "DAY:";

175 INPUT DBIRTH

180 IF DBIRTH < 1 THEN 170

185 IF DBIRTH > 31 THEN 170

190 REM

200 REM - AGE COMPUTATION -

210 IF MBIRTH < MM THEN 270

220 IF MBIRTH > MM THEN 320

230 REM - BIRTHDAY THIS MONTH -

240 IF DBIRTH < DD THEN 270

250 IF DBIRTH > DD THEN 320

260 PRINT "TODAY'S YOUR BIRTHDAY!"

265 PRINT "CONGRATULATIONS!"

270 AGE = YY - YBIRTH

101

102

280 PRINT "YOU ARE";

285 PRINT AGE; "YEARS OLD

290 END

300

310 REM NO BIRTHDAY YET

320 AGE = YY - YBIRTH - 1

330 GOTO 280

340 END

REM

Despite itslength, this program isquite simple. Notehow we
validate each input. However, to keep the programshortour vali
dationis rough. We do not verify that eachnumber isan integer.
Nor do weverify the numberofdaysin eachmonth. This isleft as
an exercise for the thorough (and patient) reader.

Summary

Using the IF and the GOTO statements, we have learned how to
write programs to perform tests on values and to make decisions.
We have also learned how to perform program loops so that a por
tion of a program can be repeated indefinitely. In addition, we have
learned how to systematically check and validate inputs typed at the
keyboard. We have now learned all the basic skillsrequired to write
common programs, and we have examined several meaningful
examples as well. We will now make our programs more conveni
ent to write.

Because of the frequency and importance of loops and automa
tion in programs, TI BASIC offersadditional facilities in the form of
additional statements. We will discuss these facilities in the next

chapter.

Exercises

6-1: What is the use of the IF statement?

6-2: Are the followinglogical expressions valid?

a. A = 4

b. A >5

c. 5 > A

d. 1 >2

e. SUM > INTEGER

f. LETTERS - "A"

6-3: Is the following valid?

10 IF A = 5 THEN IF B = 2 THEN 1£

6-4: What is a program loop?

103

Automating

Using the IFand the GOTOstate
ments, we can execute a program

segment repeatedly. The corres
ponding program segment is called
a loop; and most programs use
loops. In this chapter we will learn
improved techniques for creating
loops. We will also develop sophisti
cated programs that automate tasks.

We will begin this chapter with a
review of the IF/GOTO technique of
generating a loop. We will then intro
duce a new statement, the FOR ...
NEXT statement, designed to facili
tate the creation of loops. We will
use this important statement exten
sively in our programs.

Repetitions

106

The IF/GOTO Technique

We will begin by examining a program that automates a loop,
using the IF/GOTO technique. As we examine this program we
will point out certain features common to allloops. For example,
we will examine the use of a counter variable, incrementation, ini
tialization, and test before exit. Here is the program. It computes
the sum of the First ten integers.

1 REM * SUM OF 1ST 10 INTEGERS *

10 SUM = 0

20 I = 1

30 SUM = SUM + I

40 1 = 1 + 1

50 IF I = 11 THEN 70

60 GOTO 30

70 PRINT "THE SUM OF THE FIRST-

75 PRINT "10 INTEGERS IS:";

80 PRINT SUM

90 END

Two variablesare used in this program: SUM and I. The vari
able SUM accumulates the sum of the first 10 integers as we keep
addingthem—it is theequivalent ofa subtotal on a calculator. I is
the integer that is being added to SUM.

Recall that a variable must have a value the First time it is used.

Thus, before we use SUM and I in a formula, we must set their
values to an initial value (0 and 1, respectively). This is accom-

"How about something
a littlemore complex?"

"Remember me?

"Gotyou again!"

plished by statements 10 and 20. These statements are called initial
ization statements.

The next statement is:

30 SUM = SUM + I

This statement adds the value of the current integer I to the current
SUM. When this statement is executed for the First time, the value
ofSUM is0 and the value ofI is 1. As a result this statement assigns
the value 0 + 1 = 1 to SUM. Following execution of that state
ment, SUM contains the value 1.

The next statement is:

40 1 = 1 + 1

The current valueofI is 1. The resultof this statement is to giveI
the new value, 2. This is diecountertechnique: I is incremented by
one in order to generate the next integer. At the same time, the
value of I indicateshow many integershave been added so far. In
other words, I isusedas the current integer and as a counter.

So, all we have left todo isto go back tostatement 30and keep
adding integers:

50 GOTO 30

Wrong. This program will (in theory)never stop (actually it will
once the value ofSUM becomeslarger than the maximum allowed
byyour interpreter). This isnotwhatwewant. We want the pro
gram to stop after executing the loop ten times. We must introduce
a test instruction. Here it is:

50 IFI = 11THEN70

Once I reaches the value 11, statement 70 is executed and the
program stops. This iscalled exiting from the loop. Let's now verify
that the value 11 (rather than 10) is indeed correct in statement 50.
If we write:

50 IFI = 10THEN70

It does not work. Once I reaches the value 10, SUM contains the

sum of 1 through 9 only. The loop should be executed one more
time.

Remember that eachloopcontainsa counter. You shouldalways
carefully check the value of the counter that causes exit from the
loop. In our example, as long as I is not equal to 11, the loop willbe
reentered:

60 GOTO 30

Once I reaches the value 11, the first ten numbers will have been
added. This is because in our program the addition (SUM = SUM
+ I) takes place before the incrementation (I =1 + 1). The final

107

108

three statements in the program are the exit from the loop:

70 PRINT "THE SUM OF THE FIRST";

75 PRINT "10 INTEGERS IS: ";

80 PRINT SUM

90 END

Here is a sample run of this program:

^— —

THE SUM OF THE FIRST

10 INTEGERS IS: 55

>

f START)

1
Initialization

(10,20)

\
• Computation (30)

Incrementation (40)

Loop

= 11
^ counter ^S
\ (50) >^

T< 11

Exit
message (70) Go to 30

• • I
CzD)

Figure 7.1 Flow control in the Integer SUM Program

The illustration in Figure 7.1 shows the flow ofcontrol in the
program. The numbers inparentheses are thestatement numbers.
Thisdiagram is called aflowchart. We will discuss thesubject of
flowcharts in detail in Chapter 8. For now, simplynote the general
organization of the program: initialization, computationplus
incrementation, test, and exit. All program segments with loops
perform these functions.

Variations

Let's now playwithour integeraddition program and sharpen our
programming skills. This will demonstrate the manyalternatives

that can be used to write a program. For example, on line 50 we
could have written:

50 IF I > 10 THEN 70

and the result would be the same (when I reaches the value 11, it is
greater than 10). Also, we could have written:

40 IF I = 10 THEN 70

50 1 = 1 + 1

instead of:

40 1 = 1 + 1

50 IF I = 11 THEN 70

With this change, I is tested first, dien incremented. Note that this
time I is tested for the value 10 (instead of 11).

We could also have written:

50 IF I > '11 THEN 30

60 REM

You can verify that these versions are indeed correct. All these
variations are valid and equivalent. Even such a short program as
the SUM program can be written in many equivalent ways. There
is no unique way to write a program. Just like in a spoken lan
guage, you can express the same concept in many different ways.

This short program has illustrated the use of a loop and the use
of a counter variable. We have also examined the typical phases
involved in such a program: initialization, computation, incremen
tation, test, and exit. In view of the frequent use of loops in pro
grams, a special statement has been provided to facilitate their use
in BASIC. This is the FOR . . . NEXT statement.

The FOR... NEXT Statement

The FOR . . . NEXT statements automate much of the program
ming required for a loop. We will explain their use and operation
by using actual examples.

Here is one way we can rewrite our addition program using
these new statements:

1 REM * INTEGER ADDITION - VER 2 *

10 SUM = 0

20 FOR I = 1 TO 10

30 SUM = SUM + I

40 NEXT I

50 PRINT "THE SUM OF THE FIRST-

60 PRINT "10 INTEGERS IS:";

65 PRINT SUM

70 END

109

110

Note that this program has two less instructions than the first
one. It is shorter and more readable. Let's examine it in detail.

The first executable statement initializes SUM to zero:

10 SUM = 0

The next statement is the FOR instruction:

20 FORI = 1 T010

This instruction has several roles:

•

•

•

It marks the beginning of the automatic loop. (This is where
the loop starts.)

It specifies that I (the counter variable) starts with the initial
value 1 when this statement is first executed. This eliminates

the need for an initialization statement for I.

I is incrementated by 1 (up to a maximum value of 10)every
time the statement is reactivated by a matching NEXT state
ment. An automatic test is performed, and when I exceeds
the value 10, the loop is no longer executed, and the state
ment following the NEXT is executed instead. (This is the
loop exit).

The body of the loop simply contains the accumulation of the sum:

30 SUM = SUM + I

The NEXT statement:

40 NEXTI

marks the end of the loop and causes reactivation of the FOR. This
replaces two statements in the previous version:

40 1 = 1 + 1

60 GOTO 30

Every time NEXT I is executed, the program jumps to the begin
ning of the loop , i.e., the FOR statement. When FOR is activated:

•* I is incremented by 1

*> the new value of I is automatically compared to 10.

As long as I does not exceed 10, execution proceeds. The looping
stops when I equals 10, and NEXT is reached. At this point, exit
occurs, and statement 50 (following the NEXT) is executed. This
sequence is illustrated in Figure 7.2 (a flowchart).

Figure 7.2 showsthat the FOR statement automates three tasks:

*• initialization of the counter variable (I is set to 1 initially)

•* incrementation of the counter variable (I is incremented by 1
each time)

•• testof the countervariableagainst a maximum value(I is
compared to 10).

C START)

' '

Sum = 0

1 '

y^For statement's^
^VJincluding testtx"^

Test
t succeeds

Computation

' r

Next (marker)

Continuation
of program

Test
fails

I
(ZeslD

Figure 7.2: Automatic looping with FOR ... NEXT

Initialization

Automated
Loop

Exit

The NEXT statement simply marks the end of the loop and causes
a "GOTO the FOR" statement.

FOR . . . NEXT is a convenience statement. You do not have to

use it, but you will probably find it very valuable. It simplifies loop
design and clarifies the program. We will now give practical exam
ples to illustrate the use of the FOR . . . NEXT statement and the
use of automated loops.

Sum of the First N Integers

We will compute the sum of the first N integers. This time the user
specifies the value of N at the keyboard. Here is the program:

10 REM * SUM OF FiRST N INTEGERS *

20 SUM = 0

25 PRINT "I WILL ADD THE FIRST N";

30 PRINT "INTEGERS. TYPE N:"

35 INPUT N

40 FOR 1 = 1 TO N

50 SUM = SUM + I

60 NEXT I

65 PRINT "THE SUM OF THE FIRST"

70 PRINT N; "INTEGERS IS";

75 PRINT SUM

80 END

112

Here is a sample run:

I WILL ADD THE FIRST N

INTEGERS. TYPE N:? 5

THE SUM OF THE FIRST

5 INTEGERS IS 15

You should understand the program readily. This time, we loop
from 1 to N, where N is supplied at the keyboard (statement 35).
You can improve this program by validating the input: N should be
greater than 1. The BASIC interpreter will automatically verify that
N is an integer when executing the FOR statement. Try fooling it.

Tables of Values
Using the powerful FOR . . . NEXT statement, we will show how
easy it is to automate computations and print tables of values. Here
is a table of squares (a number multiplied by itself) and cubes (a
number multiplied by itselfand multiplied by itselfagain):

10 REM TABLE OF SQUARES AND CUBES

20 REM FOR THE FIRST 10 INTEGERS

30 FOR I = 1 TO 10

40 PRINT I; I A 2; I ~ 3

50 NEXT I

60 END

Here is the result:

r ^>

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

V ^

Let's take a closer look at statement 40:

40 PRINT I; I A 2; I ~ 3

I * 2means I tothepower 2, i.e., 1*1. Forexample, ifI = 2, then
I 2=2x2=4. Similarly, I 3 means I to the power 3, i.e.,
I * I * I. If I =4, then I A3 - 4 x4x4=64.

As an exerciseyou could rewrite this program to display the sum
of the squares and cubes of the first N integers, where N is read at
the keyboard. We learned how to do this in the previous section.

