

TEXAS INSTRUMENTS

99/4A

BASIC Guide

by
loseph C. Giarratano, Ph.D.

Computext, Inc.
Indianapolis

Copyright © 1983 by Computext, Inc.
Library of Congress Catalog Card Number: 83-72569
ISBN 0-913847-00-3

Cover Art: Carpenter Graphics
Word Processing: Sue Lee, Inc.
Typeset by Alexander Typesetting, Inc.
Printed by: Fotolab, Inc.
Manufactured in the United States of America

Published by Computext, Inc.
P. O. Box 50942

Indianapolis, IN 46250

DEDICATION

This book is dedicated to my family: Jane, Jenna, Melissa, and
Anthony.

ACKNOWLEDGEMENTS

I greatly appreciate the assistance of Al Lovati, Gene Harvey, Sally
Catena, Fred Kitson, Bill Stacy, Sue Lee, Roger B. Crampton, Gary Tinker,
Karen Brantingham, and Sue Dismore for their reviews of the book.
Thanks to Ed Drake, Bill Barniea, John Yantis, Percy Clark, and Don
McHolland for their support and encouragement. A special note of thanks
is due Beverley Hasenbalg for her excellent editing and comments.

I also appreciate the loan of a SelectaVision Video Monitor from RCA.

OTHER BOOKS BY JOSEPH C GIARRATANO INCLUDE:
Foundations ofComputer Technology
Computer history, software, printers, terminals, and integrated circuits

Modern Computer Concepts
Memory devices, disks, tapes, data communications, teletext, videotex,
and a guide to purchasing a computer system. The above two-book set
makes a thorough introduction to computer technology for the beginner
and forms the basis of computer literacy.

BASIC: Fundamental Concepts
BASIC: Advanced Concepts
The above two books on BASIC provide a complete introduction to BASIC
for Microsoft BASIC, and Digital Equipment Corp. BASIC. You will learn
the pitfalls in converting programs written in one dialect of BASIC to
another and gain a much better understanding of BASIC since the book's
programs are written for both Microsoft and Digital Equipment Corp.
BASIC. Application programs include exact precision arithmetic of 200
digits or more, internal storage in BASIC; PEEK and POKE, with an appli
cation to a self-modifying program for graphing functions; roundoff-error
in business calculations.

Timex/Sinclair 1000 User's Guide, Vol. I
Timex/Sinclair 1000 User's Guide, Vol. II
Timex/Sinclair 1000 Dictionary and Reference Guide
The above three books provide complete coverage of Timex/Sinclair
BASIC with many examples to business, education, games, and personal
use.

Timelostfor the Timex/Sinclair 1000
Timelostfor the TI-99 / 4A
Timelostfor the Atari
Timelostfor the VIC-20
The above four books have a computer adventure story set in comic book
form. Follow the adventures of a teenage computer whiz, his kid sister,
and their mysterious friend from the future as they battle the evil Warlord
of the Universe. Follow the story and then enterthe programs listed in the
book which match the action in different scenes. All programs are clearly
documented and meant to explain to you how each program was written.
You are encouraged to enhance the programs and to come up with your
own versions of the games.

Contents

CHAPTER 1-Getting Started -,

Playing Around 1
Don't Call for Repair Yet 2
What's My Function? 3
An Exception to the Rule 3
Adding Things Up 4
Multiplication and Division ^
Very, Very, Big and Teeny, Tiny Numbers 8
Powerful Powers -jg
Mixing Things Up -|-|
A Matter of Priority 12
Getting Spaced Out 14
Stringing Along 16

CHAPTER 2-Giving You the Power 19

Tabbing—TAB 19
Square Roots—SQR 21
Random Numbers—RND 24
RANDOMIZE 25
Integer—INT 27
Absolute Value-ABS 29
Sign—SGN 3q
Exponential—EXP 30
Natural Logarithm—LOG 31
Sine—SIN 32
Cosine—COS 33
Tangent—TAN 34
Arctangent—ATN 34

CHAPTER 3-Beginning Programming 35

Give Me A Line 35
Running With It 35
Listin8 '. [36
Making Life Easy on Yourself 37
How to Change Your Number 39
ALittle More LIST '.'.'.'. 41
What's NEW? 42
Easy Number 42
Ups and Downs 45

vi Confenfs

CHAPTER 4-Let's Get Variable 47

A Shoebox Called MONEY 47
Bad MONEY 48
Stringing Along 50
Give Me Cents ^2
How Much Can You Store in a String? 53

CHAPTER 5-Giving Input 55

Easy Input ^5
Let's Make Money °0
How to Make More Money 62
How's Your IRA? 63
Can You Afford It? 64

CHAPTER 6-Going Automatic 67

Go To It 67
Let's Continue 68
Caught in a Loop "9
Getting Control 69
Let's Be Logical 71
If This Is True 74
Guess My Number 77
The Average Way 79
Control Your Loop! 80
How to Make a Nest Without Birds 82
lumping In and Jumping Out 83
Building Tables 86

CHAPTER 7-Getting to Know Your Dimensions 89

Names, Names, Names 89
It's All in the Loop 90
Let's Get Dimensioned 91
Give Me a Name and I'll Tell You the Number 92
Add Some Strings 94
Read My Data %
Well, Tape My Data "
Many Dimensions 104
Changing Your Option 107

CHAPTER 8-Debugging and Documentation 109

Ignore This Sign 109
AGood Design 111
Follow That Line! 113
Stop That Line 114
O.K., Break It Up 114

Contents vii

CHAPTER 9-Stringing Along 117

What A Character 117
What's The Opposite of a Character? 118
How's My Length? 118
Give Me Your Position 119
Strings And Numbers 120
The Value of a String 121
Cutting Up a String 12i
How To Get Organized 122
Scrambled Animals 125

CHAPTER 10—Economize, Economize 129

Going Down Under 129
Let's Get Drilled 131
How's Your Memory 133
Get Defined 134

CHAPTER 11-Give Me A Call 137

Clearing Things Up 137
Getting Keyed Up 137
Stop That Data! 140
Put It Where You Want 141
Draw Me a Picture 144
Play Me a Tone 148
Update Your Display 150

CHAPTER 12-Let's Get Graphic 155

What a Character 155
RWalk '.'.'.'.'.'.'.'. 158
Change Your Screen 162
Add Some More Color 163
What's That Character? 166
Alpha Pilot 166
Illusions 171
The Great Adventure 177

APPENDICES 181

GLOSSARY 197

INDEX 213

Chapter 1

Getting Started

In this chapter you'll learn how to start using your computer. You'll see
how to enter information into the computer and how the computer gives
you back the answers. Also, you'll learn what to do if you make a mistake.
You'll see how to use your computer as a calculator using BASIC (Begin
ners All-purpose Symbolic Instruction Code). BASIC was first developed in
1964 at Dartmouth College as a way of helping students easily learn to
program. It has proven to be a popular and easily-learned computer lan
guage. Millions of people ranging from children to senior citizens have
learned to use BASIC and versions of BASIC are available on every home
computer today. Using BASIC, you'll find out how to use your computer to
easily arrive at the answer to complicated problems. In fact, this ease of
use is what makes computers so popular. Youjust tell the computer what
to do, and it does all the hard work of the calculations. Of course, com
puters have many more applications than just doing math. In later chap
ters, you'll learn how to write programs in BASIC and see applications to
business, education, and games.

Playing Around
Assuming you've hooked up the computer according to the Texas

Instruments (TI) instruction manual, then the first thing you should do
with your new computer is—play around with it. Get the feel of the keys
and how they operate.

Let's get started by turning on the computer and pressing any key.
Also, be sure the key labeled "Alpha Lock" is pressed down. This willgive
you all capital letters on the screen and so make it easier for you to read
the screen. Now press the "1" key for TI BASIC. You should see the
message

TI BASIC READY

at the lower left corner of your TV screen. There should also be a blank line
under the message and below it a greater than sign '*>" followed by a
blinking black square. The ">" is called a prompt because the computer
expects you to type something in, such as a command or other informa
tion. Note that words in boldface are in the Glossary. This blinking
square is called a cursor and indicates where the next letter you type will
appear on the screen.

2 1-Getting Started

Let's give the computer some input. The term input means the data or
other information that goes into the computer. Tap the " 1" key and you'll
see a "1" appear at the bottom left of your screen. Notice that the cursor
has now moved over one space to the right. Now hold down the " 1" key for
a couple of seconds and you'll see a whole group of "l'"s appear on the
screen. If you momentarily press and release a key, you'll get a single key
printed on the screen. But holding down a key gives many repetitions of
the same character. This is called an automatic repeat or auto repeat fea
ture of your computer and saves you effort in typing.

What happens if you keep pressing down the key? Let's try it and see.
Hold down the " 1" key and you'll see four rows of'' 1*"s appear. Then the
cursor stops at the far right and you'll hear a tone from the computer. This
tone indicates that the BASIC is designed to accept only four rows of
"1" 's. How many "1" 's is that? Well, if you count all the one's in a row,
you'll see there are twenty-eight "l'"s in a row. So you can input a maxi
mum of 4 x 28 = 112 characters.

Now try pressing any other letter or number key on the keyboard.
These are called the alphanumeric keys. The term alphanumeric is a con
traction of alphabetic and numeric. The numeric keys are all on the top
row of the keyboard. From left to right, they are 1 through 9 and then a 0.
Noticethat the 0 is printed on the keyboard with a slash through it. This is
a common convention so that you don't confuse the letter O with the
number zero. If you press the letter O key, you'll see it printed on the
screen as a rectangle with straight edges while the number zero is printed
with rounded edges. You'll see that the last "1" on the bottom row
changes to whatever key you press. Also, press the spacebar and the last
character on the screen will become a blank. This shows that the spacebar
gives the blank character. Other keys such as the " / " (division sign), " = "
(equal sign), and ";" will give those characters when you press them.

The alphanumeric and punctuation keys are called printable keys
because their images are printed on the screen. Other keys, such as
ENTER, SHIFT, FCTN, CTRL, and ALPHA LOCK, do not produce a visible
character on the screen. However, the computer does know that the key
has been pressed.

Also, just like a typewriter, you can access the top symbol on a key by
first holding down the SHIFT key and then the key you want. For example,
hold down the SHIFT and then press the key with the " + " on it to get the
44 + " printed.

Don't Call for Repair Yet
If the computer is displaying something on your TV screen and you

don't press a printable key for about 9 minutes, something strange hap
pens—the TV screen goes blank. Don't call for repair yet. Chances are that
the computer has used one of its built-in features called the screen-saver
feature. If you haven't used any key for awhile, the computer blanks out
the screen image. This prevents any possibledamage to the screen. If the

An Exception to the Rule 3

same image is displayed for a long time, it's possible that the image may
get burned into the screen. Although it's very unlikely, your TI computer is
designed to blank out the image so that it can't happen.

To get back your original image, just press one of the printable keys. If
the image still doesn't come back, then you may want to have your com
puter checked.

What's My Function?
Suppose that you don't like all those 44l'"s on your screen. How can

you change them? Your computer has several features which allow you to
easily change your input. This is called editing.

If you look down at the bottom right of the keyboard, you'll see a key
labeled FCTN. This is an abbreviation for the word "function". The func
tion key is very useful when used with certain other keys. Just as a shift
key on a typewriter expands the functions a key can perform, so too does
the FCTN key. In fact, you can think of FCTN as an additional shift key.

Notice the left pointing arrow on the front side of the 4,S" key. The
FCTN key activates this arrow to move the cursor left. In fact, you'll notice
that many keys have symbols on their front side. All these symbols are
accessed with the FCTN key. So the FCTN key allows the same key to have
more than one function.

For example, hold down the FCTN key and then press the 44S" key.
You'll see the cursor move back. Keep holding down these keys and you'll
see the cursor move all the way to the left and then jump up to the line
above. If you keep holding down these keys then eventually the cursor will
stop at the first number 441" that you input. By just holding down FCTN
and tapping the 44S" key, you can make the cursor move one character at a
time.

Now that you've seen what the left arrow on the 44S" key does, you can
easily guess that the right arrow on the 44D" key does. To see if your guess
is right, hold down the FCTN key and press the "D". You'll see the cursor
move toward the right. However, the up arrow on the 44E" key and the
down arrow on the 44X" key will not make the cursor jump up or down a
line. These keys have a different purpose which we'll discuss in a later
chapter.

Now try using the FCTN key to print the characters on the front side of
keys. Notice that the 44U" key gives an underscore, _, when pressed. To get
the minus sign, -, you need to press SHIFT and the key with the 44-" and 44 /
" on it, to the right of the 44P" key. If a key doesn't have a symbol on its
front side, the FCTN key gives only a blank character when you press
FCTN and the key.

An Exception to the Rule
However, there's an exception to this rule. The top row of keys have

special functions that are not printed on the keys. To see what their func-

4 1-Getting Started

tions are, just insert the strip that came with your computer into the track
above the number keys. You should have

DEL INS ERASE CLEAR BEGIN PROC'D AID REDO BACK QUIT
1 <© # $ % A & • () +

1 2 3 4 5 6 7 8 9 0 =

Let's find out what these keys do. First type in 12345. If you still have
all the 44l'"s on your screen from the first example, press the ENTER key.
The computer will print the message

* BAD LINE NUMBER

which you can just ignore. We'll discuss line numbers in a later chapter on
programming. Right now, the main thing you should see is that pressing
the ENTER key moves the cursor back to the left of the screen and starts
you off fresh. Now type in the numbers 12345. Then hold down the FCTN
key and press the 44S" key to move the cursor back to where it's positioned
over the 3 on the screen. Then press the FCTN and 441" keys momentarily.
You'll see the 443" disappear and all you'll have left is "1245" on the
screen. The cursor is now positioned over the 444". What's happened is
that the FCTN and 441" key perform a deletion of the character that the
cursor is positioned over. That's why the strip that you inserted has a
44DEL" for deletion. The character is deleted and those characters to the
right move left to fill up the deleted character's position.

You may have guessed that INS stands for insertion. To see how insert
works, hold down the FCTN key and press the 442" key. Nothing visible
happens on the screen because you haven't yet told your computer what to
insert. But the computer is now ready to insert characters starting at the
cursor. To see this, release the FCTN key and press the 443" key. You'll see
the original4412345" displayed again. Press the 443" key again and you'll
see another 443" appear as " 123345". In fact, you'll keep on inserting
characters at the cursor position as long as the insertion feature is
activated.

You can cancel the insertion feature by simply moving the cursor
using the FCTN key and right or left arrow keys, or by pressing the ENTER
key. Just move the cursor one or more positions and insertion is cancelled.
For example, move the cursor one position to the right and press the 446"
key. Notice that the 446" replaces the number at the cursor position. The
446" was not inserted because the insertion feature had been cancelled
when you moved the cursor.

Now let's try the ERASE key. Use the FCTN and 443" key to activate
this feature. You'll see that the whole line is now erased.

The CLEAR feature of the 444" key is used in programming and we'll
discuss it in more detail in a later chapter. If you just press the FCTN and
4t4" key, any information on the screen just moves up one line. To see this,
type in XXXXX and then press FCTN and the CLEAR keys. Hold down
these keys and you'll see the 44XXXXX'"s move up the screen. We describe
this as saying the screen is scrolling up. Notice that the information on
the top line moves off the screen when scrolling occurs.

Adding Things Up 5

The BEGIN, PROC'D (proceed), AID, REDO, and BACK features are
used by certain games and programs. The meaning of those keys depends
on how they are interpreted by those programs. However, the PROC'D fea
ture has one interesting effect. When the screen saver feature is activated
and the image disappears from your set, you have to press a key to bring
back that image. The key you press would appear on the screen. You may
not want to have that key image appear on the screen, but only to regain
the original picture. It turns out that you can press the FCTN and 446" keys
to activate the PROC'D feature to bring back the screen image. The nice
thing about this is that no key image appears on the screen and no scroll
ing takes place. The PROC'D key just allows you to proceed without
changing the screen image.

The final special function key we'll discuss is QUIT. Activate this and
you'll see the original Texas Instruments message appear on the screen.
The QUIT key is similar to turning off the power in your computer and then
turning it on again. You start off fresh and everything you've done is
erased.

Adding Things Up
As a first step, let's see how to add 2 + 2. Enter the following com

mand to your computer. This tells the computer to add 2 + 2 and print the
result on your TV screen.

PRINT 2+2

To enter the PRINT, you must spell out the letters of PRINT using the key
board keys. Also, to get the 44 + " sign, hold down the SHIFT key and then
press the key in the upper right hand corner labeled with a 44 + ". If you
make a mistake entering this, just use the function keys to delete or to
insert the right characters.

Notice that the computer doesn't do anything after you entered the
PRINT 2 + 2. The reason it's not doing anything is because the computer
doesn't know you're finished giving input. Perhaps you wanted

PRINT 2+2+2

or

PRINT 2+2-2+2

There is a very important key that tells the computer you're finished
with input. This is the ENTER key located on the right end of the middle
row of keys. Press this key and you'll see the screen scroll up. The answer
of 4 will appear below the 4*R" of "PRINT". The result from the computer is
call output. From now on, you'll have to remember to press the ENTER
key when you're done with input.

Now try

PRINT 2-2

6 1- Getting Started

Notice that the minus, "-", is a shifted key on the right end of the second
row of keys from the top. After you press ENTER, you'll see a zero printed
under the R. Let's try a few more examples as shown below. Also shown
below each PRINT are the answers as you would see them on the screen.

PRINT 2+2+10

14

PRINT 100+100

200

PRINT 7879-13

7866

PRINT 81+92-19-34+17

137

PRINT -99+3-64-12

-172

Notice that in the last example, the minus sign is printed under the
44P" of print. The computer always leaves room for a minus sign even if one
is not needed. That's why the answers are printed starting in the second
column from the left. The leftmost column is reserved for the sign of the
answer. A blank is printed for positive numbers and a minus sign is
printed for negative numbers.

Of course, your computer is not limited to calculations with whole
numbers or integers. It can also deal with decimal numbers. For example,
try

PRINT 8.5+2

10.5

where the decimal point is on the key next to the right SHIFT key. Also try

PRINT 1.5+1.5-30.3
-27.3

Multiplication and Division
As you'd expect, your computer also knows how to multiply and to

divide. However, the computer uses the asterisk, "*", as the symbol for
multiplication, rather than the common 44X". Try the following

PRINT 2*2

where the "*" is a shifted key over the "8". You'll see a 4 appear under
the 44R" of PRINT. Try some more examples, as follows:

PRINT 10*10

100

PRINT 123*650

79950

Multiplication and Division 7

PRINT 7891.35*871.2

6874944.12

PRINT -900.6*868.111111

-781820.8666

As you can see from these examples of multiplication, the computer
does not print commas to separate the output. Likewise, the computer
won't accept commas separating numbers either.

The last example above also points out the limitation of the computer.
The exact answer is actually

781820.8665666

However, the computer is designed to calculate and to print numbers only
to a certain precision. Internally the computer calculates numbers to 13 or
14 digits. This internal result is rounded off to the ten most significant
digits and printed. The most significant digits of a number are the highest
digits. For example, the three most significant digits of 8653.781 are 865.
Different computers are designed for different degrees of precision. For
example, in many other versions of BASIC, six or nine significant digits
are common. If you want more than the built in precision, you'll need a
program. As an example, see the book BASIC: Advanced Concepts. This
includes programs to add, subtract, and multiply numbers with 200 or
more digits of precision. The programs are written in Microsoft BASIC, and
Digital Equipment Corp. BASIC. These versions can be easily converted to
run on your computer.

Now let's try some division. Try

PRINT 4/2

2

Where the division sign, " / " is the key on the right end of the second row
from the top. Now try

PRINT 100/10

10

PRINT 999/3

333

PRINT 8621.356/.2

43106.78

PRINT -2603.7/.001
-2603700

PRINT 1/3

.3333333333

Note that the last example shows again that the computer shows only
the ten most significant digits of the result. The fraction 1 / 3 is actually the

8 1-Getting Started

never-ending decimal number .333333 .. . where the dots at the end mean
the 3's go on forever.

Now try

PRINT 1/3*3

and you'll see the result of 1. printed on your screen. Does this mean the
result is exactly 1? Let's find out by having the computer subtract 1/3*3
from 1. The answer should be 0.

PRINT 1-1/3*3

1.E-14

Very, Very, Big and Teeny, Tiny Numbers
The answer of 1.E-14 is not zero. It is a very small number of

.00000000000001

Your computer expresses very large and very small numbers in a notation
called scientific, power-of-ten, or exponential notation. Notice all the
zeroes in front of the 1 above. Rather than having you write all these
zeroes, just imagine that the decimal point moves 14 places to the right
and then write this as

1E-14

Here are some other examples of this notation.

Number Power-of-ten Exponential Notation
1 1x10" 1E0

.1 1X10-1 1E-1

.01 1x10- 1E-2

.001 1x10-' 1E-3

.0001 1x10-' 1E-4

.00001 1x10-* 1E-5

.015 1.5x10-' 1.5E-2

.000396 3.96 xl0-4 3.96E-4

Each number is shown expressed as a power-of-ten. The meaning of
the minus sign of the exponent is also shown below

10-1 = 1/10

10-- = 1/10"2 = 1/(10*10) = 1/100
10-{ = 1/10' = 1/(10*10*10) = 1/1000

The parentheses around the 10*10 means that this calculation is done
before the division into 1.

For example, try these on your computer. Use the *'E" key for E.

PRINT 1E0

1

Very, Very, Big and Teeny, Tiny Numbers 9

PRINT 1E-1

.1

PRINT 1E-2

.01

PRINT 1E-3

.001

PRINT 1.5E-2

.015

PRINT -8.62E-6

-.00000862

PRINT 1E-10
.00000000001

PRINT 1E-11

1.E-11

Notice that numbers less than IE-10 are automatically expressed in
expoential notation by the computer.

Just as minus or negative exponents are used to express small num
bers, positive exponents are used to express big numbers. However, you
don't have to write the " + " before the exponent. When you leave out the
sign, the computer assumes you mean " + ".

Try the following

PRINT 1E1

10

PRINT 1E2

100

PRINT 1E3

1000

PRINT 1E4

10000

PRINT 3.986E6

3986000

PRINT 9.999999999E9

9999999999

PRINT 1E10

1.E+10

Notice in the last two examples that numbers up to and including
9999999999 can be printed without exponential notation, but numbers
greater than this, such as IE 10, are automatically printed in exponential
notation.

10 1-Getting Started

Now try

PRINT -2.3E4
-23000

PRINT -2.3E-4

-.00023

Notice what a big difference a negative power makes in the magnitude or
size of a number.

Using exponential notation, your computer can work with numbers as
large as 9.9999999999999E127 and as small as 1E-128

Powerful Powers

Besides the standard arithmetic operators of multiplication, division,
addition, and subtraction, your computer can also perform exponentia
tion or raising a number to a power. The customary way of writing a
number raised to a power is with a superscript. For example

1 = 10"

10 = 101
100 = 102

Here the number 10 is called the base and the power it is raised to is called
the exponent. This is the same as the exponential or power often notation
we've discussed. On the computer the caret symbol "A" is used for
exponentiation. Try

PRINT 10A0

1

PRINT 10A1

10

PRINT 10A2

100

PRINT 10A9

1000000000

PRINT 10A10

1.E+10

In the last two examples, notice that 10 raised to the 9th power can be
printed as 1 followed by 9 zeroes. But 10 raised to the tenth power is auto
matically expressed in exponential notation because it's too big.

Small numbers can also be calculated. Try

PRINT 10A-1

.1

PRINT 10A-2

.01

Mixing Things Up 11

PRINT 10A-10

.0000000001

PRINT 10A-11
1.E-11

You can also raise numbers to a base other than 10, where the base is
the number which is raised to the power. For example, try

PRINT 2A2

4

PRINT 3A3

27

PRINT 51.3A-2.1

.0002563029

PRINT -2A-2

-.25

In the last example, 2 is first raised to the minus second power. This is

2-2 = 1/22 = 1/4

and then negated

-1/4 = -.25

Mixing Things Up
You can easily compute the answer to combinations of these arithme

tic operators. The term arithmetic operator means a symbol for a

Example
exponentiation, A~ 2A3
negation, - -2
addition, + 2 + 2
subtraction, - 2-2
multiplication, * 2*2
division, / 2/2

Notice that the symbol for negation, i.e. making negative, is the same as
the symbol for subtraction. The minus sign is used for both negation and
subtraction. The negation sign is called a unary operator because it oper
ates on the one term which follows it. The prefix "un" comes from the
Latin word "unus" meaning one. For example, try

PRINT -2

and you'll see a -2 printed. Now try

PRINT —2

12 1-Getting Started

and you'll see a 2 printed. The negation sign has made a negative 2 into a
positive 2. However, the minus sign used in subtraction is called a binary
operator because it requires two operators. The prefix "bi" means two
while the term operand means the term that an operator acts on. The pre
fix "bi" comes from the Latin word "bis" meaning two. For example, try

PRINT 3.1A2+10/2.1-2*37.
-59.62889524

PRINT 3*4+18/2

21

PRINT 3*12*2/4+6.1-9.02

15.08

PRINT -1.5*-2

3

In the last example, note that the computer is multiplying a negative
1.5 times a negative 2. The minus signs cancel and so the answer is a plus
3.

Now try

PRINT -1.5*2

-3

PRINT 1.5*-2

-3

In this case, when a positive number is multiplied by a negative
number, the result stays negative. An analogy is that if you owe $ 1.50 and
your debt is doubled, then you owe twice as much.

A Matter of Priority
A group of arithmetic operators and operands is called an arithmetic

expression. For example, 2 + 2 is an arithmetic expression. When the
computer calculates the number equivalent to this expression, the com
puter is evaluating the arithmetic expression. In evaluating an arithmetic
expression, the computer follows certain rules. For example, in a previous
example

PRINT 3*4+18/2

the computer first multiplied 3 by 4 to get 12. It then divided 18 by 2 to get
9. Then it added the 12 and 9 to get the final answer of 21. This is the
natural way that people do arithmetic, so BASIC is designed to evaluate
arithmetic expressions in this way. The computer does not first add 4 to 18
to get 22, divide this by 2 to get 11 and then multiply 11 by 3 to get 33.

The computer does arithmetic according to the following order of prior
ity for the arithmetic operators

A Matter of Priority 13

exponentiation
negation, also called unary minus
multiplication and division
addition and subtraction

So when the computer looks at an arithmetic expression, it first per
forms exponentiation, then negation, then multiplication and division,
and finally addition and subtraction. If operators have equal priority, the
computer evaluates them on a left to right basis. For example

PRINT 2*2/4+3

4

The computer multiplies 2*2 to get 4, then divides 4/4 to get 1, and adds
1 + 3 to get the final answer of 4.

To show that negation comes below exponentiation, try

PRINT -2A-2

-.25

The computer first raises 2 to the minus 2 power, giving .25. Then it per
forms the negation of .25 to yield the answer of -.25. If negation had a
higher priority than exponentiation, the computer would have raised
minus 2 to the minus 2 power and the result would have been .25 instead
of the -.25 you see. Actually, your computer also accepts the positive
equivalent of negation. For example, try

PRINT -+2

-2

PRINT +-2

-2

The + sign is a unary operator. However, it doesn't do anything and so is
not of much use in calculations.

You can use parentheses to force the computer to evaluate an expres
sion any way you want. Try

PRINT (-2)A-2

.25

Notice the difference in the answer. In this case, we are raising minus 2
to the minus 2 power to yield a plus .25.

As another example, without parentheses

PRINT 2*3-4
2

but you could use parentheses to change this to

PRINT 2*(3-4)

-2

14 1-Getting Started

In evaluating this, the computer first finds the number 2 and then the *
indicating multiplication. Then it finds the left parenthesis, and then 3-4.
It then finds the right parenthesis and evaluates 3-4 as -1. The computer
then multiplies the first 2 by -1 to give the answer of-2.

Parentheses have the effect of increasing the priority of the operations
inside of them. The innermost parentheses are performed first. For
example

PRINT 1+(2*(3+4/(8-4)))

9

In evaluating this expression, the computer evaluates the innermost
expression in parentheses first, and so calculates 8-4 as 4. It then divides 4
by 4 to get 1. Then it adds 3 +1 to get 4. Next, it multiplies 2 by 4 to get 8.
Finally, it adds 1 to 8 to yield the final answer of 9.

If you're in doubt as to how the natural priorities will cause an expres
sion to be evaluated, you can do one of two things. First, you can try a
sample calculation to see what the result is. You can then use parentheses
if necessary to change the order. Second, you can always use parentheses
and rely little on the natural order.

The problem with using parentheses is that the computer does take
longer to evaluate expressions with parentheses. The computer must store
the intermediate results of parentheses and then retrieve those results
later. This delay will not be noticeable if you're just doing a single calcula
tion. But in a program where the same calculation may be done thousands
of times, the delay can become noticeable.

Getting Spaced Out
Suppose you want to do two calculations, such as

PRINT 3*4+82

and

PRINT 98.3*206.05

Rather than your having to type out PRINT each time, you can space out
your calculations using commas. Try

PRINT 3*4+82,98.3*206.05
94 20254.715

If you count over the columns from the left, you'll see that the leading 2 of
20254.715 is in column 16 where the leftmost column you can type in is
column 1. However, printing of a number always starts with its sign. So
the second result was actually printed starting in column 15 since that's
where the sign would be printed.

For example, try

PRINT 1,-1

Getting Spaced Out 15

and then enter the digits 1234567890123456 (but don't press the ENTER
key). The reason for entering all these numbers is so that you can easily tell
what columns the results are printed in. As you can see, the minus sign of
the second 1 is indeed printed in column 15. A group of 14 columns is
called a field. Now erase this long number. Then try

PRINT 1,1,1

and you'll see the third "1" printed in column 1 of the next line.
Now try

PRINT 1,1,,1

The third 1 is now printed starting in the second field of the second row. As
you can see, since there was nothing in between the commas, then nothing
was printed in the first field of the second row. However, the computer did
space over according to the commas.

Now try

PRINT 1;1
1 1

As you can see, the second "1" is started in column 4 for its sign. To
show this more clearly, try

PRINT -1,-1
-1 -1

While you know that space is reserved for the sign, why is there
another space after the first"1"?

The reason is that BASIC also reserves space for a decimal point after
the number. Even if no decimal point is needed, such as with integers, a
space is still allocated.

As you can see, the effect of the semicolon in separating numbers is to
force their printing as close as possible. This is convenient when you have
a lot of numbers to print, since commas allow only two results per line
while semicolons allow much more.

You can also print on different lines by using the colon to tell the com
puter to start printing on the next line. For example, try

PRINT 1:1:1:1

1

1

1

1

You can use multiple colons to skip lines. Try

16 1-Getting Started

PRINT 1:1::1:::1::::1

1

1

1

1

1

Notice that if a colon follows a colon, a line is skipped.

Stringing Along
Your computer can print letters, punctuation marks and other print

able symbols on its keyboard. Just put them between quotes so that the
computer knows they are symbols. Try the following, where you access the
quote by using the FCTN and "P" key. Remember to press the ENTER key
after the last quote.

PRINT:"HELL0,,:M12345"

HELLO

12345

In the second example above, notice how putting a colon before the
"HELLO" makes the computer skip a line before starting to print output.

All the characters, punctuation symbols, numerals and other print
able symbols between quotes are called a string of characters. A string is
just a group of symbols arranged in a pattern, like "HELLO" or "1000
MAIN STREET" or " +-*;,(©!". A string like "HELLO" may have meaning
to a human reader, but does not have any special meaning to the com
puter. Strings are also called literals. A literal is just a symbol with no
special meaning to the computer. The computer does attach a special
meaning to strings like PRINT and other words of BASIC.

It's important to realize that there are numerals before "MAIN
STREET" and not a number. That is,

"1000"

is a string of numerals or symbols. The computer prints them exactly as
shown. For example, try

PRINT "1000"
1000

but

PRINT 1000

1000

Notice that in the second example the computer thinks you want to print
the number 1000, so it starts printing with a leading blank because 1000

Stringing Along 17

is a positive number. However, when you put quotes around 1000, the
computer thinks you want to print the string of numerals and does not put
a leading blank. A string is printed exactly as you give it to the computer,
while the computer reserves a leading blank or minus sign for a string of
numbers, also called a numeric string.

Just as you can combine numbers by addition with the " + " sign,
there is an operator that allows you to combine strings. Try

PRINT "12"&"34"
1234

The ampersand, "&" is a shifted "7" key, and is used to combine strings
end to end. This combination of strings end to end is called concatena
tion. Also try

PRINT "SMITH,"&"J0HN"
SMITH,JOHN

'That's the last time you ever say my budget isn't balanced."

Chapter 2

Giving You the Power

Now that you've learned how to use your computer as a simple calcula
tor, you're ready to get more power. Your computer has many built-in
functions that will make life easy for you in the most demanding appli
cations. You may not need all of this power, but we'll cover it in enough
detail so that you'll become familiar with their use. Most of all, you'll
see the limitations as well as the power of your computer. The most use
ful functions for the example programs in this book are. TAB, SQR,
RND, RANDOMIZE, ABS, and INT. You may want to read about these
functions carefully and just skim through the discussion of the other
functions.

Tabbing-TAB
The TAB acts like the tabbing of an ordinary typewriter. TAB allows

you to start printing anywhere on a row. Try these

PRINT TAB(1);1
1

PRINT TAB(5);1
1

PRINT TAB<10);1
1

PRINT TAB(27);1
1

PRINT TAB(28);1

1

In each of these examples, you supply the name of the function, TAB,
and then its argument. The argument of a function is the value you sup
ply to the function. The computer then prints the output using the argu
ment as input to the function. The functions of the TI-99/4A consist of the
name of the function followed by the argument within parentheses. Some
functions which we'll see later can have more than one argument in
parentheses.

The tabbing is done starting from the leftmost column, which is col
umn 1. In the first example, the sign of the number would be printed in

19

20 2-Giving You the Power

column 1 under the 4<P" of PRINT. Since a positive number is printed with
a leading blank for a plus sign, a blank is printed in column 1 and the
magnitude of the number in column 2. The magnitude of a number is its
value without respect to its sign. For example, the magnitude of 2 is 2, and
also the magnitude of -2 is 2. The magnitude is also called the absolute
value of a number.

In the fourth example of TAB(27), the magnitude of the number is
printed in the 28th column of the screen since its sign is printed in the
27th column. In the fifth example, you'll notice that the computer has
started over by printing the number's sign in column 1 and the magnitude
in column 2. If you look closely, you'll see there is another difference
between a TAB(l) and a TAB(28). The computer has skipped a row in
printing the 1 for the TAB(28) example.

Now try

PRINT TAB<27);10

10

and you'll see the 10 printed starting under the "R" after a row has been
skipped. Why does PRINT TAB(27); 1 do a print on the row underneath,
but PRINT TAB(27); 10 skip a row? The answer is that the computer checks
ahead to see how many characters are to be printed on the line and then
decides if there is enough room to print them all on the line. If there is not
enough room to print all the characters, the computer skips a line and
starts the first column of the next line. The idea behind this is to avoid
breaking up a number so part of it will be on one line and the rest of it on
the next line. For example, if you wanted to print the number 1010, you
wouldn't want it to be printed as

10
10

which might be confusing to you.
However, as with everything else in life, there are exceptions. Try

PRINT TAB(29);10
10

In this case, you see that the computer did not skip a line. The reason
this occurs is that if the argument of the function is greater than 28, the
computer divides the argument by 28 and then tabs over the remain
der. Dividing 29 by 28 gives 1 so the computer tabs by 1. The remain
der is accepted by the computer if it is a number between 1 and 28. For
example, try

PRINT TAB(57);1
1

You'll see the computer start printing in column 1 because the remainder
of 57/28 is 1.

Square Roots-SQR 21

But try

PRINT TAB(56);1

1

and you'll see the 1 printed after the computer skips a line. The reason this
occurs is that 56/28 equals 1 plus a remainder of 28. This remainder of 28
is acceptable to the computer and so it does not divide the 28 by 28.

As you saw in a previous example,

PRINT TAB(28);1

1

does skip a line because the computer does not want to break up the digits
of a number by printing them on separate lines.

You can use multiple TAB's in one PRINT command. For best
results, use semicolons to separate the TAB's and times to be printed.
For example

PRINT TAB(5);1;TAB(10);2
1 2

Now let's put together everything we've learned and print a graphics
design. Note that the following PRINT command shows what you will see
on the screen as you type in the statement. Just keep typing in the sym
bols. The computer will automatically move the cursor down a line as you
keep typing. After you type the last quote of "HAPPY HOLIDAYS", press
the ENTER key.

PRINT TAB(14);"*":TAB(13);"*
":TAB(12);"***":TAB(14);
,,:,,:TAB(7);"HAPPY HOLIDAYS"

*

HAPPY HOLIDAYS

As you can see, the PRINT, TAB and colon allow you to create all kinds
of designs.

Square Roots-SQR
You can easily calculate the square root of a number using the square

root function, SQR. Try the following examples

PRINT SQRC36)

6

PRINT SQRC50)

22 2-Giving You the Power

7.071067812

From the first example above, you can immediately see that 6 is the
square root of 36, since 6*6 = 36. But, what about the second example?
Let's check it out. Enter

PRINT 7.071067812*7.07106781

2

50.

Also try

PRINT SQR(50)*SQR(50)

50.

Note that the presence of a decimal point after the 50 indicates the answer
is very close, but not exactly 50. That is, the computer calculation does not
give an integer result for this calculation. However, if you try

PRINT 25*.4

10

the result is an integer, 10, because there is no decimal part of 10 within
the 13 significant digits calculated by your computer. That is, the com
puter calculates 25 *.4 as

10.000000000000

and so prints the integer 10. Can we get a more precise square root of 50?
Remember that your computer calculates to 13 or 14 significant digits, but
only prints the most significant 10. Let's see one of those hidden digits by
subtracting the integer part, 7, from the square root of 50. Enter

PRINT SQR(50)-7

.0710678119

From this you can see that a more accurate value of the square root of
50 is 7.0710678119 rather than the 7.071067812 we got by taking the
square root directly.

Can we get an even more precise answer, say 13 significant digits?
Sure. Just subtract the most precise value we have for the square root from
the square root of 50.

PRINT SQR(50)-7.0710678119

-3.5E-11

The answer of -3.5E-11 shows the final digits of precision calculated by
your computer. So the most precise square root of 50 is

7.0710678119

-.000000000035

7.071067811865

So 7.071067811865 is the square root of 50 calculated to 13 significant
digits. As another way of showing this, try

Random Numbers-RND 23

PRINT SQR(50)-7.071067811865

0

If you try

PRINT 50-7.071067811865*7.07
1067811865

7.E-12

you'll see that the square root we printed is still not exactly the square root
of 50.

However, the difference of 7.E-12 is smaller than the magnitude of -
3.5E-11 we got with 7.0710678119 as the square root of 50. This indi
cates that 7.071067811865 is closer to the square root of 50 than
7.0710678119. The computer can't calculate the square root of 50 exactly
because it is a multiple of the square root of 2 and can't be expressed in a
finite number of digits. That's why you still can't get an exact integer when
you multiply the roots. For example

PRINT 7.071067811865*7.07106

7811865

50.

The computer does not consider the integer "50" and the decimal number
"50." as the same number. They are close, but not exact.

Of course, you can also use powers to calculate the square root, or any
root of a number. For example, try

PRINT 50A.5

7.071067812

or

PRINT 50AC1/2)

7.071067812

Both give the square root of 50. However, note that

PRINT 50-(50A.5)*(50A.5)

-1.21E-10

has a bigger magnitude than the

PRINT 50-SQR(50)*SQR(50)
7.E-12

calculated by the square root function. For the most accurate result, use
the square root function. Likewise,

PRINT 50AC1/3)

3.684031499

gives the cube root of 50. Because the TI-99/4A calculates to 13 or 14
significant figures, the results of SQR(50) and 50 A.5 are very close.

24 2-Giving You the Power

Random Numbers-RND

One of the most popular and fun applications of computers is playing
games. In many types of games, it's necessary that the computer produce
random numbers. A random number is one whose value is not known in
advance by you. For example, you might want to make a game like dice.
The computer must generate random numbers to simulate the rolling of
dice. The word simulate means that the computer acts like something else.
For example, the computer could simulate alien spaceships attacking
your base, a card game, dice and many other things.

It's very easy to generate a random number using the random number
function, RND. Enter

PRINT RND

.5291877823

Notice that the RND function does not have any argument. The RND
returns a random number greater than or equal to 0 and less than 1. This
can be written in the following way

0^RND<1

For example,

0 ^.5291877823<1

The symbol,4*< " means that the number to the left of *4 < " is less than
the number to the right. The symbol **^" means less than or equal to.
Another useful symbol is ">". For example,

2>1

means that 2 is greater than 1. The 44<" symbol is a shifted key over the
comma, and the 44>" is a shifted key over the period to the right of the
comma.