Lines of Stars
Here is a simple program that prints N lines of stars, where N'is a
number you specify at the keyboard:

10 REM * LINES OF STARS *

20 PRINT "I WILL DISPLAY"

25 PRINT "LINES OF STARS"

30 PRINT "HOW MANY LINES : "

35 INPUT N

40 REM N IS # OF LINES

50 FOR I = 1 TO N

60 PRINT "****************"

70 NEXT I

80 END

And here is a sample run of this program:

I WILL DISPLAY

LINES OF STARS

HOW MANY LINES :

?6

Again, every time an input is supplied by the user, it is a good
idea to validate it in order to avoid strange program behavior. We
expect that the person using this program will supply a positive
number. Let's assume you want no more than 20 lines of stars. You
would tell the user in an appropriate PRINT statement, and use
two validation statements like:

IF (N < 1) GOTO 20

IF (N > 20) GOTO 20

114

Be careful
when looping

Advanced Looping

The FOR . . . NEXT statement offers two advanced facilities that

we have not yet described:

*• You can increment the counter by any integer value, such as
2, 3, 4, or even - 1 (rather than just incrementing by 1). This
is called the variable step feature.

*• You can create a loop within another loop. Such loops are
called nested loops.

Let us examine these two techniques.

Your variable
may use
step increases

Variable Step

Here is an example of variable step:

FOR I = 1 TO 5 STEP 2

Every time the loop is re-entered I will be incremented by 2. You
could even write:

FORI = 10TO -5STEP -1

using a negative step increment. Because the upper limit for the
counter variable (- 5 here) is less than the starting value (10), it is a
"negative step" for the interpreter. The value of I will be decreased
by 1 each time. The first value of I will be 10. The next will be 9;
the next 8, etc. The last one will be - 5. In other words, I will take
the following values in turn: 10,9,8, 7,6, 5, 4, 3, 2, 1, 0, - 1, -2,
- 3, - 4, - 5. Negative step is another convenience feature that

you may want to use.

116

Nested Loops

The nested loop technique is an important and poweriiil facility
used to automate complex processing. A nested loop is created
whenever you use a FOR . . . NEXT group of statements within a
loop; that is, whenever you use another FOR . . . NEXT group of
statements.

In general, you may use as many statements as you wish be

tween the FOR and the NEXT statements. Specifically, you may
even include another loop within these statements. When this
takes place it is called a nested loop. This concept is illustrated in
Figure 7.3.

When using nested loops, notice how the program becomes
more difficult to read. To remedy this, you are encouraged to use
indentation. Indentation is another program clarification technique.
Figure 7.4 shows an indented version of the program of Figure 7.3.

Q.
C
C

-2

STATEMENT

STATEMENT

STATEMENT

- FOR

STATEMENT

STATEMENT

FOR

STATEMENT

STATEMENT

NEXT

STATEMENT

NEXT

STATEMENT

STATEMENT

STATEMENT

END

Figure 7.3: A nested loop

a.
o
o

-Jr

STATEMENT

STATEMENT

STATEMENT

FOR

STATEMENT

STATEMENT

FOR

STATEMENT

STATEMENT

NEXT

STATEMENT

NEXT

STATEMENT

STATEMENT

STATEMENT

END

Figure 7.4: An indented program

You can nest loops to any level, up to a maximum number
depending on the amount of memory you have. However, you
may not overlap loops. The followingloops are legal:

The following are not legal:

Don't overlap loops!

In addition, you may not jump (i.e, specify a GOTO) from a point
inside the outer loop to a point inside the inner one:

Correct nesting Illegal jumping
(with IFor GOTO)

However, you may jump out of the inner loop:

Correct jumping Correct jumping

117

118

Here is an example of a nested loop. This program displays accel
erated time in minutes and hours:

10 REM * SIMULATED CLOCK *

20 FOR HOUR = 0 TO 23

30 FOR MINUTE = 0 TO 59

40 PRINT "TIME:";

45 PRINT HOUR; "HRS&";

50 PRINT MINUTE; "MIN"

55 NEXT MINUTE

60 NEXT HOUR

70 PRINT "END OF THE DAY"

80 END

Here is a portion of the run:

/"

TIME: 0 HRS & 0 MIN

TIME: 0 HRS & 1 MIN

TIME: 0 HRS & 2 MIN

TIME: 0 HRS & 3 MIN

TIME: 0 HRS & 4 MIN

TIME: 0 HRS & 59 MIN

TIME: 1 HRS & 0 MIN

Additional Features

As a final note, decimal values and expressions are allowed in the
FOR statement. For example, the following are valid:

FOR MEASURE = 0.1 TO 13.5 STEP 0.2

FOR INTEGER = N TO (N * 2) STEP 1

This practice is not recommended; and we will not use these
advanced features here.

Summary
Loops are usedextensively to automate the repetitionof a program
segment. The FOR . . . NEXTstatement isused to automate loops
in BASIC. In most cases, the FOR . . . NEXT statement can
replace several other BASIC statements. In thischapter, wehave
examined typical uses ofthe FOR. . . NEXTstatement, including
nested loops, and wehavedeveloped several advanced programs.
Now that youhavelearnedall the basicprogramming techniques,
you are almost ready to start writing your own programs. In the
next chapter we will explain how you can get started.

Exercises
7-1: Displaythe first 5 integers on a line (4 statements).

7-2: Writea program that reads the time in hours and minutes at the key
board and displays it as follows:

Input: 3 (hours), 3 (minutes)

Display: H H H (3 letters)

M M M (3 letters)

7-3: What is the counter variable in a loop?

7-4: Can you jump into the middle of a loop?

7-5: Display a table that converts ounces to grams (1 ounce = 28 grams).

7-6: Compute the sum of the first N odd integers—where N is supplied at
the keyboard—and display it for each integer.

7-7: Read scores for five students that each took four tests, graded 0 to
10. Display the grades, then the total and average for each.

7-8: Display a sales tax table for prices of $1 to $100 in $1 increments.
Supply the tax rate at the keyboard.

119

Creating *

i Program

Programming involves designing a
program that automates a task. So
far, we have written several short
programs. We have done so without
any intermediate steps—directly
writing a sequence of BASIC state
ments. This technique is fine for
very simple programs, but itdoes
not work well for complex ones.

In this chapter, we will learn the
correct way to create a program.

This is a five-step process:

1. Specify the sequence of steps in
volved in solving the problem. This
is called designing the algorithm.

2. Draw a diagram showing the se
quence of events and the logical
steps. This is called drawing the
flowchart.

3. Write the program in BASIC. This
is called coding.

4. Verify and test the program. This is
called debugging.

5. Clarifyand document the program.
This is called documenting.

So far, we have only learned and
practiced steps 2 and 5. But this se
quence will work only for short pro
grams. Before we proceed to long
programs, let's study the complete
sequence involved in program
development.

122

Algorithm Design

We want to design a program that will solve a given problem or au
tomate a task. So far, we have designed programs to solve simple
problems. The sequence of steps required to solve each problem
was generally obvious, so there was almost no design phase. In the
general case, however, given a problem we must first design a solu
tion. In order to write programs, this solution must be specified as
a sequence of steps. This sequence of steps is called an algorithm.
Formally, an algorithm is defined as a step-by-stepspecificationof
the solution to a problem. Technically, an algorithm must also
terminate—it should not go on indefinitely. An algorithm that does
not stop is called an error!

Here isa simple problem: let's convert a weight measured in
ounces into its equivalent in grams. Recall that one ounce is equiv
alent to 28.35 grams. The solution is obvious: we multiply the
weight in ounces by 28.35. This is a simple one-step algorithm.

Let's now examine a slighdy more complex problem: let's read a
number at the keyboard and test that it is within a certain range.
We will accept the number as being valid if it falls in the range
between 0 and 100. The sequence of steps involved in solving this
problem is the following:

1. Read die number.

2. Check to see if it is greater than zero. If so, proceed; if not,
reject the number.

3. Check to see if it is less than 100. If yes, accept the number;
if not, reject it.

This is a 3-step algorithm.
In practice, most problems are more complicated, and their

solutions require longer and more complex algorithms. Here are
several everyday examples of algorithms. You can find many more
in your cookbook, or in your car or appliance manuals.

Let's examine an algorithm for boiling a three-minute egg. Here
are the steps:

1. Take a pan

2. Fill it with water

3. Turn on the stove

4. Place the pan of water on the stove

5. Bring the water to a boil

6. Place an egg in the boiling water

7. Start the three-minute timer

8. When the timer rings, remove the egg

9. Turn off the stove.

'I'll demonstrate

the three-minute egg
algorithm."

This algorithm looks straightforward, but if it were to be executed
as a program by a computerized robot, it would have to be much
more precise. For example, we would need to specify exactly which
pan to use, as well as the precise amount of water to put in the pan.

124

Many algorithms presented in everyday books assume that the
user has a specific cultural or technical background; and they are
therefore generally incomplete. In other words, they assume that a
user can fill in the blanks. Unfortunately, this is precisely why so
many manuals are so difficult to comprehend!

We will not make the same mistake here. Our algorithms will be
completely specified in order to become useable programs.

Here is one last example: an algorithm for starting a car. If we
assume that the car works perfecdy, the algorithm is quite simple:

1. Insert the key in the ignition.

2. Turn the key all the way to the right.

3. Release pressure on the key while applying gentle pressure on
the gas pedal.

However, we know diat it is possible that a car may not start.
This is because there are other factors involved, such as tempera
ture, or the mechanical condition of the engine. Preparing a
complete algorithm for starting a car under all conditions would
require severalpages—ifwe are to take into account everything
that could possibly go wrong.

Starting a car is
an interesting algorithm

In everyday life we can often simplify the steps of an algorithm.
But, in a computer program we may not. An algorithm has to be
correct and complete.

When designing an algorithm for a computer solution, you
must be thorough and anticipate every reasonable case that may
arise, or your program may eventually fail. Successful program
ming requires a special attitude: you must continuously challenge
everything you do, always assuming that it could be wrong or in
complete.

Never assume an input will be reasonable. Check it and verify it.
Always allow for the possibilityof errors. We will illustrate these
considerations later in this chapter when we examine an actual case
study.

In summary, in order to automate the solution to a problem by
writing a computer program, start by preparing an algorithm. The
final algorithm should be perfect—although, in the beginning it
rarely is. In fact, you will probably design an approximate solution
(i.e., a rough algorithm) in the beginning and then continue to
refine the algorithm as you go along, until it reaches the state you
consider to be perfection. Always make sure your algorithm is
complete before you start actually writing instructions.

Remember, the algorithm
is supposed to work!

125

Tm the flowchart.
I want to help you.
Please use me."

126

Flowcharting

So, we have designed an algorithm. The thought that now comes
to mind is: let's translate it prompdy into a BASIC program and
run it! Wrong. There is one more step that may save you hours of
programming time: it is called flowcharting. If you skip this step,
you will probably not write a working program, and you will prob
ably waste much time later trying to correct the program—with no
guarantee of success. By contrast, once you have a good flowchart,
writing the program is one easy step away.

A flowchart is simply a diagram showing the sequence of events.
Figure 8.1 showsa flowchart of the steps involved in boiling a
3-minute egg.

As you can see, this flowchart is a graphic representation of the
algorithm we have already presented. In this case, each box in the
flowchart represents one step of the algorithm. The purpose of a
flowchart is to show the sequence of the steps over time. Later,
once you become familiar with flowcharting, you may even skip
the algorithm design step and begin dirccdy with flowcharting,
since the flowchart isjust a representation of the algorithm.

In the case of an algorithm as simple as the one for preparing a
3-minute egg, the flowchart is not very useful and could be dis
pensed with. The true value of a flowchart becomes apparent when
you begin designing more complex algorithms that involve numer
ous choices and decisions.

(START }

Take pan

Fill with water

I
Turn on stove

T
Place pan on stove

J
Boil water in pan

I
Place egg in pan

I
Set timer

T
Wait 3 minutes

I
Remove egg

I
Turn off heat

J
(END)

Figure 8.1
Boiling a 3-minute egg

(This is an error)

Age =
this year- birthdate's year

c
I

END 3

Age =
this year - birthdate's year -1

C END "}

Figure 8.2 Age Computation flowchart

Figure 8.3 Diamond symbol

Let's now design a new program that asks for your birthdate
and the current date, and then computes your age. The algorithm
isobvious. The flowchart is shown in Figure 8.2. The diamond-
shaped boxes in the flowchart indicate a test, i.e., a choice in the
sequence. At this point, to facilitate converting the flowchart into a
program, make sure that each choice has only two results: "yes" or
"no." Label the arrows accordingly. Now examine Figure 8.2 and
verify that each arrow coming out of the diamond-shaped boxes is
labeled either "yes" or "no," depending on the result of the test
(see Figure 8.3).

127

128

In general, there are three ways the arrows can be drawn, as
shown in Figure 8.4. You may select any way you prefer. The pur
pose of your selection should simply be to facilitate reading the
flowchart. The position of the yes and the no arrows may be freely
exchanged; in other words, "yes" can be on the right if you prefer.

Let's now go back to Figure 8.2 and the age computation flow
chart and examine the algorithm it represents.

First, today's date is requested. This step corresponds to the
first box in the flowchart (labeled 1). Second your birthdate is re
quested. This is the box labeled as 2 on the flowchart.

Next, we must verify that the birthdate supplied is reasonable.
We must check that the birthdate is earlier than today's date. If
the value of the date of your birthdate is greater dian the value
of today's date, an error willbe recognized and the process will
be restarted. If not, the birthdate will be presumed valid. This
step corresponds to the diamond shaped box (labeled 3) on the
flowchart.

To be even more refined, we could also reject birthdates that
result in an age of 150 years or more, since they are unlikely to be
valid. However, accepting such birthdates does not create serious
adverse effects; therefore it may not be worth the trouble to check
for them.

The flowchart
is the reflection

of the algorithm

Figure 8.4 The three ways
to draw arrows

Failure
i

Test
Success

hanpFigure 8.5 Another shape
for a decision box

Figure 8.6
START and

END symbols

In box 4 on the flowchart, we determine whether the month of
your birthday isless than today's month. If so, your birthday has
passed for thisyear, and your age may be computed (in box 5 of the
flowchart) as the difference of the current year and the year of your
birthday. For example, ifyou were born in Febmary 1946 and we
are in March 1983, your age is 1983 - 1946 =37.

Otherwise (this isbox6 on the flowchart), your age iscomputed
as the current year minus your birthdate's year, minus 1. For ex
ample, if you were born inJune 1942and we are in March 1983,
your age is 1983 - 1942 - 1 =40. To keep this example simple, we
will not checkfor the day of the month. We'll add this improve
ment later.

The steps of the algorithm should now be clear. Let's examine
the flowchart symbols.

The Symbols in the Flowchart

In a flowchart, rectangular boxesare used for computations and
directactions that do not involve a choice, suchas input or display.
Diamond-shaped boxes are used for testsor choices. They must
always haveat least two arrowscomingout of them. Finally, each
algorithm must have a beginning and an end. This is denoted by
the labels START (or BEGIN)and END.

The symbolsused in flowcharts are not uniformly standardized.
Many standards have been proposed but none has gained univer
sal acceptance. The rectangular box is always used. The diamond-
shaped box, however, may be replacedby one with rounded edges,
as shown in Figure 8.5. In addition, the STARTand END symbols
can be placed in a small circle, as shown in Figure 8.6. Finally,
some special symbols may be used to indicate the use of specific
peripherals. For example, a PRINT operation may appear in one
of two ways, as shown in Figure 8.7.

In practice you need not worry about the symbols. A flowchart
is simplya way of conveniendy visualizingan algorithm (especially
when it contains many choices). Youmay even use differentsym
bols if you wish. However, it is better to use common ones so that
your programs may be more easily shared with others, and so that
you can read and follow other flowcharts more easily.

1 I

Print A.B Print A,B

T
Figure 8.7 Symbols for PRINT

129

Figure 8.8 Cutting a flowchart

130

Cutting the Flowchart

Here is one more usefulconvention. If a flowchart spreads out over
several pages, you can cut it into pieces. Label each cut arrow with
a number or name, and make sure you have matching entry points
to the flowcharts on the other pages. Figure 8.8 showsan example
of using numbers to connect arrows.

Refining the Flowchart

The instructionsplaced in the boxesof the flowchart may be writ
ten as you please. They are not BASIC statements. When writing
your flowchart for the first time, you may write instructions that
are somewhat vague, such as "tell me your birthdate?"; later on,
you may refine the statements contained in the boxes and design a
more detailed chart that will be easier to translateinto a program.

If you feel that the instructions in the boxes are sufficiendy pre
cise foryou to writean equivalentprogram, you need not change
them any further. If you feel, however, that they are too vague or
complexto be translated direcdy into a program, then you should
replace them with a sequence of more-detailed instructions.

As an example, you may recall that the flowchart in Figure 8.2
checks for the month ofyour birthdate, but not the day, when de
termining whether your birthday has already occurred this month.
Let's refine it so that it checks for the month and the day. The cor
responding segment of the initial (rough) flowchartappears in Fig
ure 8.9. The newor refined flowchart is shown in Figure8.10.

Yes ^ birthdate's month
<

\ this month?^^'

s^ No

• i '

Age = D - B Age = D-B-1

Figure 8.9 A rough algorithm

Age = D - B

c
I
END

(same
month)

Age = D-B-1

Figure 8.10 A refined flowchart

131

132

In practice most people do not write out the algorithm; they pro
ceed direcdy to the flowcharting phase. This is fine. However,
sometimes experienced (and not-so-experienced) programmers
skip the flowcharting phase as well, and start by writing the pro
gram on paper. This is highly dangerous and error prone. I strongly
recommend that you always draw a flowchart before writing any
program. Later on as you become an expert programmer, you
may be able to dispense with the detailed flowchart, and draw only
a rough one.

Hand Testing

Once you have written a flowchart, test it by trying out actual
examples. Make sure that the result is correct or at least appears to
be correct. This is called testing by hand, as opposed to using the
computer.

For example, go back to the age computation flowchart in Fig
ure 8.2 and supply today's date and your own birthdate, as indi
cated. Does it give you the correct age? If so, things look good.

Ifyou skip
flowcharting, you'll
probably run
into problems

If not, there is an error. Now, try it again with different values, us
ing birthdates that fall before and after today's date. Does it still
work? If so, the algorithm is probably correct. If not, there is an er
ror. Hand testing is a quick way to insure that there is no obvious
mistake.

Having written a flowchart that seems to work, we have now
accomplished all of the preliminarystepsrequiredbeforewriting
an actual program. Let us now write the program.

133

134

Coding

Writing program instructions is called coding. Programming nor
mally refers to the entire sequence required to create a program:
designing the algorithm, flowcharting, coding, debugging, and
testing. Coding involves translating the contents of the flowchart
boxes into program instructions expressed in a programming
language—in this case, expressed in BASIC.

This is what we have learned so far: we have learned how to

translate statements, formulas, tests, and conditions into BASIC
instructions.

The key to easy coding is to write a detailed enough flowchart so
that you can easily code each box of the flowchart into a fewsimple
BASIC instructions. Generally, in the early stages of programming,
each box in a flowchart is translated into just a few BASIC instruc
tions, say one or two; i.e., there is a straightforward equivalence
between boxes and instructions. Later as your programming skills
and experience grow, you may be able to write "looser" flowcharts
where each box is coded into many BASIC instructions.

Despite appearances, the coding phase is often the one that
requires the least time in the program development sequence.
Testing the program usually requires much longer than the actual
coding. That is why it is so important to write a good flowchart—
so that you can minimize errors and testing time.

When coding a program, remember to make your program
accurate, clear, and readable, so that it will work quickly and can
be tested or modified easily.

Coding is easy
once you have
a good flowchart!"

Make it Accurate

Write yourprogram instructions withutmost care since anyerror
in theplacement ofa punctuation sign or symbol will probably
make the program fail.

Make it Clear

Use variable names that are easy to remember. Leave intervals or
even gaps in yoursequence ofinstruction numbers in case you
might have to insert other instructions in between. Use remarks
(the REM statement) liberally throughout the program toclarify
what it does.

Sonow you have designed an algorithm, drawn a flowchart,
and written the corresponding program. Andyou seriously expect
it to work. Don't. Sorry. In the majority ofcases, programs do not
work thefirst time. It usually takes several attempts or lots ofexperi
ence before a program ofanylength will run correcdy. Thisisthe
topic of the next phase.

Watch out for bugs!
Make it accurate;
make it clean.

135

Debugging

136

Debugging

Youhave codedyour flowchart into a BASIC program. Your pro
gramisstill on paper. You should now type it intoyourcomputer's
memory, type RUN, and makesurethat it works. This iscalled
testing and debugging. Errors in a program are called bugs. Remov
ingthe bugs in a program iscalled debugging. Everytime you find
an error, youmustcorrect it, then run the program again. Evenif
you havebeen careful and thorough in writingyour program, a
longprogram will seldom run correcdy the First time. This is
because it issoeasyto misplace a characteror even an entire in
structionalongthe way. Even the best programmers must spend a
considerable amount of time debugging their programs. So do not
be surprised ifyou must correctyour program several timesbefore
it Finally runs correcdy.

Fortunately, your BASIC interpreter will help you diagnose some
problems. If your program containsa type oferror diat can be
detected by the interpreter, program execution will stop after you
type RUN, and the interpreter will give you thediagnostic "CAN'T
DO THAT IN 84." The interpreter will mosdy help you detect syn
tax errors (the useof illegal symbols or operations). Unfortunately,
it will not help you detect the most dangerous errors, the logical
or design errors. That isyour responsibility. This iswhy you
should invest the time to carefully design your flowcharts. Also,
this is why every time a number is supplied to a program or

The Interpreter
helps diagnose
syntax errors

generated by it, you should validate that number by checking its
range. In the event that your program contains a logical flaw, this
technique will help you isolate the program section that contains
the error.

Usually, in the case ofa simple program, a few typographical
errors will be detected by the BASIC interpreter. Youwill then cor
rect them and your program willwork. You should still make sure
that it works correcdy by testingit for variouscases or values; your
program might contain logical flaws. In most cases, however, you
will determine that your program works correcdy.

Practical Hints

Here is a practical hint: you should insert additional PRINT state
ments throughout your program to verify key values throughout.
This will help you detect strange values and isolate the instructions
that caused them. Here is a sample PRINT you might insert:

1235 PRINT "TEST FOR AVERAGE VALUE IS ";

1240 PRINT AVERAGE

Then, once the program works, you can remove these extra
PRINT statements. This technique is called tracing a variable.

137

138

As another practical hint, any time that your program stops,
either on its own or because the interpreter stopped it, you should
use the immediate execution mode to verify the value of various varia
bles in your program. For example, you might type:

>PRINT AVERAGE

then:

>PRINTSUM

to check the current values of these two variables.

The key to successful debugging is experience and a lot of pre
vention. Next time, spend more time on the program designand
the flowchart, and you willspend less time debugging.

Soyour program nowworks correcdy. You think it iscorrect;
and you do not want to touch it any more. However, an error
might be found later, or you might use the program again or share
it with someone else. In order to make a program reuseable, one
more step is required: you should document the program while you
remember what it does.

Documentation

Youhavejust finished designing and coding a program. You are
thoroughly familiar withitsoperation and with what each instruc
tion does. You will be surprised to discoverhow quicklyyou will
forget what the programdoesand howdifficult it may be to read or
understand your own program later on. If you intend to reuse your
program or tocorrect errors found at a future date, it isvital that
you clarify the program prompdy and completely. This means clar
ifying the program itself, as well as documendng everything that
might requirean explanation, on paper or as REMarkswithin the
program.

Here is a summary of the techniques we have described for clari
fying the program:

Use a clear layout: Separate sections with blank lines or empty
statements. Use alignments or indentations for clarity. You may
want to use line numbers that all have the same length. This way
all program statements will be aligned vertically. In addition, every
time you usea FOR . . . NEXTstatement, it is a goodidea to in
dent the block of instructions that are enclosed between the FOR

and the NEXT.

Also, use blanks liberally to clarify complex instructions, in par
ticular thosecontaining mathematical expressions. Use parentheses
to clarify the resultsof a computation.

Explain what you do: Use REM statements to explain formulas,
tests, names, or conventions. It is also a good idea to provide a
short written explanation for any methods or techniques you are
using whichare not obviousor are not described by PRINT state
ments within the program.

Clean up flowcharts: Produce one clean flowchart or set of flow
charts that correspond exacdy to your program. Often, during the
debugging process, last minute changes are made direcdy to the
program. Make sure they are reflected on the original flowchart or
else you may find it verydifficult to changeor correct your pro
gram later on.

Renumber your lines: Often, in the processof correcting the
program, i.e., in the debugging phase, you will need to insert

Document your program

139

140

additional statements. Once you think your program is correct,
it is a good idea to renumber the lines so that all line numbers are
spaced regularly. This will facilitate later changes to the program.
You can use the TI BASIC command RESEQUENCE to do this.
This is a convenience, not a requirement.

Summary

In this chapter, we have described the five steps to a finished pro
gram: designing, flowcharting, coding, debugging, and document
ing. Let us review them.

Each program requires designing an algorithm. The algorithm
must be designed at least mentally if not on paper. The algorithm
may be sketched as a series of formulas or notes describing the
essential steps.

The next step isdesigning the flowchart that describes the com
plete sequence of events. Consider it as a mandatory step for any
program that involves more than a few lines. Remember, the more
carefully you design your flowchart, the better the chance that your
program will be correct.

The next step is coding. The flowchart is translated into BASIC
instructions. Practice will speed-up this phase considerably. In fact,
the coding phase quickly becomes the shortest phase.

Then comes testing and debugging. This phase is always
required and is often the longest phase. Each program must be
carefully checked out.