Let's try some more random numbers.

PRINT RND

.3913360723

PRINT RND

.5343438556

PRINT RND

.3894551053

As you can see, these numbers are all different. Let's print out a few
more, but save ourselves the effort of typing PRINT all the time. Enter

PRINT RND;RND;RND;RND
.2555008073 .5621974824
.2553391677 .5882911741

Notice how using a semicolon to separate items in a printlist really
cuts down on the typing you must do.

RANDOMIZE 25

RANDOMIZE

Now let's try an interesting experiment. Turn the power off your com
puter and then turn it on again. Get back into BASIC and type in the fol
lowing. As before, the PRINT command is shown as it appears on your
screen. Keep typing in the symbols and press the ENTER key after the last
RND.

PRINT RND;RND;RND;RND;RND;RN
D;RND;RND
.5291877823 .3913360723

.5343438556 .3894551053

.2555008073 .5621974824

.2553391677 .5882911741

If you compare these random numbers to the ones from the previous
section on RND, you'll see they are the same.

What's going on? Well, it turns out that the random numbers gener
ated by your computer aren't truly random. In fact, the proper name for
these computer random numbers is pseudorandom. The prefix pseudo
means false, so pseudorandom numbers are literally false random num
bers. The pseudorandom numbers from your computer are calculated by a
formula. It's really quite hard to come up with truly random numbers. In
the interest of saving time for calculations, your computer uses a formula
to generate these numbers.

Every time you power up your computer, the computer starts calculat
ing these pseudorandom numbers from the beginning. So you always get
the same sequence of pseudorandom numbers. Later on when we get into
programming, you'll also see that the computer starts calculating the
pseudorandom numbers from the beginning before every program is run.
There are many thousands of different pseudorandom numbers that your
computer can generate before it starts over again. For many games and
applications, this is plenty.

However, your computer provides a function which will start off the
random numbers at a different point in the sequence each time. This is the
RANDOMIZB function, and like RND, it too has no argument. To see how
RANDOMIZE works, turn your computer off and then back on. Now type

RANDOMIZE

and press the ENTER key. Now type in the following PRINT command and
press ENTER after the last RND.

PRINT RND;RND;RND;RND;RND;RN
D;RND;RND
.861119366 .849727399

.4897973528 .1733429849

.029304338 .1852545258

.5020166158 .2159153281

26 2—Giving You the Power

Chances are you will not get the random numbers shown above
because the RANDOMIZE is starting the random numbers off at a different
place in the pseudorandom number sequence. Try turning your computer
off and on again, or just press FCTN and the 4* + " key (QUIT) to start over,
and repeat this RANDOMIZE and PRINT commands. Each time, you'll get
different random numbers.

However, you can specify a certain starting place in' the
pseudorandom sequence by giving a seed or argument to RANDOMIZE.
The argument of RANDOMIZE is called the seed because its value deter
mines the following pseudorandom numbers. Unlike other functions, there
is no need to put the seed in parentheses. Try

RANDOMIZE 1000
PRINT RND;RND

.3066028468 .262016067

Now enter the same commands over again.

RANDOMIZE 1000

PRINT RND;RND
.3066028468 .262016067

As you can see, giving the same seed to RANDOMIZE always starts off
the same random numbers sequence.

You can even use arithmetic expressions for the seed. For example

RANDOMIZE 1+2

PRINT RND;RND
.3433917535 .6613386522

RANDOMIZE 3

PRINT RND;RND
.3433917535 .6613386522

Both RANDOMIZE 1+2 and RANDOMIZE 3 have the same seed.
You can use positive or negative numbers or decimal numbers such as

.5 as the seed. However, there is one thing to watch out for. The computer
does not use the entire value of the seed you give it.

Your computer actually converts the seed number to another form
called a binary number. Most computers use binary numbers for calcula
tions because of the components and circuits used in computers. Binary
calculations are faster and binary computers use fewer components than
computers designed to manipulate decimal numbers.

Binary numbers are composed of only the 0 and 1. The following table
shows some ordinary binary numbers and their decimal representation.

Decimal Number Binary Number
0 0

1 1

2 10

3 11

4 100

Integer-1NT 27

5 101

6 110

7 111

8 1000

9 1001

10 1010

Since the prefix "bi" means two, binary numbers use only the two
numerals, 0 and 1. A binary digit of 0 or 1 is called a bit, which is a con
traction ofbinary digit. A group of 8 bits is called a byte. Another common
term is the kilobyte (K byte) which is 1,024 bytes. In fact, the memory of a
computer is usually expressed in K bytes. For example, the standard TI-
99/4A has 16 K bytes of memory.

Any decimal number that you supply the computer is internally repre
sented by 8 bytes by a technique called the normalized radix represen
tation. For more details on the internal storage of numbers, see your TI
Users Reference Guide on accuracy, and BASIC: Advanced Concepts, p.
126. However, only the two most significant bytes are used for the seed
value. Since only the two most significant bytes are used, not all the seeds
you supply will be unique. Thus you might get the same random number
sequence even though you specify a different value for the seed. For exam
ple, seeds from 0 to 100 are all unique. To show this, try a RANDOMIZE
and PRINT RND with some seeds from 0 to 100. However, seeds from 100-
199 are all the same. Likewise seeds of 200-299, 300-399 etc. are all the
same up to a seed of 10000. Seeds from 10000-19999, 20000-29999 etc.
are then the same.

If you're not sure that two seeds are the same, it's best to test it with
RANDOMIZE seed and PRINT RND commands.

Integer-1NT
The integer function, INT, is very useful in calculations. Try the fol

lowing example

PRINT INT(1);INT(1.9);INT(2)
1 1 2

In this example, the integer function always returns the integer part of
its argument. That is, the decimal or fractional part of the argument is
thrown away.

Now enter the following example for negative arguments

PRINT INT(-.5);INT(-1);INT(-
2.5)

-1 -1 -3

As you can see, the integer function for negative arguments returns the
integer that is smaller than the argument. For example, -1 is smaller than -
.5 and is the next integer. A 0 would be greater than .5. Likewise, -3 is the
next integer smaller than -2.5.

28 2-Giving You the Power

In general, the integer function returns the next smaller integer of its
argument.

In most cases, the integer function works fine. However, you can run
into trouble with numbers that are very close to an integer. For example,
try

PRINT INT(1.999999999999)

1

This works all right and does return a 1. But including another 9 as in the
following example

PRINT INT(1.9999999999999)

2

returns a 2 instead of the 1.
What's happened is that the computer converts 1.9999999999999 to

a binary form before applying the integer function. The number we've sup
plied exceeds the computer's precision ofabout 13 digits and the computer
interprets it as 2 instead of 1.9999999999999. Of course, you can write a
computer program to deal with numbers having more than 13 digits of
precision. For example, in BASIC: Advanced Concepts, programs are
shown for multiplication, addition and subtraction of numbers with 200
digits of precision. These programs are shown for two other versions of
BASIC, which are very similar to TI BASIC.

As an example ofhow useful the integer function is, let's use it to gen
erate random numbers between 1 and 6. This could represent the numbers
produced by a die as it's rolled in a dice game. Enter

PRINT INT(6*RND+1)

4

Of course, you may get a number other than 4 depending on what
point you're at in the pseudorandom sequence.

If you keep printing out numbers as above, you'll see they all have
values of 1, 2, 3, 4, 5, or 6.

There is a handy formula you can use to generate numbers between A
and B where B is the smaller of the two.

INT((A-B+1)*RND+B)

For the die example above, B = 1 and A = 6 because we want to gen
erate numbers between 1 and 6. Substituting in the above formula gives

INT((6-1+1)*RND+1)
= INT(6*RND+1)

which is what we used.
As another example of how useful the integer function is, let's use it to

round off numbers. For example, suppose you want to round off a number
to the nearest integer. Just add .5 to the number and apply the integer
function. For example, to round off 1.4, enter

Absolute Value-ABS 29

PRINT INTC1.4+.5)
1

To round off 1.9, enter

PRINT INTC1.9+.5)
2

The above works because the general rule for rounding is that if the deci
mal part ofa number exceeds .5, return the next highest integer. So adding
a .5 to a number and applying the integer function will return the next
highest integer.

You can also use the integer function to round off numbers to a certain
number of decimal places. For example, suppose you want to round off a
number to one decimal place. Try the following example to round off
8.6345 to one decimal place

PRINT INT(10*8.6345+.5)/10
8.6

If you want to round off 8.634 to two decimal places, try

PRINT INT<100*8.6345+.5)/100

8.63

For rounding off to three decimal places, enter

PRINT INT(1000*8.6345+.5)/10
00

8.635

The general formula for rounding off a number X to N decimal places is

INT(10AN*X + .5)/10AN

For the example above where we rounded off 8.6345 to 2 decimal
places, we have

PRINT INT(10A2*8.6345+.5)/10
A2

8.63

This is the same as above since 10A2 = 100. Likewise, for three decimal
places, 10A3 = 1000 and we would also get the same answer as the first
time.

Absolute Value-ABS

The absolute value function, ABS, always returns a positive
number. The absolute value is the magnitude of a number. Basically, the
absolute value throws away any negative sign of its argument and returns

30 2-Giving You the Power

a positive number. If the argument is positive the absolute value just
returns the number. Try

PRINT ABS(-2);ABS(2)
2 2

Sign-SGN
The sign function, SGN, returns the sign of its argument in the fol

lowing way. If the number is positive, the function returns a value of 1. If
the argument is 0, then a 0 is returned. Ifthe argument is negative, then a -
1 is returned. Try the following. As usual, the PRINT command is shown
as it appears on your screen. Press the ENTER key after you type in the
last right parenthesis ")".

PRINT SGN(5);SGN(0);SGN(-2.5)
1 0 -1

Exponential- EXP
The exponential function, EXP, returns the base number of natural

logarithms raised to the power of its argument. Just like pi or 1/3, the
base ofnatural logs cannot be expressed exactly by a finite number ofdeci
mal digits. The base is commonly written as the letter "e" and is about
2.718281828. Like pi, the number symbolized by the letter 4,e" cannot be
exactly represented by a finite series of digits.

As an example

PRINT EXPC1)

2.718281828

shows the ten most significant digits of "e". For some more examples, try

PRINT EXP(0)

1

PRINT EXPC-.5)

.6065306597

PRINT EXPC10)

22026.46579

You can use an arthmetic expression as the argument. For example,

PRINT EXPC.5+.5)

2.718281828

PRINT EXP(2*4-8.5)

.6065306597

PRINT EXPC20/2)

22026.46579

Natural Logarithm-LOG 31

Notice that you get the same results for the three examples above as for
the first three examples because their arguments are the same. However,
some arithmetic expressions may not be calculated exactly because of the
finite precision of the computer and so there may be slight differences. For
example

PRINT EXP(lEU*(2/3-1/3-1/3)
)

2.718281828

gives "e" instead of the correct answer of 1. Since 2/3-1/3-1/3 = 0, then
1E14*0 should equal 0 and EXPO(0) = 1. Instead, we get 2.718281828.

The problem we've run into arises because the computer only calcu
lates to 13 or 14 decimal digits. For most calculations, this is fine. But
some numbers like 1/3 or 2/3 can't be exactly expressed as a finite
number of decimals

1/3 = .3333333333333...
2/3 = .6666666666666...

where the three dots at the right mean the digits keep on repeating forever.
Enter

PRINT 2/3-1/3-1/3
1.E-14

and you'll see the result is not 0 but 1.E-14. So when this number is multi
plied by IE14, the exponents cancel and the argument of EXP is 1. Since
EXP(l) = 2.718281828, you now see why we got the wrong answer.

The important thing to learn from this is that just like any other
machine the computer has limitations. Just because it can do millions of
calculations a second doesn't mean they're correct. You supply the intelli
gence—the computer does the work.

Exponentials and natural logs are inverse functions of one another.
For example

1 = EXP(0) = EXP(LOG(l))

where LOG is the natural logarithm function. Likewise, for any number, N

N = EXP(LOG(N)).

Natural Logarithm-LOG
The natural logarithm function, LOG, returns the natural log of its

argument. The log of a number is the exponent to which the base must be
raised to give the number. For example, 2 is the log of 100 in base 10
because 100 = 10 A2. The number 10 is the base. It is raised to the power.
Try the following examples

PRINT L0GC1)

0

32 2-Giving You the Power

PRINT L0G(2)

.6931471806

PRINT LOG(10)

2.302585093

PRINT L0G(2*2.5+5)

2.302585093

PRINT L0G(628.5)

6.443336028

Notice that you can use an arithmetic expression as the argument.
Both 2 *2.5 + 5 and the 10 arguments return the same log.

The natural log returns the log to base "e" = 2.718281828 (see the
discussion of the exponential function, EXP).To find the log of a number N
in another base, B, use the formula

LOG(N)/LOG(B).

For example, the log of 20 in base 10 (common logs) is

PRINT LOG(20)/LOG(10)

1.301029996

where we've substituted N=20 and B=20 in our formula.
If you try

PRINT LOGC0)

you'll get a

* BAD ARGUMENT

error message because the log of 0 is negative infinity, and the computer
can't compute it.

Sine-SIN

The sine function, SIN, returns the sine of an angle. For a right trian
gle, the sine is the ratio of the side opposite an angle to the hypotenuse.
The angle must be in radians. There are 2 *pi radians in 360°. So 1 radian
= 360/2*pi. To convert from degrees to radians, just multiply the degrees
by pi/180. Use 3.141592654 for pi, or .01745329251944 for pi/180. For
example, to convert 30° to radians, use either

PRINT 30*3.141592654/180

.5235987757

or

PRINT 30*.01745329251944

.5235987756

Cosine—COS 33

The second example using .01745329251944 is more accurate than the
first since more significant digits are used. A more precise value for pi to 14
significant figures is

pi = 3.1415926535898.

Using this for pi will give the same answer as the second example.
Rather than your having to remember all these numbers or to look

them up, there's an easier way to get pi. Enter

PRINT 4*ATN(1)

3.141592654

The ATN(l) is the arctangent function (see the section on the artangent
function). It turns out that 4 times the arctangent of 1 radian is pi. So to
convert 30° to radians, use

PRINT 30*4*ATN(1)/180

or just

PRINT 30*ATN(l)/45

since 4*ATN(1)/180 = ATN(l)/45. The answer in both cases above is
.5235987756.

To get the sine of 30°, enter

PRINT SIN(30*ATN(1)/45)

.5

As another example, the sine of 90° is

PRINT SIN(90*ATN(1)/45)

1

Cosine—COS

The cosine function, COS, returns the cosine of an angle. For a right
triangle, the cosine is the ratio of the side adjacent to the angle to the
hypotenuse. Theoretically, the sine of 90° is exactly 1. However, the value
returned by the sine function is very close. If you try

PRINT SIN(90*ATN(1)/45)-1

you'll get

-1.E-14

Just as for the sine function, the argument of the function is in radians.
Try these examples

PRINT COS(30*ATN<1)/45)

.8660254038

PRINT COS(90*ATN(1)/45)

34 2-Giving You the Power

where the first example is for 30° and the second is for an angle of 90°.

Tangent-TAN
The tangent function, TAN, returns the tangent of an angle. For a

right triangle, the tangent is the ratio of the side opposite the angle to the
side adjacent the angle. Like the sine and cosine, the argument of the tan
gent function is in radians. Try these examples

PRINT TAN(30*ATN(1)/45)

.5773502692

PRINT TAN(90*ATN(1)/45)

* WARNING:

NUMBER TOO BIG

9.99999E+**

The first example for 30° works all right. However, the tangent of 90°
is infinity, which causes the error message of a number too big. In this
case, the number exceeds

9.9999999999999E127

and the computer displays this number in the form

9.99999E+**

Since the computer can only show two digits for the exponent, it indicates
an exponent greater than 99 by the two asterisks.

Arctangent-ATN
The arctangent function, ATN, is the inverse of the tangent func

tion. The arctangent returns the angle in radians when it is given the tan
gent. Try these examples

PRINT ATN(.5773502692)

.5235987756

You'll see this is the angle in radians for 30° since

PRINT 30*ATN(1)/45

.5235987756

Chapter 3

Beginning Programming

While your computer makes a great calculator, that's just a small fraction
of what it's capable of doing. The thing that really distinguishes a com
puter from a calculator is that the computer can carry out its instruction
automatically. The computer is said to be following a program of instruc
tions. A program is a group of instructions that the computer executes in
a certain order. The program is stored in the random-access memory
(RAM) of your computer. The RAM is memory that you can put programs
and data in. The computer has another type of memory called read-only
memory (ROM) whose contents can only be read. For example, the BASIC
language of your computer is in ROM. The advantage of ROM over the
RAM is that information in ROM is not lost when power is removed from
the computer. In this chapter you'll learn to start programming.

Give Me A Line

When you wanted to use your computer as a calculator, you just typed
in the command and pressed the ENTER key. The computer immediately
did the calculation and output the result. This is called a direct or immedi
ate command.

However, when you enter a program you don't want the computer to
execute each command as you type it in. Instead the command is stored in
the computers RAM memory. Commands are stored in a certain order in
the memory. Each command is prefixed by a line number. The combina
tion of a line number and command is called a statement. Also, press the
ENTER key after each statement. As an example of a simple program, type
in the following two statements.

1 PRINT 2+2

2 PRINT "HELLO"

Running With It
Now that this program has been entered into the RAM of your com

puter, we want the computer to execute the program. The term execute
means the computer performs the instructions in the program. When the
computer executes a program, it starts by doing the command with the
lowest line number, then the next highest line number and so forth.

35

36 3-Beginning Programming

To execute a program, type in the command RUN and then press the
ENTER key. The RUN command makes the computer begin executing the
program starting from the lowest line number. You'll see the screen change
color to green and then the output appear.

RUN

4

HELLO

** DONE **

Also notice that the symbol ">" does not appear when the computer
is outputting. The ">" only appears when the computer is expecting you
to input something. In the output above, the computer has printed the sum
of 2 + 2 and then printed "HELLO". Notice that the computer has executed
each statement in turn starting from lowest to highest line number. When
no more statements are present in RAM, the computer stops execution
after line 2 and prints the message "DONE".

Now enter the command
RUN 2

and this time only the word "HELLO" is output. When you follow the com
mand RUN with a number, the computer starts execution with that line
number. So in this case, the computer starts execution with line 2.

If you type RUN again, you'll get the same output as the first time—a
"4" and then "HELLO". In fact, you'll get the same output every time this
program is run.

\ For this particular program, our input data is fixed. The computer
always adds 2 + 2 and prints "HELLO". In a later chapter, you'll learn
how to change the input data while a program is running. This makes pro
grams much easier to use.

Listing
Your computer has a very useful command which lets you see the pro

gram in memory. Type in the LIST command

LIST

and press the ENTER key. The program stored in memory will be listed on
the screen.

Now try

LIST 1

and you'll see only line number 1 listed. Also, try LIST 2 and only line 2
will be listed.

Suppose you want to print 10*10 right after the PRINT 2 + 2 of line 1.
Just enter

2 PRINT 10*10

Making Life Easy on Yourself 37

When you list the program, you'll see

LIST

1 PRINT 2+2

2 PRINT 10*10

Notice that by entering in a new line with the same line numbers as a
line stored in memory, the new line has erased the old one. RUN this pro
gram and you'll see

RUN

4

100

** DONE **

The original line 2 that printed "HELLO" is indeed gone from memory
and no "HELLO" is printed. Let's restore the original line by entering it as

3 PRINT "HELLO"

When you LIST this program you'll see

LIST

1 PRINT 2+2

2 PRINT 10*10

3 PRINT "HELLO"

and when you RUN, you'll get

RUN

4

100

HELLO

** DONE **

The above technique is one way of editing a program. Type in the new
line and then retype in the lines you had erased. Of course you must
change their line numbers if you've inserted a line in between.

Making Life Easy on Yourself
One simple way of making life easy on yourself is to allow room to

change your mind. Instead of entering lines with numbers 1, 2, 3 use
line numbers that are multiples of 10. For example, if the original lines
had been

10 PRINT 2+2

20 PRINT "HELLO"

then you could have used any line number from 11 to 19 and that line
would be inserted between 10 and 20 automatically.

38 3-Beginning Programming

Let's try this and see how it works. First, turn off your computer's
power and then turn it back on again or press the FCTN and QUIT keys.
Get into BASIC and do a LIST. Notice that no program is listed. Instead
you just get the error message

* CAN'T DO THAT

because there is no program in memory. The RAM memory in your com
puter is said to be a volatile memory type. The term volatile means that
the contents disappear when power is removed. So one way of erasing the
program in memory is to turn power off. A second way is to use the FCTN
and QUIT keys, which also erase the contents of memory.

Now that the lines are gone enter

10 PRINT 2+2

20 PRINT "HELLO"

and RUN it. You'll see the same output as when the line numbers were 1
and 2. When the computer executes a program, it goes from smallest to
highest numbers and doesn't care what values those numbers are. Now
type in

10

and press the ENTER key, and then type in

20

and press the ENTER key. Now type in the LIST command and press the
ENTER key. You'll see the message

* CAN'T DO THAT

because you've deleted all the program lines in memory and so the com
puter can't list them. You can use any line numbers for the program. For
example, type in

525 PRINT 2+2

7968 PRINT "HELLO"

and the output would be the same. Now delete lines 525 and 7968 and
type in the original lines

10 PRINT 2+2

20 PRINT "HELLO"

Let's insert a line now. Enter

15 PRINT 10*10

While it may appear to you that the line number 15 was not inserted
because it stays after 20, let's see what the computer thinks. Enter the
RUN command and you'll see

How to Change Your Number 39

RUN

4

100

HELLO

** DONE **

Notice that the result of 10*10 was indeed printed between the 444"
and "HELLO". Do a LIST and you'll see

LIST

10 PRINT 2+2
15 PRINT 10*10
20 PRINT "HELLO"

When you add lines by typing them in, the output on the screen is not
automatically updated. The line 15 you entered was changed in the com
puter's memory but the TV display of old output was not updated. After
you make changes in a program, it's a good idea to do a LIST and confirm
them. For example, enter this

5 PRINT "TI-99/4A"

and do a LIST. You'll see the updated listing come scrolling up the screen
with line 5 as the first line of the program. When you run the program,
you'll also see the output of line 5 first, as it should.

Now suppose you want to delete certain lines. Just enter in the line
number of the line you want to delete and press the ENTER key. Try this
for line 10 above. Type 10 and press the ENTER key, then do a LIST. Only
lines 5, 15, and 20 will remain as follows

5 PRINT "TI-99/4A"

10 PRINT 2+2

15 PRINT 10*10

20 PRINT "HELLO"

10

LIST

5 PRINT "TI-99/4A"

15 PRINT 10*10

20 PRINT "HELLO"

If you enter a line number with nothing after it, that line will be deleted.

How to Change Your Number
Your computer has a really neat command to help you tidy up pro

gram listings. In the previous example, we've got line numbers of 5, 15,
and 20 left. Your programs will look neater and you'll have more room to
insert lines if your program lines are in multiples of 10. So instead of lines
5, 15, and 20, it's more practical to have lines 10, 20, and 30. One way of

40 3—Beginning Programming

doing this would be for you to retype the entire program with line numbers
as multiples of 10.

Happily, the designers of TI BASIC wanted to minimize your typing
and included a great command which will automatically renumber lines.
Another term for renumber is resequence and the command is called
RESEQUENCE. You can abbreviate this command by just RES and
your computer knows you want to resequence. Let's try this. Type in RES
and press the ENTER key, and then do a LIST. You'll see

100 PRINT "TI-99/4A"

110 PRINT 10*10

120 PRINT "HELLO"

Notice that the RES command has resequenced lines 5, 15, and 20 in
multiples of 10 starting with a line 100. If you want to resequence starting
with a certain line number, just follow the RES command with this start
ing line number. For example, type RES 10, press the ENTER key, and do
a LIST as shown below.

100 PRINT "TI-99/4A"

110 PRINT 10*10

120 PRINT "HELLO"

RES 10

LIST

10 PRINT "TI-99/4A"

20 PRINT 10*10

30 PRINT "HELLO"

As you can see, the program lines are now multiples of 10 starting
from line 10. You can also use the RES command to resequence any way
you want. For example, enter RES 500,35 then LIST, and you'll see

RES 500,35
LIST

500 PRINT "TI-99/4A"

535 PRINT 10*10

570 PRINT "HELLO"

The lines have now been renumbered starting at line 500 in increments of
35. So the general form of RES is

RES initial line number, increment
In this case, the increment is 35 since the line numbers go up by 35.

Notice that the line numbers are not multiples of 35 in this example. The
increment means the amount each line number is incremented or
increased. Likewise, if you gave the command RES 9, the line numbers
would be 9, 19, and 29 which are not multiples of 10. However the incre
ment is 10.

If you give no arguments to RES, then the default values of 100 for the
initial line and 10 for the increment are used. A default value is the value
the computer assumes if you give no explicit instruction.

A Little More LIST 41

You can also use the default value for the initial line and specify an
increment by just putting a comma before the increment. For example,
enter the following

RES,5
LIST

100 PRINT "TI-99/4A"

105 PRINT 10*10

110 PRINT "HELLO"

By putting a comma before the increment, you are telling the computer to
use the default value of 100 for the initial line and then use the increment
of 5 that you give.

Now try to enter the following line

32768 PRINT 2-2

and you'll hear a beep and see the error message

* BAD LINE NUMBER

Now try

32767 PRINT 2-2

and the computer will accept it.
Line number 32767 is the highest line number your computer will

accept. If you try to resequence past that, you'll see this error message. To
show this, enter

RES 32700,100

and you'll see the BAD LINE NUMBER message. If any line of the program
to be resequenced will have a line number exceeding 32767, then the RES
command won't work.

A Little More LIST

You can list up to a certain line number by putting a minus or - before
it. The "-" is a shifted key to the right of t4P" that is also used for the minus
sign. As an example of listing up to a line number, do a LIST -105 and
you'll see

LIST -105

100 PRINT "TI-99/4A"
105 PRINT 10*10

will list all the program lines from the beginning of the program up to line
105.

Likewise

LIST 105-

105 PRINT 10*10

42 3—Beginning Programming

110 PRINT "HELLO"
32767 PRINT 2-2

will list all the lines from 105 to the end of the program.
Now do a LIST 105-110, and you'll see

LIST 105-110

105 PRINT 10*10

110 PRINT "HELLO"

Only lines 105 to 110 were printed.
In general, you may want to list out a long program to find a certain

line. Just do a LIST to see the program scroll by or LIST starting at a line
close to what you're looking for. Then hold down the FCTN and get ready
to press the CLEAR key to stop the listing at any time.

What's NEW?

Suppose you have a program in memory and want to get rid of it. One
way of doing this is turning power off. Another way is pressing the FCTN
and QUIT keys. However, there's an easier way using die new command,
NEW. Just type in

NEW

and press the ENTER key. The program in memory and any other data
will be removed.

Enter the NEW command and the screen will clear. The message

TI BASIC READY

will appear at the lower left corner of the screen. If you try a LIST com
mand now, the message

* CAN'T DO THAT

will appear because there is no program in memory.
Variables are also deleted. For example, enter in direct mode

A=3

PRINT A

You'll see a 3 appear. Now type in the NEW command and then

PRINT A

again. The value of 0 will be printed for A because the NEW command has
erased the contents of the computer's RAM memory.

Easy Number
Another nice command you have is one that automatically generates

line numbers. This is the NUMBER command, or just NUM. Type in NUM
and press the ENTER key. You'll see a 100 appear below NUM and the

EasyNumber 43

cursor will have moved 1 space past the line number of 100. Type in
PRINT 1 and then press the ENTER key. Now a 110 will be printed and the
cursor is again 1 space past the 110 line number.

You can continue this way, just entering commands and having line
numbers automatically generated because you are in Number Mode.
That's the name given to this mode of operation in which line numbers are
automatically generated by the computer. But one question arises—how
do you stop the automatic numbering? Easy. Just press the ENTER key
without typing any command after the line number appears. The cursor
will move to the next line and no line number will be there. Instead of
pressing the ENTER key, you can also press the FCTN and "E" (up arrow)
or FCTN and "X" (down arrow) keys. These appear to act just like the
ENTER key.

The NUM command has options just like RES. For example, you can
easily guess what NUM 10,20 should do. Go ahead and try it with the fol
lowing example.

NUM 10,20
10 PRINT 1

30 PRINT 2

50 PRINT 3

70 PRINT 4

90 PRINT 5

110

where you press the ENTER key after 110 to end the automatic number
ing. Just as the RES, the NUM command takes the initial line number as
its first argument and the increment as its second argument. The default
initial line number is 100 and default increment is 10, just as for RES.

NUM has another very interesting feature. Type in NUM 10,20 and
you'll see line 10 appear on the screen with the cursor over the "P" of
"PRINT". Use your right arrow key (FCTN and "D") to move the cursor to
the right and change line 10 to

10 PRINT 10

then press the ENTER key. You'll see line 30 appear on the screen with the
cursor over the "P" of "PRINT" just as in line 10. Edit this line to

30 PRINT 2+2

and press ENTER. Now line 50 appears. This time don't edit anything.
Just press the ENTER key and line 70 appears. Press ENTER again and
line 90 appears. Now edit line 90 to read

90 PRINT "HELLO"

press the ENTER key to store line 90, then press ENTER again to stop the
NUM command.

From this example, you can see how easy it is to use NUM in stepping
through your program lines for editing. If you want to edit a line, just use

44 3-Beginning Programming

the FCTN keys. If not, press the ENTER key to move on to the next. How
ever, an important point to notice is that NUM never edited line 100.
That's because NUM is editing in increments of 30 starting from line 10,
and so 100 is never calculated.

Notice that you gave the command NUM 10,20 to edit this program.
What do you suppose would happen if you had just done a NUM 10? Let's
try it and see. The first line 10 appears for editing and you can edit that
fine. But when you press the ENTER key again, line 20 appears instead of
the line 30 that is in memory.

By giving only a NUM 10, the computer is just following orders and
starting at line 10 in default increments of 10. While your program lines in
memory are 10, 30, 50, 70, 90, and 100, the NUM command is going to
take you 10, 20, 30, 40. . . If you press the ENTER key while line 20 is
displayed and enter no command, you will just exit from Number Mode.
However, if you enter some command, such as

20 PRINT 10*10

and then press ENTER, the computer will then show you line 30 for edit
ing. If you want to insert line numbers between lines, then NUM 10 is cor
rect. If you just want to edit existing lines, then you must use arguments
for NUM that are suited for your line numbers.

Now let's go back to NUM mode by entering in NUM 30, 20. Line 30
appears with the cursor flashing over the ,4P" of "PRINT". Notice that you
don't have to start from the beginning of the program to start editing in
Number Mode. Just give the initial line number and increment. In fact, if
you were only editing one line, you would not have to give the increment,
no matter what it was.

While line 30 is displayed, press the FCTN and CLEAR keys. You'll
see the cursor move down as you exit from Number Mode. The CLEAR key
makes you exit from Number Mode immediately. Now do a NUM 30 to get
back to line 30 and make the following change, but do not press the
ENTER key.

30 PRINT 2*2

Instead, press FCTN and CLEAR after you change the " +" to an "*" in
line 30. Now do a LIST and you'll see the original version of line 30

30 PRINT 2+2

come scrolling up the screen.
As you can see, using CLEAR immediately exits you from Number

Mode and any changes you made to the line are not entered.
For our last example of Number Mode, do a NUM 30 again and then

use the FCTN and ERASE keys to erase all the text of line 30. Press the
ENTER key and you will be out of Number Mode. Now do a LIST and you
will still see the original text of line 30 stored

30 PRINT 2+2

tips and Downs 45

The ERASE key deleted the command on a line in Number Mode. But
if you then exit, the ERASE keys effects are not permanent, just like the
CLEAR key.

Ups and Downs

There is another way to edit lines than using the NUM command.
Instead the up and down arrow keys are used. For example, type in 30 (do
not press ENTER) and then press the FCTN and "E" (up arrow key). Line
30 will appear on your screen ready for editing. If you want to edit only
line 30, just press the ENTER key when you're done. However, if you want
to edit the line before 30, press the FCTN and "E" key again. Your edited
line 30 will be permanently changed, then the computer will show you line
10.

If you try to edit before line 10, you will just exit from this mode. Ever-
ytime you press FCTN and the up arrow key, you move up a line. Likewise,
using FCTN and the down arrow ("X") key will move you down. You can
switch back and forth from up to down arrows and vice versa anytime.

"I hear you've just gotten a new computer in the house.*'

Chapter 4

Let's Get Variable

In this chapter, you'll learn a powerful concept in programming. Up to now
we've looked at programs that did things like

10 PRINT 2+2

20 PRINT "HELLO"

so that you would get familiar with your computer. Now that you know
how to enter and edit programs, you'll start learning to write practical pro
grams that accomplish useful tasks.

A Shoebox Called MONEY

The concept that has made the computer so versatile is that of the vari
able. A variable is a named item that can store things. For example, enter
the following program in which MONEY is the name of a variable

10 MONEY=100

20 PRINT MONEY

When you run this program, the computer tells you the value of MONEY.
MONEY is the name of a variable. The computer stores 100 in a

certain part of its RAM and calls that by the name MONEY. You can
imagine that the computer has a shoebox with the name MONEY. In
line 10, you put a 100 into the shoebox. In line 20, you tell the com
puter to print the contents of the MONEY box. Every time you run this
program, the computer puts 100 into MONEY, and then prints the con
tents of MONEY.

In line 10, you are assigning a value to a variable. Another way of
writing this would be

10 LET MONEY=100

where the LET is optional. You don't have to type in LET and so most
people don't.

Suppose you now edit line 10 to put 200 into MONEY. Run the pro
gram and you'll see the new value of MONEY printed.

You can also include text with your output. Change line 20 to

20 PRINT "M0NEY=";M0NEY

Now when you run the program, you'll get

47

48 4-Let's Get Variable

MONEY= 200

If the money is in dollars, you can use this line

20 PRINT "M0NEY=$";M0NEY

and then you'll see after a run,

M0NEY=$ 200

Adding an explanation of what is being printed is very important to who
ever uses your program. While you may know what the program does,
someone who did not write it may not. Even you may forget what is being
output if you haven't used the program after a few weeks. Rather than
having to read through the program listing and trying to understand it
weeks or months later, you should always try to produce easily under
standable output.

Bad MONEY

Notice that we printed the "$" sign as part of the character string
inside quotes. It's not possible to store a "$" sign inside this variable
because only a number can be stored. A variable that can store a number
is called a numeric variable. You can include the normal part of a
number such as a decimal point, or the number can be stored in exponen
tial form. For example, change line 10 to

10 MONEY=200.53

and run the program. You'll see $ 200.53 printed. For an exponential
number, try

10 MONEY=2.0053E2

and run the program. Again, you'll see $ 200.53 printed.
However, if you try change line 10 to

10 MONEY=$200.53

you'll hear a beep and see the error message

* BAD NAME

appear on the display because the ,4$" sign cannot be stored in a numeric
variable.

Variable names follow certain rules. For example, you can try all these
versions of MONEY and the computer will accept them as legal names.

Legal Name Meaning
(©MONEY at sign
\MONEY backslash

[MONEY left-bracket
]MONEY right-bracket

MONEY Underscore or line

Bad MONEY 49

Note that the backslash is on the side of the 44Z" key, not the 44C". Variable
names must begin with a letter or one of the symbols above.

Variable names can be up to fifteen characters long and contain only
letters, numbers, the 44<©", and underscore44 ". Following are some more
legal numeric variable names

MONEYINSAVINGS

MONEY_IN_SAVING

M0NEY8H0ME

M0NEY1

M0NEY2

M0NEY89654

M1_a_

Try entering these in line 10 and they will all be accepted. But illegal
names like

MONEY IN SAVING

$M0NEY

will be bad names and not accepted. Since spaces are not allowed in varia
ble names, you can use the underscore to separate words in a variable
name. Generally, programmers tend to use short variable names because
it conserves computer memory and saves you typing. Every character of a
variable name takes up 1 byte of memory. In a program with many state
ments or a lot of data, you may have to worry about conserving memory.
However, the 16K bytes of your TI-99/4A give you a lot of storage.

The important thing to remember when you make up variable names
is to make the names meaningful. If you are going to use a variable name
for the money in your savings account, there are a number of ways to
express it.

MONEYINSAVINGS

MONEY_IN_SAVING

MONEYXSAVINGS

M0N_SAV

MONSAV

MSAVE

MONS

MS

M

Notice that it becomes harder for a reader to understand what the vari
able is storing as the name becomes more abbreviated. However, at least
all these names begin with an M so there is some relation to money. A bad
choice would be a variable name that had no relation to the purpose of the
variable. For example, here are some bad choices for money:

50 4-let's Get Variable

X1

TIME

SNOW

WXY3

ca_\

While all of these bad choices are legal variable names, they have no
intrinsic or built in meaning to a person reading the program. You'll find it
hard to understand what's going on in a program, even if you write it your
self, if good variable names are not used.

There are also certain words reserved for the computer that you can't
use as variable names. For example, PRINT is a reserved word. A list of
the reserved words is given in the Appendices. So you can't use PRINT as a
variable name. However, you can use PRINT if it's part of a name. For
example, PRINTA is legal for a numeric variable name. Likewise, PRINT$
is a legal string variable name.

Stringing Along
Just as there are numeric variables, so too are there variables for stor

age of strings of characters. These are called string variables and are
named like numeric variables except that a 44$" is always put at the end.
For example, here are some legal string variable names

MONEYS

M0NEY_IN_BANK$

M$

XYZ\a_$

Enter and run this program to print a string variable

10 MONEY$="$200"

20 PRINT MONEYS

RUN

$200

Notice that there is no space between the 44$" and the 442" as there was
when MONEY was a numeric variable. Now MONEY$ contains a string of
characters. These characters are just symbols to the computer and have no
special meaning like numbers. For example, change line 10 to

10 M0NEY$="CHEESE SANDWICH"

and run. Now you'll see the string 44CHEESE SANDWICH" printed, not
numerals like 44200".

Numeric variables can be used in arithmetic operations while string
variables cannot. For example, enter and run the following program as
shown:

10 MONEY=200

20 PRINT M0NEY;2*M0NEY;SQR(M

Stringing Along 51

ONEY);100-MONEY/5
RUN

200 400 14.14213562 60

As you can see, the value of the variable MONEY is used in all the
arithmetic operations of line 20. Suppose you want to use a different value
for MONEY? Just change line 10. For example, if MONEY = 100, let

10 MONEY=100

and run the program again. Now you'll see

RUN

100 200 10 80

You can now begin to appreciate how powerful is the concept of vari
ables. Rather than your having to manually type in calculations for every
input number, you just write a program in terms of variables. Do all your
calculations in terms of variables and change only the initial line on which
the variable's initial value is defined. In this case, you only had to change
the value of the variable in line 10 since that's where MONEY is defined.

You can also combine strings with numbers in printing output. For
example, enter the following program to print a sales receipt for a $9.95
item.

10 PRICE=9.95

20 TAX_RATE=-05

30 PRINT "PRICE=$";PRICE;"TA
X=$";TAX_RATE*PRICE;"TOTAL=$
";PRICE+TAX_RATE*PRICE
RUN

PRICE=$ 9.95 TAX=$.4975

T0TAL=$ 10.4475

** DONE **

In this program, line 10 defines the price as 9.95. Line 20 sets the tax
rate as 5%. Line 30 prints the price, the tax and finally the total. Rather
than performing the tax rate calculation twice in line 30, an alternate ver
sion of this program is

10 PRICE=9.95

20 TAX_RATE=.05

30 TAX=TAX_RATE*PRICE

40 PRINT "PRICE=$";PRICE;,,TA
X=$";TAX;,'TOTAL=$,,;PRICE+TAX

When you run this, you'll get the same answers as before. The impor
tant thing to note from this version is that we've reduced the amount of
work the computer has to do. Instead of calculating TAX_RATE*PRICE
twice in the PRINT line, this calculation is only done once in line 30 now.
Multiplications, divisions and other math operations take more time for

52 4-Let's Get Variable

the computer to execute than simple additions and subtractions. While it
does not matter much in this simple example, more complex programs
may involve thousands of calculations. People think of computers as fast
until they have to wait for the computer to calculate an answer to a prob
lem. Then you'll start thinking how slow they are.

However, nothing is free. Although we've gone down from two to one
tax rate calculations, we've also added another line to the program. The
computer takes some time to execute this additional line compared to the
first three-line program. In this particular case, it takes about the same
time for both versions of the program.

Give Me Cents

In working with programs dealing with money, it's best to print only
dollars and cents. Notice that as the result of calculations, the tax and
total are printed with four digits after the decimal point. Let's use the INT
function to round off results to two decimal places and then RUN.