Finally, the quality of the documentation will facilitate or impede
the later use of, and changes to, the program.

Exercises

8-1: Describe the five phases of program development.

8-2: What is the difference between coding and programming?

8-3: What is the purpose of debugging?

8-4: How do you trace a variable?

8-5: Why renumber a program after making many changes?

8-6: What is a flowchart?

8-7: Write a flowchart to start your car or operate an appliance.

8-8: What are the advantages of a clearly-written program?

8-9: Describe the techniques that can be used to clarify a program.

141

Metric C<

Study:
inversion

We will now develop a complete
program and describe each step in
turn. Here is the problem to be
solved:

We need to write a program that
willautomatically convert a
weight expressed in ounces into
its equivalent value in grams.
Thisprogram should either con
vert a number typed at the
keyboard, orprinta weight con
version table for those numbers

between two specified values.

rX

144

Designing the Algorithm
The rough sequence of steps that we will follow to solve this prob
lem is quite straightforward: We will ask the user what he or she
wants (a single conversion or a table of values) and then perform
the action requested. This is our rough algorithm. Let us refine it.

One ounce equals 28.35 grams. The conversion from ounces to
grams is therefore accomplished by the followingformula:

W = W x 28 35''grams "'ounces *• *•«••'»'

or, in short:

Wg = Woz x 28.35

Here is the basic algorithm:

•• Specify either single conversion or table

• If conversion, request weight in ounces

• Convert to grams (using the formula above) and display
result

• END

• If table, request maximum weight in ounces

*• Convert to grams and display results up to the limit

• END

In practice, there is no need to write out the algorithm, as long as
you prepare a flowchart.

Flowcharting

In preparing the flowchart, we must first know whether the user
wants the program to perform a single conversion or display a table
of values. Here is the corresponding flowchart element:

C!™D

This is a decision box, with two possible outcomes (i.e., branches):
CONVERT and TABLE.

A

C¥

Let's first examine CONVERT: The user wants to convert a

single weight from ounces to grams. We must request the value of
the weight. Here is the corresponding flowchart entry:

(Convert)

i
Request weight

(in ounces)

1

We could now convert this value into grams. However, let's re
fine the flowchart immediately. As a precaution, we will validate
the value supplied by the user, by checkingwhether it is reasonable
or not. Here is the way our flowchart looks with this validation
added:

Diagnostic

(Convert)

Request weight
(in ounces)

1
-*-^^ Reasonable? ^>

|yTs

Note that wehave added a box to check whether the input is rea
sonable. If the input is reasonable, we proceed. If not, a diagnostic,
such as "UNREASONABLE INPUT, TRY AGAIN" is issued, and
the program requests another value for the weight.

145

G£

T

¥

146

We now have a validated value for the weight. Let's convert it
into grams. This is accomplished by the following:

i
Wg = Woz x 28.35

T

We can now display the results. This is accomplished by the fol
lowing box:

i
Print Wn

T

The single conversion isnowdone. Wecouldend thispart of the
flowchart here. However, let's add a convenience feature and ask
the user whether he or she wants to do another conversion. This is

accomplished by the following box:

The START symbol on the left arrow indicates that this arrow will
be connected back to the beginning of the flowchart. At this point,
our flowchart looks like this:

(START ")

Let us now go back to our first decision box and examine what
happens when the user wants to display a table of values. This is
the TABLE option at the top of the flowchart.

147

H
<?>

^

148

We must know the maximum value to be converted. This is

accomplished by the following box:

(Table)

i
Request maximum

number of
ounces (MAX)

Again, for safety, we will check whether this number is
reasonable:

^S' S. No
^T Reasonable? ^>+-

TYes

Diagnostic

As before, the program will not proceed until a reasonable value of
MAX is supplied by the user.

Once a reasonable value is supplied, we can proceed and display
a table that converts ounces to grams, up to the desired limit:

I
Print header

I
Print values of weight
in ounces and grams

up to MAX

!

Finally, let's add the same convenience feature that we used in
the single conversion case and ask the user whether he or she would
like to perform one more conversion:

Diagnostic

Figure 9.1
Weight Conversion
flowchart

(Convert)

Request weight
(in ounces)

c

Reasonable? ^ 3

Wg = Woz x 28.35

I
Print Wn

START

Convert

or

Table?.

1

)

10

(Table)

Request maximum
number of

ounces (MAX)

Print header

I
Print values of weight
in ounces and grams

up to MAX

Diagnostic

Figure 9.1 shows the complete flowchart. This flowchart is
typical. The contents of the boxes are somewhat "loosely" written.
Some boxes in the flowchart will be coded into just one or two
BASIC instructions, while others will require many more. How
ever, it is the sequence that counts. The fact that some boxes may
be more detailed than others does not matter. Remember that the

flowchart sequence must be exact, but the details may be written in
any manner that is convenient for you. There is no need to spend a
lot of time optimizing the contents of the boxes, as long as you feel
you can code from it in a straightforward manner.

The flowchart must simply be clear and easy to read. A clear,
well-organized flowchart improves your chances of writing a cor
rect program.

149

%f
^

150

For completeness, here are some refinements or alternatives you
might consider:

• You could explain in detail the way you will check the weight
for "reasonableness." (Here we will simply check that WOZ is
a positive number.)

•• You could be more explicit about the diagnostic and about
much of the dialogue.

In general, the advice is: keep it simple. Do just enough so that:

1. The sequence of steps is correct and complete.

2. You understand each box and know roughly how to convert it
into program instructions.

The simpler the contents of the boxes, the clearer the flowchart.
The more detailed the contents of the boxes, the easier the coding.
Applying this advice, we could simplify the flowchart by writing:

i instead of

Print table

I

i
Print header

Print values of weight
in ounces and grams

up to MAX

T

Both options are correct. Use the one you feel most comfortable
with. Here, I decided to hint at the programming steps involved
and therefore I made the contents of the box more explicit.

You can always rewrite the contents of a box, or for that matter
any part of your flowchart, on a separate piece of paper to facilitate
the coding, or to try out an alternative.

Now that we have a flowchart, let's try it out by hand with ac
tual numbers, to make sure it works. This hand-checking process is
obvious, so let's proceed.

Coding
We will now write a program that corresponds to our flowchart.
Let's code each box ofthe flowchart into the corresponding BASIC
instructions.

Here is box 1 of the flowchart:

(Convert)

Hereare thecorresponding program instructions:

100 REM * OUNCES TO GRAMS *

110 REM THIS PROGRAM PERFORMS A DIRECT CONVERSION
120 REM OR PRINTS A TABLE OF VALUES

130 REM 1ST, SPECIFY MODE: DIRECT OR TABLE
140 PRINT ul WILL CONVERT"

145 PRINT "OUNCES TO GRAMS"

150 PRINT "IF YOU WANT TO CONVERT";
155 PRINT "VALUES DIRECTLY, TYPE V";
160 PRINT "IF YOU WANT A TABLE"

165 PRINT "OF VALUES, TYPE T"

170 PRINT "YOUR CHOICE (VORT)"
180 INPUT CHOICES

190 IF CHOICES = "V" THEN 300

200 REM LINE 300 IS VALUE CONVERSION
210 IF CHOICES = "T" THEN 500

220 REM LINE 500 IS TABLE CONVERSION
230 REM INPUT MUST BE V OR T

240 PRINT "V OR T PLEASE:"

250 GOTO 170

As you become more experienced, you may be able to go directly
from box 1of the flowchart to the corresponding program instruc
tions. However, at thebeginning, you will need towrite down the
detailed version of the flowchart first.

151

152

T

4^

Here is the detailed version of box 1

(START)

Explain program

i
Explain choice

of options

Diagnostic:
V or T please

500

Looking at this detailed version, notehowclosely the flowchart
corresponds withthe BASIC instructions. In addition, note that we
have introduced a validity test forCHOICES. Wearen't goingto
simply assume that the userwill cooperate and type "V" or "T".
Check it. Remember: every time you request an input, you should
validate it.

The rest is simpler. Let's convert box 2:

(Convert)

Request weight
(inounces)

T

The corresponding instructions are:

300 REM * VALUE CONVERSION *

310 PRINT "TYPE THE WEIGHT"

315 PRINT "IN OUNCES..."

320 INPUT WOZ

Here is box 3:

T

5?

Here is its program equivalent:

330 IF WOZ < 0 THEN 310

340 REM WEIGHT MUST BE POSITIVE

350 REM ERROR MESSAGE COULD BE PUT HERE

The equivalent of box 4 is:

360 WG = WOZ * 28.35

And for box 5:

370 PRINT WOZ; "OUNCES ARE EQUAL TO"

375 PRINT WG; "GRAMS"

And for box 6:

410 PRINT "ANOTHER CONVERSION?"

415 PRINT "Y FOR YES, N FOR NO:"

420 INPUT AGAINS

430 IF AGAINS = "Y" THEN 150

440 IF AGAINS = "N" THEN 660

450 REM INPUT WAS NOT Y OR N. TELL USER

460 PRINT "Y OR N PLEASE"

470 GOTO 380

153

154

If the above is not clear to you, here is the equivalent detailed
flowchart:

1
Message:
"Another conversion?'

Get answer

Diagnostic for
wrong answer.

150

END J

Let's now look at the right part of the flowchart in Figure 9.1.
Here is the equivalent of box 7:

520 PRINT "I WILL DISPLAY A"

525 PRINT "CONVERSION TABLE"

530 PRINT "OF OUNCES TO GRAMS"

540 PRINT "NUMBER OF OUNCES:"

550 INPUT MAX

And for box 8:

560 REM CHECK FOR MAX 1 OR MORE

570 IF MAX < 1 THEN 610

For clarity, let's skip a line on the display, before we print the
table:

580 PRINT

Remember: that's an empty PRINT. It displays a blank line. Now
here is the equivalent of box 9:

590 PRINT "OUNCES", "GRAMS"

Note that weusea commarather than a semicolon for a pleasant
spacing of the columns.

And here is box 10:

600 1 = 1

610 PRINT I, I * 28.35

620 1 = 1 + 1

630 IF l<= MAX THEN 610

Finally, here is box 11:

650 GOTO 380

Box 11 isthe same asbox 6, sowe cansimplify our program by
jumping (GOTO) to the instructions for box 6.

Here is the corresponding (corrected) flowchart:

I
Print Wn

Yes

f START }

C end 3

i.
Print values of weight
in ounces and grams

up to MAX

The completeprogram is shown on the following page.

155

156

100 REM * OUNCES TO GRAMS *

110 REM THIS PROGRAM PERFORMS DIRECT CONVERSION

120 REM OR PRINTS A TABLE OF VALUES

130 REM 1ST, SPECIFY MODE: DIRECT OR TABLE

140 PRINT "I WILL CONVERT"

145 PRINT "OUNCES TO GRAMS"

150 PRINT "IF YOU WANT TO CONVERT";

155 PRINT "VALUES DIRECTLY, TYPE V";

160 PRINT "IF YOU WANT A TABLE"

165 PRINT "OF VALUES, TYPE T"

170 PRINT "YOUR CHOICE (V OR T)"

180 INPUT CHOICES

190 IF CHOICES = "V" THEN 300

200 REM LINE 300 IS VALUE CONVERSION

210 IF CHOICES = T" THEN 500

220 REM LINE 500 IS TABLE CONVERSION

230 REM INPUT MUST BE V OR T

240 PRINT "V OR T PLEASE:"

250 GOTO 170

300 REM * VALUE CONVERSION *

310 PRINT "TYPE THE WEIGHT"

315 PRINT "IN OUNCES..."

320 INPUT WOZ

330 IF WOZ < 0 THEN 310

340 REM WEIGHT MUST BE POSITIVE

350 REM ERROR MESSAGE COULD BE PUT HERE

360 WG = WOZ * 28.35

370 PRINT WOZ; "OUNCES ARE EQUAL TO"

380 PRINT WG; "GRAMS"

390 REM * EXIT MODULE *

400 PRINT

410 PRINT "ANOTHER CONVERSION?"

415 PRINT "Y FOR YES, N FOR NO:"

420 INPUT AGAINS

430 IF AGAINS = "Y" THEN 150

440 IF AGAINS = "N" THEN 660

450 REM INPUT WAS NOT Y OR N. TELL USER

460 PRINT "Y OR N PLEASE"

470 GOTO 390

500 REM * TABLE CONVERSION *

510 REM REQUEST UPPER LIMIT

520 PRINT "I WILL DISPLAY A"

525 PRINT "CONVERSION TABLE"

530 PRINT "OF OUNCES TO GRAMS"

540 PRINT "NUMBER OF OUNCES:"

550 INPUT MAX

560 REM CHECK FOR MAX 1 OR MORE

570 IF MAX<1 THEN 610

580 PRINT

590 PRINT "OUNCES", "GRAMS"

600 I = 1

610 PRINT I, I * 28.35

620 1 = 1 + 1

630 IF I <= MAX THEN 610

640 REM I IS NOW > MAX, END OF TABLE

650 GOTO 390

660 END

There are improvements that could be made to this program.
For example, more REMs could be added before instructions 300,
390, and 500 to clarify the program visually. You could also replace
instructions 600 to 630 with a FOR . . . NEXT statement. This

might improve readability, but it is hardly worth the trouble.
Remember: any change you make to a working program may

introduce new bugs—change your program only if there is a clear
benefit.