10 PRICE=9.95

20 TAX_RATE=.05

30 TAX=INT(100*TAX_RATE*PRIC

E+.5)/100

40 PRINT "PRICE=$";PRICE;"TA
X=$";TAX;"TOTAL=$,,;PRICE+TAX
RUN

PRICE=$ 9.95 TAX=$.5

T0TAL=$ 10.45

** DONE **

The exact tax of .4975 is rounded off to .50. However, the computer
does not print the trailing 0, so only a .5 is printed. As another example,
change line 10 to

10 PRICE=12.95

Now when you run, you'll see

PRICE=$ 12.95 TAX=$.65

T0TAL=$ 13.6

Notice that the tax is indeed rounded off to two decimal places. To find out
its exact value, type in this direct command to multiply the price times rate
and press the Enter key.

PRINT 12.95*.05

You'll see .6475 printed as the exact tax. This .6475 is rounded off to .65
by line 30. You can also see that the trailing 0 of the TOTAL is now left off
in printing output. Instead of $ 13.60, the computer leaves off the trailing
0 in printing 13.60.

Also try as a direct command

How Much Can You Store in a String? 53

PRINT PRICE*TAX_RATE

You'll see the same result of .6475 printed.
The reason this occurs is that variables retain their last value when

the program ends or is interrupted. You can always find the latest value of
a variable by just doing a PRINT or even calculations as shown here.

You can even change the value of a variable by a direct command. For
example, do a

PRICE=50

PRINT 2*PRICE

100

and you'll see a 100 printed since that is the value of 2 *PRICE.
Besides numeric variables, you can also print string variables. For

example, enter the following

10 PRICE=9.95

20 TAX_RATE=.05

30 TAX=INT(100*TAX_RATE*PRIC
E+.5)/100

40 TOTAL=PRICE+TAX

50 PRI$="PRICE=$"

60 TAX$=,,TAX=$,,

70 T0T$="T0TAL=$"

80 PRINT PRI$;PRICE;TAX$;TAX
;T0T$;T0TAL

When you run this you'll see the same output as the previous program of
9.95 for the price, .5 for the tax, and 10.45 for the total. Lines 50-70 define
string variables which are printed along with numeric variables in line 80.
Sometimes, you may use the same string of characters several places in
the program. You'll conserve memory and do less typing if you define
string variables instead of directly printing the same strings in several
places.

Another point to note about this program is that all calculations are
now stored in variables. If you will need the results of the calculations,
such as tax and total, for later work, you'll want to store the results in
variables.

How Much Can You Store in a String?
You can store up to 255 characters in a string variable. Any charac

ters over 255 will be discarded. The resulting string is said to be trun
cated if it is limited to a certain number of characters. Truncation means
only allowing a certain number of characters.

One question you may have is how do you get 255 characters in a
string since you can only input four lines of characters? At 28 characters
per line, that's 28X4= 112 characters. And you can't even put 112 into a
string since some space must be reserved for the variable name, line

54 4-Let's Get Variable

number, quotes and " =" sign. The answer is shown in the following pro
gram. Before entering it, do a NEW command to clear the price program
out of memory by typing NEW and then pressing the ENTER key. To enter
all the "A" 's, hold down the "A" key until the computer beeps, then
replace the last "A" with a quote, ", and press ENTER.

10 A$="AAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAA"

20 A$=A$8A$&A$

30 PRINT A$

The way to make big strings is by concatenation. In line 20, we concat
enate the strings. Each A$ has 104 characters in it, so the A$ of line 20
should have 104*3 = 312 A's

When you run this program, you'll see there are only 255 A's. The rest
have been ignored by the computer. The final A$ from line 20 thus has
only 255 A's in it.

Chapter 5

Giving Input

Until now, the only way you've seen how to change input is to change the
program. In this chapter, you'll learn a much more convenient and easy
method to input data. We'll also discuss more efficient ways of storing
data.

Easy Input
Your computer has a simple command which lets you input data with

out having to change a program line. As you might have expected, this is
the INPUT command. Enter and run the program below. When you see
the "?" mark and hear a beep, type a "2" as shown and then press the
ENTER key.

10 INPUT N1

20 PRINT N1

RUNI

? 2i

2

** DONE **

When the computer executes the INPUT statement of line 10, it
sounds a beep and prints a question mark. This question mark is to
prompt you to enter input. The input you give is assigned to the
numeric variable Nl in line 10. Then the computer executes line 20 and
prints the value of Nl, in this case, 2. Run the program for each of the
following input values and you'll see them printed out each time: 25,
100.865, 1000000000.

Now run the program again for an input with one more zero, of
10000000000, and you'll see the answer printed in exponential notation
of1.E+10. Also, try inputting a number with commas to separate digits.
For example, enter 1,000. The message

* WARNING:

INPUT ERROR IN 10

TRY AGAIN:

will appear because a comma cannot be part of a number in BASIC. How
ever, you'll get this same error message if you try to input an alphabetic
character or other printable symbol not part ofa number. For example, try

55

56 5-Giving Input

to enter an "A" and you'll see this same warning. You can enter numbers
in exponential notation such as 1.23E3, -7.69E-8. These will be printed as
1230 and -.0000000769 respectively.

Now let's add a few statements to this program so that it does some
thing a little more useful than print the input number. Add these lines and
then run as shown to add 2+10.

30 INPUT N2

40 PRINT N2

50 PRINT "SUM=";N1+N2
RUN

? 2

2

? 10

10

SUM= 12

** DONE **

Line 30 prompts you for the second number, N2. Line 40 prints N2
while line 50 prints the sum of Nl and N2. Every time you run this pro
gram, you'll be asked to input two numbers and then the program will
print the result. You can easily see how this program can be expanded to
print any math operation.

When you write a program to ask for input, it's always a good idea to
prompt the user as to what is needed for input. For example, you could
add lines like

5 PRINT "FIRST NUMBER="

25 PRINT "SECOND NUMBER="

When you run the program for inputs of 2 and 10 you'll see

RUN

FIRST NUMBER=

? 2

2

SECOND NUMBER=

? 10

10

SUM= 12

** DONE **

You can get a different appearance by adding a semicolon to the ends
of lines 5 and 25. When you run, you'll see

RUN

FIRST NUMBER=? 2

2

SECOND NUMBER=? 10

EasyInput 57

10

SUM= 12

** DONE **

Notice that by adding the semicolon at the end of lines 5 and 25, the fol
lowing question marks from the input statements of lines 10 and 30 are
printed immediately following the equal signs.

However, there's an easier way of writing this program. You can
include the text with the INPUT rather then on a separate line. To show
this, first enter a NEW command to delete the program from memory. Then
enter and run as follows.

10 INPUT "FIRST NUMBER=":N1

20 INPUT "SECOND NUMBER=":N2

30 PRINT "SUM=";N1+N2
RUN

FIRST NUMBER=2

SECOND NUMBER=10

SUM= 12

** DONE **

In lines 10 and 20, the input prompt is enclosed in quotes, then the
name of the variable follows a colon. Also, notice that when run, a ques
tion mark does not automatically appear when an INPUT statement is exe
cuted. The question mark only appears if there is no input prompt. If you
want a question mark, you'll have to include it as part of the input prompt.
For example,

10 INPUT "FIRST NUMBER=?":N1

Another way of writing this program that's even shorter is shown fol
lowing. First enter a NEW command. Then enter and run the following
program as shown.

10 INPUT "FIRST,SECOND NUMBE
R=":N1,N2
20 PRINT "SUM=";N1+N2
RUN

FIRST,SECOND NUMBER=2,10
SUM= 12

** DONE **

Notice that although only one input prompt is allowed on an INPUT,
you can include more variables. This variable list has the variables sepa
rated by commas. When you input the numbers during the run, just sepa
rate the input values by commas also. If you try inputting only one value
and pressing ENTER, you'll get the error message

58 5-Giving Input

* WARNING

INPUT ERROR IN 10

TRY AGAIN:

Likewise, if you try separating the input values by a 4t;" or other non-
comma symbol, you'll get this error message.

If you're ever trying to give a program input variables and it won't
accept them, you'll be stuck on the INPUT statement unless you press
FCTN and CLEAR. This halts the program and you can then try to find out
what's wrong by looking at the INPUT statement.

You can also input strings by themselves or with numeric variables.
First, enter a NEW to delete the current program. Then enter the following
and run

10 INPUT "FIRST,LAST NAME ":
FIRST$,LAST$
20 PRINT FIRSTS;" ";LAST$
RUN

FIRST,LAST NAME JOHN,SMITH
JOHN SMITH

Line 10 asks for the first and last name and assigns the input strings to
variables FIRST$ and LAST$. Notice the space after the "NAME" in line
10. Without this space, the "J" of "JOHN" would be printed immediately
after the "E" of NAME. You'd see

FIRST,LAST NAMEJOHN SMITH

An alternative would be

10 INPUT "FIRST,LAST NAME?":
FIRST$,LAST$

However, a space after the question mark is still helpful when you read the
input prompt.

You can also surround the input strings with quotes and you'll see the
same output. For example,

RUN

FIRST,LAST NAME "JQHN","SMIT
H"

JOHN SMITH

** DONE **

The quotes are optional except when you want to input quotes, com
mas, leading spaces, or trailing spaces. For example, try these

RUN

FIRST,SECOND NAME "J0HN,",SMIT
H

JOHN, SMITH

** DONE **

Easy Input 59

RUN

FIRST,SECOND NAME " JOHN","S
MITH "

JOHN SMITH

In the first example above, a comma is included after JOHN. In the
second example, three leading spaces are input before "JOHN" and two
trailing spaces are input after "SMITH"

Likewise you can include quotes

RUN

FIRST,LAST NAME """J0HN""",S
MITH

"JOHN" SMITH

** DONE **

Here's an example of a program which combines string and numeric
input. First enter a NEW command, and then enter and run the following
program.

10 P$="FIRST,LAST NAME,SALAR
Y="

20 INPUT P$:FIRSTS,LAST$,SAL
30 PRINT :"EMPLOYEE":

40 PRINT LASTS;",";FIRST$
50 PRINT"SALARY=";SAL
RUN

FIRST, LAST NAME,SALARY=JOHN,
SMITH,1000

EMPLOYEE

SMITH,JOHN
SALARY= 1000

** DONE **

Line 10 defines a string variable which is used as the input prompt in
line 20. Line 20 inputs the first name, last name, and salary. Line 30
prints a blank line before EMPLOYEE to make it easier for people to read
the program's output. Lines 40 and 50 then print the employee name and
salary.

From this example, you can see how the same type of program can
keep track of inventory, recipes, record collections and any other items. In
a store, this type of program could record the item, price and then total cost
after taxes.

For example, enter the following new program to print an item name
and total price for a sales tax of 5 %.

60 5—Giving Input

10 TAX=.05

20 INPUT "ITEM,PRICE=?":ITEM
$,PRI
30 PRINT ITEMS;" $";PRI+TAX
*PRI

Now run this as follows

RUN

ITEM,PRICE=?BREAD,.40
BREAD $.42

** DONE **

Now run the program again for flour at 1.45, and you'll get $ 1.5225 as
the final price plus tax. Just as in the sales tax example of the previous
section, let's round the result off to two decimal places by replacing line 30
with

30 PRINT ITEMS;" S";INT(100
*(PRI+TAX*PRI)+.5)/100

When you run this for flour at 1.45, the answer is rounded off to the
nearest cent and you'll see $1.52.

Let's Make Money
Now that you understand INPUT, let's look at a few practical programs

involving money. For example, suppose you put $1000 into a bank which
pays 12% interest. How much will you make in three years?

Let's assume the bank pays interest only once a year. So after the first
year, you have

1000+1000*.12=1120

Try the above calculation in direct mode with a PRINT command to check
the calculations. The amount you invested was the principal of $1000.
Your interest after one year was the principal times the interest rate of
12%. So the interest you earned was

1000*.12=120

where the percent interest is converted to a decimal, .12. The interest of
120 is added to your original principal of 1000 to give your new principal
of 1000+120=1120.

What about the second year? Now your principal is $1120 and so

1120+1120*.12=1254.4

For the third year, you have

1254.4+1254.4*.12=1404.928

Again, you might check these calculations with a PRINT command.

Let's Make Money 61

By now you can see a pattern forming. In fact, there is an easy formula
to calculate this for three years. Try the following

PRINT 1000*(1+.12)*<1+.12)*(
1+.12)

and you'll get 1404.928 just as before.
An easier way of writing this formula is with exponents. Try

PRINT 1000*<1 + .12)A3

The exponent of 3 is used because the same factor of 1 +. 12 appears three
times in the calculations.

The formula above is very convenient in calculating the total amount
you've earned. Suppose you want to know how much you'll make in 20
years. Just enter

PRINT 1000*(1 + .12)A20

and you'll see

9646.293093

Of course, just as with the other examples of dollars and cents calcula
tions, you may wish to round the results off to two decimal places.

Using this formula, it's easy to write a program to calculate the
amount you can earn. Enter

10 INPUT "PRINCIPAL,INTEREST
RATE (%),YEARS=":PR,IN,YE

20 TOT=PR*(1+IN/100)AYE
30 PRINT "TOTAL=$";INT(100*T
OT+.5)/100

Line 10 asks you to input the principal, interest rate as a percent, and
number of years. These values are stored in the variables PR, IN, and YE
respectively. Line 20 does the calculation and stores the total amount
you've earned in the variable TOT. Notice that since the interest rate was
input as a whole number, it must be divided by 100 to convert it to a deci
mal. Line 30 then prints the result after rounding the total amount to the
nearest cent.

Now run this program as shown for a principal of 1000, at 12% inter
est for 20 years:

RUN

PRINCIPAL,INTEREST RATE <%),
YEARS=1000,12,20
T0TAL=$ 9646.29

** DONE **

You may also wish to calculate the total amount you've earned by sub
tracting your original principal. So just add this line

62 5—Giving Input

40 PRINT "AMOUNT EARNED=$";T
OT-PR

and run it as shown.

RUN

PRINCIPAL,INTEREST RATE (%),
YEARS=1000,12,20
T0TAL=$ 9646.29

AMOUNT EARNED=$ 8646.293093

** DONE **

Notice that the amount earned was not rounded off to the nearest cent. Try
changing the program to do this. You could either define a new variable for
the amount earned and round it off or just round off TOT-PRINCIPAL in
line 40 like this

40 PRINT "AMOUNT EARNED=$";I
NT(100*(TOT-PR)+.5)/100

Now you'll see the amount earned of $8646.29, which is rounded to the
nearest cent.

How to Make More Money
Up to this point, we've assumed the bank pays interest only once a

year. This was done in order to simplify the program. However, banks nor
mally pay interest on a monthly basis. In fact, some banks even pay daily
interest. Paying more often than once a year is called compound interest
because your interest builds up more than once a year. The time between
interest payments is called the period. Let's see how to make our program
handle interest payments more often than once a year. The way to do this
is to divide the interest rate by the number of payments per year. For
example, if the yearly interest rate is 12%, then the monthly interest rate is
1%. This monthly interest rate is the interest rate you use in computing the
compound interest.

Change the program by changing lines 10 and 20 as follows.

10 INPUT "PRINCIPAL,INTEREST
RATE (%),YEARS,PERI0DS/YEAR

=":PR,IN,YE,PER
20 TOT=PR*(1+IN/100/PER)A(YE
*PER)

Line 10 now asks how many periods there are per year. Line 20 calculates
the interest per period by

IN/100/PER

For example, if IN= 12, then the monthly interest is .01. Also, the total
number of periods must be used in the exponent, so this is

How's Your IRA? 63

YE*PER

For example, if there are 12 periods per year and 5 years, then there are 60
monthly payments. Likewise, with daily interest, there are 365.25 periods
per year (allowing 1 day for a leap year every four years on the average). Of
course, your bank only pays the extra day's money on a leap year so you'll
have to wait four years to get the extra day's interest.

Let's run the program for a principal of 1000, at 12% interest per year,
for 5 years at 12 periods per year. The result is $1816.7 for the total. Now
try it for a daily interest with 365.25 periods per year. Now the total is
$1821.94. As you can see, the daily rate doesn't earn you that much more
than the monthly rate. Just for fun, see how much money you'd earn for
an hourly interest rate, and then for a rate compounded every second.
You'll be amazed at how little more you earn. Although it sounds great to
earn hourly or secondly interest, your computer can really help you figure
out the true facts and make the best decision. For example, what's better:
12% interest compounded monthly or 10% interest compounded daily?
You can really profit by using your computer to analyze investments like
this.

How's Your IRA?

As another practical application, let's see how much money you can
make with an Individual Retirement Account (IRA). With an IRA, an
employed person can contribute up to $2000 a year and not pay any taxes
until the money is withdrawn. On a regular savings account, you do pay
taxes on the interest. So the formulas we developed for compound interest
work for an IRA if you make a single contribution. However, with an IRA,
you can make additional contributions every year and so your money
grows much faster.

The following program is a modification of the compound interest pro
gram. You may wish to save the compound interest program before mak
ing the following changes for an IRA. If you have a suitable cassette
recorder hooked up, just type in the SAVE command

SAVE CS1

press ENTER, and follow the instructions given by the computer for sav
ing programs. If there is no program in memory, the error message "*
CAN'T DO THAT" will appear. To load a program back into your com
puter from cassette, enter the OLD command

OLD CS1

press ENTER, and follow the instructions from your computer. The follow
ing IRA program computes how much you'll earn under an IRA if you
invest the same principal every year. Also, note that the program lines are
longer than the 28 columns shown on your screen. Just enter the lines as
you normally do. These lines are shown longer because it's easier for you

64 5—Giving Input

to understand what is being entered. From now on, we'll use these longer
lines.

10 INPUT "PRINCIPAL,INTEREST RATE (%),YEARS,PERIODS/
YEAR=":PR,IN,YE,PER
15 IN=IN/100/PER

20 T0T=PR*((1+IN)A(YE*PER+1)-(1 + IN)APER)/IN

30 PRINT "TOTAL=$";INT(100*TOT+.5)/100
40 PRINT "AMOUNT EARNED=$";INT(100*(TOT-PR*YE)+.5)/100

Line 10 asks the information needed by the program. Line 15 computes the
decimal interest per period and assigns it to the variable IN. This variable
was defined for convenience. If you look at line 20, which computes the
total, you'll see IN is used three times. So using IN saves your typing in the
expression

IN/100/PER

three times in line 20. Line 30 prints the total while line 40 shows how
much you actually earned. In line 40, notice that the principal, PR, is mul
tiplied by the number of years. This is because you've invested the same
amount every year. For example, if you invest $2000 for 20 years, then
you've put in $40,000.

Now run this program for a principal of 2000, 12% interest, 20 years
and 12 periods per year. You'll see a total of $1974930.83 and an amount
earned of $1934930.83. So your $40,000 investment over 20 years gets
you $1,934,930.83.

You should save the programs that you enter. In many cases we'll use
these as building blocks to add more features as we discuss new commands.
Rather than overwhelming you with a long, complete program, we'll build
up the program in easy to understand stages. For example, the Database
and R-Walk, programs discussed in later chapters are built up in stages. As
we cover new commands, you'll see how to enhance these programs.

Can You Afford It?

If you've ever wondered whether you could afford payments on a loan,
then this program can help. For example, suppose you want to buy a car
and need an $8000 loan. What will your monthly payments be for differ
ent interest rates and periods/year? Enter the following program or just
modify the IRA program using the editing keys so that it looks like this. As
before, note that the statements below are written out with more than 28
columns so that you can read them more clearly.

10 INPUT "PRINCIPAL,INTEREST RATE (%),YEARS,PERIODS/
YEAR=":PR,IN,YE,PER
15 IN=IN/100/PER

20 INC=(1+IN)A(YE*PER)

25 PAY=PR*IN*INC/(INC-1)

30 PRINT "PAYMENT=$";INT(100*PAY+.5)/100

Can You Afford It? 65

and delete line 40. To delete a line, just type in the line number and press
the ENTER key.

Now run this program for the example below.

RUN

PRINCIPAL,INTEREST RATE (%),
YEARS,PERIODS/YEAR=8000,12,3
,12
PAYMENT=$ 265.71

As you can see, this program easily calculates the monthly payment for
you as $265.71. By trying different interest rates, you can determine what
interest rate you need for a payment you can afford.

In this program, line 20 defines a variable for convenience called INC.
This stores the interest calculated for the total number of periods,
YE*PER. Line 25 calculates the payment while line 30 prints the result.
You may also wish to simplify your input of data. Since car loans are usu
ally figured on a monthly basis, you can eliminate that input request and
always set PER= 12.

Your computer can also help you get the best bargain in a loan by also
revealing how much the loan will ultimately cost you. Just because your
monthly payments on one loan are lower than another doesn't mean that
loan is less. If the payments are spread out over a longer time, you may
pay more. Let's change this program to reveal the total amount we'll pay
and the total interest. Add these lines.

40 PRINT "TOTAL COST=$";INT(100*YE*PER*PAY+.5)/100
50 PRINT "INTEREST=$";INT(100*(YE*PER*PAY-PR)+.5)/100

Line 40 calculates the total amount you pay by multiplying the total
periods, YE*PER, by your monthly payment, PAY. This term

YE*PER*PAY

is the total amount you've paid.
Line 50 calculates the interest on your loan by subtracting the princi

pal from the total amount you've paid. The difference is the interest on the
loan.

Run this program for the same example of 8000 at 12% for 3 years at
12 periods per year. In addition to the monthly payment of$265.71, you'll
also see

TOTAL COST=$ 9565.72

INTEREST=$ 1565.72

which shows how much you'll ultimately pay and the interest charge.
Now let's comparison shop. Suppose you can get a 10% loan for 5

years. Are you really better off? Let's try it and see as shown below.

66 5—Giving Input

RUN

PRINCIPAL,INTEREST RATE (%),
YEARS,PERIODS/YEAR=8000,10,5
,12
PAYMENT=$ 169.98

TOTAL COST=$ 10198.58

INTEREST=$ 2198.58

So although your monthly payments are almost $100 less with the
10% loan than the 12% loan, you must pay back $632.86 more in
interest.

Chapter 6

Going Automatic

One of the biggest advantages of a computer over a simple calculator is
that the computer can execute statements automatically. That is, the com
puter can make decisions and go to certain statements without your con
tinual supervision. In this chapter, you'll learn how to make your
computer operate automatically.

Go To It

In the programs you've seen, the program did its thing and then
ended. It's usually more convenient for the program to ask you for more
input so that you don't have to enter a RUN each time. You can easily do
this with the GOTO statement. Just use GOTO followed by the line
number you want the computer to go to.

To see how GOTO works, first delete any existing program in memory
with a NEW command. Then enter this simple program.

10 INPUT MFIRST,SECOND NUMBER=?":N1,N2
20 PRINT "SUM=";N1+N2
30 GOTO 10

Line 10 asks you to enter two numbers which are assigned to the vari
ables Nl and N2, respectively. Line 20 prints the sum. Line 30 tells the
computer to go to line 10 because 10 is the argument of GOTO. Now run
this program for the example below, where you input 5 as the first number
and 10 as the second.

RUN

FIRST,SECOND NUMBER=?5,10
SUM= 15

FIRST,SECOND NUMBER=?

When you run the above example, the computer will ask you for input
from line 10 and print the sum in line 20. Next the computer executes line
30 which directs it to go back to line 10. When the computer goes back to
line 10, it asks you for input again.

You can now enter two more numbers and the computer will print
their sum and then go back to line 10. This process of the computer asking
for input and printing the sum could go on forever. The computer is run
ning the program automatically. You don't have to enter RUN every time.

67

68 6-Going Automatic

At this point, you may also be wondering how you can stop the pro
gram. There are several ways. First, you could turn off the power, or press
the FCTN and QUIT keys. However, you would lose the program since the
contents of the computer's memory are erased under these conditions.

Let's Continue

Another way to stop the program is to use FCTN and CLEAR. Try this
and you'll see the message

* BREAKPOINT AT 10

appear on your screen. This BREAKPOINT message means that the pro
gram has stopped at line 10. If you'd like to continue the program now,
just type in the word CONTINUE or its abbreviation CON, and press the
ENTER key. The computer will continue from the breakpoint line 10.

There's a big difference between starting the program with a CON
TINUE rather than the RUN. Stop the program with a FCTN and CLEAR
and then enter the command

PRINT N1;N2

If you haven't input any more numbers from the original 5 and 10
you'll see the 5 and 10 printed. If you have input other numbers, the latest
values for Nl and N2 will be printed.

Now RUN the program again, and when the computer asks for the first
and second number, press the FCTN and CLEAR keys. Now do a PRINT
N1;N2 again. This time they will both be 0 since the RUN command sets
the value of all numeric variables to 0, and sets all string variables to no
characters—the null string. Just as numeric variables are initially set to
zero, all string variables are set to have no characters. For example, enter
the direct command

PRINT "*";X$;"*"

and you'll see " **". The left asterisk is printed, then the null string of X$,
i.e., no characters, and finally the right asterisk is printed. The asterisks
are used here to delimit the string for X$. The term delimit means to
define the limits. Without the asterisks, you might argue that X$ con
tained a blank. However, a blank is a character and so you would have
seen " * *", i.e., a blank space between the asterisks.

You can continue from a program that's been halted with CLEAR if
you make no changes in the program. Try this. First input 5 and 10 again
and then halt the program with FCTN and CLEAR when the computer
requests input again. Now add the line

25 PRINT

and then try a CON. The message

* CAN'T CONTINUE

Getting Control 69

will appear because the program has been changed.
You'll find it convenient in debugging programs to use CLEAR. The

term debugging means to find and to fix the errors in a program.
Another way of saying this is that a program has bugs or problems in it.
So when you debug, you get the bugs out. By interrupting a program
with CLEAR, you may check the values of suspicious variables and com
pare them to what you think they should be. If the values of the variables
are different, then you can try to figure out what the problem is. By
checking the values and continuing the program until bad values occur,
you will eventually find the bad program lines. Another way of checking
is to add lines to print the value of suspicious variables. After the pro
gram is debugged, just delete these debugging print lines. In a later chap
ter we'll discuss other powerful techniques for debugging that your
computer has available.

Caught in a Loop
When you tell the computer to do a GOTO, you should be sure the line

number makes logical sense. For our example of adding two numbers, the
GOTO 10 does make sense. However, suppose you change line 30 to

30 GOTO 25

and run the program for inputs of 5 and 10. You'll see the sum of 15
printed and then everything goes scrolling up the screen. In a few seconds,
the screen is entirely blank. What's happened?

In this case, line 30 tells the computer to go to line 25 and print a
blank line. The computer executes line 25 to print a blank line, then goes
to line 30 which tells it to go back to line 25 and print a blank line. The
computer jut keeps on executing lines 25 and 30. When a computer keeps
executing the same lines over and over again with no way of stopping, the
computer is said to be caught in a loop. The computer keeps looping back
through the same lines all over again. To stop, do a FCTN and CLEAR.

The computer doesn't care that it keeps executing the same lines over
and over again. It's perfectly happy doing exactly what you tell it even if
the instructions make no logical sense. You must supply the intelligence to
make the computer accomplish a useful purpose.

The GOTO is very convenient in many cases. You may wish to put it at
the end of the money programs we've discussed. Also, it helps you to read
the output if you put a PRINT line or two before the GOTO.

Getting Control
The GOTO is an example of an unconditional jump or branch to

another line. The term unconditional jump means that whenever the com
puter comes to a line with a GOTO, it always goes to the line number speci
fied by the GOTO. However, there is a variation of the GOTO that provides
a conditional jump. For example, enter the following program.

70 6-Going Automatic

10 INPUT "FIRST,SEC0ND NUMBER=?":N1,N2
20 PRINT "SUM=";N1+N2
30 INPUT "ENTER 1 TO C0NTINUE;2 TO END ":D
40 ON D GOTO 10,50
50 END

Now run this program for Nl = 5 and N2= 10. After the sum is printed,
enter a 1 as input for D in line 30. You'll then see the program ask you for
the first and second numbers again. Enter any two numbers and you'll see
their sum printed. Now when the computer asks whether you want to end
the program, input a 2, and you'll see the program end. For example

RUN

FIRST,SEC0ND NUMBER=?5,10
SUM= 15

ENTER 1 TO C0NTINUE;2 TO END
1

FIRST,SEC0ND NUMBER=?2,2
4

SUM= 4

ENTER 1 TO C0NTINUE;2 TO END
2

** DONE **

Depending on the value of D, line 40 controls which line the computer
will execute next. The command used in line 40 is the ON GOTO. Follow
ing the ON can be any numeric expression. If the numeric expression is 1,
the computer will execute the first line in the list after the GOTO. So when
D= 1, the computer executes line 10. If D=2, the computer executes the
second line number after the GOTO. In this case, the computer goes to line
50 and the program ends.

An END statement always ends the program execution. The END can
be located anywhere in the program. That is, the END does not have to be
the highest line number. Another statement that will end execution is
STOP. Try substituting STOP for END and you'll see the program act the
same as it did for END.

What happens if you don't enter a 1 or 2? Let's see. Run the program
again for any two numbers you want. Then when the computer asks you
for a 1 or 2, enter a 1.4. You'll see the computer just continue with the
program. Enter two more numbers for the sum. Now when the computer
asks for a 1 or 2, enter a 1.5. You'll see the program end. These results
occur because the value of the numeric expression is rounded off by the ON
GOTO to the nearest integer. So 1.4 is rounded off to 1 and the program
goes to line 10. The 1.5 is rounded offto 2 and the program goes to line 50
and ends.

The numeric expression can be anything which yields a number. For
example, you could use a constant such as 1 as in

40 ON 1 GOTO 10,50

Let's Be Logical 71

to make the program always go to line 10. However, this is the same as an
unconditional jump like

40 GOTO 10

and so it's more efficient to use a GOTO. You can use a constant
numeric expression like

40 ON 1+1 GOTO 10,50

and the computer will always end the program since 1 + 1=2 and so the
ON 2 GOTO 10,50 always goes to line 50 to end. It's more efficient to use a
GOTO directly in this case. Of course, you can use a numeric expression
involving variables, such as

40 ON 2*D+1 GOTO 10,50

But be careful if you input a value for D that causes 2*D+1 to exceed
2 or be less than 1. For example, with D = 1, you'll get 2*1 + 1=3 and
you'll see the error message

* BAD VALUE IN 40

Let's Be Logical
Besides the arithmetic operators, your computer also has some logi

cal operators. The logical operators test whether a relation, also called
a relationship, is true or false. For example, try this direct command

PRINT 1=1

and you'll see a

-1

printed. Also try the following PRINT commands and you'll see the results
shown below each PRINT.

PRINT

-1

2=2

Meaning
2 equals 2

PRINT

-1

35.9>18 3.59 is greater than 18

PRINT

-1

-3<-2 -3 is less than -2

PRINT

-1

2+3>8/4 5 is greater than 4

PRINT

-1

4<>3 4 is unequal to 3

72 6-Going Automatic

As you can see, whenever the relationship is true, the computer prints
a value of -1. This value of -1 is the computer's way of saying that the
logical relationship is true. The computer can test these relational
operators.

Operator Meaning
= equal
> greater than
< less than
<> unequal
< = less than or equal to
> = greater than or equal to

You can also test variables. For example, first do the direct commands

X=3

Y=4

then the PRINT

PRINT XOY

-1

PRINT X<Y

-1

PRINT X+1=Y

-1

The real value of relational tests lies in programs where the values of vari
ables are being tested.

Besides numeric variables and numbers, you can also test string vari
ables and characters. For example

Meaning
PRINT "A"="A" the character "A" equals the character t4A"
-1

PRINT "A"<>"B" the character 4tA" is unequal to the character
-1 "B"

To test string variables, first define

X$= "TOM"

Y$= "DICK"

and then

PRINT X$=X$

-1

since ,4TOM" does equal "TOM." Also

PRINT XOY

-1

Let's Be Logical 73

is true since 4TOM" is not the same as "DICK."
So far we've looked at expressions which are all true. Now let's look at

some false relationships. Try the following.

PRINT 1=3

0

PRINT X=Y

0

PRINT 2*X<Y+1

0

PRINT "A">"B"

0

Notice that in the last example above, the computer says that the char
acter 44A" is not greater than the character 44B". Try

PRINT "B">"A"

-1

and you'll see that the computer believes 44B" is greater than 44A." The
reason this occurs is because the computer actually compares a code
number for each letter. These codes are defined by the American Standard
Code for Information Interchange (ASCII). The codes for the printable sym
bols of your BASIC are in the Appendix of ASCII Character Codes. For
example, the code for 44A" is 65, and the code for 44B" is 66. In testing
44A" = 44B" the computer really checks whether 65=66 is true or false.

Now try

PRINT "AA">"B"

0

and you'll see the result of 0 which means false. In comparing strings of
unequal length, the computer compares each character of the shorter
string against the longer and stops when there are no more characters. So
44AA," 44AB," etc., are all considered less than 44B."

To test string variables, try

PRINT X$=Y$

0

and the result is 0 since "TOM" does not equal "DICK."
You can use the relational operators to shorten the program which

prints the sum of numbers. For example, try this

10 INPUT "FIRST,SECOND NUMBER=?":N1,N2
20 PRINT "SUM=";N1+N2
30 ON 1-(N1=0) GOTO 10,40
40 END

and run for 5,10. Then when the program asks for input again, enter 0,0
and you'll see the program end after printing a sum of 0.

74 6-Going Automatic

In this program, line 30 checks if the first number input is a 0. If so,
then Nl =0 is true and the computer returns the value -1 for it. Then the
computer evaluates the rest of the relational expression in line 30 as l-(-
1)= 2 and so goes to the second statement after the GOTO, which is line
40. However, if Nl is not 0, then Nl =0 returns a value of 0 and the rela
tional expression is 1-0 = 1. Now the computer goes to the first line number
after the GOTO in line 40, which is line 10.

When you read a program using relational operators, don't be misled
by appearances. Remember that line 20 in the following program

10 Y=0

20 X=Y=0

30 PRINT X;Y

does not set X to 0. Rather, the relation Y=0 is evaluated as true by the
computer and so X is set to -1 in line 20. Try this program and see.

If This Is True

Your computer has a very general test for relationships called the IF
test. Enter the following program and run it for 5,10 and then 0,0. You'll
notice the program ends when the 0,0 is input.

10 INPUT "FIRST,SECOND NUMBER=?":N1,N2
20 IF N1=0 THEN 50
30 PRINT "SUM=";N1+N2
40 GOTO 10
50 END

Line 20 is the IF test. The relationship following the IF is tested. If the rela
tionship is true, then the computer executes the line number which follows
the THEN. In this case, when Nl =0 is true, the computer executes line 50
next. However, if the IF relationship is false, the computer just executes
the line following the IF. In this case, if Nl =0 is false, the computer exe
cutes line 30 after line 20. Then it executes line 40 and goes back to line
10. *

The IF is called a conditional branch because the program execution
is said to branch or to go to a line which depends on the relational condi
tion after the IF. This is the same concept as for the ON GOTO. However,
the IF test allows you to write the conditional test in a more natural way
than the ON GOTO case.

You can even specify a different line number for the program to go to if
the test fails. That is, the program does not have to automatically execute
the line following the IF if the test fails. You can do this with the ELSE. For
example, add these lines

20 IF N1=0 THEN 50 ELSE 60
60 PRINT "PR0DUCT=";N1*N2
70 GOTO 30

If This Is True 75

This new version of line 20 has an ELSE in it. Now if Nl is not 0, the
program goes to line 60 after line 20. Line 60 prints the product of Nl and
N2. Next line 70 directs the computer to go to line 30 and to print the sum.

When you use an IF test, remember that some numbers cannot be rep
resented exactly, so this can lead to errors. For example, as you saw in
Chapter 2, the square root of 50 cannot be exactly stored in the computer.
Enter and run the following program

10 PRINT 50-SQR(50)*SQR(50)

20 IF 50=SQR(50)*SQR(50) THEN 50
30 PRINT "NO"

40 END

50 PRINT "YES"

Line 10 prints the difference between 50 and the square of the square
root of 50. When you run the program, line 10 prints 7.E-12. Line 20
checks if 50 equals the square of its square roots. As you saw from line 10,
the numbers are not exactly the same, so the computer does not go to line
50. Instead, it executes line 30 and print "NO".

If you are doing calculations, it may be best to specify that the differ
ence is less than some amount. For example, change line 20 to

20 IF ABS(50-SQR(50)*SQR(50)X1E-11 THEN 50

The absolute value function is used in case the difference is negative. Now
when you run the program, the computer will print "YES".

If a relationship is true, the computer returns the value of -1 and goes
to the line number following the THEN. If the relationship is false, a value
of 0 is returned and the computer goes to the statement following the
ELSE. If there is no ELSE, the computer just goes to the next statement
after the IF. For example,

10 IF 0 THEN :30

20 IF -1 THEN 50

30 PRINT "NO"

40 END

50 PRINT "YES1
it

RUhI

YES

** DONE **

Since a zero is given for the relationship in line 10, the computer does
not go to line 30. Instead, it goes to line 20. Since there is a -1 for the rela
tionship, the computer goes to line 50 and prints "YES".

Now change line 20 to

20 IF 1 THEN 50

and run. You'll still see a "YES" printed. The reason this occurs is that the
computer interprets as true any non-zero relationship. So a 1, 5, 3.23, -

76 6—Going Automatic

8.6E10 or any other non-zero number will make the computer go to line
20.

To see that the relational operators rank below addition and subtrac
tion in the Order of Priorities of Operators, try the following

PRINT 3+K2

The result is 0 because the computer first adds 3+1 and then determines
that 4<2 is false. If the relational operation was done first, the result
would have been 3-1=2.

What about concatenation? Try

PRINT ,,A,,8,,B"<,,A"

and you'll see

* STRING-NUMBER MISMATCH

because the computer does the relational test first.
Since "B" is greater than "A", the computer returns the number 0 and

then tries to concatenate the character "A" with the number 0. This is
illegal and that's why you see the error message.

However, you can always force the comparison if you use parentheses.
For example,

PRINT (,,A"8"B")<"A"

gives a value of 0, because the string "AB" is not less than "A." A com
plete list ofall the operators is shown in the Appendix ofOrder ofPriorities
of Operators.

Using the IF can also show some important facts about BASIC. Enter
the following program and run it. To enter all the "9"'s in line 10, hold
down the "9" key until the computer beeps. Then delete the last two
"9"'s. Likewise, in line 30, replace the last two 9's when the computer
beeps by the term "-I". There should be 105 of the 9's in lines 10 and 30.

10 A=999
999
9

20 1=1000

30 A=999
999
9-1

40 1=1-1

50 IF I>0 THEN 30

This is just a test program. Line 10 defines the variable A as a very big
number composed of many "9"'s. Line 20 initializes the variable I to
1000. Line 30 subtracts I from a number. Line 40 subtracts 1 from I while
line 50 checks if the value of I is greater than 0. If I is greaterthan zero, the
computer goes back to line 30 and subtracts the new value of I from the
number. This process of subtracting I goes on 1000 times. When you run

Guess My Number 77

this program, it takes about 22 seconds to complete execution. Now
replace line 30 with

30 A=A-I

and the program runs in about 13 seconds. The program runs much faster
with A=A-I because the computer does not have to convert the number
with all the nines of the original line 30 to its binary form. You can see that
to speed up programs, you should use variable names whenever possible
so that the computer does not have to convert a number into its binary
form.

Another way of speeding up the program is by replacing line 50 with

50 IF I THEN 30

Now the program takes only 11 seconds to run. The test I>0 is true when I
is unequal to zero, i.e., it gives a result of-1. However, when I = 0, the test
gives a result of 0. So the test "1=0" is the same as "I".

Guess My Number
Now let's look at a simple game using the BASIC commands you've

learned. We'll have the computer think of a random number between 1
and 10. You'll have three guesses to find the number. The computer will
give you clues as to whether your guess is too high or too low.

Enter and run the following program for guessing numbers. Note that
you will probably not get exactly the same results because of the RAN
DOMIZE statement of line 10.

10 RANDOMIZE

20 RNUM=INT(10*RND)+1

30 INPUT "GUESS MY NUMBER?":GUESS
40 IF RNUMOGUESS THEN 70

50 PRINT "YOU GOT IT!"

60 END

70 IF RNUM>GUESS THEN 100

80 PRINT "HIGH"

90 GOTO 110

100 PRINT "LOW"

110 TRIES=TRIES+1

120 IF TRIES<3 THEN 30

130 PRINT "SORRY,TOO MANY TRIES.THE NUMBER WAS";RNUM
RUN

GUESS MY NUMBER?5

LOW

GUESS MY NUMBER710

HIGH

GUESS MY NUMBER77

HIGH

SORRY,TOO MANY TRIES.THE NUM

78 6—Going Automatic

BER WAS 6

** DONE **

RUN

GUESS MY NUMBER73

LOW

GUESS MY NUMBER78

HIGH

GUESS MY NUMBER75

YOU GOT IT!