We now have a complete program. Let's try it out.

Remember: any change
you make may introduce
new bugs!

157

158

Testing

Let's run the program. Here is a sample run:

I WILL CONVERT

OUNCES TO GRAMS

IF YOU WANT TO CONVERT

VALUES DIRECTLY, TYPE V

IF YOU WANT A TABLE

OF VALUES, TYPE T

YOUR CHOICE (V OR T)

? V

TYPE THE WEIGHT

IN OUNCES...

? 3

3 OUNCES ARE EQUALTO

85.05 GRAMS

Here is another one:

ANOTHER CONVERSION?

Y FOR YES, N FOR NO:

? Y

IF YOU WANT TO CONVERT

VALUES DIRECTLY, TYPE V

IF YOU WANT A TABLE

OF VALUES, TYPE T

YOUR CHOICE (V OR T)

? T

I WILL DISPLAY A

CONVERSION TABLE

OF OUNCES TO GRAMS

NUMBER OF OUNCES:

? 4

OUNCES GRAMS

1 28.35

2 56.7

3 85.05

4 113.4

Our program seems to work for a singleconversion as well as a table.

Let's try to fool it:

ANOTHER CONVERSION?

Y FOR YES, N FOR NO:

? Y

IF YOU WANT TO CONVERT

VALUES DIRECTLY, TYPE V

IF YOU WANT A TABLE

OF VALUES, TYPE T

YOUR CHOICE (V OR T)

? D

V OR T PLEASE

YOUR CHOICE (V OR T)

? V

TYPE THE WEIGHT

IN OUNCES...

? 7

7 OUNCES ARE EQUALTO

198.45 GRAMS

Let's try the repeat option:

ANOTHER CONVERSION?

Y FOR YES, N FOR NO:

? Y

IF YOU WANT TO CONVERT

VALUES DIRECTLY, TYPE V

IF YOU WANT A TABLE

OF VALUES, TYPE T

YOUR CHOICE (V OR T)

? V

TYPE THE WEIGHT

IN OUNCES...

? 85

85 OUNCES ARE EQUALTO

2409.75 GRAMS

ANOTHER CONVERSION?

Y FOR YES, N FOR NO:

? Y

IF YOU WANT TO CONVERT

VALUES DIRECTLY, TYPE V

IF YOU WANT A TABLE

OF VALUES, TYPE T

YOUR CHOICE (V OR T)

? V

TYPE THE WEIGHT

IN OUNCES...

? 2.5

2.5 OUNCES ARE EQUAL TO

70.875 GRAMS

>

"\

159

160

Let's try and fool it again:

ANOTHER CONVERSION?

Y FOR YES, N FOR NO:

? Y

IF YOU WANT TO CONVERT

VALUES DIRECTLY, TYPE V

IF YOU WANT A TABLE

OF VALUES, TYPE T

YOUR CHOICE (V OR T)

? V

TYPE THE WEIGHT

IN OUNCES...

? -5

TYPE THE WEIGHT

IN OUNCES...

? •

Well, it seems to work. But you should really try it several more
times before you are completely satisfied with it.

In this case, we have been very careful—and very lucky. Our
program worked right the First time.

Summary

In this chapter we have illustrated the complete sequence involved
in writing a program that solvesa given problem. You should now
close this book, write your own flowchart, and convert it into a
working program.

The key to successful programming is practice.

Exercises

9-1: Add to this program the option of converting grams to ounces.

9-2: Expand the program to include distance conversion.

1 meter = 39.37079 inches.

1 km = 0.62138 mile.

1 inch = 25.3995 mm

1 foot = 30.479 cm

1 yard = 0.91438 m

1 mile = 1609.3149 m

9-3: Expand the program to include temperature conversion.

C = (F - 32) x 5/9

F = (9/5) x C - 32

9-4: Suggest additional ways to improve or clarify our final program.

161

You have now learned how to write

your own BASIC programs. In this
chapter, we will examine the next
step you can take towards improving
your programming skills. We will re
view what you can do with BASIC,
and then describe the additional

skills and techniques that can help
you more easily write complex
programs.

Improve
your skills

164

What You Can Do with BASIC

You can write a BASIC program to automate most tasks, unless
theyrequire very precise mathematical computations, complex
decision-making, or a very fast response (such as real-time process
control). You will find that BASIC iswell suited to simple business
applications, such as data processing, mailing lists, and common
financial computations. TI BASIC also lends itselfwell to graphics
and games.

Other typical application areas for BASIC include computer-
assistededucation, personaland business record-keeping, mathe
matical and technicalcomputations with a limited degree of preci
sion, and many more. Applicationsare generally limited mostly
by one's programming skills.

With the knowledge you have acquired so far, you shouldbe
able to write a wide variety of BASIC programs. However, as you
progress, you will want to improve your skills and use more power
ful and convenient programming tools. This is the topic of the next
sections.

Improving Your Skills
You can take three essential steps towards increasing your skills in
BASIC:

1. Gain more practice

2. Obtain a better knowledge of the complete resources of TI
BASIC

3. Learn additional programming techniques.

Let us review each step in turn.

Practice more

More Practice

The key to programming effectiveness is practice: write as many
programs as possible, and get them to work. Develop good pro
gramming habits by following all the recommendations presented
in this book. If your programs work consistently after just a few
tries, you may be well on your way to becoming a disciplinedand
effective programmer. If they do not, watch your habits, or per
haps read parts of this book again, and then practice some more.
Remember: there is no way you can become a good programmer
unless you write many programs. This book willget you started,
but it can never be a substitute for actual experience.

Specific BASIC Features

YourTI BASIC interpreterprovides specific capabilities, including
statements, commands, shorthand facilities, extensions to "standard
BASIC" (such as graphicsand sound), and an operating environ
ment (including disk or cassette storage commands, file facilities,
an editor program, and more). Youcan enhance your program
ming ability by learning these additional features and facilities. In
the next section we will describe the additional BASIC statements

found in TI BASIC. Facilitiessuch as graphics, sound, and files are
specific to your computer and your interpreter. Youwillgain by
learning about them.

Additional Techniques

Once you develop longer programs (say, longer than one page),
you willwant to learn the usual techniques for solving common
problems, such as ordering items, sorting them, formatting data,
filing, and creating data structures. These topics are covered in
programming books.

More BASIC

Your TI BASIC interpreter offers a fairly "standardized" set of facil
ities, plus many extensions. The facilities offered by TI BASIC
include everything we have studied so far, plus six types of state
ments. We willpresent a brief overview of each of these additional

165

166

types. You will want to study them on your own or with a more
advanced book. They are:

1. Functions: Functions are either built-in or user-defined expres
sions that operate on a given variable and perform a specific com
putation or action. TI BASIC provides some built-in functions
(such as ABS, COS, EXP, RND, SGN, SIN, SQR, INT, and TAN).
These functions will automatically perform common tasks.

(Additional functions can bedefinedby the user. Let's examinea
few of the typical built-in functions:)

• The INTfunction computes the integerpart ofa decimal
number by droppingthe fractional part of the number. For
example, INT(1.234)yieldsthe value 1.

*• Similarly, ABS computes theabsolute value. Forexample,
ABS (-5.2) is 5.2.

+• The SQRfunction computes the square root ofa number. For
example, SQR(4)yieldsthe value 2.

Functions may also be defined by the user. A user-defined function
is essentially a formula written bytheuser thathas a name, oper
ates ona variable, andcanbeused in theprogram many times.
Then everytime the name ofthe function isused, the formulais
computed with thecurrent value ofthevariable. Thisisvery con
venient shorthand notation.

Hereisan example ofa user-defined function thatcomputes
2% ofX:

10 DEF FNA(X) = X*2/100

And here isonewayofusingthisfunction:

20 PRINT FNA(50)

This willprint the value 1.
Let's lookat these statements more closely. FNmeansfunction.

FNA isfunction A, i.e., the name ofthefunction. X isthe"dummy"
variable. X does not have a value when the DEFinition is written.
The actual value or variable is substituted for X at the time the
function isused; for example, itcould appear asFNA(50).

2. Subroutines: A subroutine isa group of instructions withina
BASIC program thathas itsown nameandcanbeused repeatedly
by simply writingthat name. Then everytimethe name of the sub
routine isused in the bodyof the program, all the instructions
within the subroutine are executed. Subroutines are convenient for
executing a program segment repeatedly, without having to repeat
the instructions in theprogram every timetheyare required.

Here isan exampleof a subroutine:

500 REM THIS IS SUBROUTINE AVERAGE

510 PRINT "I WILL COMPUTE THE AVERAGE OF A AND B"

520 PRINT "A a "; A; "B = "; B

530 AVERAGE = (A + B)/2

540 PRINT "THE AVERAGE IS ";

550 PRINT AVERAGE

560 RETURN

167

168

Provided A and B have been assigned a value, this subroutine can
be called by an instruction like:

50 GOSUB 500

It can then be usedagain later in the program with an instruction
such as:

170 GOSUB 500

and it willyielda differentvalue, ifA and B are different. Using
subroutines willclarifyyour program, shorten it, and save you
time. Youcan also build a library of common subroutines and
use them in variousprograms. However, be carefulwith variable
names and statement numbers!

3. String Operators: String operatorsallow you to manipulate text
conveniendyby operating on stringsof characters. Operations on
strings includemodifyingthem, measuring them, connectingthem
together, cutting them, insertingtext to the left, the right, or at any
givenposition, substitutingcharacters, and comparing stringsof
characters. These operators are useful for word and text processing
applications.

4. Data Structures: BASICallows subscripted variables with either
one or two subscripts.These variables correspond to mathematical
vectors and matrices, or arrays. The use of subscripted variables
allows you to set up structureslikelists, and then convenientlyrefer
to any elementwithin the list. For example, the elementsof a list
named CLIENT can be referred to as: CLIENT[1], CLIENT[2],
etc.; and you can print all ten values by writing:

50 FOR N = 1 TO 10

60 PRINT CLIENT[Nl

70 NEXT N

Youcan compare two consecutive elements by writing:

100 IF CLIENT[K] < CLIENT[K + 1] THEN 500

This is a great convenience.

5. Files: TI BASIC provides facilities for storing and/or retrieving
data from disk files. These facilities are described in the manufac

turer's documentation.

6. Additional Resources: Additional resources that are available

with the TI BASIC interpreter include the ON .. . GOTO and
READ ... DATA statements. Youshould explore these facilities with
your TI-99/4Amanual, as they willmake programming easier.

Also, shorthand facilities are available; forexample, youare
allowed to type:

?25 * 32

thus providing a convenient feature for using yourcomputer asa
pocket calculator.

In addition, a tabulation facility (TAB) isprovided forease in set
ting up printed tables.

Finally, remember thatthere arecommands to generate graph
ics, produce sound effects, and facilitate editing—for example,
there arecommands that allow you tomodify yourprogram and
the files it creates—as well asaidin therunning and debugging ofa
program. Such facilities include screen control, the ability toset up
break points atwhich the program will stop automatically, tracing
the values ofselected variables during execution, andslowing or
accelerating the speed ofyour display.

Conclusion

The purpose ofthis book has been toteach you quickly andeffec
tively how towrite yourfirst TI BASIC programs. Ifyou have
become truly interested in BASIC, you will now want to learn
more. Your nextstep should be to workthroughall theexercises
and develop someofyour own programs.

As you progress, you willwant to learn more advanced tech
niques. A listofprogrammingbooks ispresented at the end of
this book.

I hope that you agree that learning BASIC can beeasy and enjoy
able, and I hope that your desire now is to do and learn more. I
would appreciate hearing from you ifyou have anysuggestions for
possible improvements to this book.

169

Appendix A

Answers
to Selected
Exercises

2
2-2:

10 PRINT "AAAAA"

20 PRINT "BBBB"

30 PRINT "CCC"

40 PRINT "DD"

50 PRINT "E"

2-4: a. In BASIC, a label is a line number, and it must precede each statement
that is part of a program.

b. Thedeferredexecution mode is the normal mode inwhich a program
is entered. BASIC statements are typed with line numbers, and memo
rized by the computer for later execution.

c. Immediate execution is the mode inwhich a statement is typed with
out a line number and executed immediately. This is also called calcula
tor mode.

d. An empty statement is a statementthatdoes nothing. Typically itis a
linenumber or label that appears alone—without anythingelse on the
same line—or with "REM."

e. Acursor is a special visual symbolon the screen (such as a square or
underline) that shows your current position. Itgenerally blinksto
enhance its visibility.

f. Thecontrol orCTRL key, whenpressed at the same timeas an alpha
betic key, will issue a specificcommand. Control keys make iteasier to
issue frequently used commands to the computer, since onlytwo keys
have to be pressed.

g. A keypad is a keyboard. Itis generallya small special-purpose set of
keys positioned to the rightof the main keyboard, which are used for
numeric calculations and cursor positioning.

h. A reserved wordis a name that has a specific meaning to BASIC. It
may not be used as a variable by the programmer.

171

172

h. A prompt is a character or message generated by a program that indi
cates that the program expects the user to enter information. TI BASIC
uses the prompt > to mean "type your next instruction." The prompt"?"
means "give me an input."

2-6: Yes, but this seems a cumbersome way to do it, since ifyou desire to
run the program again, you must type in the statements again. Also, condi
tional branches (to be covered later) will not work properly when typed in
this way.

2-8: Yes, BASIC will insert each statement in its proper place within the pro
gram so that all the labels are in numeric order.

2-10: No: you must type:

PRINT "EXAMPLE"

2-12: To erase statement 20 in a program, type an empty statement with the
label 20.

3
3-2:

PRINT 1 + (%) *(1/(1+(»))

or

PRINT 1 + .5/(1 + .5)

3-4:

PRINT 100 * 1.6

3-6:

PRINT 350/55

4
4-1:

10 INPUT A, B, C, D

20 SUM =A + B + C + D

30 AVG = SUM/4

40 PROD =A*B*C*D

50 PRINT SUM, AVG, PROD

60 END

4-2:

a = no e = yes i= yes

b = yes f= yes j= no

c = no g = no k = yes

d = yes h = no I= yes

4-4:

10 PRINT "GIVE THE NAME OF AN OBJECT ";

20 INPUT 0$

30 PRINT "GIVE ME THE NAME OF A PIECE OF FURNITURE

40 INPUT F$

50 PRINT "GIVE ME THE NAME OF A FRIEND ";

60 INPUT P$

70 PRINT

80 PRINT "DOES YOUR FRIEND "; P$; " HAVE A "; 0$;

" ON A "; F$; "?"

90 END

4-6: b, c, f are valid.

5
5-2:

a = yes d = yes

b = yes e = no

c = yes f = no

5-5: A = 3

6
6-1: The IF statement allows the program to make decisions, thus chang
ing its behavior according to variations in input data or computed values.

6-2:

a = yes e = no

b = yes f= yes

c = yes g = yes

d = yes

6-3:Yes.

6-4: A program loop repeatedly executes a part of a program. In order to
prevent an infinite loop (a loop that will not stop repeating) a test should
always be made within the loop, which, when successful, allows the pro
gram to jump out of the loop.

173

174

7
7-2:

10 PRINT "HOURS, MINUTES :";

15 INPUT HOURS, MINUTES

20 REM VALIDATE INPUT

25 IF HOURS < 0 THEN 50

30 IF HOURS > 72 THEN 50

35 IF MINUTES < 0 THEN 50

40 IF MINUTES > 60 THEN 50

45 GOTO 60

50 PRINT "INCORRECT, TRY AGAIN"

55 GOTO 10

60 REM PRINT LINE OF H'S

70 IF HOURS = 0 THEN 110

80 FOR A = 1 TO HOURS

90 PRINT "H";

100 NEXT A

110 PRINT

120 REM PRINT LINE OF M'S

130 IF MINUTES = 0 THEN 170

140 FOR A = 1 TO MINUTES

150 PRINT "M";

160 NEXT A

170 PRINT

180 END

7-4: Ajump can be made intoa loop not run by FOR ... NEXT statements.

7-6:

10 PRINT "PROGRAM TO SUM ODD INTEGERS"

20 PRINT "TO A USER-ENTERED VALUE"

25 INPUT "HIGHEST ODD INTEGER TO SUM ";
30 INPUT VALUE

35 REM TEST FOR VALID INPUT

40 REM

45 IF VALUE > 0 THEN 50

50 IF VALUE < 10000 THEN 55

55 IF INT(VALUE/2) < VALUE/2 THEN 90

60 PRINT "BAD NUMBER ... TRY AGAIN"

70 GOTO 25

80 REM DO TABLE

90 PRINT "NUMBER", "SUM"

100 PRINT

110 FOR N = 1 TO VALUE STEP 2

120 SUM = SUM + N

130 PRINT N, SUM

140 NEXT N

150 END

7-8:

10 PRINT "TAX RATE IN PERCENT ";

15 INPUT TAX

20 IF TAX < 1 THEN 10

25 IF TAX > 100 THEN 10

30 PRINT "PRICE ", "TAX ", "PRICE + TAX "

40 FOR PRICE = 1 TO 100

50 PRINT PRICE; PRICE * TAX / 100; PRICE +

TAX / 100

PRICE *

60 NEXT PRICE

70 END

8
8-2: Coding is one step of programming. Programming involves algorithm
design, flowcharting, coding, debugging, and documenting.

8-4: A variable is traced by inserting PRINT statements to show the value of
the variable at critical points in the program. Somtimes a TRACE command
is provided by the interpreter to facilitate this.

8-6: A flowchart is a symbolic diagram showing the sequence of events oc
curring during the execution of a program.

8-8: Clearly written programs are easy to understand, and thus easy to
modify. This allows the programmer who created the program, as well as
other programmers, to easily change it.

175

176

Appendix B

TI
BASIC
Reserved
Words

This list wil help you avoid using illegal names for variables.

ABS END OLD SEG$

APPEND EOF ON SEQUENTIAL

ASC EXP OPEN SGN

ATN FIXED OPTION SIN

BASE FOR OUTPUT SQR

BREAK GO PERMANENT STEP

BYE GOSUB POS STOP

CALL GOTO PRINT STR$

CHR$ IF RANDOMIZE SUB

CLOSE INPUT READ TAB

CON INT REC TAN

CONTINUE INTERNAL RELATIVE THEN

COS LEN REM TO

DATA LET RES TRACE

DEF LIST RESEQUENCE UNBREAK

DELETE LOG RESTORE UNTRACE

DIM NEW RETURN UPDATE

DISPLAY NEXT RND VAL

EDIT NUM RUN VARIABLE

ELSE NUMBER SAVE

Appendix C

BASIC
Glossary
algorithm A sequence of steps
that specify the solution to a given
problem.

alphanumeric The set of alphabetic
and numeric characters.

assignment The operation of giving
a value to a variable, which is indi

cated by the " =" symbol in BASIC.

BASIC Beginners All-Purpose Sym
bolic Instruction Code. A high-level
programming language designed for
ease in learning.

binary A numbering system that
uses only two digits: 0 and 1.

bit A contraction of the words binary
digit. A bit may take the value 0 or 1.

bug Program error. Bugs should be
prevented rather than cured.

byte A group of eight bits.

chip An integrated circuit that resides
on a small silicon square mounted on
a plastic or ceramic package.

coding The act of converting an algo
rithm or a flowchart into a sequence
of program statements. This is one of
the stages of the programming
process.

command A reserved word used to

perform a specific housekeeping
chore, such as clearing the screen,
starting a program, or accessing files.
Specifying a command activates a
specialized program inside the com
puter to perform the chore.

computer An enclosure containing at
least a central processing unit, a
memory, basic interfaces that allow it
to communicate with the outside

world, and a power supply. The enclo
sure may also include a keyboard, a
screen, and disk drives. A computer is
capable of storing programs and exe
cuting them. Itcommunicates with the
outside world by means of input/
output devices. The usual input de
vice is a keyboard. The usual output
device is a screen and may also be a
printer. Additional memory is usually
provided in the form of disk units or
cassette recorders.

CPU Central Processing Unit. An
electronic module in charge of fetch
ing, decoding, and executing in the
proper sequence instructions stored

in the memory. On most small com
puters, the CPU and the memory re
side on a single circuit board or
"card." The CPU normally uses a
microprocessor chip and a few other
components.

CRT A Cathode Ray Tube. A
television-like screen.

cursor A symbol used to indicate the
current position at which a character
will be displayed on the screen. Often
a blinking square or underline. Spe
cialized keys are generally available
to conveniently position the cursor on
the screen.

177

178

data Any text or numbers on which a
program can operate.

debugging Action of removing the
bugs from a program. Debugging may
be arduous and all efforts should be

used to design a correct program so
that it has as few bugs as possible.

disk Magnetic medium on which data
and programs can be stored. On disk,
information is organized in files that
can be retrieved by name. Disks can
store a large amount of data and are a
common mass memory device used
with small computers.

disk drive The mechanism used to

read and write from a disk.

diskette A floppy disk, i.e., an 8" or
5-1/4" soft disk designed to provide in
expensive storage for programs and
data.

double precision Number that has
twice as many digits as in the normal
representation. Each interpreter
represents numbers with a set num
ber of digits. Double precision is usu
ally required for scientific computa
tions or business calculations that in

volve large numbers or extensive
computations.

editor Program designed to facilitate
the entering and modifying of text.
Used to remove errors or make

changes while typing in a program.

empty statement Astatement
that does nothing. For example, the
statement

10 REM

can be used to provide a space in the
program and enhance readability.

endless loop A loop that has no exit
point and executes forever. This is a
common error made by programmers
when no test condition is included in

the loop or when the test always suc
ceeds (or always fails). Breaking out
of an endless loop requires the use of
a special escape character—often
CTRLC.

expression Acombination of
operands or variables separated by
operators. An expression represents a
formula and performs a specific calcu
lation. When an expression is evalu
ated by the interpreter at execution
time, it results in a value.

file A collection of information that

has been given a name. A program is
usually stored on a disk as a file.

fixed point number An integer, i.e.,
whole number, where the decimal
point is in a fixed position to the right
of the last digit.

floating point number A decimal
number. A fixed number of digits is
used internally to represent any num
ber; and as operations are performed
on the number, the position of the dec
imal point floats to the left or the right.

flowchart Symbolic visual represen
tation of an algorithm.

graphics Pictures, figures, or draw
ings displayed on the screen, gener
ally using a pattern of small adjacent
dots. The use of color enhances the

appearance of graphics.

hardware The equipment, including
the computer, the disks, and any other
items, that make up a computer sys
tem. Contrast with: software (i.e., the
instruction or the programs).

high-level language A programming
language designed to facilitate giving
instructions to the computer. BASIC is
a high-level language.

IC An Integrated Circuit.

initialization The phase (in a pro
gram) during which initial values are
assigned to the variables. Every loop
requires an initialization phase.

instruction A valid order given to the
interpreter that willaffect the data be
ing operated on. Each instruction pre
ceded by a line number is part of a
program. (Commands do not affect
the values of the data. They perform
housekeeping chores or facilitate de
signing or using a program.)

integrated circuit Also called IC. An
electronic circuit with many transistors
and logic functions realized on a small
piece of silicon.

interface Electronic circuits that al

low the connection of a specific device
to the computer. A disk, a printer, and
a recorder require specific interfaces.

interpreter The program in charge of
translating the instructions of a pro
gramming language (say BASIC) into
the binary language of the computer
and executing them. Once the inter
preter has been installed on the com
puter, the computer appears to under
stand BASIC instructions.

I/O Input/Output, i.e., the communi
cations to and from the computer.

jump Branching to, i.e., executing an
instruction out of sequence.

K 1024, read as "K" or kilo. K is used
to denote memory size, usually in
bytes.

label A line number in basic.

loading Transferring data or a pro
gram into the computer's internal
memory.

logical A variable or expression that
takes the value true or false.

logical expression Acombination of
operands or variables separated by
relational operators (=, > , etc.). The
value of a logical expression is either
true or false.

loop A sequence of program
instructions that executes repeatedly
until a specified event occurs, usually
until a variable reaches a given value.

machine language The binary lan
guage that the computer understands
directly i.e., a limited set of instruc
tions that manipulate binary informa
tion inside the CPU and the memory.

memory Medium that stores informa
tion. The internal memory usually re
sides on the same board as the CPU

and stores programs and data as
bytes. Mass memory units are cas
settes and disks.

microcomputer A computer that
uses a microprocessor as its central
processing unit.

microprocessor An integrated
circuit that implements most of the
function of a CPU on a single chip. A
contemporary microprocessor incor
porates sometimes tens of thousands
of transistors within a single chip and
may even incorporate the memory.

monitor A minimal program required
to operate a computer system. The
monitor reads characters from the

keyboard, displays them on the
screen, and performs the basic data
transfers between the keyboard,
screen, and common peripherals.