** DONE **

Line 10 randomizes the pseudorandom numbers for RND in line 20.
Otherwise, all the 'random4 numbers will start off such that
RNUM=6,4,6,4,3,6,3, etc. Line 20 generates a random number between 1
and 10. In developing a program with random numbers, it's always a good
idea to check some values. So temporarily, you might want to add lines

25 PRINT RNUM

27 GOTO 20

and watch some of the numbers. To stop the program, use FCTN and
CLEAR, then remove lines 25 and 27. Just type the line number and press
ENTER for each line you want to delete.

Line 30 asks you to input a number which is assigned to the variable
GUESS. Line 40 checks if the random number is unequal to your guess. If
it is unequal the computer goes to line 70. However, if the random number
does equal your guess, the computer goes to line 50 and prints "YOU GOT
IT!", and then the program ends with line 60.

If you didn't guess the number, line 70 checks if your guess was less
than the random number. If so, the computer goes to line 100 and prints
"LOW." If your guess was greater than the random number, the computer
goes to line 80 after line 70 and prints "HIGH." Then the computer goes to
line 110.

Line 110 adds 1 to the number of tries you've made at guessing the
number. Line 120 checks if you've made less than 3 tries. If so, the com
puter goes back to line 30 so that you can try another guess. If tries equal
3, the computer executes line 130 and the program ends.

There are several ways you might like to try to improve the program.
After the game ends, the computer could ask if you would like another
game, so that you don't have to keep entering RUN after every game.
Another improvement would be to have the computer keep track of how
many games you've won and lost during a session of play. You could even
program the computer to also display the name and high score of players.

There's one other important filing to realize in designing games. Ifthe
player loses, don't be too harsh. If you add a line like

130 PRINT "YOU DUMMY-YOU BLEW IT"

The Average Way 79

you'll make the player feel pretty bad. Remember, the goal of a game is to
have fun.

The Average Way
As another example of INPUT, IF and GOTO, the following program

calculates the average of numbers. The average of a group of numbers is
found by dividing the sum of the numbers by how many numbers there
are. Enter and run the program for the examples shown. The special
number -999999 stops input and commands the computer to print the
average.

10 INPUT "NUMBER=?":NUMB
20 IF NUMB=-999999 THEN 60
30 SUM=SUM+NUMB

40 ITEMS=ITEMS+1

50 GOTO 10

60 PRINT "AVERAGE=";SUM/ITEMS
RUN

NUMBER=?1

NUMBER=?2

NUMBER=?3

NUMBER=?4

NUMBER=?5

NUMBER=?-999999

AVERAGE= 3

** DONE **

RUN

NUMBER=20.35

NUMBER=-8.2

NUMBER=118.9

NUMBER=-999999

AVERAGE= 43.68333333

** DONE **

Line 10 asks you to input a number and assigns it to the variable NUMB.
Line 20 gives you an easy way to end input of the numbers. When you
have finished giving all the numbers, enter the special value of -999999.
When the IF test of line 20 finds this number, the computer goes to line 60
and prints the average. If the IF test does not find the -999999, then the
computer executes line 30 which adds the latest number input to the sum
of the previous numbers. The sum of all the numbers is stored in the varia
ble SUM. Then the computer executes line 40 which increases the variable
ITEMS by 1. This variable keeps track of how many numbers you have

80 6—GoingAutomatic

input. Line 60 calculates and prints the average by dividing the sum of the
numbers, SUM, by how many were input, ITEMS.

You can use any special number you want in place of-999999. Just
pick one that is not likely to occur during calculations. For example,
another good choice is 1E99. This is such a big number that there is very
little chance of its occurring in data.

You may wish to expand this program by having the program ask if
you want to run again after the average is printed. Just be sure to set SUM
and ITEMS to zero before doing another average. Remember that RUN sets
all variables to zero but you will have to provide for this in your program if
you don't start it with a RUN each time.

Control Your Loop!
Your computer has a couple of commands which will let you easily

control loops. These are the FOR and NEXT. To see how these work, first
delete any existing program with the NEW command. Enter the following
program to print the numbers from 1 to 9 and their squares.

10 FOR 1=1 TO 9

20 PRINT I;I*I
30 NEXT I

When you run this, you'll see

RUN

1 1

2 4

3 9

4 16

5 25

6 36

7 49
8 64

9 81

** DONE **

The FOR statement of line 10 sets up a loop. The NEXT statement of
line 30 completes the loop. The variable I is called the control variable or
index variable. The control variable can have any legal name. For histor
ical reasons, the variable names I, J, K, L, M, etc. are commonly used for
the loop variables. If the name of the variable doesn't matter, then you
may want to use I, J, K, etc. or any other name you want. The FOR state
ment says to initially set I to 1. Line 20 is then executed and the value of I
and the square of I are printed. Then line 30 is executed. Line 30 increases
the value of I by 1 and checks if the loop is done. If not, the computer exe
cutes line 20 again. So the computer prints a 2 for I and then a 4 since
2*2 = 4. The NEXT statement of line 30 is executed again and I is set to 3.

Control Your Loop! 81

This process of increasing I by 1 and printing its square keeps going
until 1=9. Line 20 prints 1=9 and the square of 9. The NEXT statement
sets 1=10, determines that the loop is done, and the program ends.

The number to the left of the word TO is called the initial value. In
this example, the initial value is 1. The number after the word TO is called
the limit. If the control variable exceeds the limit, then the loop ends.
When the computer executes the NEXT statement, the control variable is
incremented. In our example, the increment is 1 and so the control varia
ble is incremented by 1 each time the NEXT is executed. The computer
checks if the control variable exceeds the limit. If so, the statement follow
ing the NEXT is executed. If not, the statement following the FOR is
executed.

To see the final value of I, do a PRINT I command and you'll see a
value of 10 printed for I. The loop ended because 9+1 = 10 exceeded the
limit of 9.

Although the increment was +1 in this program, you can use any
increment with the STEP option. To see this change line 10 to

10 FOR 1=9 TO 1 STEP -1

and run the program. Now you get

RUN

9 81

8 64

7 49

6 36

5 25

4 16

3 9

2 4

1 1

The STEP option increments the control variable in any increment you
choose. The default option of STEP is +1, which means that if you don't
explicitly give a value, the computer assumes STEP= 1. So the statements

10 FOR 1=1 TO 9 STEP 1

and

10 FOR 1=1 TO 9

mean the same. Using STEP, you can select positive or negative incre
ments, and even decimal steps. For example, try a STEP of -.5 and you'll
see the control variable decrease in steps of-.5.

You can use any numeric expression or variable for the initial value,
limit, and step. For example, try

STEP -1/2

and you'll get the same results as STEP -.5. Likewise, try

82 S-Going Automatic

10 FOR 1=1/2+1/2 TO 3*3 STEP .1

and you'll see the computer print the squares in increments of .1. This
gives the same result as

10 FOR 1=1 TO 9 STEP .1

The values used for the initial value, the limit and the increment of a
FOR-NEXT loop are called parameters. A parameter is a quantity which
controls something, but which can be changed. For example, the area of a
circle equals pi times the radius squared. Pi is a constant whose value can
not be changed. However, if you are given the relations

A=2

Y=A*X

then the "A" is a parameter, since its value can be changed and yet it does
control the value of Y. The value of a parameter is fixed during a calcula
tion, but can be changed afterwards.

As another example of FOR-NEXT loops, enter and run this new
program.

10 FOR 1=1 TO 9

20 N=1

30 PRINT N;"X";I;"=";N*I
40 NEXT I

You'll see the multiplication table for l's printed.

RUN

1 X 1 = 1

1 X 2 = 2

1 X 3 = 3

1 X 4 = 4

1 X 5 = 5

1 X 6 = 6

1 X 7 = 7
1 X 8 = 8

1 X 9 = 9

** DONE **

Now change the value of N in line 20 to

20 N=2

and run. In this case, you'll see the multiplication table for 2's printed.

How to Make a Nest Without Birds

Suppose you want to print the multiplication table for 1 through 9.
Well, you could change line 20 to

20 N=3

lumping In and Jumping Out 83

and run the program; change line 20 to

20 N=4

and run the program, etc. However, since the computer is supposed to
make life easy for you, why not let the computer change N? Just add lines
20 and 35 so that your program looks like this, and run it.

10 FOR 1=1 TO 9

20 FOR N=1 TO 9

30 PRINT N;,,X";I;"=,,;N*I
35 NEXT N

40 NEXT I

This type of program has nested loops in it. The term nested loops
means that one loop lies entirely within another. In this program, the loop
for N lies within the loop for I. The N loop is the inner loop and the I loop is
the outer loop. The computer will print an error message if a nested loop
does not lie entirely within another. For example, delete line 35, add

50 NEXT N

and run the program. After the computer prints the products from 1 x 1 to
1x9, you'll see the error message

* CAN'T DO THAT IN 50

You can have more than two nested loops so long as they do not overlap.

Jumping In and Jumping Out
Let's go back to the previous version of nested loops by deleting line 50

and adding

35 NEXT N

Now this program will print out the products from 1 to 9, just as before.
However, suppose you want to stop printing when N= 2. You could change
the upper limit of N from 9 to 2. But, in many types of programs, you will
want to include an IF test. For example, add the line

32 IF N=2 THEN 40

and run the program. Now you'll see

RUN

1 x 1 = 1

2 x 1 = 2

1 x 2 = 2

2x2 = 4

1 x 3 = 3

2x3 = 6

1 x 4 = 4

2x4 = 8

84 6--Going Automatic

1 X 5 s 5

2 X 5 = 10
1 X 6 = 6
2 X 6 = 12
1 X 7 = 7

2 X 7 = 14
1 X 8 = 8

2 X 8 = 16
1 X 9 = 9

2 X 9 = 18

** DONE **

The IF test of line 32 jumps out of the inner loop into the NEXT statement
of the outer loop.This illustrates a very popularuse of the IF in looking for
some condition inside a loop and then exiting the loop when that condition
is fulfilled.

While it's O.K. to jump out ofan inner loop to an outer loop, it's not all
right to jump into an inner loop from an outer. Likewise you should not
jump into a single loop. For example, add the line

5 GOTO 20

and run. You'll see

RUN

1x0 = 0

2x0 = 0

* CAN'T DO THAT IN 40

This program doesn't work right because we're jumping into the I loop.
The value of I was not initialized to 1, and that's why the factor of 0 is used
for I. The computer assumes by default that any numeric variable is ini
tially 0. Then when the computer got to line 40, it encountered a NEXT I
without first having executed a FOR I statement. This caused the error
message.

Another point to note when you use loops is that a change in the con
trol variable inside the loop does affect the loop. For example, do a NEW to
delete this program and enter the following program:

10 L=1

20 U=5

30 FOR I=L TO U
40 PRINT I

50 NEXT I

When you run this program, the numbers 1,2,3,4, and 5 are printed. Now
add these lines and run.

44 IF I<3 THEN 50
48 1=5

lumping In and Jumping Out 85

RUN

1

2

3

** DONE **

As you can see, changing the control variable inside the loop does change
when the loop terminates. When I was less than 3, line 44 directed execu
tion to line 50, which just continued the loop. However, when 1=3, line 48
was executed and I was set to 5. Line 50 then did the NEXT I to increment I
and found that I exceeded the upper limit of 5 and so the I loop ended.

Now let's see what happens when we try to change the initial value or
limit. Change line 48 to

48 U=2

and run the program. You'll just see the number 1,2,3,4, and 5. Next
change 48 to

48 L=5

and run. You'll still see 1,2,3,4, and 5. If you add a STEP and change it,
there will again be no effect on the loop termination.

The reason you can't change the loop termination is that the values for
initial value, limit, and step increment are stored in certain memory loca
tions when the FOR statement is executed. The values stored in these loca
tions are copied from the numeric expressions or variables used for the
initial value, limit, and increment. After the FOR statement is executed,
you can't affect the values stored in that location which contains the loop
parameters.

As a final thing to learn about the FOR statement, change line 30 to

30 FOR I=L TO U STEP 0

and run. You'll get the error message

* BAD VALUE IN 30

because the increment is 0. While you will probably never write a line with
a STEP of 0 intentionally, you may write a line like

30 FOR I=L TO U STEP S

where S is some variable in your program. If S is 0 when the FOR is exe
cuted, you'll see the "BAD VALUE" error message.

Actually, the initial version of line 20 as

20 N=1

was very inefficient programming. It was a waste of the computer's time to
keep redefining the value of N to 1 over and over again. If you need to
initialize a variable, do it outside a loop. The initializing of N to 20 inside

86 6-Going Automatic

the loop was done just so you could see how this line was replaced by a
nested loop.

Building Tables
One useful application of FOR-NEXT loops is in making tables. For

example, the following program prints a table of the accumulated principal
built up for different interest rates. You enter the starting principal, the
lower interest rate in percent, the upper interest rate in percent, the step in
interest rate between lower and upper interest rates, and the number of
periods. Following the program is the table showing the accumulated prin
cipal for 10% and 12% interest rates. There are many other variations of
this format you may try. The term format means the way that data is
organized or presented.

10 INPUT "PRINCIPAL,LOWER PERCENT,UPPER
PERCENT,STEP,NUMBER OF PERIODS ?":PR,LP,UP,ST,NP
20 PRINT :::"PERI0DS";TAB(12);,,INTEREST RATES"
30 FOR I=LP TO UP STEP ST

40 C0UNT=C0UNT+1

50 PRINT TAB(10*COUNT+2);I;"%";
60 NEXT I

70 PRINT::

80 LP=LP/100
90 UP=UP/100
100 ST=ST/100

110 FOR PER=0 TO NP

120 COUNT=0
130 PRINT PER;
140 FOR IN=LP TO UP STEP ST
150 C0UNT=C0UNT+1
160 PRINT TAB(10*COUNT);INT(100*PR*(1+IN)A(IN*PER)
+.5)/100;
170 NEXT IN
180 PRINT

190 NEXT PER

RUN

PRINCIPAL,LOWER PERCENT,UPPE
R PERCENT,STEP,NUMBER OF PER
IODS 71000,10,12,2,10

PERIODS INTEREST RATES

10 % 12 %

0 1000 1000

1 1009.58 1013.69

2 1019.24 1027.57

3 1029.01 1041.64

4 1038.86 1055.9

5 1048.81 1070.36

6 1058.85 1085.02

7 1068.99 1099.87

8 1079.23 1114.93

9 1089.57 1130.2

10 1100 1145.68

Building Tables 87

Line 10 asks you to input the values needed by the program and
assigns these values to variables. Line 20 prints the headings of the table.
Lines 30-60 print the interest rates for each step. The variable COUNT is
used for spacing the interest rates across the screen. Every time through
the loop, COUNT is incremented by 1, so the next interest rate is tabbed
over by 10*1+2=12 spaces. Lines 80-100 convert the percent interests
rates to decimal. The loop of lines 110-190 prints the table. The outer loop
for PER sets the period for which the interest rates are calculated across.
The inner loop of 140-170 calculates the interest rates for each period.
Note that the accumulated principal is rounded off to two decimal places
by the INT function.

If you run this program for more than two interest rates, the numbers
will not all be in straight columns because there are only 28 columns on
the TV screen. However, if you have a printer, you can modify this pro
gram to output to the printer and use the additional columns available on
the printer.

You may also wish to modify this program to allow a user to enter the
yearly interest rates and then have the program calculate the compound
interest month by month, or year by year as an option.

"Poor fellow was so bored by the program he fell asleep. I'll add some
fun things to the program."

Chapter 7

Getting To Know Your Dimensions

In this chapter, you'll learn some powerful ways to store and to manipu
late data. You'll see how to apply these techniques in a practical applica
tion of maintaining a phone directory.

Names/ Names, Names

Suppose you wanted to write a program to store and to manipulate
hundreds or thousands of items. For example, you might want to keep
track of

• items in a store—an inventory
• record or book collection
• mailing list
• telephone directory
• recipe collection
• accounts receivable

The collection of items is called a database. There are many computer
programs designed to allow people to access and to maintain information
in a database. An example that most people are familiar with is an airline
reservation system. All the information about flights, schedules and pas
sengers is contained in a database.

One question that you may be puzzled by is—how do the programmers
manage to think of names for all those variables in the database? The
answer is—they don't. Not only would it be hard to think up names—it
would be even harder to write programs to manipulate the data. Instead,
programmers use an efficient and powerful technique using dimensioned
variables. A dimensioned variable is one which is accessed by a number
as well as by its name. For example, enter the following program and run
it as shown.

10 A(1)=1

20 A(2)=2

30 A(3)=3

40 PRINT A(1);A(2);A(3)
RUN

1 2 3

** DONE **

89

90 7-Getting To Know Your Dimensions

The variables A(l), A(2), and A(3) are the dimensioned variables. A
group of dimensional variables having the same name is called an array.
You can use any legal variable name for the array. Each of the dimen
sioned variables is also called an element of the array. Each variable in
the array is identified by an index number or subscript. This subscript
is the number inside parentheses. Actually, the term inside parentheses
can be a numeric expression or variable. The value of the subscript which
identifies the variable is automatically rounded off to an integer by the
computer. The terms array, element, and subscript come from math.

You can change the value of an array element just as for a simple
variable. The term simple variable means one which is not dimensioned
such as A, X, BIZ, AMOUNT and so forth. To change the value of A(l),
change line 10 to

10 A(1)=-23.5

and run the program again. Now the new value of A(l) will be printed as
shown below.

RUN

-23,5 2 3

** DONE **

However, in using dimensioned variables, you can't use the same
name as a simple variable. For example, try to define a simple variable
called **A" with the direct command

A=1

and you'll see the error message

* NAME CONFLICT

You can also use dimensioned variables with strings. For example,
enter the direct command

N$(1>="T0M"

to define the dimensioned string variable N$(l) as the string "TOM." Then
do

PRINT N$(1)

and you'll see

TOM

printed since that is the value of N$(l).

It's All in the Loop
The combination of FOR-NEXT loops and dimensioned variables is

very powerful in manipulating data. Since subscripts are numbers, dimen
sioned variables can be easily accessed by a loop. For example, suppose

Let's Get Dimensioned 91

you want to assign the numbers 1 to 10 to the dimensioned variables.
First, enter a NEW command and then enter and run the following as
shown.

10 FOR 1=1 TO 10

20 A(I)=I

30 PRINT A(I)

40 NEXT I

RUN

1

2

3

4

5

6

7

8

9

10

Lines 10 and 40 define the FOR-NEXT loop. Line 20 assigns the value
of I to the dimensioned variable A(I). So A(l)=l, A(2) = 2, A(3) = 3, . . .
A(10)= 10. (Note that the three dots used in the preceeding sentence mean
to continue this assignment). Line 30 prints the value of each element A(I)
after it is assigned a value. Actually, you can also store in the zero element.
Change line 10 to

10 FOR 1=0 TO 10

and run. You will see a 0 printed first since that is A(0) = 0.
Of course, you can assign any values to the array. For example,

change line 20 to

20 A(I)=10*RND+1

and run. You will see ten random numbers assigned to the array.

Let's Get Dimensioned

How many elements can you store in an array? Try increasing the size
of your loop to

10 FOR 1=0 TO 11

and run. The program will stop after the eleventh array element is printed
with the error message

* BAD SUBSCRIPT IN 20

The reason this occurs is that your computer assigns a default limit of
eleven elements for an array, such as A(0), A(l), A(2), A(3), A(4), A(5), A(6),
A(7), A(8), A(9), A(10). If you want to use more than eleven, you'll need to

92 7-Getting To Know Your Dimensions

specify how many with a dimension statement. The dimension statement
tells the computer how big your dimensioned array will be. This statement
uses a BASIC word called DIM and must appear before any reference to
the array. In our program, add

5 DIM A(50)

to allow 51 array elements. Note there are 51 because the zero element,
A(0), also counts. Now you can print all 11 array elements when the pro
gram is run. In fact, you can increase the loop to

10 FOR 1=0 TO 50

and print 51 elements.
There is an important thing to note about using dimensioned vari

ables. When you use the DIM, the computer reserves space in memory for
the dimensioned variables. The bigger the array size that you request, the
more memory is required. What happens if you request more memory than
the computer has? Let's try it and see. Change line 5 to

5 DIM A(2000)

and run. You'll immediately see the error message

* MEMORY FULL IN 5

because there isn't enough memory available. If you reduce the array size
to 1000, the program will run.

The point of all this is that you should dimension only the number of
elements needed by your program. In the example at the beginning of this
section, only twelve elements were needed, yet 51 were dimensioned.
That's a waste of memory. Although it may not matter for small sizes like
this, you should get into the habit of being economical with memory. If you
have a very large program, then it may not run if you do a DIM A(50)
rather than exactly the amount you need.

You can use the DIM statement for string arrays also. However, there
are no set amounts of memory specified for strings since the computer
doesn't know in advance how long your string array elements will be. So
each element of a string array is just set to the null string, i.e., contains no
characters, until you assign characters.

Give Me a Name and VII Tell You the Number

Now that you have an idea of how dimensioned variables work, let's
give a practical application for a database program. The following program
searches a database for a name you supply and then provides the phone
number. Enter a NEW command, and then enter and run this program as
shown.

10 N=3
20 DIM NAM$(3),PH<3)
30 NAM$(1)="J0HN DOE"

Give Me a Name and I'll Tell You the Number 93

40 PH(1)=9990001

50 NAM$(2)="MARY SMITH"

60 PH(2)=9990002

70 NAM$(3)="JIM ADAMS"

80 PH(3)=9990003

90 INPUT "NAME? ":NAMES

100 FOR 1=1 TO N

110 IF NAM$(I)=NAME$ THEN 150

120 NEXT I

130 PRINT "NAME NOT FOUND"

140 GOTO 90

150 PRINT PH(I)

160 GOTO 90

RUN

NAME? MARY SMITH

9990002

NAME? JOHN DOE

9990001

NAME? JOHN SMITH

NAME NOT FOUND

NAME? JIM ADAMS

999003

NAME? JIMADAMS

NAME NOT FOUND

NAME?

As you can see, you must supply the exact spelling of the name in the
database in order for the computer to find the number. Even the space
between names is important, as the last example shows. To stop the pro
gram, press the FCTN and CLEAR keys.

Line 10 defines a variable, N, which stores how many names are in the
database. Line 20 dimensions the names of people in the string array
NAM$(3), and the phone numbers in the numeric array, PH(3). Since only
three names are stored, you could get by with no dimension statement.
However you may want to expand this database beyond eleven names and
so the DIM's are shown explicitly. Actually, you could also write this pro
gram using the 0 element. However, it's convenient to let N represent the
total number ofnames in the database. If element zero were allowed, you'd
have to use N+1 as the total number of names.

Lines 30-80 contain the information in the database stored in the
dimensioned variables NAM$ and PH. The same subscript identifies the
name and phone number of a person. For example, the subscript" 1" iden
tifies "JOHN DOE" and his phone number "9990001."

Line 90 asks you to input the name of the person whose phone number
you want. This name is stored in the simple string variable NAME$. Lines
100-120 make a FOR-NEXT loop to search the database for a match
between the NAMES and each dimensioned string variable. If line 110

94 7-Getting To Know Your Dimensions

finds a match, the computer exits the loop and goes to 150. For example, if
NAME$ = "MARY SMITH", the computer sets 1=1 and first tries
NAM$(l) = "JOHN DOE". Since "JOHN DOE" does not equal "MARY
SMITH", the computer continues through the loop with 1=2. Now there is
a match between NAM$(2) and NAMES, and so the computer goes to line
150. Line 150 prints the phone number PH(2) which corresponds to
"MARY SMITH". Notice that when we exited the loop, the control variable
I was equal to 2 since the names had matched. So line 150 prints the right
phone number for "MARYSMITH".Then the program executes line 160 to
go back to 90 and ask you for more input.

Suppose you ask for a name that's not in the database, like "JOHN
SMITH"? The loop of lines 100-120 will terminate normally and then the
computer executes line 130 to print "NAME NOT FOUND". Then line 140
directs the computer back to line 90 to ask for input again.

With this version, the only way to stop the program asking input is to
do a FCTN CLEAR or QUIT, or turn the power off. However, you can easily
provide a better way. Add the following lines

90 INPUT "NAME? (USE Q TO QUIT) ":NAME$
95 IF NAME$="Q" THEN 170

170 END

Line 95 checks if NAME$= *Q*. If so, the program goes to line 170 and
ends. It's always a good idea to provide an orderly exit from a program,
especially if the program may be used by non-programmers. They may not
know that FCTN CLEAR will stop the program and will be annoyed
because they can't stop the program. Also, notice that the information on
how to quit is supplied by the INPUT. If possible, try to supply information
like this in the input. It's much more convenient for a new user to immedi
ately understand how to exit than to be given an instruction manual and
to be forced to memorize all the commands your program accepts.

This consideration for the user will make your programs user-
friendly. A user-friendly program is designed with consideration for the
user. If you're writing just a short program for yourself, you may wish to
skip user-friendly statements. However, it's really amazing how many pro
grams that people write just for themselves are useful to others. It may
take you less time to add some user-friendly instructions than to write up
an instruction manual or to explain to every person what the commands
are.

Add Some Strings
Because your computer prints up to ten digits of precision in numbers,

you can even add the area code to the phone numbers. For example,
change line 40 to

40 PH(1)=1234567890

Add Some Strings 95

and run the program for "JOHN DOE". You'll see the phone number
"1234567890" printed out. The digits "123" would represent the area
code.

However, international phone numbers are longer. Also, you may wish
to include other information along with the phone number, such as the
address. There's an easy way to extend our phone directory program so
that it can handle any information. All you have to do is to replace the
numeric variables with string variables. Since you can store any informa
tion in strings, you can include many more digits for the phone number, as
well as the address.

Enter and run the following new program for the examples shown.
You can obtain this program from the program in the preceeding section
by changing lines 20, 40, 60, 80 and 150 to match the following. The run
is displayed as it appears on your screen.

10 N=3

20 DIM NAM$(3),INF0$(3)
30 NAM$(1)="J0HN DOE"
40 INFO$<1)="123-456-7890:1000 MAIN ST.,NEW
Y0RK,NY.,45637"
50 NAM$(2)="MARY SMITH"

60 INF0$(2)="15-213-777-5666:P.0. BOX
1789,TRENT0N,NJ.,33314"
70 NAM$(3)="JIM ADAMS"

80 INFO$(3)="999-0003:APT.31,547 BR0ADWAY,L0S
ANGELES,CA.,67691"
90 INPUT "NAME? (USE Q TO QUIT) ":NAME$
95 IF NAME$="Q" THEN 170
100 FOR 1=1 TO N

110 IF NAM$(I)=NAME$ THEN 150
120 NEXT I

130 PRINT "NAME NOT FOUND"
140 GOTO 90

150 PRINT INF0$(I)
160 GOTO 90

170 END

RUN

NAME? (USE Q TO QUIT) MARY S
MITH

15-213-777-5666:P.0. Box 178

9,TRENT0N,NJ.,33314
NAME? (USE Q TO QUIT) JIM AD
AMS

999-0003:APT.31,547 BROADWAY
,L0S ANGELES,CA.,67691
NAME? (USE Q TO QUIT) Q

** DONE **

% 7-Getting To Know Your Dimensions

All the information about each person is stored in the string variable,
INFO$. The first set of digits in INFO$ is their phone number. You can
include as many digits as necessary, including hyphens (use the minus
sign of your computer for a hyphen), to make it easier for you to read the
number. After the phone number is a colon to separate this from the
address. Of course, you could use a space or any other symbol instead of a
colon.

Since INFO$ contains string data, you can store anything you want.
For example, NAM$ could contain the names of food and INFO$ could be
the recipe. Or NAM$ could be the names of recording artists and INFO$
could contain all their records that you have. You can store and retrieve
any type of items with a program like this.

Read My Data
If you have a lot of data to store, it takes a lot of typing for you to

assign a value to every variable. Also, you use a lot of memory if you do
only one assignment of a value to a variable in a line. Fortunately, your
computer has some commands which make it easier for you to store and to
access a lot of data. These are the READ, DATA, and RESTORE com
mands. To see how these work, type in the new program below and run it
for the examples shown.

10 N=3

20 DIM NAM$(3),PH(3)
30 FOR 1=1 TO N

40 READ NAMSU),,PH(I)
50 NEXT I

60 INPUT "NAME? (USE Q TO QUIT) ":NAMES

70 IF NAME$="Q" THEN 150

80 FOR 1=1 TO N

90 IF NAM$(I)=NAME$ THEN 130

100 NEXT I

110 PRINT "NAME NOT FOUND"

120 GOTO 60

130 PRINT PH(I)

140 GOTO 60

150 END

160 DATA JOHN DOE,9990001,MARY SMITH,,9990002,JIM
ADAMS,9990003

RUN

NAME? (USE Q TO QUIT) JOHN D

OE

9990001

NAME? (USE Q TO QUIT) MARY S

MITH

9990002

Read My Data 97

NAME? (USE Q TO QUIT) JIM AD
AMS

9990003

NAME? (USE Q TO QUIT) Q

** DONE **

In this version of the phone directory program, line 40 reads in data
from line 160. The loop of lines 30-50 reads in all the data and assigns it to
the dimensioned variables NAM$ and PH. Notice that quotes are not neces
sary around the strings in line 160. The computer knows that if you're
reading in a string variable, then the data is a string. Likewise if you're
reading into a numeric variable, the data must be numeric.

You can have DATA statements anywhere in the program. When the
computer executes the READ, it looks for the DATA statement with the
lowest line number. The READ statement directs the computer to read in
two values from the DATA and to assign those values to NAM$(1) and
PH(1). So "JOHN DOE" is assigned to NAM$(1) and "9990001" is
assigned to PH(1). The second time through the loop of lines 30-50, the
values "MARY SMITH" and "9990002" are assigned to NAM$(2) and
PH(2). Likewise, the third time through the loop, "JIM ADAMS" and
"9990003" are assigned to NAM$(3) and PH(3).

How does the computer know which data to assign? The computer
keeps track of the next value in the DATA statement that can be assigned
using a pointer. The pointer is a memory location in the computer whose
contents point to the address of the next item that can be read from the
DATA statement. The term address refers to the memory location rather
than the contents. For example, the string "JOHN DOE" may be stored in
the computers memory at address 1000. So the pointer contains "1000"
rather than "JOHN DOE". Your TI-99/4A computer contains 16K
addresses. Each byte of RAM is accessed by its address. BASIC automati
cally handles all the addressing for you. Initially, the pointer points to
"JOHN DOE". After NAM$(1) is read, the pointer points to "9990001".
After PH(1) is read, it points to "MARY SMITH" and so forth.

Where does the pointer point after all the data has been read? Let's try
it and see. Enter the following lines to print the values assigned to NAM$(I)
and PH(I). The STOP will stop the program so you don't get asked for input.

45 PRINT I;NAM$(I);PH(I)
53 READ A$,B
55 PRINT A$;B
58 STOP

Line 45 prints the NAM$(I) and PH(I) inside the loop of lines 30-50. Then
lines 53 and 55 try to read the next name and phone number.

When you run this program the computer will stop with the error
message

* DATA ERROR IN 53

98 7—GettingTo Know Your Dimensions

because there is no more data. After the values for the names and numbers
were read in by the loop of lines 30-50, the pointer does not point to any
more data and so the computer issues the error message.

However, you can reset the pointer back to the beginning of data using
the RESTORE command. Enter this line

51 RESTORE

and run the program. You'll see

RUN

1 JOHN DOE 9990001

2 MARY SMITH 9990002
3 JIM ADAMS 9990003

JOHN DOE 9990001

** DONE **

Because the pointer was reset by RESTORE to the beginning of the DATA
statement, the values for "JOHN DOE" and "9990001" were read in for
A$ and B.

If you have more than one DATA statement in a program, you can do a
RESTORE to any line by specifying the line number after RESTORE. To
see how this works, let's first split up the single DATA statement of line
160 into three statements. Note that three statements increase the amount
of memory used by the program and also mean more typing for you. In
addition, the program takes longer to run since the computer must execute
more lines. With all these considerations, you can see why it's better to
make long DATA statements.

Make the following changes:

160 DATA JOHN DOE,999000
170 DATA MARY SMITH,9990002
180 DATA JIM ADAMS,9990003

Note that we could have made even six data statements by having sepa
rate ones for each value. You can also see how convenient it is to add
DATA statements if they are placed at the end of the program. If you put
them at the beginning or middle, you may have to change other line num
bers of your program if you add a lot of data.

When you run the program, you'll see the "JOHN DOE" information
printed because the RESTORE resets the pointer to the DATA statement
with lowest line number, 160. This is the default form of RESTORE. Now
let's change line 51 to restore to the second DATA statement by

51 RESTORE 170

Now when you run, you'll see the "MARY SMITH" information printed.
What happens if you give a line number for RESTORE that's not a

DATA statement? Let's try it and see. Enter a

51 RESTORE 150

Well, Tape My Data 99

and run. You'll see the "JOHN DOE" information printed. So if you give a
line number for RESTORE that's not a DATA statement, the computer will
just go to the DATA statement with the next highest line number. Now
suppose you give a line that's not even in the program, like

51 RESTORE 200

When you run this, you'll see the error message

* DATA ERROR IN 51

because there is no such line number.

Well, Tape My Data
The database program you've seen is fine if the data is not changed

very often. You can just write the program with the data stored in it and
run the program. However, if you want to change any information, you
must change the program. Generally, it's not a good idea to change a pro
gram once it's working all right. Also, someone who's not a programmer
would not be able to easily maintain the information.

A more practical database program will not store your data in the pro
gram itself. Rather, the program will read the data in from some other
device such as a cassette recorder or disk. The data is kept in datafiles on
the recorder or disk. A datafile is just a collection of information. It can be
numbers or strings of characters. The information is transferred from the
datafile into numeric or string variables in your program. Once the infor
mation is in your program, you can easily use it.

You can make any changes or searches of the database. When you
want to stop using the program, the current data is written back to the
cassette or disk.

Another advantage of using data not stored in the program is that you
can have separate files for different kinds of data. For example, one
datafile might contain names, telephone numbers and addresses of people.
Another datafile might contain the names of records and recording artists
in your record collection. Or the database could contain student names
and grades; inventory items and amounts; meals and recipes, etc. The
same database program can be used to maintain all these lists if the data
is separated from the program. The alternative is a separate program for
each type of data. However, this makes it hard for you to maintain the
program. If you have ten separate programs and find a bug in one, you'll
have to correct all of them.

The following database program is designed to work with a cassette
recorder, although it can be easily modified for a disk. Consult your disk
manual for information on storing and retrieving information. Enter and
run for the examples shown. Note that when you input data containing
commas you must enclose the input string in quotes. Also try the other
commands to write and to read data from tape, etc. Note that in line 210,
just press the quote key twice. Don't put any character between the quotes.

100 7—Getting To Know Your Dimensions

10 N=0

20 DIM NAM$(20),INFO$(20)
30 PRINT

40 PRINT "ADD DATA";TAB(17);1
50 PRINT "WRITE TO TAPE";TAB(17);2
60 PRINT "READ FROM TAPE";TAB(17);3
70 PRINT "SEARCH FOR NAME";TAB(17);4
80 PRINT "DELETE DATA";TAB(17);5
90 PRINT "PRINT ALL DATA";TAB(17);6
100 PRINT "END THE PR0GRAM";TAB(17);7
110 INPUT CHOICE

120 IF CH0ICE<1 THEN 30

130 IF CH0ICE>7 THEN 30

140 ON CHOICE GOTO 190,290,360,460,550,700,150
150 INPUT "DO YOU WANT TO WRITE YOUR DATA? (Y OR

N)":RESPONSE$

160 IF RESPONSE$="N" THEN 180

170 GOTO 290

180 END

190 INPUT "NAME? (USE Q TO QUIT INPUT) ":NAME$

200 IF NAME$="Q" THEN 30
210 IF NAMESO"" THEN 240

220 PRINT "YOU MUST GIVE SOME CHARACTERS FOR THE NAME"

230 GOTO 190

240 N=N+1

250 NAM$(N)=NAME$

260 INPUT "INFORMATION? ":INFO$(N)

270 PRINT N;"ITEMS STORED"
280 GOTO 190

290 OPEN #1:"CS1",SEQUENTIAL,INTERNAL,
OUTPUT,FIXED 128
300 FOR 1=1 TO N

310 PRINT #1:NAM$(I),INF0$(I)
320 NEXT I

330 PRINT #1:"1E99","1E99"
340 CLOSE #1

350 GOTO 30

360 OPEN #1:"CS1",SEQUENTIAL,INTERNAL,
INPUT,FIXED 128
370 N=1

380 INPUT #1:NAM$(N),INF0$(N)
390 IF NAM$(N)="1E99" THEN 420

400 N=N+1

410 GOTO 380

420 N=N-1

430 PRINT N;"RECORDS READ"
440 CLOSE #1

Well, Tape My Data 101

450 GOTO 30

460 INPUT "NAME? (USE Q TO QUIT) ":NAME$
470 IF NAME$="Q" THEN 30
480 FOR 1=1 TO N

490 IF NAM$(I)=NAME$ THEN 530
500 NEXT I

510 PRINT "NAME NOT FOUND"

520 GOTO 460

530 PRINT INFO$(I)

540 GOTO 460

550 INPUT "NAME FOR DELETION? (USE Q TO QUIT) ":NAME$
560 IF NAME$="Q" THEN 30

570 FOR 1=1 TO N

580 IF NAM$(I)=NAME$ THEN 620

590 NEXT I

600 PRINT "NAME NOT FOUND"

610 GOTO 550

620 FOR J=I TO N-1

630 NAM$(J)=NAM$(J+1)
640 INF0$(J)=INF0$(J+1)

650 NEXT J

660 N=N-1

670 PRINT NAMES;" DELETED"
680 PRINT N;"RECORDS LEFT"
690 GOTO 550

700 FOR 1=1 TO N

710 PRINT NAM$(I):INFO$(I)

720 FOR J=1 TO 300

730 NEXT J

740 NEXT I

750 GOTO 30

RUN

ADD DATA 1

WRITE TO TAPE 2

READ FROM TAPE 3

SEARCH FOR NAME 4

DELETE DATA 5

PRINT ALL DATA 6

END THE PROGRAM

? 1

NAME? (USE Q TO

7

QUIT INPUT)

JOHN DOE

INFORMATION? 999-0001

1 ITEMS STORED

NAME? (USE Q TO QUIT INPUT)

MARY SMITH

INFORMATION? "15-213-•777-566

102 7-Getting To Know Your Dimensions

6:P.O. BOX 1789;TRENT0N,NJ.,
33314"

2 ITEMS STORED

NAME? (USE Q TO QUIT INPUT)

Q

When the program is run, you see a menu of choices displayed. This is
a popular style of output because the user does not have to memorize all
these commands. Simply select an item from the menu and input the
number of your choice.

Line 10 initially defines the number of items, N, in the database as 0.
As items are added or deleted, N will be adjusted correspondingly. Line 20
dimensions string variables for the names, NAM$, and for the information
strings, INFO$. Although the example for this run are names, addresses
and phone numbers, you can store any type of data in NAM$ and INFO$.
Line 30 is just a PRINT to allow a blank line before the menu appears. This
makes it easier for the user to read the display.

Lines 40—100 display the menu of choices for the user. Note that the
numbers are displayed to the right of the text. This is easier for the user to
remember than if the numbers were to the left of the text. Since people read
left to right, then if the numbers were on the left, a user might read the
number, then read the text and then have to refer back to the number
again. Consideration of the user makes a program user-friendly.

Line 110 asks the user to input a choice while lines 120 and 130 check
that the choice is a valid number from 1 to 7. This type of input checking is
very important in a program which does not store data in program lines.
Suppose the user accidentally inputs an "8". Without line 130, the pro
gram would stop with the error message

* BAD VALUE IN 140

You would not be able to continue and all the data you had input would be
lost when you ran the program again.

Line 140 goes to the appropriate section of the program, depending on
CHOICE. Lines 190-280 allow you to input data from the keyboard. Line
190 asks you for input of the name to be added. If you answer Q, the pro
gram assumes you're finished with input and takes you back to the menu.
If you accidentally just press only the ENTER key, line 210 checks for this.
If you input no characters, then the message of 220 is printed to tell you
that some characters must be input for a valid name. Line 230 keeps tak
ing you back to 190 to ask if you want to add more data. If you have
entered some characters for the name, line 240 increases the value of the
variable N, which tells how many names are in the database. Line 250
assigns the input name to the string variable, NAM$(N). Then line 260
asks you to input the information about the name and stores it directly in
INFO$(N). Line 270 tells you how many items have been stored and line
280 takes you back to the input question.