MPU Microprocessor unit.A chip.

nested loop Loop embedded within
another loop.

non-resident A program that is nor
mally not in the permanent memory
(the ROM) ofthe computer.A non
resident program may be stored on a
cassette or diskette.

operating system Ahouse-keeping
program that provides extensive facili
ties for performing all common data
transfers and data processing
required to conveniently use the re
sources of a computer system. The
operating system manages disk files,
performs format conversions, and
starts and stops programs.

operator Asymbol representing any
valid operation on values (i.e., +
(add), * (multiply), etc.).

peripheral Device connected to a
computer, such as a printer, a disk
drive or a terminal.

program Sequence of instructions to
be executed by the computer. Each
program is written in a specific com
puter language and must be loaded
into the computer's memory in order
to be executed.

RAM Random Access Memory.The
read/write (modifiable) portion of the
computer's memory (the rest being
ROM).

relational operator Alogical
operator that establishes a size rela
tionship between values.

reserved word A word that has a

pre-defined meaning forthe BASIC in
terpreter. It may not be used by the
programmer as a variable name.

resident A program that is stored
permanently in the computer's mem
ory, i.e., in ROM.

ROM Read-OnlyMemory.This
memory may not be changed by the
programmer. Itgenerally contains part
or all of the monitor and sometimes a

simple BASIC interpreter.

RUN Command that starts execution

of a BASICprogram.

software The programs.

statement A BASIC instruction or a

command, that is part of a program.

string A sequence of characters
(contrast with: a number). In BASIC,
the name of a variable is different, de
pending on whether it contains a
string or a number. For example,
WORDS is a string variable, while
NUMBER is a numeric variable.

syntax A set of rules that defines the
acceptable instructions of a computer
language. BASIC has a simple syntax.
The interpreter always checks for,and
indicates, syntax errors.

terminal Combination of a screen

and a keyboard, or a printer and a
keyboard, used to communicate con
veniently with a computer.

variable Memory location that has a
name and may take successive val
ues overtime. BASIC distinguishes be
tween string variables and numeric
variables. The name of a string varia
ble must end with a $.

179

180

Index

Algorithm, 122-125,128
Alphabet keys, 16
ALPHA LOCK key, 16,18
APL.6

Arithmetic operations, 40-42
Arrow, 129

Assignment statement, 59-63

BASIC, 6

BASIC, versions of

extended, 4, 5

floating point, 5
full, 4, 5
integer, 4
mini, 5

tiny, 4
BASIC expression, 42
Binary, 2-3
Bit, 2

Blank, 71-72

Boldface type, 52
Bug, 136
Built-in function, 166

Byte, 2

CALL CLEAR, 69, 72
Carriage return, 16
Celsius, 45

Central processing unit (CPU), 10
Chip, 10
CLEAR, 19

COBOL. 6

Coding, 121, 151
Comma, 43, 155

Command, 24, 28

CALL CLEAR, 69, 72
END, 27, 129

FOR... NEXT, 109-111,116.157

GOTO, 94, 155

IF .. .THEN, 82-86, 89, 96-98

INPUT, 51,62,71,74

LIST, 26, 28-31

NEW, 28-30

NUMBER, 78

PRINT, 26, 38, 43, 74, 129, 137

RUN, 24-25, 28-29, 83

Command mode, 24

Computer, 10
CONTROL (CTRL) key, 16, 18
Control code, 18

Counter variable, 110

Counting technique, 64, 97
CPU, 10

CTRL keys, examples of, 16,18
Cursor, 19-20,50

Dashes, 71

Data, 13

Databank, 13

Data structure, 168

Debugging, 121, 136
Decision box, 129

Deferred execution, 27

Deferred instruction, 25
Deferred mode, 24
DEL, 19
Design error, 136
Diagnostic, 145
Digit,16
Disk drive, 12

Documentation, 138-140
Documenting, 121

Empty PRINT statement, 73,154
Empty statement, 32
END, 27,129

Endless loop, 96
ENTER, 16-17
Equal sign, 63
ERASE, 19
Error, 2,122

Error message, 22
Execution, 27

Explicit value, 62
Exponentiation, 40
Expression, 42-43
Extended BASIC, 5

Fahrenheit, 45
False, 82,87
File, 168
Floating-point BASIC,39
Floating-point number, 39
Flowchart, 108,121,126-129,

130-131,139,149,151,155
Flowcharting. 126,132,144
FOR... NEXT,109-111,116,157
Format, 43

FORTRAN, 6
Full BASIC, 5
Function, 166

built-in, 166

user-defined, 166
Function key, 16.18

Gallon, 45

GE225,6

GOTO. 94.155

Graphics. 169

Hand testing, 132
High-level programming language,

3-4,6

IF, 82,85-86, 88-89,96

IF/GOTOtechnique, 106
IF... THEN, 82-86,88-89,96-98
Immediate execution mode, 24,27,138
Immediate instruction, 25-26
Immediate mode, 24,65
Initial value, 106
Initialization, 66,98,106,109
Information, 2
Inner loop, 117
INPUT, 51,62,72,74
Input device, 9

INS, 19
Instruction, 2

Interactive, 6
Interface, 10,12

Intermediate variable, 60
Interpreter, 4,12,112

Jump, 155

K(Kilobytes), 7
Kemeny, John, 6
Keyboard, 8-11,14,16
Keys, examples of

ALPHA LOCK, 19

CLEAR, 19
CTRL (control). 16,18
DEL, 19
ENTER, 16.17
ERASE, 19
Function, 16,18
INS, 19
QUIT, 19
SHIFT. 16-18

Kilometer, 45
Kurtz, Thomas, 6

Label, 23

Label number, 31

Language, 2-4
Languages, high-level

APL.6
BASIC, 6
COBOL, 6
FORTRAN, 6
Pascal, 6

LET statement, 58
Line number, 23,26,74
Lines of stars, 113
LIST,26,28-31, 78
Literal string, 58
Loading, 10,12
Logical expression, 82,87
Logical operator, 88
Long name, 56
Loop, 95.108,110,114
Looping, 114
Loops, types of

Endless, 96
Inner, 117
Nested, 116-118
Outer, 117

Lowercase, 17-18

Machine language, 2-4
Memory, 10-11
Menu, 90-92
Microprocessor, 10
Mileage, 45
mini-BASIC, 5
Modem, 13
Monitor, 9
Multiplestatement, 71

181

182

Name, 53-56 Tab. 43
Negative step, 115 Tables of values, 112
Nested loop, 116.118 Testing, 136,158-160
NEW, 28-30 Text, 53
NUMBER. 78 Text processing, 2
Numeric variable, 53,57 TI BASIC, 20,165-169
Numerical processing, 2 Tiny BASIC, 4,5

Tracing, 137
Operation, 40-42 True, 82,87
Operator, 40 Truncated, 39
Outer loop, 117 Types of variables, 53
Output device, 12

Uppercase, 17-18
Parentheses. 41-42,62 User-defined function, 166
Pascal. 6

PRINT, 26.38.43.74.129,137, Validating the input, 99
Printer, 12 Validity test. 152
Printing numbers, 38 Variable, 53
Program, 2-3,14,23 Variable counter technique, 64-66
Programming, 1-2 Variable name, 53-56,76
Programming language, 3 Variable step. 114-115
Prompt, 4,22 Versions, 7

QUIT, 19
Quotes, 43

RAM, 10-12.27
Read-only memory (ROM), 11
Read/write memory (RAM), 10
REM, 70-71, 74

Reserved word, 22
Resident BASIC, 4-5

ROM, 10-12
RUN, 24-25,28-29, 83

Scientific notation, 39

Scientific representation, 39
Screen, 9-10
Semicolon, 43,56

SHIFT, 16-17
Shortcut input, 74
Space requirements, 4
Standard, 7

Star, 71
START, 129,147

Statement, 3

Statements, types of
assignment, 59-64
empty, 32
empty PRINT, 73,154
executable, 97

INPUT, 62

LET, 59

multiple, 71

String, 38,55
String operator, 168
String variable, 53,55
Subroutine, 167
Sum of the first N integers, 111
Symbol, 3.129
Syntax, 3,13,62-64
Syntax error. 13,136-137

The
SYBEX
Library

More Books
on BASIC

FIFTY BASIC EXERCISES

by J. P. Lamoitier
232 pp., 90 illustr, Ref. 0-056

Teaches BASIC by actual practice,
using graduated exercises drawn
from everyday applications. All pro
grams written in Microsoft BASIC.

BASIC EXERCISES
FOR THE APPLE®

by J. P. Lamoitier
250 pp., 90 illustr., Ref. 0-084
This book is an Apple version of Fifty
BASIC Exercises.

BASIC EXERCISES FOR THE
IBM® PERSONAL COMPUTER
by J. P. Lamoitier
252 pp., 90 illustr., Ref. 0-088

This book is an IBM version of Fifty
BASIC Exercises.

BASIC EXERCISES
FOR THE ATARI®

by J.P. Lamoitier
251 pp., illustr., Ref. 0-101
This is the ATARI version of Fifty
BASIC Exercises.

INSIDE BASIC GAMES

by Richard Mateosian

348 pp., 120 illustr., Ref. 0-055
Teaches interactive BASIC program
ming through games. Games are
written in Microsoft BASIC and can
run on the TRS-80, Apple II and
PET/CBM.

BASIC FOR BUSINESS
by Douglas Hergert
224 pp., 15 illustr, Ref. 0-092
A logically organized, no-nonsense
introduction to BASIC programming
for business applications. Includes
many fully-explained accounting pro
grams, and shows you how to write
them.

EXECUTIVE PLANNING
WITH BASIC
by X. T. Bui
196 pp., 19 illustr., Ref. 0-083
An important collection of business
management decision models in
BASIC, including Inventory Manage
ment (EOQ), Critical Path Analysis
and PERT, Financial Ratio Analysis,
Portfolio Management, and much
more.

BASIC PROGRAMS FOR
SCIENTISTS AND ENGINEERS
by Alan R. Miller

318 pp., 120 illustr., Ref. 0-073
This second book in the "Programs
for Scientists and Engineers" series
provides a libraryof problem-solving
programs while developing profi
ciency in BASIC.

CELESTIAL BASIC:Astronomy
on Your Computer
by Eric Burgess
300 pp., 65 illustr, Ref. 0-087
A collection of BASIC programs that
rapidly complete the chores of typi
cal astronomical computations. It's
like having a planetarium in your
own home! Displays apparent move
ment of stars, planets and meteor
showers.

183

184

THE TIMEX SINCLAIR 1000™
BASIC HANDBOOK

by Douglas Hergert
170 pp.. illustr. Ref. 0-113
A complete alphabetical listing with
explanations and examples of each
word in the T/S 1000 BASIC vocabu
lary; will allow you quick, error-free
programming of your T/S 1000.

TIMEX SINCLAIR 1000™
BASIC PROGRAMS IN
MINUTES

by Stanley R. Trost
150 pp.. illustr.. Ref. 0-119
A collection of ready-to-run pro
grams for financial calculations, in
vestment analysis, record keeping,
and many more home and office
applications. These programs can
be entered on your T/S 1000 in
minutes!

THE APPLE II® BASIC
HANDBOOK

by Douglas Hergert
144 pp., Ref. 0-115
A complete listing with descriptions
and instructive examples of each of
the Apple II BASIC keywords and
functions. A handy, reference guide,
organized like a dictionary.

APPLE II® BASIC PROGRAMS
IN MINUTES

by Stanley R. Trost
150 pp., illustr., Ref. 0-121
A collection of ready-to-run pro
grams for financial calculations, in
vestment analysis, record keeping,
and many more home and office
applications. These programs can
be entered on you Apple II or lie in
minutes!

THE COMMODORE 64™ BASIC
HANDBOOK

by Douglas Hergert
144 pp., Ref. 0-116
A complete listing with descriptions
and instructive examples of each of
the Commodore 64 BASIC keywords
and functions. A handy, reference
guide, organized like a dictionary.

USEFUL BASIC PROGRAMS
FOR THE IBM® PC

by Stanley R. Trost
144 pp., Ref. 0-111
This collection of programs takes full
advantage of the interactive capabili
ties of your IBM Personal Computer.
Financial calculations, investment,
analysis, record keeping, and math
practice—made easier on your
IBM PC.

YOUR FIRST VIC 20™
PROGRAM

by Rodnay Zaks
150 pp., illustr., Ref. 0-129
A fully illustrated, easy-to-use,
introduction to VIC 20 BASIC pro
gramming. Will have the reader
programming in a matter of hours.