Lines 290-340 write data onto cassette tape. Line 290 opens the cas
sette unit as file # 1 with an OPEN statement. For more detailed informa-

Many Dimensions 103

tion on cassette storage, consult your TI-99/4A User's Reference Guide.
For disk storage, refer to the disk manuals. The cassette recorder that you
normally use for loading in programs, CS1, is used for storage of data in
this program. Actually, you can use two recorders. Use CS2 for writing
output only, while CS1 can be used for both input and output. In this pro
gram, we'll assume you have only one recorder. Since a cassette recorder is
used, the data are stored in a sequential manner. The term sequential
means that each item of the data is stored one after another. The data are
stored in an internal binary form, which is efficient for the computer. This
is an output file and so the OUTPUT is specified. Also, since a cassette
recorder is used, the data are of fixed length. That is, each time data are
output, the computer always writes a certain number of positions on the
tape.

The cassette recorder has a default of 64 positions for a record of data
on tape. You can specify 128 or 192 positions. A number occupies 8 posi
tions on the tape plus one more for a total of 9. This ninth position specifies
the length, i.e., 8, of the number. Astring occupies the length of the string
plus one more for the length of the string. The loop of lines 300-320 print
the two strings of name and information on to tape. So with FIXED 128,
you have space for 126 characters. Ifyou can get by with fewer characters,
it is more efficient since you can use FIXED 64 or just FIXED by default.
Only half as much tape will be used for storage and your datafile will take
only half as long to read and write.

Line 330 prints a special string of "1E99" to mark the last data writ
ten to tape. When the computer reads the data back in from lines 380-
410, it looks for the " 1E99" in line 390. You can choose any string for this
so long as it's not likely to occur in your data.

Line 340 closes the cassette file using CLOSE. It's important to
always close open files or data might be lost from your program. Lines
360-440 input data from tape. Lines 460—540 do a search of the database
for the name you input and print its information. Lines 550-690 delete
data from the database. Note that the information is not deleted from the
datafile on tape until you write the data back to tape. Lines 700-740 print
all the data in the database to your screen. The loop of lines 720-730 acts
as a time delay. It slows down the printing of data to the screen to make it
easier for you to read. You may wish to change the value of 300 in line 720
to suit your reading speed.

If you have a printer hooked up to your computer, you can print out
this information. So you could even use the program to print mailing
labels. Enter these lines for printer output:

700 OPEN #1:"RS232.BA=1200"
705 FOR 1=1 TO N

715 PRINT #1:NAM$(I):INF0$(I)

and the computer will also list to a printer via an RS232 interface at 1200
baud. Ifyour printer operates at 300 baud, just change the "1200" in line
700 to "300", or whatever your printer speed is.

104 7-Getting To Know Your Dimensions

Many Dimensions
For the arrays we've been discussing so far, you can think of the array

elements as lying in a straight line. To access the next element, add 1 to
the subscript. To access the preceeding element, subtract 1 from the sub
script. In fact, an array with a single subscript to identify each element is
called a linear array. Your TI BASIC actually allows up to three dimen
sions in an array. You can think of the elements of a two-dimensional
array as cells in an area, while the elements of a three-dimensional
array occupy a volume in space.

For a two-dimensional array, the first element specifies the row while
the second specifies the column. Fig. 7-1 illustrates how you can think of
these array elements from a geometric point of view for an array called N.
Arrays with more than one dimension are called multi-dimensional arrays,
where the prefix multi means many.

Enter and run the following new program to store numbers in a two-
dimensional array:

10 DIM N(2,2)
20 FOR 1=0 TO 2

30 FOR J=0 TO 2

40 N(I,J)=I+J
50 PRINT I;J;N(I,J)
60 NEXT J

70 NEXT I

Line 10 dimensions the array. Although it's not necessary to dimen
sion an array less than N(10,10), it's still a good habit for you to get into.
Since the zero element is allowed, this is actually a 3 x 3 array because 9
elements are allowed. Lines 20-70 and 30-60 make up nested FOR-NEXT
loops to provide the subscripts and data for the array. Line 50 prints out
the row and column values for each array element, and also the value
stored in the array.

In many real-life applications, you can use a two-dimensional array as
a convenient way of storing data like:

salespeople's commission vs. type of item
seating in an airplane, theater or other room

inventory vs. department

The table below shows a two-dimensional array of student grades and
subjects. The following simple database program stores the grades in a
two-dimensional array and allows you to easily print out the grades and
average of a student. Enter and run this program for the examples shown.

COMPUTERS MATH ENGLISH HISTORY SCIENCE

John Doe 95 81 60 75 86

Mary Smith 93 95 85 90 92

Jim Adams 73 70 75 65 88

N(0) N(1) N(2)

DIM N(2)

(a) One-dimensional array

% Vht.

h*}'9ht

^e/<9ht0

rowO

row 1

row 2

Many Dimensions 105

N(0,0) N(0,1) N(0,2)

N(1,0) N(1,1) N(1,2)

N(2,0) N(2,1) N(2,2)

column 0 column 1 column 2

DIM N(2,2)

(b) Two-dimensional array

DIM N(2,2,2)

(c) Three-dimensional array

Fig. 7-1 Geometric Concept of Arrays.

106 7-Getting To Know Your Dimensions

10 NUMSTUDENTS=3
20 NUMSUBJECTS=5

30 DIM GRADE(3,5)
40 FOR 1=1 TO NUMSUBJECTS

50 READ SUBNAME$(I)

60 NEXT I

70 FOR STUDENT=1 TO NUMSTUDENTS

80 FOR SUBJECTS TO NUMSUBJECTS

90 READ GRADE(STUDENT,SUBJECT)
100 NEXT SUBJECT

110 NEXT STUDENT

120 PRINT

130 INPUT "STUDENT? (USE 0 TO QUIT)":STUDENT
140 IF STUDENT=0 THEN 220
150 SUM=0

160 FOR SUBJECT=1 TO NUMSUBJECTS
170 PRINT SUBNAME$(SUBJECT);TAB(11);GRADE
(STUDENT,SUBJECT)
180 SUM=SUM+GRADE(STUDENT,SUBJECT)
190 NEXT SUBJECT

200 PRINT "AVERAGE=";SUM/NUMSUBJECTS
210 GOTO 120

220 END

230 DATA COMPUTERS,MATH,ENGLISH,HISTORY,SCIENCE
240 DATA 95,81,60,75,86
250 DATA 93,95,85,90,92
260 DATA 73,70,75,65,88

RUN STUDENT? (USE 0 TO QUIT)1
COMPUTERS 95

MATH 81

ENGLISH 60

HISTORY 75

SCIENCE 86
AVERAGE= 79.4

STUDENT? (USE 0 TO QUIT)2
COMPUTERS 93

MATH 95

ENGLISH 85

HISTORY 90

SCIENCE 92

AVERAGE= 91

STUDENT? (USE 0 TO QUIT)0

** DONE **

Lines 10 and 20 define the number of students, NUMSTUDENTS, and
number of subjects, NUMSUBJECTS. Line 30 dimensions the grades.

Changing YourOption 107

Lines 40-60 read in the names of the subjects and assign them to the
string array SUBNAMES. An alternative would be lines like:

42 SUBNAME$(1)="C0MPUTERS"
44 SUBNAME$(2)="MATH"

and so forth. However, reading in the data like this takes up less memory.
Lines 70—110 read the student grades and assign them to the two-dimen
sional array GRADE. Actually, GRADE could have been made a string
array for the purpose of searching for a student grades. However, it's more
convenient to make GRADE a numeric array if you want calculations,
such as the averages.

Line 120 is just a PRINT to make the input requests easier for you to
read. Line 130 asks for the student number. Note that this gives some
degree of privacy to the student records. Someone who obtained this pro
gram without permission would not know who the students were since
they are identified by number only. Of course, you could add an extra
string variable to keep track of student names in the program.

Line 140 checks if you want to stop searching for student grades by
seeing if you had input a zero. Lines 150-200 print the student grades and
average. Line 210 takes you back to the input request.

Of course, you could also use the database tape program to store the
grades and compute the average if you make appropriate changes. For
example, you could use numeric variables instead of string variables for
INFO$ in that program.

Changing Your Option
Another statement that is sometimes useful with arrays is the

OPTION BASE. This allows you to set the lower limit of array subscripts
at 1 instead of 0. If you aren't going to use the zero element of arrays, this
option will save the memory space that is normally allocated to the zero
element of an array. To use the OPTION BASE, include it as a statement
with a lower line number than any DIM statement, or array reference. For
example, in the previous two-dimensional database, use:

5 OPTION BASE 1

Note that the OPTION BASE applies to all arrays in the program. You can't
have one array starting with a 0 subscript and another starting with a 1.
Only one OPTION BASE is allowed in a program.

x

a***1*

WlON**

"I just love playing with variables.'*

Chapter 8

Debugging and Documentation

In this chapter, we'll cover some helpful statements and techniques to aid
you in writing programs. These statements and techniques will save you
time in designing and debugging your programs.

Ignore This Sign
When you write a program that you intend to save, it is helpful to

include remarks in the program itself. For example, you could include the
name of the program and a description of what it does. You might also
include remarks at appropriate places in the program to tell what those
sections of code do. The advantage of including remarks in the program is
that they can't get lost. If you wrote the remarks on a piece of paper, you
might lose it or have to look it up each time you want to change the
program.

The following check balancing program includes the BASIC statement
for remark at several places in the program. When the computer executes a
line with the BASIC word REM, it will not try to execute the rest of the
line. You can put anything after a REM and the computer will ignore it.
The purpose of a REM is simply to provide documentation to whomever
reads the program listing.

10 REM CHECK BALANCING

20 REM INPUT DATA

30 INPUT "INITIAL BALANCE? ":BALANCE

40 PRINT

50 INPUT "CHECK? (USE 0 TO QUIT) ":CHECK

60 IF CHECK=0 THEN 120

70 REM CALCULATE BALANCE

80 BALANCE=BALANCE-CHECK

90 REM PRINT NEW BALANCE

100 PRINT "BALANCE=";BALANCE
110 GOTO 40

120 END

RUN

INITIAL BALANCE? 1000

CHECK? (USE 0 TO QUIT) 100
BALANCE= 900

CHECK? (USE 0 TO QUIT) 89.9

109

110 8—Debugging and Documentation

BALANCE= 810.1

CHECK? (USE 0 TO QUIT) 10.1
BALANCE= 800

CHECK? (USE 0 TO QUIT) 13.98

BALANCE= 786.02

CHECK? (USE 0 TO QUIT) -100

BALANCE= 886.02

CHECK? (USE 0 TO QUIT) 22.92

BALANCE= 863.1

CHECK? (USE 0 TO QUIT) 10

BALANCE= 853.1

CHECK? (USE 0 TO QUIT) 0

** DONE **

When you list the program, you'll notice that the computer always
puts two blanks after a REM. The computer does this to aid you in reading
the program. If you type in only one blank after a REM, the computer adds
in one. Likewise, the computer will automatically insert a space between
INPUT or PRINT and the quote which follows in a statement.

Line 10 is the remark that gives the name of the program. Line 20 says
that the next section of the program inputs data. Line 70 tells that the next
part of the program calculates the balance. Line 90 remarks that the next
program portion prints the output.

Shown following is a modification of the Check Balancing Program
which prints all input and output to a printer operating at 1200 baud
through an RS232 serial interface.

10 REM CHECK BALANCING

15 OPEN #1:"RS232.BA=1200"

20 REM INPUT DATA

30 INPUT "INITIAL BALANCE? ":BALANCE

35 PRINT #1:"INITIAL BALANCE?";BALANCE
40 PRINT

45 PRINT #1

50 INPUT "CHECK? (USE 0 TO QUIT) ":CHECK
55 PRINT #1:"CHECK? (USE 0 TO QUIT)";CHECK
60 IF CHECK=0 THEN 120

70 REM CALCULATE BALANCE

80 BALANCEsBALANCE-CHECK

90 REM PRINT NEW BALANCE

100 PRINT "BALANCE=";BALANCE
105 PRINT #1:"BALANCE=";BALANCE
110 GOTO 40

120 END

A Good Design 111

You may want to use remarks in a way similar to this: (1) title and
description of program; (2) input; (3) calculations or other data processing;
(4) output. However, keep in mind that remarks are not a substitute for
good program documentation. In many programs, you need almost a line-
by-line description of what's going on. It may be obvious to you what's
happening, since you wrote the program. But a few weeks later, even you
may be hard pressed to remember every detail of the program.

There is one final point to keep in mind regarding REM statements -
they take up memory and slow down program execution. Even though the
computer ignores the rest after the REM, it must first interpret the REM
and find out what to do. It's as if you are driving down the freeway and
keep seeing signs that say "Ignore This Sign." The message has no infor
mational value to you, but it does distract you from driving, expecially if
you have to slow down to read the sign. In particular, it slows down the
computer's execution speed if you have statements which do a GOTO to a
REM, or include a REM in a FOR-NEXT loop.

A Good Design
A good computer program starts with a good design. Before you start

to write a program, you should have a clear idea of

1. The required input and data needed by the program.
2. The calculations or other data processing required.
3. The form that you want to output.

Some people enjoy writing and debugging on a hit-or-miss basis. They like
to experiment and to see if their solution to a bug works. Other people like
to program because they want to produce a program that works correctly
as soon as possible.

One way of designing programs uses a graphical aid called a
flowchart. A flowchart is a diagram which describes the logical decisions
and flow of data in a program. The flowchart uses symbols that have been
defined by the American National Standards Institute (ANSI). These
flowchart symbols are commonly available on plastic templates. You just
run a pencil along the edge of the symbol on the template and draw it.
Some computer programs are even available to draw flowcharts. You just
input the program and the computer draws the flowchart. This is conve
nient since you can easily see the logical decisions and flow of data.

Fig. 8-1 shows a flowchart for the Check Balancing Program. Other
symbols are available for disks, printer, etc. The lines and arrows show
the direction of execution in the computer. Some people find flowcharts
very helpful and others don't. However, flowcharts can be very helpful
both in debugging and in designing a program. Beforeyou write the BASIC
code for a program, you can draw a flowchart to illustrate how the pro
gram should work. Likewise, if the program doesn't work correctly, a
flowchart may aid in finding the bad logic.

112 8-Debugging and Documentation

CALCULATE

BALANCE

PRINT

NEW

BALANCE

YES

Comment

Start Program

/end\
(program/

Manual

entry from
keyboard

Manual

entry from
keyboard

Decision

Termination

Process

data

Output
data

Fig. 8-1 Flowchart of the Check Balancing Program with Comments

Follow That Line! 113

Another approach to program design is pseudocode, which literally
means false code. Pseudocode consists of English-like statements that
describe the program. However, the description is usually not on as
detailed a level as BASIC. The term level means the level of detail in the
pseudocode description. A high-level is not very detailed, while a low-level
is very detailed. Following are some pseudocode descriptions of the Check
Balancing Program. You may wish to write the low-level pseudocode your
self from the program listing. The low level pseudocode will be almost a
one-for-one translation of the BASIC statements into English.

Pseudocode Description of Check Balancing Program
Very High-Level
Write a program for check balancing

High-Level
Input the data
Process the checks
Output the results

Medium-Level
Input the starting balance
While there are checks being input
Begin

Calculate the new balance
by subtracting the check from the
balance and store the result as
the new balance.

End

In the medium-level pseudocode, the portion of the code between the
Begin and the End is repeated as long as checks are being input, i.e., while
CHECK is unequal to 0. For more information on program design and
pseudocode, see the book Foundations of Computer Technology.

Follow That Line!

Your computer has some very useful features which will aid you in
debugging. One of these is the trace command, TRACE. Type in TRACE
and then press the ENTER key. Now run the Check Balancing Program
(without printer output) for checks of 100, 89.9 and 0. You'll see the
following

TRACE

RUN

<10><20><30>

INITIAL BALANCE? 1000

<40>

<50>CHECK? (USE 0 TO QUIT) 1

114 8—Debugging and Documentation

00

<60><70><80><90><100>

BALANCE= 900

<110><40>

<50>CHECK? (USE 0 TO QUIT) 8

9.9

<60><70><80><90><100>

BALANCE^ 810.1

<110><40>

<50>CHECK? (USE 0 TO QUIT) 0

<60><120>

** DONE **

As you might have guessed, the TRACE feature traces the lines being
executed and prints their numbers on the screen between the '*<" and
">". You can use TRACE either as a direct command or as a statement.
It's helpful to use TRACE as a statement when you want to trace the pro
gram after a certain line, rather than the entire program.

TRACE is particularly helpful in tracing down the lines in an infinite
loop. For example change line 110 to

110 GOTO 100

and run the program for a balance of 1000 and check of 100. After the
output is printed, the computer goes into an infinite loop between lines
100 and 110. The term infinite loop means the computer would keep loop
ing forever. On the screen, you'll keep seeing

<110><100>BALANCE= 900

You'll have to interupt the program with the FCTN and CLEAR keys to
stop it.

Stop That Line
To turn off the TRACE feature if it was entered as a direct command, just

use the untrace feature, UNTRACE. For example, type

UNTRACE

and press the ENTER key. You can also use UNTRACE in a program state
ment. By using TRACE and UNTRACE in certain portions of your pro
gram, you can selectively turn on and off the TRACE feature.

O.K., Break It Up
Another useful command for debugging is BREAK. Enter the follow

ing command

BREAK 40

O.K., Break It Up 115

and run the Check Balancing Program. Line 30 will ask you to input the
balance. After you enter 1000 for the balance, the program will stop imme
diately with the message

* BREAKPOINT AT 40

As you can see, the BREAK followed by the line number 40 has halted
program execution before line 40 is executed. If line 40 had been executed,
the computer would have printed a blank line and then line 50 would have
asked you to input the check.

Now that the program is halted you can print out the values of vari
ables. For example do a PRINT BALANCE to see the value of BALANCE.
You can execute any direct command that does not add, delete or change
program lines. If you do not change any program lines, you can continue
the program with a CONTINUE or CON, command. Enter a CON and you'll
see the computer ask you to input a check amount.

You can have more than one breakpoint set by following the BREAK
with a list of line numbers. For example

BREAK 40,60,80

is the same as entering the three commands

BREAK 40

BREAK 60

BREAK 80

Enter the BREAK 40,60,80 and just use CON to continue after every
breakpoint until the program ends with a "** DONE **" message. Now
run the program again without entering any breakpoints. This time you
will see no breakpoints. The breakpoints set by a direct command BREAK
are removed when you continue after the breakpoint. All of the
breakpoints set by a direct command BREAK are also removed when a
SAVE or a NEW command is entered.

You can also remove breakpoints with the UNBREAK command.
Just enter UNBREAK to eliminate all breakpoints or follow UNBREAK by
a list of the line numbers you wish to remove breakpoints. You can also
include BREAK and UNBREAK as statements.

Chapter 9

Stringing Along

Your computer has many string functions which give you powerful pro
gramming power. In this chapter you'll learn the essentials of how to use
these string functions.

What A Character

The character function, CHR$, returns a character when you sup
ply a numeric value for its argument. For example, enter the direct
command:

PRINT CHR$(65)

and you'll see an "A" printed. The numbers that you can supply as argu
ments should be in the range of 0 to 127. Numbers in the range 32-127
correspond to the ASCII codes shown in the Appendix of ASCII Character
Codes. The TI-99/4A computer has a special character assigned to code
number 30. This character corresponds to the cursor block. Try

PRINT CHR$(30)

and you'll see a black square printed. The character with code 31 is
another special character defined for your TI-99/4A computer. This is the
edge character. The edge character looks like the cursor block. However,
you cannot print it with the standard BASIC in your console. The TI
Extended BASIC cartridge allows you to print the edge character and also
provides many other features.

You can use a numeric expression or variable name in the argument of
CHR$. The value of the argument is rounded off to an integer when the
CHR$ function is used. If you look up the capital "A", you'll see it has a
code of 65. To print a "B", just do a

PRINT CHR$(66)

Try the following program to show the first 61 characters. The aster
isks are used to bracket each character so that you can see them better.

10 FOR 1=0 TO 60

20 PRINT I;"*,,;CHR$(I);"*";
30 NEXT I

When you run this program, you'll notice that most character codes give
blank characters. These are called control codes or control characters

117

118 9-Stringing Along

because they are typically used to control devices such as printers, or used
in data communications. Although the control characters are non-print
ing, the receiving device does respond to them.

Now change line 10 to

10 FOR 1=61 TO 127

and run the program to see the rest of the characters.

What's The Opposite of a Character?
The opposite or inverse function of CHR$ is the ASC function. Try

PRINT ASCC'A")

and you'll see the number 65 printed. The ASC function returns the ASCII
code number.

How's My Length?
The length function, LBN, returns the number of characters in a

string. For example, enter this program:

10 INPUT "STRING? ":STRING$

20 PRINT LEN(STRING$)

30 GOTO 10

RUN

STRING? 1

1

STRING? A

1

STRING? ABC123

6

STRING? HELLO THIS IS ME

16

As you can see, the program prints out the number of characters in
each string. Note that the numbers input are actually numerals. That is,
the computer interprets a "1" or "123" as a string of numerals, not num
bers. Numerals are symbols of numbers, but you can't use them in arith
metic. The computer internally stores a numeral differently from a
number. You can't add the strings "1" and "123" any more than you can
add the strings "APPLES" and "ORANGES".

For the example, "HELLO THIS IS ME", notice that spaces are
counted as part of the string. In fact, the ASCII code for a space is 32. To
enter just spaces, enclose them within quotes. For example, type " " and
press ENTER. You'll see a 1 printed because you've entered one space.
Next, press just the ENTER key when the computer asks for a string again.
In this case, a 0 is returned since you entered no characters. As another
example, hold down the control key, CTRL, press the "3" key once, and

Give Me Your Position 119

then release the CTRL key and press the ENTER key. You'll notice the cur
sor does move over one space when you press CTRL and "3" since you've
entered a control character. Although the control character is not printa
ble, the computer recognizes its ASCII code and returns a value of 1 for the
length.

You might like to try entering some more control characters and
watching their output. For example, CTRL and the C key actually prints a
squiggly line. CTRL and B also prints a symbol that looks somewhat like a
man with a beard and mustache.

Now turn the power off and on your computer. Get into BASIC and
press CTRL and C, and CTRL and B. You won't see any characters. During
operation, the computer may assign some random pattern to a control
character and this can be printed. However, the pattern can change and so
you should not rely on a specific pattern.

You should be careful and avoid accidentally pressing the CTRL key
instead of the SHIFT key. You might introduce a non-printing control char
acter into your program. BASIC will tell you if the control character is part
of a command. For example, enter

10 PRINT

and then press CTRL and the X key for the final character after the "T".
This will introduce a non-printing control character after PRINT. When
you press the ENTER key to enter this statement, the computer will
respond with the error message

* BAD NAME

However, you can enter the string

10 PRINT "HELLO "

where the blank after the "O" in "HELLO" is actually a CTRL and X con
trol character. If you are listing output to a printer, the control character
may be interpreted as a command. Depending on the printer design, it may
cause double characters, boldface printing, form feed, etc.

Give Me Your Position

Another useful string function returns the position of one string inside
of another. For example, enter and run this program as shown. This pro
gram finds the position of the colon in the INFO$ string, where position 1 is
the leftmost. The position function, POS, is used to accomplish this.

10 INFO$="999-0001:1000 MAIN ST-,TRENTON,NJ-33344"
20 PRINT P0S(INF0$/*:",1)
RUN

9

The POS function has found the colon at position 9 in INFO$.

The general form of POS has three arguments.

120 9-Stringing Along

POS (data string, search string, starting position of search)
where the data string is the one you want to search by the search string.
The search will start at the starting position given by the third argument
which can be a numeric expression or variable. If the search is not success
ful, then POS will return a value of 0. For example, change the search
string colon in line 20 to a "$" and run. A value of 0 is returned by POS
because there is no "$" in INFO$.

Now change the starting position in line 20 to 50 and the "$" back to
":". Run and you'll also get 0 because the starting position for the search
exceeds the number of characters in the string. Finally, change the 50 to a
-1 and run. Now you'll see the error message

* BAD VALUE IN 20

because a negative starting position was used.

Strings And Numbers

You can even convert numbers into strings with the string function,
STR$. Enter and run this program.

10 N=100

20 PRINT "THE NUMBER";N;"IS THIS"
30 PRINT "THE NUMERAL";STR$(N);"IS THIS"
RUN

THE NUMBER 100 IS THIS

THE NUMERAL100IS THIS

Notice that when STR$ converts a number into a numeral, the leading and
trailing blanks of the number are removed. That's why the numeral "100"
runs into the strings before and behind it.

The string function is useful if you don't want the blanks around num
bers. For example, enter the program to display the character codes. But
this time, let's use STR$ to pack more characters on a line by printing
numerals.

10 FOR 1=0 TO 60

20 PRINT STR$(I);"*,,;CHR$(I);"*";
30 NEXT I

In fact the characters are so much more packed now that you can see all
but the top three lines if you change line 10 to

10 FOR 1=0 TO 127

Cutting Up a String 121

The Value of a String
Just as ASC and CHR$ are inverse functions, so too are STR$ and VAL.
The value function, VAL, returns the number corresponding to a string of
numerals. For example, try the following new program:

10 INPUT N$

20 PRINT VAL(N$)

30 GOTO 10

RUN

? 123

123

? -123.4

-123.4

? -123.4E-5

-.001234

Notice that in the last example, the number is expressed as a decimal,
rather than left in exponential form. As another example, stop the program
with a FCTN and CLEAR, and enter the direct command

PRINT VAL("-123,,&"E-3M)
-.123

As you can see, you can perform a valid string operation so long as the
argument reduces to a string of numerals or string expression of numerals.

Cutting Up a String
The final string function you'll see returns a portion or segment of a

string. This is the segment function, SEG$ function. For example, enter
the following new program.

10 INFO$="999-0001:1000 MAIN ST.,TRENTON,NJ.33344"
20 P=P0S(INF0$,":",1)-1
30 PRINT "PH0NE:";SEG$(INF0$,1,P)
RUN

PHONE:999-0001

** DONE **

Line 10 defines a string variable with data for a phone number and
address. A colon separates the phone number from the address. Line 20
finds the position of the colon in INFO$ and subtracts 1 from it. Since the
colon was at position 9, by subtracting 1 we now have the position of the
last digit of the phone number string. This value of 8 is assigned to the
variable P. Finally, line 30 extracts the string from position 1 to P from
INFO$ and prints it.

The general form of SEG$ is
SEG$ (string, starting position, final position).

122 9-Stringmg Along

Shown following is a simple program using SEG$ to reverse a word.
The loop of lines 20-40 print the characters starting with the last position,
LEN (WORD$), to the first position. Actually, the program works with any
string of characters, as you can see by "THIS IS A TEST." example when
the program is run.

10 INPUT "WORD? ":WORDS

20 FOR I=LEN(W0RD$) TO 1 STEP-1

30 PRINT SEG$(W0RD$,I,1);
40 NEXT I

50 PRINT

60 GOTO 10

RUN

WORD? ABCDEF12345
54321FEDCBA
WORD? HELLO

OLLEH

WORD? THIS IS A TEST.

-TSET A SI SIHT

This same concept can be applied to our database program. Using the
string functions, you can extract any portion of the string from INFO$. For
example, if the database contained phone numbers and addresses, you
could

(1) extract all phone numbers.
(2) extract numbers with certain area codes that you specify.
(3) extract addresses in certain states or areas that you specify.
(4) compile numerical statistics from the above data. For example,

how many people live in a certain state or area code.

If the database contained students and grades, or inventory, you could
extract any type of information. You may wish to enhance the Database
Program some more using the above suggestions.

How To Get Organized
At some time in your life, you've probably had to organize a list of

items by sorting them alphabetically. Perhaps it was a list of names,
accounts, recipes, books, records. In any case, if you did it manually using
index cards, you know, what a boring and tedious job it was.

This is where your friendly, helpful computer comes into the picture.
Computers just love long, boring and tedious work. Your computer can
just zip through the sorting and leave you time for more creative work. As
an example of sorting, let's enhance the Database Program with some lines
to sort by name in the database. When you add the lines to sort and RUN,
the menu will show the additional entry

SORT ALL DATA 8

How To Get Organized 123

If you enter an 8 as your choice, the computer will sort the items in NAM$
by alphabetical order and store the sorted items back in NAM$. Of course,
the corresponding items in INFO$ will match the right NAM$. You can use
any of the other menu choices. For example, you can then print out the
entire list by choosing a 6. You can also write the sorted items to tape
using a 2. The sorted items are actually in order of their ASCII codes. So if
your NAM$ is " 1234", it will be placed before "ADAM" because numerals
precede letters. You can also include data with commas if you enclose the
input in quotes. For example:

BAKER,TOM

will give an error message on input of NAM$ because the comma separates
items on a input list. The computer expects you to input only one item
NAM$. Instead, it appears you're inputting two items: (1) BAKER and (2)
TOM. The way to get around this is to input the name in quotes

"BAKER,TOM"

Here are the lines to add sorting to the Database Program. Just type
these lines in as shown after you've input the Database Program back into
your computer from your cassette or other storage device.

100 PRINT "END THE PR0GRAM";TAB(17);7:"S0RT THE
DATA";TAB(17);8
130 IF CH0ICE>8 THEN 30

140 ON CHOICE GOTO 190,290,360,460,550,700,150,1000
1000 PRINT "ITEM SORTED";
1010 NUMSORT=0

1020 FOR 1=1 TO N

1030 ITEMNAM$=NAM$(I)

1040 ITEMINF0$=INF0$(I)

1050 FOR J=1 TO NUMSORT

1060 IF ITEMNAM$<NAM$(J) THEN 1090

1070 NEXT J

1080 GOTO 1130

1090 FOR K=NUMS0RT TO J STEP -1

1100 NAM$(K+1)=NAM$(K)

1110 INF0$(K+1)=INF0$(K)

1120 NEXT K

1130 NAM$(J)=ITEMNAM$

1140 INF0$(J)=ITEMINF0$

1150 PRINT I;
1160 NUMS0RT=NUMS0RT+1

1170 NEXT I

1180 PRINT :"D0NE WITH SORT"

1190 GOTO 30

Line 1010 defines a variable called NUMSORT which stores how many
records have been sorted, where a record consists of a NAM$ and an

124 9—Stringing Along

INFO$ for that item. The loop of lines 1020-1170 performs the sorting.
Lines 1030-1040 define some variables to contain the data in the NAM$
and INFO$ to be sorted. The loop of lines 1050-1070 find out if the
ITEMNAM$ is less than the sorted item NAM$(J). Notice that we're sorting
items back into our original list. This takes much less memory than if we
store all the sorted items in a separate list. If the name to be sorted is equal
to or greater than an item in the sorted list, line 1060 goes to 1090. The
loop of 1090—1120 inserts the item in the sorted list by copying all the
sorted items up. Then 1130-1140 insert the items in the sorted list. Line
1150 prints the subscript of the item that was sorted. You may want to
modify this to also print how many items there are in the list, which is
stored in the variable N. If the item is greater than any item in the sorted
list, the loop of lines 1050-1070 terminate and line 1080 goes to 1130.
This just appends the item to the sorted list. Line 1160 increments the
NUMSORT when another item has been sorted. Line 1180 prints a mes
sage telling when you're done with the sort and 1190 takes you back to the
menu.

There are many ways to sort items. In fact, entire books have been
devoted to sorting algorithms. An algorithm is a method for solving a
problem in a finite number of steps. In fact, a computer program is an algo
rithm. Although the method used here is simple, more efficient methods
are available which do not require so much moving of data. For example,
see "Never Out of Sorts" by Doug Hapeman, pp. 16, in the 99'er Home
Computer Magazine, July 1983. Notice that every time we wanted to
insert an item in the list, the loop of lines 1090-1120 had to move some
data.

More efficient techniques use variables whose values are pointers.
Just as the computer uses a pointer for READ, you can use the concept of a
pointer for more efficient sorting. Rather than moving data around, you
could rewrite this sorting to include numeric dimensioned variables as
pointers that would point to an item. Since the TI BASIC in your console
can't tell us the address of an item, the pointer contains the subscript of
the array elements. Then just change the pointers to sort the data. For
example, suppose your list of NAM$ is

NAM$(1)="APPLE"

NAM$(2)="CANDY"

NAM$(3)="BANANA"

the original pointer list is

P(1)=1

P(2)=2

P(3)=3

After sorting, the pointer list would be

P(1)=1

P<2)=3
P(3)=2

Scrambled Animals 125

To point out the sorted items, you would use the pointer list. For example:

FOR 1=1 TO N

PRINT NAM$(P(D)

NEXT I

The original list of data is the same. Only the pointers have been changed
to print the list in a different order. If you had an inventory with thousands
of items, it would take too long to move the data around. Pointers would be
necessary.

Scrambled Animals

Now that you've seen how the string functions operate, let's look at a
fun, yet educational application. The following program uses string func
tions to scramble up the letters of a word. For example, CAT might become
TCA or TAC or CTA, etc. The program has a list of words and randomly
selects one word from the list, scrambles its letters, and asks you to guess
the word. Following is a listing of the program and some samples of its
output. Since RANDOMIZE is used, you will probably not get these exact
scrambled words. Also, note that the following listing and examples are
printed in this book with more than 28 characters on a line in order to
make it easier for you to read.

10 REM SCRAMBLED WORDS

20 RANDOMIZE

30 PRINT "THESE ARE ANIMAL NAMES"

40 N=5

50 DIM WORD$(1000),W(50)
60 FOR 1=1 TO N

70 READ W0RD$(I)

80 NEXT I

90 TRIES=0

100 W0RDNUM=INT(N*RND+1)

110 IF 0LDW0RDNUMOW0RDNUM THEN 130

120 GOTO 100

130 0LDW0RDNUM=W0RDNUM

140 LENWORD=LEN(WORD$(WORDNUM))

150 NUMLETTERS=0

160 FOR K=1 TO LENWORD

170 I=INT(LENW0RD*RND)+1

180 IF NUMLETTERS=0 THEN 220
190 FOR J=1 TO NUMLETTERS
200 IF W(J)=I THEN 170

210 NEXT J

220 NUMLETTERS=NUMLETTERS+1
230 W(NUMLETTERS)=I
240 NEXT K

250 FOR K=1 TO NUMLETTERS

126 9—Stringing Along

260 IF W(K)OK THEN 290

270 NEXT K

280 GOTO 150

290 PRINT :"SCRAMBLED WORD IS ";
300 FOR 1=1 TO LENWORD

310 PRINT SEG$(WORD$(WORDNUM),W(I),1);
320 NEXT I

330 PRINT

340 PRINT "GUESS MY WORD?(USE G TO GIVE UP;S TO STOP
PROGRAM)"

350 INPUT GUESSS

360 IF GUESS$="G" THEN 420

370 IF GUESS$=WORD$(WORDNUM) THEN 440

380 IF GUESS$="S" THEN 460

390 PRINT "SORRY THAT'S NOT IT"

400 TRIES=TRIES+1

410 IF TRIES<3 THEN 300

420 PRINT "THE WORD IS ";WORD$(WORDNUM)
430 GOTO 90

440 PRINT "YOU GOT IT!":

450 GOTO 90

460 END

470 DATA CAT,DOG,TIGER,LlON,ZEBRA

RUN

THESE ARE ANIMAL NAMES

SCRAMBLED WORD IS TCA

GUESS MY WORD?(USE G TO GIVE UP;S TO STOP PROGRAM)
7 TAC

SORRY THAT'S NOT IT

TCA

GUESS MY WORD7CUSE G TO GIVE UP;S TO STOP PROGRAM)
7 CAT

YOU GOT IT!

SCRAMBLED WORD IS OGD

GUESS MY WORD7CUSE G TO GIVE UP;S TO STOP PROGRAM)
7 GOD

SORRY THAT'S NOT IT

OGD

GUESS MY WORD7CUSE G TO GIVE UP;S TO STOP PROGRAM)
? ODG

SORRY THAT'S NOT IT

OGD

GUESS MY WORD7CUSE G TO GIVE UP;S TO STOP PROGRAM)
7 GDO

SORRY THAT'S NOT IT

THE WORD IS DOG

Scrambled Animals 127

SCRAMBLED WORD IS RGITE

GUESS MY W0RD7CUSE G TO GIVE UP;S TO STOP PROGRAM)
7 TIGRE

SORRY THAT'S NOT IT

RGITE

GUESS MY WORD7CUSE G TO GIVE UP;S TO STOP PROGRAM)
7 TIGER

YOU GOT IT!

SCRAMBLED WORD IS OILN

GUESS MY WORD7CUSE G TO GIVE UP;S TO STOP PROGRAM)
7 LION

YOU GOT IT!

SCRAMBLED WORD IS ATC

GUESS MY WORD7CUSE G TO GIVE UP;S TO STOP PROGRAM)
7 G

THE WORD IS CAT

SCRAMBLED WORD IS IRGET

GUESS MY WORD7CUSE G TO GIVE UP;S TO STOP PROGRAM)
7 S

** DONE **

Line 20 randomizes the numbers from the RND function so that you
won't always get the same series of pseudorandom numbers every time the
program is run. Line 30 tells the user some information about the type of
words used as data. In this program, line 470 contains all names of ani
mals. This can be useful to the person playing since some permutations of
the words give other valid words, where the term permutation means a
rearrangement. For example, a permutation of "DOG" is "GOD". However,
the computer is expecting "DOG" and will not accept the word "GOD".

Line 40 defines the variable N as the number of DATA words in line
470. If you add more data, just increase N. Line 50 dimensions the string
array WORD$ to allow up to 1000 words. Depending on the number of
characters in the words, you may or may not be able to get that many in
the program. The numeric dimensioned variable, W, is used to keep track
of the permuted letters. It is set to 50 because it's unlikely you'll ever find a
word with 50 characters in it. However, you can even scramble a phrase
with this program. For example, include:

THIS IS A PHRASE

instead of CAT and you could get

AEASS PISI RTHH

So this program can even be used to encode messages. In that case, you
may want more than 50 characters so just increase W accordingly.

128 9-Stringing Along

Lines 60-80 read the data and assign them to WORD$(I). Line 90 sets
the number of tries you can make at guessing the word to zero. Line 100
generates a random number to pick one of the words in the list. Line 110
checks if the previous word number, OLDWORDNUM, is different from the
new number, WORDNUM. This test is done so that the computer can't give
you the same word twice in a row. If the old and new numbers are the
same, line 120 directs the computer to go back and try again for a new
WORDNUM. If the old and new word numbers are different, line 130 sets
the old word number to the new word number.

Line 140 defines a variable for convenience, LENWORD, to contain the
length of the word that the computer has randomly chosen. Line 150 ini
tializes the variable NUMLETTERS to zero. This variable keeps track of
how many letters in the random word have been permuted by the loop of
lines 160—240. This loop generates the permuted numbers in the variable
W. For example, the result of permuting DOG might be

W(1)=3
W(2)=1

W(3)=2

which indicates the third letter of DOG becomes the first, the first letter
becomes the second, and the second letter becomes the third. The sub
scripts ofW are the order in which the permuted word is written. The val
ues assigned to W are the positions of the original letters. So the above
represents "GOD".

Lines 250-280 prevent the same permutation as the original letters
from occurring. For example, the random numbers might give

W(1)=1

W(2)=2

W(3)=3

and so "DOG" would be permuted as "DOG". This wouldn't be much of a
challenge, so this loop directs the computer back to try again if the loop
executes successfully. If the program gets to 280, then all the W(K)=K, so
the word has not really been permuted.

Lines 300—320 print the permuted word by extracting a one-character
substring from the WORD$. The W(I) tells from which character position
to extract the substring. Lines 330-380 ask you to input a guess, and also
check if you want to give up or stop the program. Line 400 increments the
tries by one each time you make a wrong guess. Line 410 checks if you
have made less than three tries. If so, you get another chance. If you make
three tries, the computer tells you the word, and then goes back to get
another word. If you guess the word, line 440 prints a message of
congratulations.

You can improve this program by adding variables to keep track of
how many words you got right. You could display the percentage ofcorrect
guesses. You may also want to modify this program so that it will read in
data from tape or disk files. Another variation you could try would be to
modify this into a "Hangman" type program.

Chapter 10

Economize, Economize

In this chapter, you'll learn how to economize computer memory and your
time in programming. Smaller programs also execute faster because the
computer has fewer lines to execute. Your computer has some features that
allow you to reduce the memory requirements of a program. At the same
time, it takes less work by you to enter program lines.

Going Down Under
One way to save memory and your time is to write a program that re

uses portion of the code. This can easily be accomplished through use of
subroutines. A subroutine is a group of statements which are accessed by
a GOSUB, and which end with a RETURN. To see why subroutines are
useful, enter the following simple program which does not use a subrou
tine. Then we'll write a new version with a subroutine and you'll see the
difference.

10 INPUT N1,N2
20 ANSWER=N1+N2

30 GOTO 90

40 INPUT N1,N2
50 ANSWER=N1-N2

60 FLAG=1

70 GOTO 90

80 END

90 PRINT ,,ANSWER="j;ANSWER
100 IF FLAG=0 THEN 40 ELSE 80

RUN

? 2,2
ANSWER= 4

? 1I,5
ANSWER=-4

** DONE **

This program is designed to allow you to enter two numbers, find their
sum, enter two more numbers, and find their difference. Notice that the
program attempts to save memory by using line 90 to print the answer for
both the addition and subtraction of the numbers.

129

130 70-Economize, Economize

However, the program must keep track of which line to go back to by
means of a variable called FLAG. When FLAG=0, the computer goes back
to line 40 so that you can enter the two numbers for subtraction. Then line
60 sets FLAG= 1, prints the answer for subtraction, and the program goes
to line 80 and ends. Although this approach works, it is inconvenient. It
becomes even worse if you want to return to a third, a fourth or more
places in the program.

A good solution to this problem uses a subroutine. Instead ofyour hav
ing to write the program in such a way that the computer goes back to the
appropriate place, the computer does it. Enter and run the following new
program using the subroutine statements GOSUB and RETURN. Notice
how much simpler this approach makes the program. No flags are needed,
and you can have as many GOSUB's as you want.

10 INPUT N1,N2
20 ANSWER=N1+N2

30 GOSUB 80

40 INPUT N1,N2
50 ANSWER=N1-N2

60 GOSUB 80

70 END

80 PRINT "ANSWER=";ANSWER
90 RETURN

When the computer executes a GOSUB, it first stores the memory
address of the next statement it was going to execute and then starts exe
cuting from the line number following the GOSUB. This procedure is called
a subroutine call. Another way of stating this is that the subroutine is
being called by the main program. The main program is the portion of the
program that is the main control of the program. In the example above, the
main program consists of lines 10-70. In fact, you can write programs in
which the main program is just a sequence of subroutine calls.

This address of the next statement to be executed is stored in a special
area of the computer's memory called the stack. The term stack arises
because these return addresses are arranged in the order that the subrou
tine calls are made. This situation is like the way dishes can be stacked on
top of one another. To get to the bottom dish (the oldest subroutine call),
the computer must first return from the most recent subroutine call. As
new subroutine calls are made, i.e. more dishes are stacked, the return
addresses are stacked on top of the most recent addresses. The RETURN
statement must always be the last statement executed by a subroutine.
The RETURN tells the computer to start executing from the top address of
the stack. This top address and other information stored on the stack tells
the computer the next line number that was to be executed before the call
had been made. So the computer starts execution from that next line. A
subroutine can call other subroutines or even itself. Also, just like the
GOTO, there is an ON GOSUB statement.

Let's Get Drilled 131

Let's Get Drilled

The following program illustrates subroutines for an educational
application of an arithmetic drill. This program is designed to give a stu
dent problems in addition or subtraction. If you answer correctly, the com
puter says "YOU ARE CORRECT!" If you are wrong, the computer tells
you the correct answer.

10 REM ARITHMETIC DRILL

20 RANDOMIZE

30 INPUT "MAXIMUM NUMBERS USED=?":MAX

40 PRINT :"ADDITI0N";TAB(12);1
50 PRINT "SUBTRACTI0N";TAB<12>;2
60 PRINT "EXIT";TAB(12);3
70 INPUT CHOICE

80 ON CHOICE GOSUB 110,180,100
90 GOTO 40

100 END

110 GOSUB 250

120 PRINT TAB(10);N1
130 PRINT TAB(9);"+";N2
140 PRINT TABC10);" "
150 C0RRECT=N1+N2

160 GOSUB 280

170 RETURN

180 GOSUB 250

190 PRINT TAB(10);N1
200 PRINT TAB(9);"-";N2
210 PRINT TABC10);" "
220 C0RRECT=N1-N2

230 GOSUB 280

240 RETURN

250 N1=INT(MAX*RND+1)

260 N2=INT(MAX*RND+1)

270 RETURN

280 INPUT "ANSWER=? ":ANSWER

290 IF CORRECT=ANSWER THEN 320

300 PRINT "SORRY, THE RIGHT ANSWER IS";CORRECT
310 RETURN

320 PRINT "YOU ARE CORRECT!"

330 RETURN

RUN

MAXIMUM NUMBERS USED=?100

ADDITION 1

SUBTRACTION 2

EXIT 3

? 1

132 70-Economize, Economize

63
+ 65

ANSWER=? 128

YOU ARE CORRECT!

ADDITION 1

SUBTRACTION 2

EXIT 3

? 1

37

+ 21

ANSWER=? 68

SORRY, THE RIGHT ANSWER IS
58

ADDITION 1

SUBTRACTION 2

EXIT 3

? 2

57

- 40

ANSWER=? -17

SORRY, THE RIGHT ANSWER IS
17

ADDITION 1

SUBTRACTION 2

EXIT 3

? 3

** DONE **

Line 30 asks you to input the maximum number used in the problems.
For example, if you input a 100, the numbers can be integers from 1 to
100. Lines 40-60 print a menu of choices on the screen. You can select an
addition or a subtraction problem, or exit from the program. Line 80 does
an ON GOSUB to the appropriate portion ofthe program. If you select addi
tion, the computer goes to line 110, subtraction to line 180, and exit to line
100.

Lines 110 and 180 each do a GOSUB to line 250. The subroutine
starting at 250 generates two random integers and assigns them to Nl and
N2. The computer then returns from the subroutine to the appropriate
place in the subroutine that called it. For example, if the addition subrou
tine called it at 110, the computer returns to line 120. Lines 120-140 print
the two random integers on the screen separated by a " + " sign. Then line
140 prints some minus signs to separate these numbers from the answer.

Line 150 calculates the correct answer for addition and assigns it to
the variable CORRECT. Then the subroutine starting at 280 is called from

How's Your Memory 133

line 160. The subroutine at 280 is also used by the subroutine for subtrac
tion. Both the addition and subtraction subroutines use 280—320 to ask
for input and print output to you.

You may wish to try enhancing this program to add menu choices for
multiplication and division. Also, you could assign ten problems at a time
when a choice is made from the menu rather than returning to the menu
every time after a problem. Another enhancement would be to keep track
of the student's score for the ten problems.

Subroutines can be very useful in reducing program memory and in
saving you time in typing in a program. You can even organize your pro
gram better by designing it using subroutines to accomplish specific tasks.
However, subroutines do have a disadvantage in that they tend to slow
down the computer. Since the computer must store the return address on
the stack and later return, the computer must do more work. This slowing
down will be more evident if a subroutine is inside a FOR-NEXT loop
where it is called many times. In many types of programs, this slowing
down will not even be noticeable to you. However, if you are designing
certain types of games involving animation and moving objects, then exe
cution speed may be more important to you than the advantage of
subroutine.

How's Your Memory
In order to show that return addresses are stored, enter and run the

following program. It takes about 10 seconds before execution stops. But
first do a NEW to clear out any existing program.

1 A=A+8

2 GOSUB 1
RUN

* MEMORY FULL IN 1

This program is an infinite loop that keeps performing a GOSUB to itself.
The subroutine calls itself at line 1 and stacks up its return address.
Finally, the computer runs out of memory because so many addresses are
on the stack!

Now do a

PRINT A

and you'll see the value 14536. Everytime a subroutine is called, eight
bytes are needed to store the return address and other information on the
stack. So A is actually the amount of memory that the computer used
before running out of memory. The program itself uses 40 bytes and so the
total amount of memory available for your programs is

PRINT A+40

14576

or 14,576 bytes.

134 TO-Economize, Economize

Although the TI-99/4A does have 16K bytes = 16,384 bytes of mem
ory, some of it is used by the computer for BASIC. The 14,576 represents
the net amount of memory left for your program. So after you run this
memory program, do a PRINT 14576-A to find out how much memory your
program used. You can enter these lines 1 and 2 before any program lines
to see how much memory your program requires for storage. For example,
add this line

1(0 DIM BC1000)

and run. When the execution stops, do a PRINT A+40 and you'll see 6544
bytes of memory left. This means that every numeric dimensioned variable
uses 8 bytes of storage since 14576-8* 1000 is about 6544 where the dif
ference of 36 bytes comes from the length of line 10 and the tolerance of 8
bytes from our GOSUB memory check. Now change line 10 to

10 DIM B(1000),N$(1000)

and run. You'll see 4520. So each dimensioned null string takes (6544-
4520)/1000 or 2 bytes per string variable. Again the calculation above
would be exactly 2 bytes if we included the storage for N$(1000) in line 10
and if the GOSUB memory check was more exact. However, for the most
accurate estimate, include the two memory check lines after your program
as the last lines to be executed. Of course, you'll need to change their line
numbers to make them the last executed lines. It's best to put these lines
as the last ones executed because the program uses memory beyond that
required to store it. For example, dimensioned string arrays are null
strings when a DIM is first executed. As the program executes, these
strings will become filled with your data. So the size of your program will
increase as it is run if you use dimensioned string arrays.

TI Extended BASIC has a command called SIZE that will show the
amount of memory left and the amount used by the stack. However, you
can always run this little program to check out the memory size in the
standard TI BASIC that comes with your computer. Just don't name the
variable used in this memory program the same name as a variable in
your program or you'll geta Name Conflict Error Message. Also, remember
that this program is accurate to within 8 bytes of the true amount of mem
ory remaining.

Get Defined

Your computer has another way to save you typing and memory by
allowing you to define your own functions. Just as SIN, COS, INT, are all
predefined functions by the computer, you can have a user-defined func
tion. That is, you can define your own function. Simply define your func
tion with a DEF statement, as shown in the following program. Enter and
run the program to print the square of a number, for the examples shown.
Just use FCTN and CLEAR to stop.

Get Defined 135

10 DEF SQUARE(X)=X*X
20 INPUT "NUMBER=?":N

30 PRINT SQUARE(N)

40 GOTO 20

RUN

NUMBER=?2

4

NUMBER=?6.5

42.25

NUMBER=?90

8100

Line 10 defines your function with the DEF statement. Just follow
DEF with the name of your function. If your function has an argument, it
must be enclosed in parentheses as shown. Any variable name can be
used as the argument in the DEF, so this is called a dummy argument.
When SQUARE is used in line 30, just substitute the variable name or
numeric expression for the dummy argument. For example, stop the pro
gram with the FCTN and QUIT keys, and then enter the direct command

PRINT SQUAREC2+2)

and you'll see 16 printed.
Of course, if you define your function in terms of a variable used in

your program, then the function can be evaluated without an argument.
For example enter and run the following version of the square program.
You will see the same results as before if you use 2, 6.5, and 90 as inputs.

10 DEF SQUARE=X*X

20 INPUT "NUMBER=?":X

30 PRINT SQUARE

40 GOTO 20

You can define any function with a DEF, including string functions.
Although the DEF is limited to a single statement function, it is convenient
to use in many programs. You can also define string functions with a DEF.

In using a DEF, you need only include it with a line number lower
than where you call its function. You don't actually have to execute the
DEF line before you call its functions. Some limitations on the DEF are

(1) A DEF cannot be defined in terms of itself. For example, the follow
ing gives an error message if you try to run it.

10 DEF A(X)=A(X)+1

20 PRINT A(5)

Line 10 defines the function A in terms of itself. Then line 20 attempts to
print a value. If you run this, you'll see the error message

* MEMORY FULL IN 20

136 W—Economize, Economize

(2)You can't define a DEF in terms ofanother. For example, the follow
ing gives an error message when run

10 DEF A(X)=B(X)+1
20 DEF B(Y)=2*A(Y)
30 PRINT A(4)
RUN

* NAME CONFLICT IN 20

However, subroutines can be defined in terms of one another. In fact, a
subroutine can be defined in terms of itself.

Chapter 11

Give Me a Call

Getting Keyed Up 137

If you think your computer has some powerful built-in-functions like LOG,
EXP, SIN, COS, etc.—wait—you ain't seen nothin' yet. In this chapter and
the next, you'll see and hear just how powerful your computer is.

Now that we've covered the fundamentals of programming in BASIC,*
you can fully use the powerful graphics and sound features of your com
puter. You access these features by simply calling them with a CALL state
ment to the specific subprogram you want. The subprogram is like a
subroutine in that it does its thing and then returns to the next statement
following the one which called it. However, the subprograms are all
predefined and you can't change them.

Clearing Things Up
The first subprogram we'll look at is so useful that it's usually entered

as the first line of a program, after any introductory remarks. Enter and
run the following:

10 CALL CLEAR

20 FOR 1=1 TO 20

30 PRINT I

40 NEXT I

50 GOTO 10

When you run this program, line 10 will clear the screen. Lines 20—40 will
print the numbers 1 to 20. Then line 50 will go back to line 10 and clear
the screen again. This process can go on forever, since the program is an
infinite loop. To stop, use the FCTN and CLEAR keys.

The CALL CLEAR subprogram fills the screen with blanks (ASCII
code of 32). So CALL CLEAR is very useful as the first line of a program. By
clearing the screen, your program's output starts fresh.

Getting Keyed Up
The CALL KEY subprogram is another feature available with your

computer. It is very useful when you write game programs because the
computer keeps executing the program while checking to see if you press a

137

138 11-GiveMeaCall

key. In contrast, the INPUT statement halts the program execution at the
line where INPUT is located.

The following program shows the numbers that are returned by the
CALL KEY in a program. Enter and run this program.

10 CALL CLEAR

20 CALL KEY(0,K,S)
30 PRINT K;
40 IF K<0 THEN 50 ELSE 70

50 PRINT

60 GOTO 20

70 PRINT CHR$(K)

80 GOTO 20

When you first run the program you'll see a column of -l's marching
up the screen. Now press the "A" key quickly and let go. You'll see a 65
followed by an "A" appear. If you didn't see an "A", you were too quick.
Hold the "A" key down longer. In fact the longer you hold the key, the
more "A'"s will appear. Press some other keys and you'll see a number
followed by the ASCII code for that number. If you press no keys, you'll
just see the-l's.

In this program, line 20 executes the CALLKEY subprogram. The first
argument in parentheses, called the key-unit, defines how the keyboard
will be scanned by the computer for a press. Refer to the Appendix of Key
board Mapping to see diagrams as to how the key unit sets up the key
board. The second argument is the return-variable which is assigned the
value returned by the keyboard scan. Any variable name can be used for
the return variable.

The possible values for the key-unit are:

0 The keyboard is set to the same mode as the previous CALL KEY
statement that was executed. The term mode means manner or
way. This key-unit value of 0 returns the same values as mode 5.
Also, some additional control characters are available for modes 0
and 5 that may not be shown in the Appendix of the TI User's
Reference Guide. For example, the CTRL and the following
number keys return the control codes as shown

11 1 II
177

"2" 178

"3" 179
4*4" 180

"5" 181

"6" 182
t **?*»

183
t40" 176

A key-unit of 0 gives compatibility with the older TI-99/4 com
puter. On that machine, only a key unit of 0 was available. So if
you use a key-unit of 0 or 5 on your TI-99/4A, you can use pro-

Clearing Things Up 139

grams for the TI-99/4. However, there are additional control char
acters available if you compare with the TI-99/4A. Compare Fig.
3 of the Appendix (Key-unit=5) with Fig. 1 (Key-unit=3). The key
unit=3 on the TI-99/4A imitates the TI-99/4 keyboard. Notice
how many more control characters are available on the TI-99/4A
than the TI-99/4.

1 Only the left side of the keyboard or the left joystick is active.
2 Only the right side of the keyboard or the right joystick is active.

Note that by alternatively using key-units of 1 and 2, you can give
turns to two players. The following key-unit values all return
upper case and lower case values, function codes, and control key
codes. The values for each key are shown in the keyboard maps in
the Appendix.

3 Standard TI-99 / 4 mode.

4 Pascal mode. Pascal is another computer language that is avail
able as an option for your computer.

5 BASIC mode. This is the standard mode for the TI-99 / 4A.

Try running the program again with

20 CALL KEY(3,K,S)

and check the values returned for K with those in the Appendix for a key-
unit of 3.

The third argument in the CALL KEY statement is the status-varia
ble. To see how the status works, change line 30 to

30 PRINT K;S;

and run. As the following example shows, depending on your reaction
time, you may get more or less output.

Comment

-1 0
-1 0

-1 0

57 1 9 (The "9" key is pressed)
57 -1 9

57 -1 9

57 -1 9 (The "9" key is released)
-1 0

-1 0

-1 0

40 1 ((SHIFT is held down and then the "9" key
40 -1 (pressed)

Notice that the same physical key, "9", gives different return value when
used with the SHIFT key. After the computer executes a CALL KEY, the
computer returns one of the following three values for the status variable:

140 TT-G/ve Me a Call

• +1 a different value was returned in the return variable since
the last time a CALL KEY statement was executed. For ex
ample, if you pressed the X key, released it, and then
pressed the C key, the status would change.

• -1 If you hold down the same key, the status changes to -1 after
the initial status change to +1.

• 0 No key is being pressed.

As a simple example of CALL KEY, the following program makes
blocks move up the screen. It looks like a worm race. Press the "1" key to
tab the blocks to columnl, the"2" key to column 2 and so forth. Other
keys will also move the blocks depending on their ASCII value.

10 CALL CLEAR

20 CALL KEY(0,K,S)
30 IF S=0 THEN 50

40 P=K-48

50 PRINT TAB(P);CHR$(30)
60 GOTO 20

The position variable P is initially zero. P represents the column
number of the worm. Line 20 does a CALL key. Line 30 checks if a key is
being pressed. If S=0 because no key is pressed, the program goes to 50
and prints the next block in the same column. Line 40 subtracts 48 from K
so that if a "1" is pressed, a numeric value of 1 will be given to P. Like
wise, if a "2" is pressed, P=2 and so forth for the other numeric keys.

Stop That Data!
Now that you've seen how CALL KEY works, let's use it in a practical

application to control printing in the Database Program. When you pick
choice 6 from the Database Program menu, the computer prints out all the
data. Wouldn't it be nice if you could

1. stop scanning if you found something interesting?
2. scan forward toward the end of the data?
3. scan backward toward the beginning of data?
4. end printing all data and return to the menu?

Well, you can do all this by adding the following lines to the Database
Program:

700 L=1

710 U=N

720 ST=1

730 PRINT "STOP SCAN-S":"SCAN BACK-E":"SCAN FORWARD-
X":"D0NE PRINTING-D"

740 FOR 1=1 TO 1000

750 NEXT I

760 FOR I=L TO U STEP ST

Put It Where You Want 141

77^ PRINT NAM$(I):INFO$(I)

780 CALL KEY(0,K,S)
790 IF S=1 THEN 840

800 FOR J=1 TO 300

810 NEXT J

820 NEXT I

830 GOTO 30

840 IF K=68 THEN 30

850 IF K=88 THEN 950

860 IF K=69 THEN 910

870 IF K<>83 THEN 990

880 CALL KEY(0,K,S)
890 IF S=1 THEN 840 ELSE 880

900 GOTO 990

910 U=1

920 ST=-1

930 L=I-1

940 GOTO 760

950 U=N

960 ST=1

970 L=I+1

980 GOTO 760

990 IF ST=-1 THEN 930 ELSE 970

Lines 700, 710 and 720 define initial values for the variables which
control the lower limit—L, upper limit—U, and step size—S for scanning.
Initially, the loop of lines 760-820 is set up to print items 1 to N. Item 1 is
the first item you added while item N is the last item. Line 730 prints an
explanation of the keys which control scanning. The loop of 740—750
introduces a time delay so that you can read the explanation. As you grow
more experienced using these keys, you may want to reduce the "1000" in
line 740.

Lines 780 and 790 check if a new key has been pressed. If so, the com
puter goes to 840. If no key has been pressed, the loop of 760—820 just
keeps on printing items. Line 840 directs the computer back to the menu if
the 44D" key is pressed. If the "X" key is pressed, line 850 directs the com
puter to go to line 950 which sets up the loop parameters for line 760 to
give a forward scan. If the 44E" key is pressed, line 860 directs the com
puter to line 910 which starts setting up the loop parameters for line 760
to give a backward scan. If the 44S" key is pressed, lines 880 and 890 keep
looping until another key is pressed. Then the computer goes to 840 to find
out if it was a 44D", 44X", or 44S" key. If it was any other key, the scan just
keeps continuing in the same direction it was going before it was stopped.
Line 990 checks ST to see what direction the scan had been going.

Put It Where You Want

Until now, you've only seen how to print on the screen with PRINT.
This is fine for many applications, but does make the output scroll up the

142 11-Give Me a Call

screen. In many games and programs, you may want to print a character
at a certain place on the screen with no scrolling.

Your computer has two subprograms which allow you to easily print
on the screen. These are the CALL HCHAR and CALL VCHAR sub
programs. Enter and run the following program:

10 CALL CLEAR

20 FOR 1=1 TO 24

30 FOR J=1 TO 32

40 CALL HCHAR(I,J,30,1)
50 NEXT J

60 NEXT I

As the program runs, you'll see cursor characters (black squares) fill
up most of the screen with 24 rows and 32 columns. The code 30 for these
squares is the third argument of HCHAR. After the program ends, the top
three rows will have moved off the display after the ** DONE **, a blank
line, and cursor prompt are printed." You may have some trouble seeing
some of the leftmost or rightmost columns if the picture is not quite cen
tered on your TV set. The picture will look best on a video monitor. In
designing programs with HCHAR or VCHAR, you may want to stick to the
central portion of the TV screen for display and skip the leftmost two col
umns and rightmost two columns. Each of the squares represents a printa
ble position of CALL HCHAR. The first argument of HCHAR is the row that
the character will be printed at and the second argument is the column
number. As you saw from the blocks starting at the upper left, this position
corresponds to row= 1, column= 1. When the first row of blocks was com
pleted, 1=1 and J=32. When the last block was printed at the bottom
right, it was at row=24, column=32. Fig. 11-1 shows a diagram of the
block positions. This diagram is also called a grid because of the vertical
and horizontal pattern of the lines.

Now change the program to the following by deleting lines 30 and 50
and editing line 40.

10 CALL CLEAR

20 FOR 1=1 TO 24

40 CALL HCHAR(I,1,30,32)
60 NEXT I

When you run this program, you'll see the screen fill with blocks much
faster than the previous version. While the previous version printed one
block at a time, this program apparently prints a row at a time. Actually,
the program still prints a block at a time, but does it so much faster that it
looks like an entire row is printed simultaneously.

As you might have guessed, the secret to printing a row lies in the
fourth argument of HCHAR. This fourth argument tells how many charac
ters will be printed. That's why we could eliminate the J loop of lines 30
and 50. The J loop just printed a row of 32 blocks. Now the fourth argu
ment takes care of that.

Put It Where You Want

COLUMNS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

143

Fig. 11-1. Grid showing printable positions for CALL HCHAR and CALL VCHAR
subprograms.

Change line 40 to

40 CALL HCHAR(I,1,30,10)

and run. Now only 10 blocks will be printed. Then, to make things easier
to see, also move the blocks to the right by running with

40 CALL HCHAR(I,15,30,10)

Also, the fourth argument has a default option of 1. That is, the statements

40 CALL HCHAR(I,J,30,1)

and

40 CALL HCHAR(I,J,30)

mean the same to the computer. If the fourth argument for repetitions is
missing, the computer assumes you mean 1 character. This same default
option holds for CALL VCHAR.

Besides printing horizontally with CALL HCHAR, you can also print
vertically with CALL VCHAR. Enter the drect command CALL CLEAR and
then run the following program:

10 FOR J=1 TO 32

20 CALL VCHAR(1,J,30,24)
30 NEXT J

144 11-Give Me a Call

You'll see vertical columns printed from left to right. While the fourth argu
ment of HCHAR repeats characters from left to right, the fourth argument
of VCHAR repeats characters down the screen. If the bottom of the screen
is reached and more characters are still to be repeated, they are printed
starting at the top of the next column. Likewise, characters that go past the
right screen boundary with HCHAR are printed on the next lower row
starting from the left.

Now try the direct command

CALL HCHARd,1,42,768)

and you'll see the screen quickly fill with asterisks. Since HCHAR can keep
printing on another row, you can supply more than 32 for the number of
characters HCHAR will print. The same holds true for VCHAR. Try

CALL VCHARd,1,32,768)

and the screen will be erased as blanks, code 32, fill the screen. You can
repeat anywhere from 0 to 32767 characters in HCHAR and VCHAR.

Also, the character codes repeat every 256 times. For example, try
these 3 direct commands:

CALL HCHAR(24,1,65,10)
CALL HCHAR(24,1,321,10)
CALL HCAHR(24,1,577,10)

All print ten 44A'"s at the lower left corner of the screen, just as

PRINT CHR$(65)

PRINT CHR$(321)

PRINT CHR$(577)

also print 44A'"s.
You can actually use character codes up to 32767. However, they do

repeat in groups of 256.

Draw Me a Picture

Let's use the CALL KEY and CALL HCHAR in a program that draws
lines on the screen. The following program uses cursor blocks of code
number 30 to make lines. The following keys are used:

44S" - left
44D" - right
44K" - up
44L" - down

Enter the following program. However, be careful in typing in the vari
able "COL". This variable consists of the letters "C", 4,0", and ,4L". Don't
mistype a number zero 440" for the 440". Actually you can use a zero in
44COL" and 44ROW" if you're consistent, since variable names can include
numbers. The problem arises if you use a zero in COL sometimes. Notice

Draw Me a Picture 145

that on your TV screen, the letter 440" has sharp edges and looks like a
rectangle, while the number ,40" has rounded corners. If you get an error
message in this or any following programs that say BAD VALUE, its prob
ably because you used 44C0L" or 44R0W" in some places. Now run the pro
gram. Start off by pressing the keys briefly to keep the drawing in the
central part of the screen. Then hold down the 44K" key until the program
stops with the error message

* BAD VALUE IN 180

because ROW=0.

10 REM DRAW #1

20 CALL CLEAR

30 R0W=12

40 C0L=16

50 CALL KEY(0,K,S)
60 IF S=0 THEN 50

70 IF K=83 THEN 110
80 IF K=68 THEN 130
90 IF K=75 THEN 150

100 IF K=76 THEN 170

110 C0L=C0L-1

120 GOTO 180

130 C0L=C0L+1

140 GOTO 180

150 R0W=R0W-1

160 GOTO 180

170 R0W=R0W+1

180 CALL HCHAR(ROW,COL,30)
190 GOTO 50

Lines 30 and 40 define the initial values of the row, ROW, and col
umn, COL, where you'll draw. These were picked to start off in the center
of the screen. Lines 50—100 check for the key that you press. If no key is
being pressed, then the status variable S = 0 and the computer just goes
back to line 50. The ASCII codes for the keys 44S", 44D", "K", and 44L" are
shown in lines 70—100.

If you press the 44S" key, the computer goes to line 110, subtracts 1
from COL and then goes to 180. Line 180 prints the cursor block at the
new position and then line 190 directs the computer back to the CALL
KEY line. With this simple program, there is no error checking and that's
why the program halted with an error message when you kept moving the
cursor block up the screen. The HCHAR and VCHAR subprograms can
print only to rows 1-24 and columns 1-32.

Let's introduce some error checking by adding the following lines. If
you try to move past the screen boundaries with these added lines, the
cursor will stop just at the boundary.

146 Tl-G/veMeaCa//

110 IF C0L=1 THEN 50
115 C0L=C0L-1

130 IF C0L=32 THEN 50

135 C0L=C0L+1

150 IF R0W=1 THEN 50

155 R0W=R0W-1

170 IF R0W=24 THEN 50

175 R0W=R0W+1

When you add these lines and run the program, you won't get an error
message because the cursor can't go past the screen boundaries.

In fact, you can restrict the cursor to any area of the screen by chang
ing the boundary parameters in lines 110, 130, 150, and 170. These
boundary parameters are the numbers 1, 24, and 32 that the ROW and
COL are compared to. For example, in line

110 IF C0L=1 THEN 50

the441" is the boundary parameter for the left side of the screen. When you
design a program like this, it's usually convenient to leave the boundary
parameters with variable names. By giving names, it's easy for you to
change the parameters wherever they may be used in the program by
changing the single line where the parameter is defined.

There is still another bug left in this program. Although it's designed
to use only the 44S", 44D", 44K", and 44L" keys, you can move left by press
ing any other key. What we really want is to ignore any key except 44S",
44D", 44K", and 44L". To accomplish this, add the line

105 GOTO 50

Now if a key is pressed that is not 44S", ,4D", 44K", or 44L", line 105 will
direct the computer back to 150.

One enhancement you can add to this program is to make the current
position of the cursor visible. It's a lot easier to draw if you can see where
you are drawing from. So add these lines to make the cursor blink at its
current position.

50 CALL HCHAR(R0W,C0L,32)
51 CALL HCHAR(ROW,COL,30)
58 CALL KEY(0,K,S)

The statement of line 50 will print a blank at the current cursor position.
Line 51 will then print a block at the current position. The computer then
executes the CALL KEY of line 58 and may update the row or column
before going back to line 50. Because the computer does this so rapidly, the
current cursor will appear to blink or flash very rapidly.

Another enhancement you can add is a cursor that erases. This is
called a destructive cursor because it will erase characters that it passes
over. Shown following is the new version of the program. To obtain this
from your program, just replace lines 10 and 140, and add lines 56, 57,
102, 104, 106, 107, 108, 109, 120, and 160 from the following.. Delete

Draw Me a Picture 147

line 180 and your program should look like the following, called the
DRAW #2 Program.

10 REM DRAW #2

20 CALL CLEAR

30 R0W=12

40 C0L=16

50 CALL HCHAR(R0W,C0L,32)
51 CALL HCHAR(ROW,COL,30)
56 IF ERASE=0 THEN 58

57 CALL HCHAR(R0W,C0L,32)
58 CALL KEY(0,K,S)
60 IF S=0 THEN 50

70 IF K=83 THEN 110

80 IF K=68 THEN 130

90 IF K=75 THEN 150

100 IF K=76 THEN 170

102 IF K=87 THEN 108

104 IF K=69 THEN 106

105 GOTO 50

106 ERASE=1

107 GOTO 50

108 ERASE=0

109 GOTO 50

110 IF C0L=1 THEN 50

115 C0L=C0L-1

120 GOTO 50

130 IF C0L=32 THEN 50

135 C0L=C0L+1

140 GOTO 50

150 IF R0W=1 THEN 50

155 ROW=ROW-1

160 GOTO 50

170 IF R0W=24 THEN 50

175 ROW=ROW+1

190 GOTO 50

When you start to run this program, press the 44D" key and you'll see
the cursor going to the right. Now press the erase key, 44E". Hold it down
for a second or two and you'll see the cursor blink slower. Now, press the
44S" key to retrace the original cursor path. As you hold down the 44S" key,
the cursor erases the blocks. To stop this destructive cursor, press the
write key, 44W". Hold it down for a second or two until the blinking rate
increases. Now when you move the cursor, it writes on the screen. You can
switch back and forth between writing and erasing anytime by pressing
the ,4W" and 44E" keys.

The variable ERASE is used in this Draw #2 Program to tell the com
puter whether you want to write or erase. When ERASE = 1, the computer
will erase. When ERASE = 0, the computer will write.

148 11-Give Me a Call

After the computer prints a blank in line 50 and a block from line 51,
it checks the value of ERASE in line 56. If ERASE=0, the computer goes
to line 58 and the block remains on the screen. However, if ERASE = 1, it
goes to line 57 and prints a blank before continuing to line 58. This gives
the destructive cursor since the blank wipes out any character on the
screen.

Line 102 checks if you've pressed the 44W" key to write. If so, the com
puter goes to line 108 and sets ERASE = 0 before going back to line 50.
Line 104 checks if you've pressed the 44E" key. If so, the computer goes to
line 106 and sets ERASE = 1. Also, notice that we've eliminated line 180
by using the blinking cursor lines of statements 50 and 51; and the new
lines of 56 and 57. Although more statements are used now, the program
can do more than before.

Play Me a Tone
One of the nicest features of your computer is its sound effects. You

can easily include sound with the CALL SOUND subprogram. To add
sound to the DRAW #2 Program, just add the line

52 CALL SOUND(100,110*ROW,COL/2)

Line 52 makes a tone. A tone is a sound of a single frequency. When you
run the program, you'll hear a tone as the cursor blinks on the screen.
Press the 44D" key and you'll hear the tone become quieter in volume as the
cursor moves to the right. Press the 44S" key and it will get louder in vol
ume as the cursor moves to the left. Press the 44K" and the tone becomes
lower in frequency or pitch. Press the 44L" key and the tone becomes
higher in frequency. The frequency of sound waves refers to the number of
vibrations a sound makes per second. A higher frequency or pitch means
more vibrations per second. One vibration per second is called one cycle a
second.

The first argument of CALL SOUND tells the computer how long the
tone should last. This is called the duration and is given in milliseconds
where 1 millisecond = .001 second. The abbreviation for millisecond is
msec, and so 1000 msec. = 1 second. Your computer can produce a
sound duration from 1 to 4250 msec. In other words, it can produce tones
from .001 to 4.25 seconds, where the actual duration may vary by up to
1/60 sec. From line 52, you can see that we have specified a duration of
100 msec, for the tone produced by CALL SOUND.

Change the tone duration to 500 in line 52 as

52 CALL SOUND(500,110*ROW,COL/2)

and run the program. Press the 44K" for a few seconds to move the cursor
up and then the 44L" key to move it down. You'll hear the tone change in
frequency as you change rows. Then change the duration to 1000. Notice
that the blinking lasts longer now. Although the computer keeps executing

Play Me a Tone 149

statements after a CALL SOUND is executed, it will stop at the next CALL
SOUND if the previous tone is still playing.

You can get around this by using a negative duration. For example,
use -1000 instead of 1000. This negative duration tells the computer to
cut short the tone if it comes to another CALL SOUND statement and to
start the new tone immediately.

The second argument of CALL SOUND specifies the frequency. You
can select any frequency from 110 hertz to 44733 hertz. A hertz is abbre
viated Hz and is equal to 1 cycle per second. The range of frequencies for
someone with excellent hearing is about 20 Hz to 20,000 Hz. The actual
frequency produced by the computer may vary from 0 to 10% of what you
specify, depending on the frequency.

In line 52, the frequency varies with the row number. Since the top
row is 1, the frequency of CALL SOUND is 110*1 = 110 Hz. In the second
row, the frequency is 110*2 = 220 Hz, and so forth. You also have the
option of giving a negative value from -1 to -8 for this argument and the
computer will produce various types of noise. These noise effects are useful
in some games. To hear these effects, enter in the following program with
out erasing the drawing'program. Then do a RUN 1000 to hear the sound
effects.

1000 FOR I=-1 TO -8 STEP -1

1010 PRINT I

1020 CALL SOUND(1000,I,2)
1030 NEXT I

1040 GOTO 1000

The program starting at line 1000 will show the noise argument and you'll
hear the sound corresponding to it. To stop the program, use FCTN and
CLEAR. Then delete lines 1000 to 1040.

The third argument of CALL SOUND specifies the tone volume, where
0 is loudest and 30 is quietest. The volume of a sound refers to how loud it
is. If the argument exceeds 30 or is less than 0, you'll get an error message.
For example, do a direct command

CALL SOUND(500,1000,1)

and you'll hear a tone. But

CALL SOUND(500,1000,-1)

or

CALL SOUND(500,1000,31)

will give the error message

* BAD VALUE

Don't confuse the tone sounded when the error message appears with the
tone of CALL SOUND. The last two examples do not produce a tone, except
for the error message tone.

150 11-GiveMeaCall

You can actually specify up to three tones and one noise in a single
CALL SOUND. For example,

CALL S0UND(1000,200,2,400,2,600,2,-3,2)

will generate three tones and one noise simultaneously. A sequence of
arguments is duration, frequency of first tone, volume of first tone, fre
quency of second tone, volume of second tone, frequency of third tone, vol
ume of third tone, frequency of noise, volume of noise where the duration
applies to all the tones and noise. It is not necessary that the noise be in
the fourth argument position.

Update Your Display
It's interesting to see the frequencies produced by CALL SOUND in the

drawing program. Let's add some lines to display the frequency at a fixed
location on the screen. Note that this can't be done with PRINT because the
screen would scroll upwards. Add these lines

157 GOSUB 200

180 GOSUB 200

200 ROWSOUND$=STR$(110*ROW)

210 FOR 1=1 TO LEN(R0WS0UND$)

220 CALL HCHAR(1,25+I,ASC(SEG$(R0WS0UND$,I,1)))
230 NEXT I

240 RETURN

and change line 52 back to

52 CALL SOUND(100,110*ROW,COL/2)

Lines 157 and 180 go to the subroutine to print the frequency when
ever the row is changed. Since line 52 makes the frequency depend on the
row, only those portions of the program which change the row need update
the display of the frequency.

Line 200 converts the frequency to a string of numerals. For example,
ifROW= 10, then the frequency is 110*10=1110. The string produced by
line 200 is then441110". It's necessary to produce a string ofwhatever you
want printed because HCHAR and VCHAR will print only a single charac
ter of the string at a time.

Lines 210-230 print the string on the screen. The FOR-NEXT loop
and SEG$ extract each numeral one at a time. For example, from 441110",
SEG$ starts with the leftmost 441" and keeps extracting until the
rightmost 440". The ASC function converts the 441" to its ASCII code of 49
and so HCHAR prints a 441" at row 1, column 25+1=26. The SEG$
extracts the second 4,1" from441110", ASC converts it to 49, and HCHAR
prints, 4'1", at row 1, column 25 + 2 = 27. The entire string is displayed
this way.

When you run this program, you'll see the new frequency displayed.
For example, run the program and press the 44K" key. You'll see 441210",

Update Your Display 151

"1100", and then "9900". Keep pressing the 44K" key until the cursor is
at the top of the screen and you hear the lowest tone. Although the display
reads "1100", the frequency is actually "110". The problem is that the
rightmost zero was left over from the "1100" that was printed before.
When you display something with HCHAR or VCHAR, the characters do
not automatically go away since the computer does not scroll the screen as
it does with PRINT. In this case, the first "1100" printed four characters
since that was the length of "1100". But the "990" printed only three
characters and the fourth "0" was left over from the " 1100".

One way to correct this problem is to blank out the display before writ
ing the new one. So add this line

205 CALL HCHARd,26,32,5)

Line 205 will write five blanks to erase the previous frequency display
before the new one is written by the loop of lines 210—230. When you run
this version of the program, the last zero will be blanked out correctly.

Another enhancement you can add to this program will enable you to
record the tones and play them back. The following version of the program
is called DRAW #3 and includes new lines 10, 15, 25, 53, 54, 103, and
300-350.

10 REM DRAW #3

15 DIM TONEC1000)

20 CALL CLEAR

25 L=100

30 R0W=12

40 C0L=16

50 CALL HCHAR(R0W,C0L,32)
51 CALL HCHAR(ROW,COL,30)
52 CALL SOUND(-1000,110*ROW,COL/2)
53 T=T+1

54 TONE(T)=110*ROW

56 IF ERASE=0 THEN 58

57 CALL HCHAR(R0W,C0L,32)
58 CALL KEY(0,K,S)
60 IF S=0 THEN 50

70 IF K=83 THEN 110

80 IF K=68 THEN 130

90 IF K=75 THEN 150

100 IF K=76 THEN 170

102 IF K=87 THEN 108

103 IF K=80 THEN 300

104 IF K=69 THEN 106

105 GOTO 50

106 ERASE=1

107 GOTO 50

108 ERASE=0

109 GOTO 50

152 n-Give Me a Call

110 IF C0L=1 THEN 50
115 C0L=C0L-1

120 GOTO 50

130 IF C0L=32 THEN 50
135 C0L=C0L+1

140 GOTO 50

150 IF R0W=1 THEN 50
155 R0W=R0W-1
157 GOSUB 200
160 GOTO 50

170 IF R0W=24 THEN 50
175 ROW=ROW+1
180 GOSUB 200
190 GOTO 50

200 ROUSOUND$=STR$(110*ROW)
205 CALL HCHARd,26,32,5)
210 FOR 1=1 TO LEN(ROWSOUNDS)
220 CALL HCHARd,25+1,ASC(SEG$(ROWSOUND$,1,1)))
230 NEXT I

240 RETURN

300 FOR 1=1 TO T

310 CALL SOUND(-1000,TONE(I),COL/2)
320 FOR J=1 TO L
330 NEXT J

340 NEXT I

350 GOTO 50

Line 15 defines the dimensioned variable TONE to store the frequen
cies of the tones. Line 25 defines a variable called L whose value gives a
time delay when the notes are played back. Try L= 1 and L=50, and you'll
hear the difference. Also, be sure line 52 has a duration of -1000, as
shown. Line 53 increments the subscript of TONE. Line 54 assigns the
new frequency to TONE. Line 103 checks if the playback key, "P", was
pressed. If so, the computer goes to line 300 and starts playing back the
tones with the loop of 300-340. The duration of -1000 in the CALL
SOUND statements was chosen because the tones sound musical. You can
pick any other values you want. Lines 320-330 introduce a delay before
the computer goes back to the CALL SOUND of line 310.