YOUR FIRST
ATARI® PROGRAM

by Rodnay Zaks
150 pp., illustr., Ref. 0-130
A fully illustrated, easy-to-use,
introduction to ATARI BASIC pro
gramming. Will have the reader
programming in a matter of hours.

Introduction
to Computers

DON'T (or How to Care for
Your Computer)
by Rodnay Zaks
214 pp., 100 illustr., Ref. 0-065
The correct way to handle and care
for all elements of a computer sys
tem, including what to do when
something doesn't work.

YOUR FIRST COMPUTER

by Rodnay Zaks
258 pp., 150 illustr., Ref. 0-045
The most popular introduction to
small computers and their periph
erals: what they do and how to buy
one.

INTERNATIONAL MICRO
COMPUTER DICTIONARY

120 pp.. Ref. 0-067
All the definitions and acronyms of
microcomputer jargon defined in a
handy pocket-size edition. Includes
translations of the most popular
terms into ten languages.

FROM CHIPS TO SYSTEMS:
AN INTRODUCTION TO
MICROPROCESSORS

by Rodnay Zaks
552 pp., 400 illustr, Ref. 0-063
A simple and comprehensive intro
duction to microprocessors from
both a hardware and software stand
point: what they are, how they oper
ate, how to assemble them into a
complete system.

For Your IBM® PC

THE ABC'S OF THE IBM® PC
by Joan Lasselle
and Carol Ramsay
100 pp., illustr, Ref. 0-102
This is the book that will take you
through the first crucial steps in
learning to use the IBM PC.

THE BEST OF IBM® PC
SOFTWARE

by Stanley R. Trost
144 pp., illustr., Ref. 0-104
Separates the wheat from the chaff
in the world of IBM PC software.

Tells you what to expect from the
best available IBM PC programs.

IBM® PC DOS HANDBOOK
by Richard King
144 pp., illustr., Ref. 0-103
Explains the PC disk operating sys
tem, giving the user better control
over the system. Get the most out of
your PC by adapting its capabilities
to your specific needs.

BUSINESS GRAPHICS FOR
THE IBM® PC
by Nelson Ford

200 pp.. illustr.. Ref. 0-124

Ready-to-run programs for creating
line graphs, complex and illustrative
multiple bar graphs, picture graphs,
and more. An ideal way to use your
PC's business capabilities!

THE IBM® PC CONNECTION
by James W. Coffron
200 pp., illustr., Ref. 0-127
Teaches elementary interfacing and
BASIC programming of the IBM PC
for connection to external devices
and household applicances.

For Your Timex
Sinclair
1000™/ZX81™

YOUR TIMEX SINCLAIR 1000™
ANDZX81™

by Douglas Hergert
159 pp., illustr., Ref. 0-099

This book explains the set-up, opera
tion, and capabilities of the Timex
Sinclair 1000 and ZX81. Includes

how to interface peripheral devices,
and introduces BASIC programming.

MORE USES FOR YOUR
TIMEX/SINCLAIR1000™:
ASTRONOMY ON YOUR
COMPUTER

by Eric Burgess
176 pp.. illustr.. Ref. 0-112
Ready-to-run programs that turn
your TV into a planetarium.

For Your TRS-80™

YOUR COLOR COMPUTER

by Doug Mosher
350 pp., illustr., Ref. 0-097
Patience and humor guide you
through purchasing, setting up,
programming, and using the Radio
Shack TRS-80/TDP Series 1000
Color Computer. A complete intro
duction to the color computer.

THE FOOLPROOF GUIDE TO
SCRIPSIT™ WORD
PROCESSING
by Jeff Berner
225 pp.. illustr., Ref. 0-098
Everything you need to know about
SCRIPSIT—from starting out, to
mastering document editing. This
user-friendly guide is written in plain
English, with a touch of wit.

For Your Apple®

THE APPLE® CONNECTION

by James W. Coffron
264 pp., 120 illustr., Ref. 0-085
Teaches elementary interfacing and
BASIC programming of the Apple for
connection to external devices and
household appliances.

THE EASY GUIDE TO YOUR
APPLE II®

by Joseph Kascmer
160 pp., illustr., Ref. 0-0122
A friendly introduction to using the
Apple II, II plus, and the new lie.

Business &
Professional

COMPUTER POWER FOR
YOUR LAW OFFICE

by Daniel Remer

225 pp., Ref. 0-109
How to use computers to reach peak
productivity in your law office, simply
and inexpensively.

GETTING RESULTS WITH
WORD PROCESSING
by Martin Dean
& William E. Harding

250 pp., Ref. 0-118
How to get the most out of your
SELECT word processing program.

185

186

INTRODUCTION TO WORD
PROCESSING

by Hal Glatzer
205 pp., 140 illustr., Ref. 0-076
Explains in plain language what a
word processor can do, how it im
proves productivity, how to use a
word processor and how to buy one
wisely.

INTRODUCTION TO
WORDSTAR™
by Arthur Naiman
202 pp., 30 illustr., Ref. 0-077
Makes it easy to learn how to use
WordStar, a powerful word process
ing program for personal computers.

PRACTICAL
WORDSTAR™ USES
by Julie Anne Area
200 pp., illustr., Ref. 0-107
Special applications for essential
office tasks are explained in step-by-
step detail. Makes using WordStar
efficient and fun.

MASTERING VISICALC®

by Douglas Hergert
217 pp., 140 illustr, Ref. 0-090
Explains how to use the VisiCalc
"electronic spreadsheet" functions
and provides examples of each.
Makes using this powerful program
simple.

DOING BUSINESS
WITH VISICALC®

by Stanley R. Trost
260 pp., Ref. 0-086
Presents accounting and manage
ment planning applications—from
financial statements to master bud
gets; from pricing models to invest
ment strategies.

DOING BUSINESS
WITH SUPERCALC™
by Stanley R. Trost
248 pp., illustr., Ref. 0-095
Presents accounting and manage
ment planning applications—from
financial statements to master bud

gets; from pricing models to invest
ment strategies. This is for com
puters with CP/M.

VISICALC® FOR SCIENCE
AND ENGINEERING

by Stanley R. Trost &
Charles Pomernacki

225 pp., illustr., Ref. 0-096
More than 50 programs for solving
technical problems in the science
and engineering fields. Appli
cations range from math and
statistics to electrical and electronic
engineering.

Pascal

INTRODUCTION TO PASCAL
(Including UCSD Pascal™)
by Rodnay Zaks
420 pp., 130 illustr., Ref. 0-066
A step-by-step introduction for
anyone wanting to learn the Pascal
language. Describes UCSD and
Standard Pascals. No technical

background is assumed.

THE PASCAL HANDBOOK
by Jacques Tiberghien
486 pp., 270 illustr., Ref. 0-053
A dictionary of the Pascal language,
defining every reserved word, opera
tor, procedure and function found in
all major versions of Pascal.

APPLE® PASCAL GAMES

by Douglas Hergert and
Joseph T. Kalash
372 pp., 40 illustr., Ref. 0-074
A collection of the most popular
computer games in Pascal, chal
lenging the reader not only to play
but to investigate how games are
implemented on the computer.

INTRODUCTION TO THE
UCSD-p SYSTEM™
by Charles W. Grant
and Jon Butah

300 pp., 10 illustr, Ref. 0-061
A simple, clear introduction to the
UCSD Pascal Operating System; for
beginners through experienced
programmers.

PASCAL PROGRAMS FOR
SCIENTISTS AND ENGINEERS
by Alan R. Miller
374 pp., 120 illustr., Ref. 0-058
A comprehensive collection of fre
quently used algorithms for scientific
and technical applications, pro
grammed in Pascal. Includes such
programs as curve-fitting, integrals
and statistical techniques.

DOING BUSINESS
WITH PASCAL

by Richard Hergert
& Douglas Hergert
371 pp., illustr., Ref. 0-091
Practical tips for using Pascal in
business programming. Includes de
sign considerations, language exten
sions, and applications examples.

Other Languages

FORTRAN PROGRAMS FOR
SCIENTISTS AND ENGINEERS

by Alan R. Miller
280 pp., 120 illustr., Ref. 0-082
Third in the "Programs for Scientists
and Engineers" series. Specific sci
entific and engineering application
programs written in FORTRAN.

A MICROPROGRAMMED APL
IMPLEMENTATION

by Rodnay Zaks
350 pp., Ref. 0-005
An expert-level text presenting the
complete conceptual analysis and
design of an APL interpreter, and
actual listing of the microcode.

UNDERSTANDING C

by Bruce Hunter
200 pp., Ref. 0-123

A "spiral" approach explains how to
use the powerful C language for a
variety of applications. Some pro
gramming experience assumed.

CP/M®

THE CP/M® HANDBOOK

by Rodnay Zaks
320 pp., 100 illustr., Ref. 0-048
An indispensable reference and
guide to CP/M—the most widely-
used operating system for small
computers.

MASTERING CP/M®

by Alan R. Miller
398 pp., Ref. 0-068
For advanced CP/M users or

systems programmers who want
maximum use of the CP/M operating
system ... takes up where our CP/M
Handbook leaves off.

THE BEST OF
CP/M® SOFTWARE
by Alan R.Miller

250 pp., illustr., Ref. 0-100

This book reviews tried-and-tested,
commercially available software for
your CP/M system.

Assembly
Language
Programming

PROGRAMMING THE 6502

by Rodnay Zaks
386 pp., 160 illustr., Ref. 0-046
Assembly language programming
for the 6502, from basic concepts to
advanced data structures.

6502 APPLICATIONS
by Rodnay Zaks
278 pp., 200 illustr., Ref. 0-015
Real-life application techniques: the
input/output book for the 6502.

ADVANCED 6502

PROGRAMMING

by Rodnay Zaks

292 pp., 140 illustr., Ref. 0-089
Third in the 6502 series. Teaches
more advanced programming tech
niques, using games as a framework
for learning.

PROGRAMMING THE Z80

by Rodnay Zaks
624 pp., 200 illustr, Ref. 0-069

A complete course in programming
the Z80 microprocessor and a
thorough introduction to assembly
language.

Z80 APPLICATIONS

by James W. Coffron
288 pp., illustr, Ref. 0-094

Covers techniques and applications
for using peripheral devices with a
Z80 based system.

PROGRAMMING THE 6809
by Rodnay Zaks
and William Labiak

362 pp., 150 illustr., Ref. 0-078
This book explains how to program
the 6809 in assembly language.
No prior programming knowledge
required.

PROGRAMMING THE Z8000

by Richard Mateosian
298 pp., 124 illustr., Ref. 0-032
How to program the Z8000 16-bit
microprocessor. Includes a descrip
tion of the architecture and function
of the Z8000 and its family of sup
port chips.

PROGRAMMING
THE 8086/8088

by James W. Coffron
300 pp., illustr., Ref. 0-120
This book explains how to program
the 8086 and 8088 in assembly
language. No prior programming
knowledge required.

Hardware

MICROPROCESSOR
INTERFACING TECHNIQUES

by Rodnay Zaks
and Austin Lesea

456 pp., 400 illustr., Ref. 0-029
Complete hardware and software in
terconnect techniques, including D
to A conversion, peripherals, stan
dard buses and troubleshooting.

187

SYBEXCOMPUTER BOOKS

are different

Here is why...

At SYBEX, each book is designed with you in mind.
Every manuscript is carefully selected and supervised
by our editors, who are themselves computer experts.
Programs are thoroughly tested for accuracy by our
technical staff. Our computerized production
department goes to great lengths to make sure that
each book is designed as well as it is written. We
publish the finest authors, whose technical expertise is
matched by an ability to write clearly and to communi
cate effectively.

In the pursuit of timeliness, SYBEX has achieved many
publishing firsts. SYBEX was among the first to inte
grate personal computers used by authors and staff into
the publishing process. SYBEX was the first to publish
books on the CP/M operating system, microprocessor
interfacing techniques, word processing, and many
more topics.

Expertise in computers and dedication to the highest
quality in book publishing have made SYBEX a world
leader in microcomputer education. Translated into
fourteen languages, SYBEX books have helped millions
of people around the world to get the most from their
computers. We hope we have helped you, too.

Send for a copy of our latest catalog

U.S.A.

SYBEX INC., 2344 Sixth Street, Berkeley, California 94710
Tel: (800) 227-2346, Telex: 336311

FRANCE

SYBEX-EUROPE, 4 Place Felix-Eboue, 75583 Paris Cedex 12
Tel: 1/347-30-20, Telex: 211801

WEST GERMANY

SYBEX-VERU\G, Heyestr. 22, 4000 Dusseldorf 12
Tel: (0211) 287066, Telex: 08 588 163

	front-cover
	front-cover-inside
	content01
	content02
	content03
	content04
	content05
	content06
	content07
	content08
	back-cover-inside
	back-cover