When you run this program, press the "K" key and then the "L" key
to produce some tones. Then press the playback key "P". You'll notice that
during playback, the cursor does not blink. You may hear a long continu
ous tone before the ones you recorded depending on how long you waited
before pressing the "K" or "L" keys after you entered RUN. Since the com
puter executes lines 53 and 54 much faster when you are not changing
rows, more of these will be stored. In fact, every time the cursor blinks, one
frequency has been stored in TONE.

There are several ways you might like to enhance this program
yourself:

Update Your Display 153

1. Add a key to exit the program rather than just relying on FCTN
and CLEAR.

2. Make a user-friendly display of the commands always visible at
the top of the screen. You'll have to restrict the cursor movement
so that it doesn't erase the command area.

3. Give the user the option of the frequencies allowed. You could
even assign musical tone frequencies such as "A", "B", "C", etc.
to rows. See the Appendix of Musical Tone Frequencies for the fre
quencies of musical notes. Just store the appropriate frequencies
in an array and use ROW as a subscript.

4. Add commands to store and to retrieve the tones to tape or disk.
5. Store the intensity of the tones by saving COL in a dimensioned

array. Then you can play back both the frequency as well as
volume.

6. Store the row and column number of each tone and show the cur
sor retracing its path on the screen as the tones are played.

Chapter 12

Let's Get Graphic

Your computer has some really neat graphics features that will allow you
to create great displays. In this chapter, you'll see how to use these fea
tures. We'll also show how to use computer animation in an educational
game that teaches letter recognition.

What a Character

The first feature we'll look at enables you to define your own graphics
character. Instead of being limited by the ASCII set, you can create your
own. To do this, just use CALL CHAR. As an example of how this works,
enter and run the following program.

10 REM 2 PICTURE JUMPER

20 CALL CLEAR

30 CALL CHAR(128/,18183C7E5A5A3C66")
40 CALL CHAR(129/,9999FF1899FF0000")
50 CALL HCHAR(12,16,128)
60 FOR 1=1 TO 100

70 NEXT I

80 CALL HCHARC12,16,129)
90 FOR 1=1 TO 100

100 NEXT I

110 GOTO 50

When you run this program, you'll see a little person jumping up and
down on the screen. Line 30 is the statement which defines the character
128 as the person with arms and legs down. Line 40 defines character 129
as the person with arms and legs up. Line 50 prints character 128 on the
screen at row 12, column 16. Lines 60-70 provide a short time delay
before line 80 prints the person with arms and legs up. After another time
delay, line 110 goes back to repeat the process.

The succession of these two characters produce computer anima
tion. That is, the computer appears to make a character move. This is the
same principle used in movies and TV to give the appearance of motion.
When you see a series of pictures rapidly with the subject in slightly differ
ent positions, your eye interprets this as motion. The smaller the changes
in the pictures, the more smooth is the illusion of motion. In our program
there are only two images of the character, so the motion could be

155

156 12-Let's Get Graphic

ROW

1

2

3

4

5

6

7

8

LEFT | RIGHT
BLOCKS j BLOCKS

1

1 2 3 4 5 6

COLUMN

7 8

BLOCK

CODES

18

18

3C

7E

5A

5A

3C

66

| LEFT | RIGHT | BLOCK
j BLOCKS j BLOCKS j CODES

ROW

1 2 3 4 5 6 7 8

COLUMN

99

99

FF

18

99

FF

00

00

Character assigned to Code 128. Character assigned to Code 129.
Fig. 12-1 Pictures of the Jumper

improved by having more images. However, you would also have to show
the pictures faster.

Fig. 12-1 shows a diagram of the individual picture elements that
make up the pictures. These picture elements are called pixels and are
represented by the blocks. Each picture is composed of 8 rows x 8 col
umns of pixels. The CALL CHAR tells the computer which pixels to turn
on, as shown by the black blocks, and which to leave off, as shown by the
white blocks.

The codes shown for the left blocks and right blocks are shown next to
each picture. These codes are based on the hexadecimal number system.
This is also called the hex system. The term hexadecimal means sixteen,
so there are 16 symbols in that number system. Fig 12-2 shows the hex
adecimal codes for each possible pattern of 4 blocks. The advantage ofhex
adecimal is that only a single symbol is required to represent any of the 16
possible rows. The decimal system would require two digits to represent
the last 6 rows (rows 10, 11, 12, 13, 14, and 15).

The block codes for the left half of each figure are written to the left of
the block code for the right half of each figure. For example, the top row of
the character 128 has the hexadecimal code 18. The " 1" is the code for the
left half and the "8" is the code for the right half of the figure. The codes
are written together starting from the top to the bottom row to form the
entire code string for the 8x8 picture. Normally, there will be 16 hex
codes for each picture. However, if you leave off any codes at the end, the
computer interprets the missing codes as zeroes, by default. So the codes
for 129 can be written as either

CALL CHAR(129,"9999FF1899FF0000")

or

CALL CHAR(129/'9999FF1899FF")

What a Character

BLOCK HEXADECIMAL DECIMAL

PATTERNS CODE

0

1

2

3

NUMBER

0

1

2

3

4 4

5 5

6 6

7 7

8

9

8

9

A 10

B 11

C 12

D 13

E 14

F 15

Fig. 12-2 Hexadecimal codes for block patterns.

157

To show you how an additional picture can smooth the motion, let's
add the picture shown in Fig. 12-3. This picture is meant to show how the
person looks between the down picture and up picture. This picture will be
assigned code 129 and the original 129 will be assigned code 130. The
following program uses all three pictures to make a more natural-appear
ing jump. Notice that the program has been rewritten in terms of a FOR-
NEXT loop. This makes it easier to write the program. You can also see
why the intermediate picture of the jump had to be assigned code 129.
Since its motion falls between the other two pictures, its code must also fall
between the other two. Also, note that the delay has been reduced from
100 to 60. Since three pictures are being shown, less delay is needed.

10 REM 3 PICTURE JUMPER
20 CALL CLEAR

CALL CHAR<128,"18183C7E5A5A3C66")
CALL CHAR(130,,,9999FF1899FF0000")
CALL CHAR<129,"1818FF1818FF0000")
FOR 1=0 TO 2

30

40

50

60

70

80

90

100

110

CALL HCHAR(12,16,128+I)
FOR J=1 TO 60

NEXT J

NEXT I

GOTO 60

158 T2- Let's Get Graphic

ROW

BLOCK

CODES

1 18

2

3

4

18

FF

18

5

6

7

18

FF

00

8 00

1 2 3 4 5 6 7 8

COLUMN

Character assigned to Code 129 after original 129 was assigned to 130.
Fig. 12-3 — Additional Picture of the Jumper

You may wish to develop a game based on JUMPER. For example,
move an object such as a cursor block towards JUMPER. If the object's
position and JUMPER'S are the same, then the game ends. Allow the
player to use keyboard input with CALL KEY to make JUMPER jump over
the object as it passes beneath. Give points for every object that JUMPER
manages to jump over.

You can define your own characters for codes 128—159. You can also
redefine the characters for codes 32-127. When you run the program with
a redefined character, all those characters will be the ones you specify. If
you have a breakpoint in your program, codes 32—127 are reset to their
original characters while codes 128-159 are left alone. After the program
ends or is halted by an error, any redefined characters are set back to their
original while the characters for codes 128-159 are not defined. That is,
codes 128-159 could be anything.

RWalk

As an example of an educational game, let's look at a program
designed to teach kids the alphabet. Another application of this program is
in improving touch typing. However, first enter a NEW command to delete
any other program. Then enter the following lines and run. These lines are
taken out of the main program and control the character animation and
sound effects.

20 CALL CLEAR

110 CALL CHAR(128,"FC8282FC84828181")
120 CALL CHAR(129/*FC8282FC88888888")
130 CALL CHAR(130/'FC8282FC8890A0C0")
140 CALLOCHAR(159/,FF090909191926C0")
150 R0W=12

RWalk 159

160 MAXR0W=24

170 LENGTH=20

180 LETTER=INT(26*RND)+65

190 CALL HCHAR(R0W+1,4,32,LENGTH+1)
200 CALL HCHAR(R0W+1,4,LETTER,LENGTH)
210 FOR C0L=4 TO LENGTH+3

280 CALL SOUND(-1000,20*COL+110,30-COL)
290 CALL HCHAR(ROW,COL-1,32)
300 FOR J=1 TO 3

310 CALL HCHAR(R0W,C0L,J+127)
320 NEXT J

530 NEXT COL

540 CALL HCHAR(R0W,C0L-1,32)
550 FOR I=ROW+1 TO MAXROW

560 CALL SOUND(-1000,110*(MAXROW-I+1),0)
570 CALL HCHAR(I-1,C0L,32)
580 CALL HCHAR(I,C0L,159)
590 NEXT I

600 CALL SOUNDC-1000,-6,0)
610 CALL HCHAR(MAXR0W,C0L,32)
620 CALL HCHAR(MAXR0W-1,C0L,159)
630 CALL HCHAR(MAXR0W-1,C0L,159)
640 CALL HCHAR(MAXR0W-1,C0L,32)
650 CALL HCHAR(MAXR0W,C0L,159)
660 MAXROW=MAXROW-1

670 IF MAXROW=ROW THEN 680 ELSE 210

680 END

When you run this program, you'll see the letter "R" walking across a
row of letters. After the "R" walks over the last letter, it will fall to the
bottom of the screen (row 24) and bounce up one row. "R'"s will keep
walking across the letters and the "R"'s will keep piling up until they're
on a level with the row. At this point the program is over.

Lines 110—130 define the characters which show the "R" walking.
You may wish to change these characters to show also the rear leg of the
"R" moving. Line 140 is the character code for an "R" on its side. This
code is used to show the falling "R".

Line 150 defines a variable, ROW, which specifies the row that the
44R" is in. Line 160 defines the maximum number of rows on the screen in
the variable MAXROW. If you decrease MAXROW, the player will have
fewer chances to keep playing because the pile of "R'"s will reach the row
of letters sooner. Line 170 defines the variable LENGTH as how many let
ters the R walks over. Initially LENGTH=20. In the actual game, the
LENGTH is decreased by one as the game progresses. This makes it harder
for the player.

Line 180 randomly picks a number from 65—90 and assigns this to
LETTER. Codes in this range represent the ASCII codes of the letters A-Z.
Line 190 blanks out the previous row of letters. During the game play, the

160 12-Let's Get Graphic

last letter is removed. That's why the blanks are written up to LENGTH
+1. Line 200 writes the new row of letters.

Lines 210-530 are the FOR-NEXT loop that makes the "R" walk
across the row. Line 280 is a sound effect that occurs every time the "R"
walks over another letter. Lines 290-320 provide the computer animation
of the "R" walking. The "R" is printed at a new column and these lines
blank out the old "R" and make the new "R" moves its leg.

Lines 540-590 provide the visual and sound effects of the "R" falling.
Lines 600—650 provide the sound effects and the appearance of the "R"
bouncing. Line 660 subtracts one from the maximum row the "R" can hit.
If the MAXROW equals the "R" row in line 670, the game ends by going to
line 680.

The complete program is shown following. When you see a row of let
ters, press the same key. The changing number display shows how many
points you get. When the "R" starts from the left, you can get 20 points. If
you press the right key then you get the points shown on the display.
Depending on where the computer is in the program, you may have to hold
down the key for a second or two to get a response. Add lines 10, 30-100,
220-270, 330-520, and 690-760.

10 REM R WALK

20 CALL CLEAR

30 DIFFICULTY=2

40 RANDOMIZE

50 X=9

60 Y=7

70 DELAY=0

80 STRING$="SCORE=0"

90 GOSUB 700

100 C0RRECT$="Y0U GOT IT!"

110 CALL CHAR(128,"FC8282FC84828181")
120 CALL CHAR(129,"FC8282FC88888888")
130 CALL CHAR(130/'FC8282FC8890A0C0")
140 CALL CHAR(159,"FF090909191926CO")
150 R0W=12

160 MAXR0W=24

170 LENGTH=20

180 LETTER=INT(26*RND)+65

190 CALL HCHAR(R0W+1,4,32,LENGTH+1)
200 CALL HCHAR(R0W+1,4,LETTER,LENGTH)
210 FOR C0L=4 TO LENGTH+3

220 C0LSTRING$=STR$(24-C0L)

230 X=10

240 Y=13

250 DELAY=0

260 STRING$=COLSTRING$

270 GOSUB 690

280 CALL SOUND(-1000,20*COL+110,30-COL)
290 CALL HCHAR(R0W,C0L-1,32)

300 FOR J=1 TO 3
310 CALL HCHAR(R0W,C0L,J+127)
320 NEXT J

330 CALL KEY(0,K,S)
340 IF KOLETTER THEN 530

350 X=9

360 Y=13

370 DELAY=0

380 SC0RE=SC0RE+24-C0L

390 STRING$=STR$(SCORE)

400 CALL SOUND<200,300,3)
410 CALL SOUND(600,800,0)
420 GOSUB 700

430 X=8

440 Y=7

450 DELAY=1

460 STRING$=CORRECT$

470 GOSUB 700

480 CALL HCHAR(8,7,32,15)
490 CALL HCHAR(R0W,C0L,32)
500 IF LENGTH=DIFFICULTY THEN 180
510 LENGTH=LENGTH-1

520 GOTO 180

530 NEXT COL

540 CALL HCHAR(R0W,C0L-1,32)
550 FOR I=R0W+1 TO MAXROW

560 CALL SOUND(-1000,110*(MAXROW-I+1),0)
570 CALL HCHAR(I-1,C0L,32)
580 CALL HCHAR(I,C0L,159)
590 NEXT I

600 CALL SOUND<-1000,-6,0)
610 CALL HCHAR(MAXR0W,C0L,32)
620 CALL HCHAR(MAXR0W-1,C0L,159)
630 CALL HCHAR(MAXR0W-1,C0L,159)
640 CALL HCHAR(MAXR0W-1,C0L,32)
650 CALL HCHAR(MAXR0W,C0L,159)
660 MAXROW=MAXROW-1

670 IF MAXR0W=R0W THEN 680 ELSE 210

680 END

690 CALL HCHAR(X,Y+1,32,5)
700 FOR 1=1 TO LEN(STRING$)

710 CALL HCHAR(X,Y+I,ASC(SEG$(STRING$,I,1)))
720 NEXT I

730 IF DELAY=0 THEN 760

740 FOR 1=1 TO 400

750 NEXT I

760 RETURN

R Walk 161

162 12-Let's Get Graphic

The row of letters keeps decreasing until LENGTH=DIFFICULTY. The
parameter DIFFICULTY determines how many letters will be left. Line 30
sets DIFFICULTY = 2, so two letters will be left after you play the game a
while. You may wish to increase DIFFICULTY to 5 or 6 for small children.
Although the response speed of the computer to a keypress takes a second
or two, a touch typist will score better at this game than someone who
types by "hunt and peck". So this game does encourage people to learn
touch typing.

When you play this game, you'll notice that if 4tR'"s fall and there is
no 44R" below, they appear to bounce from mid-air. This occurs because
MAXROW determines how far the 44R"will fall. The 44R" does not have to
hit another object to make it bounce. In the next chapter, we'll add some
additional statements to add color, and some characters for the 44R'"s to
bounce against. Be sure to save R WALK.

Change Your Screen
You can easily change the screen color with the CALL SCREEN

subprogram. Enter and run the following new program.

10 REM SCREEN COLOR CHANGE
20 CALL CLEAR

30 FOR 1=1 TO 16

40 PRINT I

50 CALL SCREEN(I)

60 FOR J=1 TO 1000

70 NEXT J

80 NEXT I

90 GOTO 20

When you run this program, a number appears and you'll see the screen
color for that number. This number is used as the argument of CALL
SCREEN in line 50. The following table lists the colors and the argument
of CALL SCREEN which specifies a color.

Color-code Color
1

2

Transparent
Black

3 Medium Green
4

5

Light Green
Dark Blue

6

7

Light Blue
Dark Red

8

10

11

Cyan
Light Red
Dark Yellow

12 Light Yellow

13 Dark Green

14

15

16

Magenta
Gray
White

Add Some More Color 163

When a program is running, the standard screen color is light green,
which corresponds to color-code 4. The color code can be a numeric expres
sion, or variable.

Add Some More Color

You can make even more colorful displays ifyou use the CALL COLOR
subprograms along with CALL SCREEN. The CALL COLOR subprogram
allows you to specify the color of characters on the screen. To see some
examples of CALL COLOR enter the following program.

10 REM COLOR

20 CALL CLEAR

30 INPUT "CHAR-SET,FOREGROUND,BACKGROUND=?":S,F,B
40 CALL C0L0R(S,F,B)
50 FOR 1=32 TO 127

60 PRINT CHR$(I);
70 NEXT I

80 GOTO 30

When you run this program, input 5, 16, 5. You'll see the printable char
acter set with ASCII codes 32 to 127 displayed on the screen. Then you'll
see the characters

3ABCDEFG

in the set displayed as white characters on a blue background. Each char
acter is shown within an individual square. The color of the characters is
called the foreground color while the color of the rest of the square is
called the background color.

The first argument of CALL COLOR specifies the group of characters
which will be colored. The following table lists the character codes for
these groups. You'll notice that O, A, B, C, D, E, F, G are in group 5 if you
look up their ASCII codes from the Appendix of ASCII Character Codes.

Set Number Character Codes
1 32-39

2 40-47

3 48-55
4 56-63

5 64-71

6 72-79

7 80-87

8 88-95

9 96-103

164 12-Let's Get Graphic

10 104-111

11 112^119

12 120-127

13 128-135

14 136-143

15 144-151

16 .152-159

Now input the numbers 6, 16, 5. You'll see additional letters H, I, J, K,
L, M, N, O also displayed as white on a blue background. Now enter 5,16,
1. The characters in the first set will change to white letters over the back
ground color of the screen. That's because the transparent color code of 1
was given as the last argument. The transparent code for the background
lets the background of the screen be the background color of the character.

Try some more combinations of input with this program. Also, the
Appendix of High-Resolution Color Combinations lists some of the high
resolution color combinations for foreground and background. These are
the easiest for a person to see. When you experiment, you'll notice that
some colors are not as visible as others. For example, the combination 5,
6, 7 is very hard to see.

If you're curious as to what all the combinations look like, the follow
ing program tries all combinations of character codes, and screen colors. It
also displays the screen, foreground and background codes during all
these color changes. However, if you run the program as it is, it will take a
while before you can see the numbers for screen, foreground and back
ground colors. These are being printed in the lower left corner of the screen,
in the region that looks like a flickering "L". To make them visible more
quickly, stop the program with the FCTN and CLEAR keys. Then change
line 80 to

80 FOR 1=3 TO 16

so that you'll skip the screen color codes 1 and 2, and run the program
again.

10 REM COLOR CHANGE
20 CALL CLEAR

30 FOR 1=32 TO 127
40 PRINT CHR$(I);
50 NEXT I

60 PRINT :"SCREEN=":"FOREGROUND^1 :"BACKGROUND="
70 FOR L=1 TO 12

80 FOR 1=1 TO 16

90 CALL SCREEN(I)
100 R=1

110 STRING$=STR$(I)
120 GOSUB 270
130 FOR J=1 TO 16

140 FOR K=1 TO 16

What's That Character? 165

150 CALL COLOR(L,J,K)
160 R=2

170 STRING$=STR$(J)

180 GOSUB 270

190 R=3

200 STRING$=STR$(K)

210 GOSUB 270

220 NEXT K

230 NEXT J

240 NEXT I

250 NEXT L

260 END

270 CALL HCHAR(20+R,14,32,3)
280 FOR M=1 TO LEN(STRINGS)

290 CALL HCHAR(20+R,M+14,ASC(SEG$(STRING$,M,1)))
300 NEXT M

310 RETURN

Now that you've seen how colorful you computer can be, let's add
some color and rocks to the R WALK Program. First, let's add the rocks
with lines 172-176 below.

172 FOR I=R0W+2 TO 24

174 CALL HCHARCI,4,42,LENGTH)
176 NEXT I

This loop uses asterisks, code 42, to simulate rocks.
Now let's delete a column of asterisks whenever the "R" falls. How

ever, we'll always have one more asterisk than MAXROW as the object
that the "R" will bounce from.

205 CALL VCHAR(R0W+2,LENGTH+4,32,MAXR0W-R0W-1)

Enter and run the program for the above lines. Now add the following lines
to give color.

41 CALL SCREENC13)

42 FOR 1=5 TO 8

43 CALL C0L0R(I,16,5)
44 NEXT I

45 CALL C0L0R(2,7,12)
46 CALL C0L0R(13,16,1)

Line 41 makes the screen dark green. Lines 42-44 make all the letters of
the alphabet white on dark blue. Since the letters are in different groups,
you need a separate CALL COLOR statement for each group. Line 45
makes the asterisks appear dark red on light yellow, while line 46 makes
the **R" white on transparent.

166 12-Let's Get Graphic

What's That Character?

In some programs, you'll find it useful to read a character from any
where on the display screen. For example, in some game programs you'll
want to find out if two objects, such as a spaceship and a meteor, collide.
This can be done by keeping track of the positions of the two objects.
Another way is to use the CALL GCHAR subprogram to read the value of
a character on the screen. For example, enter and run the following
program.

10 CALL CLEAR

20 CALL HCHAR(12,16,42)
30 CALL GCHAR(12,16,CHAR)
40 PRINT CHAR,CHR$(CHAR)

You'll see an asterisk printed. Line 20 will print an asterisk, ASCII code
42, on the screen at row 12, column 16. Line 30 will read the ASCII code of
the character displayed at that location. Actually, GCHAR will read the
value from that portion of the computer memory, called the display mem
ory, which stores characters for the display. A certain display memory
location contains the value of the character stored in row 12, column 16.
The CALL GCHAR reads that location to find the value of the character
and assigns it to the variable used as the third argument of GCHAR. The
first and second arguments of GCHAR are the row and column which
GCHAR will read. Any variable name can be used as the third argument.
Likewise, the CALL HCHAR and CALL VCHAR subprograms can put the
value into a display memory location.

Alpha Pilot
You are an Alpha Pilot assigned to the Space Shuttle for special mis

sions. Your assignment is to retrieve satellites that need repair. There are
twenty-six satellites labeled by A to Z that you want to retrieve in the fol
lowing game. This game gives a good illustration of how GCHAR is useful
in a dynamic game. The term dynamic means changing. In this game, the
game display changes all the time. In contrast, the number guessing game
with "High" and "Low" is an example of a static display. The term static
means unchanging. Except for when you enter input, the game display did
not change. In this Alpha Pilot game, you move your ship with the "S" key
for left and the t4D" key for right. Just touch the nose of your ship to a
satellite. You'll hear the recognition sounds and be awarded a point. Your
total score will be printed in the upper right comer of the screen.

But watch out. There are meteors everywhere and when one hits the
front of your ship, the game is over. However, you can move sideways into
a meteor because your disintegrator shields will protect your ship from the
side. The area to watch out for is the two display positions directly in front
or to the side of the ship. The ship is two columns wide and a hit in either
column will end you. Likewise, you can capture a satellite in those regions.

Alpha Pilot 167

In order to see these two display positions, you may want to add the
lines

275 CALL HCHAR(9,C0L,63)
315 CALL HCHAR(9,C0L+1,63).

When you run the game with lines 275 and 315, you'll see two question
marks printed in front of the ship. These "?" marks always appear in the
direction that the ship is traveling. Move the spaceship back and forth
with the *'S" and 4,D" keys and watch how these positions move. You
retrieve a satellite when one touches these regions. Enter and run the fol
lowing program. Good hunting.

10 REM ALPHA PILOT

20 RANDOMIZE

30 CALL CHAR(128,,,1FFFFFFFFF7F3F1F")
40 CALL CHAR(129,MF8FFFFFFFFFEFCF8")
50 CALL CHAR(130,M0F07070707070303M)
60 CALL CHAR(131,UF0E0E0E0E0E0C0C0")
70 CALL CHAR(132,"0303030303010101")
80 CALL CHAR(133,,,C0C0C0C0C0808080")
90 CALL CHAR(136,"183C7EFFFF7E3C18")
100 CALL C0L0R(14,7,1)
110 CALL C0L0R(13,6,1)
120 FREQ=20

130 MAXC0UNT=26*FREQ+16

140 FOR 1=3 TO 8

150 CALL C0L0R(I,2,13)
160 NEXT I

170 CALL CLEAR

180 CALL SCREENC2)

190 R0W=6

200 C0L=16

210 COUNT=0

220 LETTER=0

230 SCORE=0

240 0LDC0L=C0L

250 C0UNT=C0UNT+1

260 IF C0UNT=MAXC0UNT THEN 660

270 CALL GCHAR(9,C0L,MET)
280 IF MET=136 THEN 660

290 IF MET<65 THEN 310

300 GOSUB 700

310 CALL GCHAR(9,C0L+1,MET)
320 IF MET=136 THEN 660

330 METCOL=INT(20*RND)+4

340 IF MET<65 THEN 360

350 GOSUB 700

360 IF C0UNT/FREQOINT(C0UNT/FREQ) THEN 420

168 12-Let's Get Graphic

370 IF LETTER=90 THEN 420

380 LETTER=C0UNT/FREQ+64

390 PRINT TAB(METCOL);CHR$(LETTER)
400 CALL SOUND(100,30*METCOL,3)
410 GOTO 430

420 PRINT TAB(METC0L);CHR$(136)
430 CALL SOUND(-100,30*METCOL,3)
440 CALL HCHAR(5,OLDCOL-2,32,5)
450 CALL VCHAR(5,0LDC0L,32,3)
460 CALL HCHAR(6,C0L,128)
470 CALL HCHAR(6,C0L+1,129)
480 CALL HCHAR(7,COL,130)
490 CALL HCHAR(7,C0L+1,131)
500 CALL HCHAR(8,C0L,132)
510 CALL HCHAR(8,C0L+1,133)
520 CALL KEY(0,K,S)
530 IF S=0 THEN 250

540 IF K=83 THEN 580

550 IF K=68 THEN 620

560 OLDCOL=COL

570 GOTO 250

580 IF C0L=4 THEN 250

590 COL=COL-1

600 OLDCOL=COL+2

610 GOTO 250

620 IF C0L=24 THEN 250

630 COL=COL+1

640 OLDCOL=COL-1

650 GOTO 250

660 PRINT "FINAL SCORE=";SCORE
670 INPUT "ANOTHER GAME? (Y OR N)":ANSWER$

680 IF ANSWER$="Y" THEN 170

690 END

700 SET=INT((MET-32)/8)+1

710 CALL SOUND(-1000,440,3)
720 FOR 1=1 TO 6

730 FOR J=1 TO 10

740 NEXT J

750 CALL COLOR(SET,2,5)
760 FOR J=1 TO 10

770 NEXT J

780 CALL COLOR(SET,2,13)
790 NEXT I

800 CALL SOUNDC1500,784,0)
810 SCORE=SCORE+1

820 CALL HCHAR(3,21,32,2)
830 STRING$=STR$(SCORE)

Alpha Pilot 169

840 FOR 1=1 TO LEN(STRING$)

850 CALL HCHAR(4,20+I,ASC(SEG$(STRING$,I,1)))
860 NEXT I

870 RETURN

Lines 30-80 define the characters used for the Space Shuttle. The
Shuttle is defined as six characters in three rows and two columns. Lines
30 and 40 define the left and right rear, lines 50 and 60 define the left and
right middle, while lines 70 and 80 are the left and right front. Line 90
defines the meteors. Lines 100 and 110 are the color of the meteors and
Shuttle, respectively.

Line 120 defines a parameter that determines how often a letter will
appear. In this case, the frequency of occurence, FREQ, is set so that a
letter will appear every 20 rows. If you decrease FREQ, the game becomes
harder because you have less time to pilot your spaceship to a letter. Line
130 defines a constant which determines how many PRINT statements the
program will make before it ends automatically. Since there are 26 letters
in the alphabet, the product of 26*FREQ tells how many PRINT'S are
needed to make all of them appear on the bottom of the screen. The extra
16 is to allow the last Z to reach the spaceship. Once the last Z has reached
the spaceship, you can't get any more points and the game ends.

Lines 140^160 set up the colors of the letters and numbers in the pro
gram. Lines 190—200 define the initial position of the left rear of the space
ship. Line 210 defines a variable which counts how many PRINT
statements have been executed. When COUNT = MAXCOUNT in line 260,
the program goes to 660 to end the game. Line 220 initializes the variable
LETTER which contains the ASCII code of the latest letter which has been
printed or will be printed. Line 230 defines the variable SCORE, which
contains the score. Each time you pick up a letter, SCORE increases by 1
in line 810. Lines 820—860 blank out the old score and print the new
score.

Line 270 checks the square one row in front of the spaceship to the left
while line 310 checks one row and to the right of the ship. Since the space
ship is composed of two columns, lines 270 and 310 check in front of these
columns to see if a letter or meteor is present.

Lines 280 and 320 go to 660 to end the game if a meteor is detected by
the GCHAR's. Line 330 calculates the random column position of the next
meteor that will appear as an integer from 4 to 23. If the character is not a
meteor and not a letter, line 340 goes to 360.

Line 360 checks if it's time to print a letter instead of a meteor. For
example, if COUNT = 40 and FREQ = 20, then the IF test of line 360 is
true and the computer goes to 420 to print a meteor. However, if COUNT is
not a multiple of 20, the test fails and the computer goes to line 370 after
360.

Line 370 checks if the letter <4Z" has been printed. If so, the computer
goes to 420 and does not print any more letters. Try this with FREQ = 1.
Only letters will be printed at first and then only meteors. Notice that the
game ends when the "Z" is on the same row as the nose of the spaceship.

170 12-Let's Get Graphic

If the computer gets to line 350, it must have found a character greater
than 65 for MET. Since it can't be a meteor, it must be a letter. The com
puter then goes to the subroutine at line 700. Line 700 first determines the
character set that the letter is in. Note that LETTER contains the code of
the last letter that was printed or will be printed on the bottom line of the
display. That's why MET is used in line 700. For example, if an "A" is
detected, then SET = 5. Line 710 produces the first note of a sound effect
while line 800 produces the second note. These CALL SOUND statements
were separated by the loop of 720-790 to allow time for their tones to be
heard and not to delay the program. The loop of 720-790 produces color
effects by changing the color of the character set of the letter that was
detected by the ship.

Line 380 calculates the ASCII code of the next letter to be printed. For
example, if COUNT = 40 and FREQ = 20 then LETTER = 40/20 + 64 =
66. So the letter "B" is printed. Line 390 prints the letter and 400 pro
duces a sound effect. Line 420 prints a meteor and 430 produces a sound
effect when the meteor is printed. Lines 440-450 erase part of the old
image of the spaceship that won't be erased by the new printing of the
spaceship. Lines 460-510 print the spaceship. Note that in order to reduce
the printing time, no FOR-NEXT loop was used to print the spaceship.
Although it saves you typing and computer memory, it does take the com
puter more time to execute a loop. You'll notice that the ship is still printed
rather slowly, so effortswere made to reduce printing time. As shown in an
earlier chapter, another way to squeeze a little more speed out of a program
is to use variable names for constants whenever possible. By using a varia
ble, the computer does not have to convert a number to the internal binary
form every time the line is executed. This can be very helpful if you're deal
ing with numbers that have a lot of digits. Also, you can use shorter varia
ble names since the computer will then take less time to recognize a name.
Lines 520-650 move the ship horizontally and should be familiar from the
drawing programs.

This type of program really pushes the standard BASIC in your con
sole to its limits. You'll notice that the spaceship does not move as
smoothly as an arcade game. That's because the arcade game is usually
written in machine language, or has special hardware. Machine lan
guage is called a low-level language. BASIC is called a high-level language
because its vocabulary of PRINT, RUN, etc. match English language words
you're familiar with. In contrast, machine level programming is designed
for the convenience of the particular computer. If you'd like more informa
tion on these subjects see the book, Foundations of Computer
Technology.

All of the BASIC commands and statements that you enter are first
processefi by a program in the computer. This is called an interpreter
and it translates every command and program line into machine code
when it is encountered. In fact, that's why a BASIC program is much
slower than a machine language program.

Illusions 171

The BASIC interpreter converts every line of BASIC to machine code
only when it executes that line. In contrast, all of the machine code is
already in the language that the computer can understand. By skipping
the interpretation step, the computer can operate hundreds of times faster.
That's why arcade games are so much faster than BASIC games. However,
it is much harder for most people to write and to debug machine language
programs. For this reason, a higher-level language called assembly lan
guage was developed. There is a specific machine language and its assem
bly language for every computer. A program called an assembler converts
assembly language statements into machine code.

Another alternative to faster programs is a compiler. A compiler is a
program which converts all the statements into machine language. This
skips the interpreter, so a compiled program is much faster than an inter
preted one. The most common compilers are available for languages like
FORTRAN, COBOL, and C. However, BASIC compilers are also available
for some brands of computers. Although a compiler speeds up execution, it
does not help you debug a program. In fact, it's just the opposite. A stan
dard compiler can't let you set breakpoints, print out variables, trace lines,
etc. This is because when the program is converted to machine language,
all the information about line numbers is lost.

You can achieve faster execution of programs with the Extended
BASIC cartridge from Texas Instruments. This cartridge plugs into your
computer and adds a number of new features besides increasing execution
speed. For example, the cartridge lets you use sprites in games. A sprite is
a graphic image that is under the control of special hardware. For exam
ple, the spaceship in Alpha Pilot could be defined as a sprite. The sprite
moves smoothly under control of the hardware so that the computer does
not have to keep executing statements to move it. Sprites also can be easily
magnified using an extended BASIC command. So a single sprite could be
used instead of the 6 picture elements used in the game. Sprites can be
defined in 32 different layers called planes. A sprite in one layer can pass
in front or behind one in another layer. This feature gives much more real
istic effects. The extended BASIC also has more commands for use with
disks. For example, you can merge program lines from different programs.
Other BASIC commands that we did not discuss, such as BYE, DELETE
and EOF are used with disks. Consult your TI-99/4A User's Reference
Guide and disk manual for more details.

Illusions

You can achieve some pretty amazing effects with your TI-99/A if you
use its built in features. For example, suppose you want to develop a game
in which the background shows waves moving down the screen. The game
could consist of steering a ship over the waves and avoiding obstacles such
as rocks and sharks.

There are several ways you can make the waves move down the screen
without using CALL HCHAR and CALL VCHAR to move the waves. The

172 12-Let's Get Graphic

disadvantage of these subprograms is that it takes the computer a long
time to move many objects. For example, enter and run the following new
program.

10 REM WAVES 1

20 CALL CLEAR

30 CALL CHARC128,'"FFFFFFFF")
40 CALL CHARC136,''FFFFFFFF")
50 FOR I=0 TO 22 !STEP 2
60 CALL HCHARC1+I,,1,128,32)
70 CALL HCHARC2+I,,1,136,32)
80 NEXT I

90 CALL C0L0RC13/16,16)
100 CALL COLORCU,,6,6)
110 CALL C0L0RC13,,6,16)
120 CALL C0L0RC14,,16,6)
130 CALL C0L0RC13,,6,6)
140 CALL C0L0RC14,,16,16)
150 CALL C0L0RC13,,16,6)
160 CALL C0L0RC14,,6,16)
170 GOTO 90

When you run the WAVES 1 program, you'll see waves moving down
the screen. Just imagine that the white lines are the peaks of the waves,
while the blue lines are the bottoms of the waves. Lines 30 and 40 define
two special characters. Each character is half a square. In terms of appear
ance, each character is the same size. However, their character codes were
chosen to be in different color groups. Lines 50-80 print these characters
down the screen in alternating rows. Lines 90-160 change the foreground
and background colors in each special character so that the waves appear
to move down the screen. Changing the colors gives the illusion of
movement.

Notice that lines 90-160 use the CALL COLOR command to change the
colors of all the special characters at once. This changes the colors pretty
quickly. However, if you observe the waves closely, you'll see the blue and
white regions get bigger and smaller. Theoretically, the width of each blue
and white line should remain the same. However, the standard BASIC in
your console is not quite fast enough to eliminate this effect when the white
is printed over the blue and the blue is printed over the white.

There is a way to speed things up. Enter and run the following new
version ofWAVES

10 REM WAVES 2

20 CALL CLEAR

30 N=1

40 CALL CHAR(128,"FFFFFFFF")
50 CALL HCHARd,1,128,768)
60 CALL KEY(0,K,S)
70 IF K<>75 THEN 100

Illusions 173

80 N=2*N

90 GOTO 120

100 IF K<>76 THEN 120
110 N=N/2

120 FOR 1=1 TO N

130 NEXT I

140 CALL C0L0R(13,6,16)
150 FOR 1=1 TO N

160 NEXT I

170 CALL C0L0R(13,16,6)
180 GOTO 60

When you run this program, you'll see the blue and white lines as straight.
The lines do not get bigger and smaller as in the WAVES 1 program. If you
press the "K" key, you can slow down the waves, while the "L" key
speeds them up.

Line 40 defines a single special character. Line 50 fills the screen with
this character. Lines 60-110 accept input from the keyboard to determine
N. The variable N is used in the loop of lines 120-130 and 150-160 to delay
the motion of the waves. Without some delay, the motion is extremely
rapid. Lines 140 and 170 actually produce the wave effect. Line 140 sets
the top half of the special character to blue and the bottom half to white.
Line 170 reverses this and makes the top half white and bottom half blue.

If you have a lot of objects to move, you can speed up a game by using
CALL COLOR and special characters as much as possible during the play
ing time. Avoid HCHAR, VCHAR and other functions as much as possible
during the playing time to move many objects. You can use HCHAR and
VCHAR to set up the game, and then use CALL COLOR while playing.
This is the same basic idea as using PRINT in ALPHA PILOT to move all
the meteors at once.

Another example of using color changes to give the illusion of move
ment is shown in the following program. Enter and run this new program.
You'll see a 7 x 7 square in the screen with colors moving around. This
square is actually a spiral, and four colors move continually from the
center of the spiral to the outside.

10 REM COLOR SPIRAL 1
20 CALL CLEAR

30 NUMC0L=4

40 C(1)=5

50 C(2)=7

60 C(3)=11

70 C(4)=16

80 A$="FFFFFFFFFFFFFFFF"
90 CALL CHAR(128,A$)
100 CALL CHAR(136,A$)
110 CALL CHAR(144,A$)
120 CALL CHAR(152,A$)

174 12-Let's Get Graphic

130 N=7

140 SP=8

150 FOR R0W=1 TO N

160 FOR COL=1 TO N

170 READ CHAR

180 CHAR=128+8*(CHAR-1)

190 CALL HCHAR(SP+ROW,SP+COL,CHAR)
200 NEXT COL

210 NEXT ROW

220 FOR 1=1 TO NUMCOL

230 CALL C0L0R(12+I,C(I),C(D)
240 NEXT I

250 TEMP=C(NUMCOL)

260 FOR I=NUMCOL-1 TO 1 STEP -1

270 C(I+1)=C(I)

280 NEXT I

290 C(1)=TEMP

300 GOTO 220

310 DATA 1,4,3,2,1,4,3
320 DATA 2,1,4,3,2,1,2
330 DATA 3,2,1,4,3,4,1
340 DATA 4,3,2,1,2,3,4
350 DATA 1,4,3,4,1,2,3
360 DATA 2,1,2,3,4,1,2
370 DATA 3,4,1,2,3,4,1

The variable NUMCOL in line 30 defines the number of colors used in
the spiral. The four color codes are stored in the array C in lines 40-70.
Lines 90-120 generate four character codes for the spiral. The variable N in
line 130 defines the number of rows in the spiral. Line 140 defines the
initial starting position of the spiral as the variable SP. Actually, SP+1
represents the upper, left-hand, corner row and column number of the spi
ral. That is, the upper left edge of the spiral is in row 9 and column 9. The
spiral is drawn tightly packed into a square and so the number of rows
equals the number of columns. Lines 150-210 print the spiral on the
screen using the data in lines 310-370. Each number in the DATA state
ments is used to generate a character. For example, if the data is a 441",
then CHAR=1 from line 170 and CHAR=128 from line 180. Likewise,
when line 170 reads CHAR=2, then line 180 calculates CHAR=136. If
CHAR=3, then CHAR=144 from line 180 and if CHAR=4, then
CHAR= 152 from line 180.

The center of the spiral is in the fourth item in the DATA statement of
line 340, and is the "1". Fig. 12-4 shows the data elements with arrows
indicating the pattern of the spiral. The colors will appear to move along
this pattern. Moving to the right by one gives a "2". Moving directly up
from the "2" you'll see a "3". Move left from the "3" and you'll see a "4"
and then repeat with a 441" since there are only four special characters.
The spiral path is continued by moving down from the 441" to elements

1 -«- 4-*- 3-«-

»
1-*- 4^-

I I

l

1 •*•

\ \
3 2

\ j
4 3

J
1 —*-2

•*-4 ••1

2-*-

4 -«-

•• 4

••3

••2

Illusions

1-*- 4 ^-

t
1 2

t t
3 4 1

t t t
3 4

t t
3

t

2-«-

-• 2

••4

3

t
-• 2

-•1

••3 *-4

3

t
• 2

••1

175

Fig. 12-4 Spiral, showing the pattern of the four special characters
which make its shape.

442" and t43" and then to the right with elements 444," 441," 442," and so
forth. Lines 220-240 print the colors.

Lines 250-290 permute the color elements so that the colors shift by
one square. For example, the following table shows the initial values of the
colors and then their values each time after lines 250-290.

Intial Colors Permutations of Colors
C(l) = 5
C(2) = 7
C(3) = 11
C(4) = 16

16 11 7 5

5 16 11 7

7 5 16 11

11 7 5 16

From the table above, you can see that the last permutation has given
back the original color sequence. These permutations keep repeating over
and over again so that the colors keep moving. You can speed up the color
changes a little by directly entering sixteen appropriate CALL COLOR
statements instead of lines 220-290.

There are several ways you can increase the size of the color spiral.
The simplist way is to add appropriate data statements. Another way is to
use FOR-NEXT loops to generate the spiral. This version of the Color Spi
ral Program is shown in the following listing. Rather than your having to
enter DATA statements, this program uses FOR-NEXT loops to generate
the spiral. Fig. 12-4 shows the pattern of the spiral and you'll see this pat
tern appear on your screen as the computer makes the pattern. You'll see a
much larger spiral on the screen when you run this version compared to
the first version of the program. Of course, you could add more data state-

176 12-Let's Get Graphic

ments to the ColorSpiral 1 version to generate a largerspiral, but that will
take a lot of typing. Lines 20-120 are the same as the Color Spiral 1
Program.

10 REM COLOR SPIRAL 2
20 CALL CLEAR

30 NUMC0L=4
40 C(1)=5

50 C(2)=7

60 C(3)=11

70 C(4)=16
80 A$="FFFFFFFFFFFFFFFF"

90 CALL CHAR(128,A$)
100 CALL CHAR(136,A$)
110 CALL CHAR(144,A$)
120 CALL CHAR(152,A$)
130 R0W=12

140 C0L=16

150 LENGTH=1

160 CHAR=128

170 CALL HCHAR(ROW,COL,CHAR)
180 NEWCOL=COL+LENGTH

190 FOR I=C0L TO NEWCOL
200 GOSUB 550

210 CALL HCHAR(ROW,I,CHAR)
220 NEXT I
230 C0L=NEWC0L

240 NEWROW=ROW-LENGTH

250 FOR I=R0W TO NEWROW STEP -1
260 GOSUB 550

270 CALL HCHAR(I,COL,CHAR)
280 NEXT I

290 R0W=NEWR0W

300 LENGTH=LENGTH+1

310 NEWCOL=COL-LENGTH
320 FOR I=C0L TO NEWCOL STEP -1
330 GOSUB 550

340 CALL HCHAR(ROW,I,CHAR)
350 NEXT I

360 C0L=NEWC0L
370 NEWROW=ROW+LENGTH
380 FOR I=R0W TO NEWROW

390 GOSUB 550

400 CALL HCHAR(I,COL,CHAR)
410 NEXT I

420 R0W=NEWR0W

430 C0UNT=C0UNT+1
440 LENGTH=LENGTH+1

450 IF C0UNT<11 THEN 170

460 FOR 1=1 TO NUMCOL

470 CALL C0L0R(12+I,C(I)>,C(I))
480 NEXT I

490 TEMP=C(NUMCOL)

500 FOR I=NUMCOL-1 TO 1 STEP -1

510 C(I+1)=C(I)

520 NEXT I

530 C(1)=TEMP

540 GOTO 460

550 CHAR=CHAR+8

560 IF CHAR<160 THEN 580

570 CHAR=128

580 RETURN

The Great Adventure 177

Lines 20-120 are the same in this program as the previous spiral program.
Lines 130 and 140 define the center row and column of the spiral. The
variable LENGTH initialized in line 150 controls how many squares will
be printed in the same direction as the spiral is drawn. Line 160 defines
the variable CHAR which contains the character number to be printed in
the spiral. Line 170 prints the center square of the spiral. Line 180 defines
a variable called NEWCOL which defines the ending column of the spiral.
NEWCOL is also the new initial column of the spiral.

The loop of lines 190-220 prints the part of the spiral from left to right.
The GOSUB 550 subroutine increments the character by 8 and checks if
the character is less than 160. If so, the program returns and prints the
character. If the character code is 160, then the character is reset to 128.
Line 230 sets the starting column to the ending column. Line 240 calcu
lates what the ending row of the spiral should be as the spiral is drawn up.
Lines 250-280 draw the spiral going up. Line 290 sets the starting row to
the ending row position while line 300 increases the length by one and line
310 sets the ending column size. Lines 320-350 draw the spiral going from
right to left. Lines 360 and 370 adjust the column and ending row while
the loop of lines 380-410 draw the spiral from left to right. Line 420
adjusts the beginning row position.

The variable COUNT in line 430 counts how many times the spiral has
looped around itself. Decrease the 11 in line 450 to get a smaller spiral.
Lines 460-540 act the same as lines 220-300 in the Color Spiral 1
Program.

The Great Adventure

Game programs are a fun and educational way to learn about pro
gramming. If you'd like to see some more examples ofgame programs, then
get Timelostfor the TI-99/4A. This is a best selling, computer adventure
set in comic book form about a teenage boy, his kid sister and their myste
rious friend from the future as they battle the Warlord of the Universe. Pro
gram listings are included which match the action of the story. Just type in

178 12-Let's Get Graphic

the listings and you can battle with them. Also included are detailed expla
nations of the listings so that you can learn how the games operate.
Another reason for including detailed listings is so that you can modify
and enhance the games.

If you'd like to learn more about computer hardware, see Foundations
of Computer Technology and Modern Computer Concepts. These books
provide an introduction to computer history, terminals, printers, disks,
memory, data communications, and a guide to purchasing a computer sys
tem. Two other books BASIC: Fundamental Concepts and BASIC:
Advanced Concepts cover two other popular dialects of BASIC. One ver
sion is a BASIC made by Digital Equipment Corporation and the other is
made by Microsoft, Inc. The programs in these books are shown for both
types of BASIC. You'll learn how to convert programs written in one ver
sion to another and the pitfalls that can occur in converting a program
written for one brand of computer to run on another. Often in magazines or
books you'll see programs written for a different brand of computer that
you'd like to run on your computer. However, there may be more involved
than just changing the vocabulary of BASIC.

The BASIC books above also cover other topics such as plotting on a
terminal, factorials, and exact precision arithmetic. For example, the TI
99/4A prints to ten significant figures, although internally it's accurate to
13 or 14. The programs in BASIC: Advanced Concepts allow you to add,
to subtract, and to multiply numbers with 200 or more digits! The books
are available at a discount when purchased in groups of two or four from
the publisher, Howard W. Sams, Inc., 4300 W. 62nd Street, Indianapolis,
IN 46268.

Computer magazines are a good source of material about computers.
They carry games, tips, and articles about programming and many other
topics. The Magazine

99'er Home Computer Magazine
P. O. Box 5537

Eugene, OR 97405
(503) 485-8796

is exclusively devoted to Texas Instruments computers and contains many
articles and features about TI computers. Also included is information
about LOGO, a popular computer language primarily aimed at children.

Another good magazine is

Compute! The Journal for Progressive Computing
P. O. Box 5406

Greensboro, NC 27403
(919)275-9809

This magazine publishes programs, articles and features about the TI-99/
4A and other brands of computers. The nice thing about Compute is that
many of their program listings are given for several different brands of
computers.

The Great Adventure 179

If you've worked through all the material in this book, you've come a
long way. At this point, if you have optional accessories such as the
Speech Module or joysticks, you should be able to read their documenta
tion and to write programs using them. However, the key to becoming a
good programmer is practice. You can learn to program only by program
ming. Pick a topic that you're interested in and write a program for it. Start
with a good design and test each part of the program before continuing. If
things don't work out, relax and take a break for a while. Remember, com
puters are fun only if you're having fun using them. Computers are the
great adventure of our time. Along with millions of other people learning
about computers, you're traveling the right road to that adventure.

Appendices

NOTE: Except for the Appendix of Order of Priorities of Operators, all
other appendices have been reproduced from the Texas Instruments TI-
99/4A Computer User's Reference Guide, copyrighted by Texas Instru
ments, Inc. This material is reproduced with the permission of Texas
Instruments, Inc. and may not be reproduced without the written permis
sion ofTexas Instruments, Inc.

181

182 -Appendices

Appendix of Order of Priorities of Operators

Exponentiation A

Negation -

Multiplication and Division *,/

Addition and Subtraction +, -

Relational Operators >, =, <, <>, < = , >

Concatenation &

Appendices

Appendix of Reserved Words

ABS GOTO RES

APPEND IF RESEQUENCE
ASC INPUT RESTORE

ATN INT RETURN

BASE INTERNAL RND

BREAK LEN RUN

BYE LET SAVE

CALL LIST SEG$
CHR$ LOG SEQUENTIAL
CLOSE NEW SGN

CON NEXT SIN

CONTINUE NUM SQR
COS NUMBER STEP

DATA OLD STOP

DEF ON STR$
DELETE OPEN SUB

DIM OPTION TAB

DISPLAY OUTPUT TAN

EDIT PERMANENT THEN

ELSE POS TO

END PRINT TRACE

EOF RANDOMIZE UNBREAK

EXP READ UNTRACE

FIXED REC UPDATE

FOR RELATIVE VAL

GO REM VARIABLE

GOSUB

183

Appendix
ASCII CHARACTER CODES

The defined characters on the TI-99/4A Computer are the standard ASCII characters for codes 32
through 127. The following chart lists these characters and their codes.

ASCII ASCII ASCII

CODE CHARACTER CODE CHARACTER CODE CHARACTER

32 (space) 65 A 97 A

33 ! (exclamation point) 66 B 98 B

34 (quote) 67 C 99 C

35 # (number or pound sign) 68 D 100 D

36 $ (dollar) 69 E 101 E

37 % (percent) 70 F 102 F

38 & (ampersand) 71 G 103 G

39 (apostrophe) 72 H 104 H

40 ((open parenthesis) 73 I 105 I

41) (close parenthesis) 74 J 106 J
42 * (asterisk) 75 K l 107 K

43 + (plus) 76 L 108 L

44 . (comma) 77 M 109 M

45 — (minus) 78 N 110 N

46 . (period) 79 O HI O

47 / (slant) 80 P 112 P

48 0 81 Q 113 Q

49 1 82 R 114 R

50 2 83 S 115 S

51 3 84 T 116 T

52 4 85 U 117 U

53 5 86 V 118 V

54 6 87 W 119 w

55 7 88 X 120 X

56 8 89 Y 121 Y

57 9 90 Z 122 Z

58 : (colon) 91 C (open bracket) 123 { (left brace)
59 ; (semicolon) 92 \ (reverse slant) 124 i

60 < (less than) 93 3 (close bracket) 125 i (right brace)
61 = (equals) 94 A (exponentiation) 126 - (tilde)

62 > (greater than) 95 _(line) 127 DEL(appears on
63 ? (question mark) 96 x (grave) screen as a

64 @ (at sign) blank.)

rhese characters are grouped into sixteen sets for use iri color graphiics programs.
Set # Character Set # Character Set* Character Set* Character

Codes Codes Codes Codes

1 32-39 5 i64-71 9 96-103 13 128-135

2 40-47 6 '72-79 10 104-111 14 136-143

3 48-55 7 !80-87 11 112-119 15 144-151

4 56-63 8 !88-95 12 120-127 16 152-159

Two additional characters are predefined on the TI-99/4A Computer. The cursor is assigned to
ASCII code 30, and the edge character is assigned to code 31.

User's Reference Guide IIM

Appendix

FUNCTION AND CONTROL KEY CODES

Codes are also assigned to the function and control keys,so that these can be referenced by the
CALL KEY subprogramin TI BASIC. The codesassigned dependon the key-unit valuespecified in
a CALL KEY program statement.

Function Key Codes
Codes

TI-99/4 &> Pascal Function Function
BASIC Modes Mode Name Key

1 129 AID FCTN 7

2 130 CLEAR FCTN 4

3 131 DELete FCTN1
4 132 INSert FCTN 2

5 133 QUIT FCTN =
6 134 REDO FCTN 8

7 135 ERASE FCTN 3

8 136 LEFT arrow FCTN S

9 137 RIGHT arrow FCTN D

10 138 DOWN arrow FCTN X

11 139 UP arrow FCTN E

12 140 PROD'D FCTN 6

13 141 ENTER ENTER

14 142 BEGIN FCTN 5
15 143 BACK FCTN 9

Control Key Codes
Codes

BASIC Pascal Mnemonic

Mode Mode Code Press Comments
129 1 SOH CONTROL A Start of heading
130 2 STX CONTROL B Start of text
131 3 ETX CONTROL C End of text
132 4 EOT CONTROL D End of transmission
133 5 ENQ CONTROL E Enquiry
134 6 ACK CONTROL F Acknowledge
135 7 BEL CONTROL G Bell

136 8 BS CONTROL H Backspace
137 9 HT CONTROL I Horizontal tabulation
138 10 LF CONTROLJ Line feed
139 11 VT CONTROL K Vertical tabulation
140 12 FF CONTROL L Form feed
141 13 CR CONTROL M Carriage return
142 14 SO CONTROL N Shift out
143 15 SI CONTROL O Shift in
144 16 DLE CONTROL P Data link escape
145 17 DCl CONTROL Q Device control 1 (X-ON)
146 18 DC2 CONTROL R Device control 2
147 19 DC3 CONTROL S Device control 3 (X-OFF)
148 20 DC4 CONTROL T Device control 4
149 21 NAK CONTROL U Negative acknowledge
150 22 SYN CONTROL V Synchronous idle
151 23 ETB CONTROL W End of transmission block
152 24 CAN CONTROL X Cancel
153 25 EM CONTROL Y End of medium
154 26 SUB CONTROL Z Substitute
155 27 ESC CONTROL. Escape
156 28 FS CONTROL: File separator
157 29 GS CONTROL = Group separator
158 30 RS CONTROL 8 Record separator
159 31 US CONTROL 9 Unit separator

III 2 User's Reference Guide

Appendix

KEYBOARD MAPPING

The following diagrams illustrate the key codes returned in the four keyboard modesspecified by the
key-unit value in theCALL KEY statement. The figures on the upper key face are function codes,
and the lower figures are control codes.

3

1

4

2

7

3

a

4

14

5

12

6

1

7

6

a

15

9 0

5

0 W

11

E R T Y U i 0 P /

A

B

S

9

0 F G H J K L
'

13

ENTER

SHIFT 2

10

X C V B N M
•

SHIFT

ALPHA
LOCK CTRL SPACE FCTN

Figure 1. Standard TI-99/4 Keyboard Scan.

Keyunit = 3. Bothupper- and lower-case alphabetical characters returned asupper-case.
Function codes = 1-15. No control characters active.

131 138 139 130 148 140 | 189 134 143 133

1 ? 3 a 5 5 7 a

30

9

31

0
89

139

0 W E R T Y u I 0 P 1

17 83 9 18 80 89 81 9 19 18

13G 137 1 141

A S 0 F G H J 1 K I : ENTER

1 19 4 B 7 8 10 | 11 18 88

138

SHIFT Z X C V B N M , SHIFT

88 84 3 88 8 14 13 27

ALPHA

LOCK CTRL SPACE FCTN

User's Reference Guide

Figure 2. Pascal Keyboard Scan.

Key-unit =• 4. Upper- and lower-case characters active.
Function codes = 129-143. Control character codes = 1-31.

III-3

Appendix

III-4

3

1

177

4

178

7

J

179

8

4

180

14

5

181

18

6

183

1

7

183

8

B

158

19

9

159
0

176

9

157

0

145

w

191

11

C

133

R

146

T

148

V

193

u

149

i

137

0
143

P

144

/
1B7

A

189

8

s

147

9

0

138

F

134

G

139

H

138

J

138

K

139

L

140 150

13

ENTER

SHIFT 2
194

10

X

108
c

131

V

190

B

130

N

148

M

141 188 199

SHIFT

ALPHA

LOCK CTRL SPACE FCTN

Figure 3. BASIC Keyboard Scan.

Key-unit = 5. Upper- and lower-case characters active.
Function codes = 1-15. Control character codes = 128-159,187.

Key unit - 1
1

Kryuml - 2

1

19

3

7

3

8

4

9

I
i

5 | 6
10 ! 19

7

7

B
8

9

9

0

10
"

0

18

W

4

E

5

R

8

T | Y
11 j 18

U

4

1

9

0

8

p

11

1
18

A

1

S

8

0

3

F

18

G S H
17 ', 1

J

8

K

3

L

12 17

ENTER

SHIFT Z

15

X

0

c

14

V

13

b ; n
18 J 18

M

0 14 13

SHIFT

ALPHA

LOCK CTRL SPACE FCTN

Figure 4. Split Keyboard Scan.
Codes returned = 0-19.

CHARACTER CODES FOR SPLIT KEYBOARD

CODES

0

1

2

3

4

5

6

7

8

9

KEYS" CODES KEYS"

X.M 10 5.0

A.H 11 T.P

SJ 12 F.L

D,K 13 V, . (period)
W.U 14 C.. (comma)
E.I 15 Z.N

R,0 16 B. / (slash)
2.7 17 G.; (semicolon)
3,8 18 Q.Y
4.9 19 1.6

*Note that the first key listed is on the left side of the keyboard,
and the second key listed is on the right side of the keyboard.

User's Reference Guide

Appendix

PATTERN-IDENTIFIER CONVERSION TABLE

BINARY CODE HEXADECIMAL

Blocks (0=off;l =

0000

0001

0010

on) CODE

0

1

2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

mi F

COLOR CODES

COLOR CODE# COLOR CODEtt

Transparent 1 Medium Red 9

Black 2 Light Red 10

Medium Green 3 Dark Yellow 11

Light Green 4 Light Yellow 12

Dark Blue 5 Dark Green 13

Light Blue 6 Magenta 14

Dark Red 7 Gray 15

Cysin 8 White 16

User's Reference Guide III-5

Appendix

HIGH-RESOLUTION COLOR COMBINATIONS

The following color combinations produce the sharpest, clearest character resolution on the TI-99/4A
color monitor screen. Color codes are included in parentheses.

Black on Medium Green (2. 3)
Black on Light Green (2. 4)
Black on Light Blue (2. 6)
Black on Dark Red (2. 7)
Black on Cyan (2. 8)
Black on Medium Red (2. 9)
Black on Light Red (2. 10)
Black on Dark Yellow (2.11)
Black on Light Yellow (2. 12)
Black on Dark Green (2. 13)
Black on Magenta (2. 14)
Black on Gray (2. 15)
Black on White (2. 16)
Medium Green on White (3. 16)
Light Green on Black (4. 2)
Light Green on White (4, 16)
Dark Blue on Light Blue (5. 6)
Dark Blue on Gray (5. 15)
Dark Blue on White (5, 16)
Light Blue on Gray (6. 15)
Light Blue on White (6, 16)
Dark Red on Light Yellow (7. 12)
Dark Red on White (7. 16)
Medium Red on Light Red (9.10)
Medium Red on Light Yellow (9. 12)
Medium Red on White (9. 16)

III-6

Light Red on Black (10. 2)
Light Red on Dark Red (10. 7)
Dark Yellow on Black (11.2)
Light Yellow on Black (12. 2)
Light Yellow on Dark Red (12. 7)
Dark Green on Light Green (13. 4)
Dark Green on Light Yellow (13. 12)
Dark Green on Gray (13. 15)
Dark Green on White (13, 16)
Magenta on Gray (14. 15)
Magenta on White (14, 16)
Gray on Black (15. 2)
Gray on Dark Blue (15, 5)
Gray on Dark Red (15. 7)
Gray on Dark Green (15. 13)
Gray on White (15. 16)
White on Black (16, 2)
White on Medium Green (16. 3)
White on Light Green (16, 4)
White on Dark Blue (16. 5)
White on Light Blue (16. 6)
White on Dark Red (16, 7)
White on Medium Red (16. 9)
White on Light Red (16. 10)
White on Dark Green (16.13)
White on Magenta (16. 14)
White on Gray (16, 15)

Users Reference Guide

Appendix

MUSICAL TONE FREQUENCIES

The followingtable gives frequencies (rounded to integers)of four octaves of the tempered scale (one
half-step between notes).Whilethis list does not represent the entire range of tones - or even of
musical tones —it can be helpful for musical programming.

Frequency Note

110 A

117 A*.Bb
123 B

131 C (low C)
139 C*,Db
147 D

156 D^E*
165 E

175 F

185 F*.Gb
196 G

208 G*.A>
220 A (below middle C)

220 A (below middle C)
233 A*.B>
247 B

262 C (middle C)
277 C*.D>
294 D

311 D*.Eb
330 E

349 F

370 F*,G*
392 G

415 G*.A*
440 A (above middle C)

User's Reference Guide

440 A (above middle C)
466 A*.B>
494 B

523 C(highC)
554 C#,D>
587 D

622 D*.Eb
659 E

698 F

740 F^.G"
784 G

831 G*.A>
880 A (above high C)

880 A (above high C)
932 A*.B>
988 B

1047 C

1109 C*.Db
1175 D

1245 D*,E>
1319 E

1397 F

1480 F*.Gb
1568

G*.A*1661

III-7

Error Messages
I. Errors Found When Entering a Line

* BAD LINE NUMBER

1. Line number or line number referenced

equals 0 or is greater than 32767
2. RESEQUENCE specifications generate

a line number greater than 32767

* BAD NAME

1. The variable name has more than 15

characters

* CAN'T CONTINUE

1. CONTINUE was entered with no

previous breakpoint or program was
edited since a breakpoint was taken.

* CAN'T DO THAT

1. Attempting to use the following program
statements as commands: DATA, DEF,
FOR. GOTO. GOSUB, IF. INPUT.
NEXT. ON. OPTION. RETURN

2. Attempting to use the following
commands as program statements
(entered with a line number): BYE,
CONTINUE, EDIT, LIST, NEW,
NUMBER, OLD, RUN, SAVE

3. Entering LIST, RUN, or SAVE with no
program

* INCORRECT STATEMENT

1. Two variable names in a row with no

valid separator between them (ABC A or
A$A)

2. A numeric constant immediately follows
a variable with no valid separator
between them (N 257)

3. A quoted string has no closing quote
mark

4. Invalid print separator between numbers
in the LIST. NUMBER, or
RESEQUENCE commands

5. Invalid characters following
CONTINUE, LIST. NUMBER,
RESEQUENCE, or RUN commands

6. Command keyword is not the first word
in a line

7. Colon does not follow the device name in

a LIST command

* LINE TOO LONG

1. The input line is too long for the input
buffer

III-8

* MEMORY FULL

1. Entering an edit line which exceeds
available memory

2. Adding a line to a program causes the
program to exceed available memory

II. Errors Found When Symbol Table Is
Generated

When RUN is entered but before any program
lines are performed, the computer scans the
program in order to establish a symbol table. A
symbol table is an area of memory where the
variables, arrays, functions, etc., for a program
are stored. During this scanning process, the
computer recognizes certain errors in the
program, as listed below. The number of the
line containing the error is printed as part of the
message (for example: * BAD VALUE IN 100).
Errors in this section are distinguished from
those in section III, in that the screen color

remains cyan until the symbol table is
generated. Since no program lines have been
performed at this point, all the values in the
symbol table will be zero (for numbers) and null
(for strings).

* BAD VALUE

1. A dimension for an array is greater than
32767

2. A dimension for an array is zero when
OPTION BASE = 1

* CAN'T DO THAT

1. More than one OPTION BASE

statement in your program
2. The OPTION BASE statement has a

higher line number than an array
definition

* FOR-NEXT ERROR

1. Mismatched number of FOR and

NEXT statements

* INCORRECT STATEMENT

DEF

1. No closing ")" after a parameter in a
DEF statement

2. Equals sign (=) missing in DEF
statement

3. Parameter in DEF statement is not a

valid variable name

User's Reference Guide

Error Messages

DIM

4. DIM statement has no dimensions or

more than three dimensions

5. A dimension in a DIM statement is not

a number

6. A dimension in a DIM statement is not

followed by a comma or a closing ")"
7. The array-name in a DIM statement is

not a valid variable name

8. The closing ")" is missing for array
subscripts

OPTION BASE

9. OPTION not followed by BASE
10. OPTION BASE not followed by 0

orl

* MEMORY FULL

1. Array size too large
2. Not enough memory to allocate a

variable or function

* NAME CONFLICT

1. Assigning the same name to more than
one array (DIM A(5). A(2,7))

2. Assigning the same name to an array and
a simple variable

3. Assigning the same name to a variable
and a function

4. References to an array have a different
number of dimensions for the array
(B=A(2.7)+2.PRINTA(5))

III. Errors Found When a Program Is Running

When a program is running, the computer may
encounter statements that it cannot perform. An
error message will be printed, and unless the
error is only a warning the program will end. At
that point, all variables in the program will have
the values assigned when the error occurred.
The number of the line containing the error will
be printed as part of the message (for example:
CANT DO THAT IN 210).

* BAD ARGUMENT

1. A built-in function has a bad argument
2. The string expression for the built-in

functions ASC or VAL has a zero length
(null string)

3. In the VAL function, the string
expression is not a valid representation
of a numeric constant

User's Reference Guide

* BAD LINE NUMBER

1. Specified line number does not exist in
ON. GOTO or GOSUB statement

2. Specified line number in BREAK or
UN BREAK does not exist (warning only)

* BAD NAME

1. Subprogram name in a CALL statement
is invalid

* BAD SUBSCRIPT

1. Subscript is not an integer
2. Subscript has a value greater than the

specified or allowed dimensions of an
array

3. Subscript 0 used when OPTION BASE
1 specified

* BAD VALUE

CHAR

1. Character-code out of range in CHAR
statement

2. Invalid character in pattern-identifier in
CHAR statement

CHR$
3. Argument negative or larger than 32767

inCHR$

COLOR

4. Character-set-number out of range in
COLOR statement

5. Foreground or background color code out
of range in COLOR statement

EXPONENTIATION (A;
6. Attempting to raise a negative number to

a fractional power

FOR

7. Step increment is zero in FOR-TO-
STEP statement

HCHAR. VCHAR, GCHAR
8. Row or column-number out of range in

HCHAR. VCHAR. or GCHAR

statement

JOYST. KEY
9. Key-unitout of range in JOYST or KEY

statement

ON

10. Numeric-expression indexing line-
number is out of range

I1I-9

Error Messages

OPEN CLOSE. INPUT, PRINT
RESTORE

11. File-number negative or greater than
255

12. Number-of-records in the

SEQUENTIAL option of the OPEN
statement is non-numeric or greater
than 32767

13. Record-length in the FIXED option of
the OPEN statement is greater than
32767

POS
14. The numeric-expression in the POS

statement is negative, zero, or larger
than 32767

SCREEN

15. Screen color-code out of range

SEG$
16. The value of numeric-expression1

(character position) or numeric-
expression2 (length of substring) is
negative or larger than 32767

SOUND

17. Duration, frequency, volume or noise
specification out of range

TAB

18. The value of the character position is
greater than 32767 in the TAB function
specification

* CAN'T DO THAT

1. RETURN with no previous GOSUB
statement

2. NEXT with no previous matching FOR
statement

3. The control-variable in the NEXT

statement does not match the control-

variable in the previous FOR statement
4. BREAK command with no line number

* DATA ERROR

1. No comma between items in DATA

statement

2. Variable-list in READ statement not

filled but no more DATA statements are

available

3. READ statement with no DATA

statement remaining

HMO

4. Assigning a string value to a numeric
variable in a READ statement

5. Line-number in RESTORE statement

is greater than the highest line number
in the program

• FILE ERROR

1. Attempting to CLOSE. INPUT.
PRINT, or RESTORE a file not

currently open
2. Attempting to INPUT records from a

file opened as OUTPUT or APPEND
3. Attempting to PRINT records on a file

opened as INPUT
4. Attempting to OPEN a file which is

already open

• INCORRECT STATEMENT

General

1. Opening "(". closing ")". or both missing
2. Comma missing
3. No line number where expected in a

BREAK. UNBREAK. or RESTORE
(BREAK 100.)

4. "+" or " —" not followed by a numeric
expression

5. Expressions used with arithmetic
operators are not numeric

6. Expressions used with relational
operators are not the same type

7. Attempting to use a string expression as
a subscript

8. Attempting to assign a value to a
function

9. Reserved word out of order

10. Unexpected arithmetic or relational
operator is present

11. Expected arithmetic or relational
operator missing

Built-in Subprograms
12. In JOYST. the x-return and y-return are

not numeric variables

13. In KEY. the key-status is not a numeric
variable

14. In GCHAR, the third specification must
be a numeric variable

15. More than three tone specifications or
more than one noise specification in
SOUND

16. CALL is not followed by a subprogram

User's Reference Guide

Error Messages

File Processing-Input/Output Statements
17. Number sign (#) or colon (:) in file-

number specification for OPEN,
CLOSE. INPUT. PRINT, or
RESTORE is missing

18. File-name in OPEN or DELETE must
be a string expression

19. A keyword in the OPEN statement is
invalid or appears more than once

20. The number of records in
SEQUENTIAL option is less than zero
in the OPEN statement

21. The record length in the FIXED option
in the OPEN statement is less than zero

or greater than 255
22. A colon (:) in the CLOSE statement is

not followed by the keyword DELETE
23. Print-separator (comma, colon,

semicolon) missing in the PRINT
statement where required

24. Input-prompt is not a string expression
in INPUT statement

25. Filename is not a valid string
expression in SAVE or OLD
command

General Program Statements

FOR
26. The keyword FOR is not followed by a

numeric variable

27. In the FOR statement, the control-
variable is not followed by an equals
sign (=)

28. The keyword TO is missing in the FOR
statement

29. In the FOR statement, the limit is not
followed by the end of line or the
keyword STEP

IF
30. The keyword THEN is missing or not

followed by a line number

LET
31. Equals sign (=) missing in LET

statement

User's Reference Guide

NEXT
32. The keyword NEXT is not followed by

control-variable

ONGOTO.ON-GOSUB
33. ON is not followed by a valid numeric

expression

RETURN
34. Unexpected word or character following

the word RETURN

User-Defined Functions
35. The number of function arguments does

not match the number of parameters for
a user-defined function

* INPUT ERROR
1. Input data is too long for Input/Output

buffer (if data entered from keyboard,
this is only a warning —data can be re
entered)

2. Number of variables in the variable-list
does not match number of data items
input from keyboard or data file
(warning only if from keyboard)

3. Non-numeric data INPUT for a
numeric variable. This condition could
be caused by reading padding
characters on a file record. (Warning
only if from keyboard)

4. Numeric INPUT data produces an
overflow (warning only if from
keyboard)

* I/O ERROR - This condition generates an
accompanying error code as follows:

When an I/O error occurs, a two-digit error
code (XY) is displayed with the message:

* I/O ERROR XY IN line-number

The first digit (X) indicateswhich I/O
operation caused the error.

X Value Operation

0 OPEN
1 CLOSE
2 INPUT
3 PRINT
4 RESTORE
5 OLD
6 SAVE
7 DELETE

III-ll

Error Messages

The second digit (Y) indicates what kind of
error occurred.

Y Value Error Type

0 Device name not found (Invalid
device or file name in DELETE,
LIST, OLD, or SAVE command)

1 Device write protected (Attempting
to write to a protected file)

2 Bad open attribute (One or more
OPEN options are illegal or do not
match the file characteristics)

3 Illegal operation (Input/output
command not valid)

4 Out of space (Attempting to write
when insufficient space remains on
the storage medium)

5 End of file (Attempting to read past
the end of a file)

6 Device error (Device not connected,
or is damaged. This error can occur
during file processing if an
accessory device is accidentally
disconnected while the program is
running.)

7 File error (The indicated file does
not exist or the file type —program
file or data file — does not match the

access mode.)

* MEMORY FULL

1. Not enough memory to allocate the
specified character in CHAR statement

2. GOSUB statement branches to its own

line-number

3. Program contains too many pending
subroutine branches with no RETURN

performed
4. Program contains too many user-defined

functions which refer to other user-

defined functions

5. Relational, string, or numeric
expression too long

6. User-defined function references itself

III-12

• NUMBER TOO BIG (warning eiven - value
replaced by computer limit as shown below)

1. A numeric operation produces an
overflow (value greater than
9.9999999999999E127 or less than

-9.9999999999999E127)
2. READing from DATA statement results

in an overflow assignment to a numeric
variable

3. INPUT results in an overflow

assignment to a numeric variable

• STRING-NUMBER MISMATCH

1. A non-numeric argument specified for a
built-in function, tab-function, or

exponentiation operation
2. A non-numeric value found in a

specification requiring a numeric value
3. A non-string value found in a

specification requiring a string value
4. Function argument and parameter

disagree in type, or function type and
expression type disagree for a user-
defined function

5. File-number not numeric in OPEN,
CLOSE, INPUT, PRINT, RESTORE

6. Attempting to assign a string to a
numeric variable

7. Attempting to assign a number to a
string variable

Note: Additional error codes may occur when
you are using various accessories, such as the
TI Disk Memory System or Solid State
Thermal Printer, with the computer. Consult
the appropriate device owner's manual for more
information on these error codes.

IV. Error Returned When an OLD Command

Is Not Successful

♦CHECKPROGRAM IN MEMORY
The OLD command does not clear program
memory unless the loading operation is
successful. If an OLD command fails or is

interrupted, however, any program currently in
memory may be partially or completely
overwritten by the program being loaded.
LIST the program in memory before
proceeding.

User's Reference Guide

Glossary

Words in italics and followed by an 44*" are also referenced in the Glos
sary. Note that words with an [*] after them are defined in the Texas
Instruments TI-99/4A User's Reference Guide and are reproduced here
with permission ofTexas Instruments, Inc.

ABS—the absolute value function of BASIC. The ABS function returns the magnitude of its argu
ments*. See magnitude*. For example:

PRINT ABS (-2.5)
2.5

returns a value of 2.5 as the magnitude of 2.5.
absolute value function—see ABS*.

accessory devices!*]—additional equipment which attaches to the computer and extends its func
tions and capabilities. Included are preprogrammed Command Modules* and units which send,
receive or store computer data, such as printers and disks. These are often called peripherals.

address—the identification of a memory location in the computer. For example, your computer has
16K addresses which identify each of the 16K bytes of random access memory* in the TI-99/4A. See
also byte*.

algorithm—a way to solve a problem in a finite number of steps. For example, a computer program is
an algorithm. A recipe is also an algorithm.

alphanumeric—a contraction of the term "alphabetic and numeric". The alphanumeric keys are
those which produce either a letter of the alphabet, A-Z, or a numeral: 0,1,2,3,4,5,6,7,8.9.

arctangent function—see ATN*.
argument—the value you supply to a function which enables it to produce an output. The arguments
of functions are usually enclosed in parentheses following the function. For example:

PRINT TAB(3)

arithmetic expression—a group of arithmetic operators and operands. For example, the following
are some arithmetic expressions, where A and B are variables
2 + 2

3 x 6-8

A-3 x B

8.3 + (B x 7-3 / 2) / A

arithmetic operator—a symbol used for arithmetic operations. For example
A exponentiation

negation, also called unary minus
x multiplication
/ division

+ addition

subtraction, also called binary minus
Note that the same symbol is used for negation as for subtraction.
Besides the arithmetic operators, there are also logical operators, * and concatenation. *
array[*]—a collection of numeric or string variables, arranged in a list or matrix for processing by the
computer. Each element in an array is referenced by a subscript* describing its position in the list.
ASC—a BASIC string function which produces the ASCII code when a character or string expression
which reduces to a character is given as its argument. ASC can be used as either a direct command or
in a program statement. As an example of its use,

197

198 -Glossary

PRINT ASCC'A")
65

returns a value of 65 as the ASCII code for "A". ASC and CHR$* are inversefunctions*.
ASCII[*]—the American Standard Code for Information Interchange, the code structure used inter
nally in most personal computers to represent letters, numbers, and special characters.
assembly language—a higher level language than machine language. A program called an assem
bler converts assembly language instructions into machine language. Assembly language is much
more convenient for people to use than trying to program in machine language directly.
ATN—the ATNfunction returns the angle in radians when you supply the tangent of that angle as the
argument of ATN. For example, if the tangent is .5463024898. then

PRINT ATN(.5463024898)

.5
shows that the angle .5 radians has a tangent of .5463024898. The tangent function and arctangent
function are Inverse functions, that is, for any angle X, the following identity holds

X=ATN(TAN(X>)

auto repeat—a contraction of the term "automatic repeat". Ifyou hold down any key which produces
a character, the computer will automatically keep generating that character. The auto repeat feature
acts as if you pressed the same key many times.
base—the number which is raised to a power. For example, the EXP* function uses the number e.
Another definition of base refers to number systems. For example, ten is the base of our ordinary deci
mal system, while two is the base of the binary system. The reason these numbers are called the base
of a number system is that any number can be expressed as the sum of powers of the base. For exam
ple:
521=5xl08 + 2xl0'+lxl0»

background color—the background color surrounding a character. See also foreground color* and
CALL COLOR*.

BASIC!*]—an easy-to-use popular programming language used in most personal computers. The
word BASIC is an acronym for "Beginners All-purpose Symbolic Instruction Code."
baud[*]—commonly used to refer to bits per second.
binary!*]—a number system based on two digits, 0 and 1. The internal language and operations of
the computer are based on the binary system.
binary number—see binary*.
bit—contraction of the term binary digit. In the binary number system, only the numerals 0 and 1 are
allowed as digits. See also binary*.
branch!*]—a departure from the sequential performance of program statements. An unconditional
branch causes the computer to jump to a specific program line every time the branching statement is
encountered. A conditional branch transfers program control based on the result of some arithmetic or
logical operation.
BREAK—a BASIC word which can be used in either a command or statement to interrupt the execu
tion of a program. The arguments of BREAK specifythe line numbers before which execution will stop.
You can use the CON* (see CONTINUE*) command to resume execution after a breakpoint* if you
have not edited the program.
breakpoint!*]—a point in the program specified by the BREAK*command where program execution
can be suspended. During a breakpoint, you can perform operations in the Command Mode* to help
you locate program errors. Program execution can be resumed with a CONTINUE* command, unless
editing took place while the program was stopped.
BREAKPOINT—when the execution of a program is interrupted by either (l)the FCTN and CLEAR
keys being pressed, or (2) execution ofa BREAK statement, or (3) execution of a BREAK command, the
message
• BREAKPOINT AT LINE XX

is printed, where XX is the line number where execution is interrupted. See also BREAK*.
buffer!*]—an area of computer memory for temporary storage of an input or output record.
*u8l*l—a hardware defect or programming error which causes the intended operation to be performed
incorrectly.
BYE—a BASIC word which exits you from BASIC. Useful with a disk system.
byte!*]—a string of binary* digits (bits)treated as a unit, often representing one date character*. The
computer's memory capacity is often expressed as the number of bytes available. For example, a com
puter with 16K bytes of memory has about 16.000 bytes available for storing programs and data.
CALL CHAR—a BASIC subprogram which allows you to define graphics characters. The general
form is

Glossary 199

CALL CHAR (character-code."pattern identifier")
The character-code is specified by an ASCIIcode in the range 32-159. The pattern identifier is specified
using hexadecimal codes for the left and right blocks of the character. See also the Appendix of the
Pattern-Identifier Conversion Table.

CALL CLEAR—a BASIC subprogram which clears the screen.
CALL COLOR—a BASIC subprogram which allows you to specify the foregound and background
color for groups of characters. The general form of the subprogram is

CALL COLOR (character-set-number,foreground-color-code,background-color-code)
The character-set-codes for different groups are shown in the Appendix of ASCII Character Codes. The
color codes for foreground and background colors are given in the Appendix of Color Codes.
CALL GCHAR—a BASIC subprogram that returns the character located at a given position on the
screen. The general form is

CALL GCHAR(row-number,column-number,numeric-variable)
You specify the row and column number, and CALL GCHAR returns the ASCII character code of the
character at that position in the numeric variable. The row and column numbers can also be numeric
expressions. Any legal variable can be used for the numeric variable.
CALL HCHAR—a BASICsubprogram which prints a character at a position on the screen specified
by the row and column numbers. The general form is

CALL HCHAR(row-number,column-number,character-code,number-of-repetitions)
The default value for the argument number-of-repetitions is 1, so it's not necessary to specify this argu
ment if you only want to print one character. The CALL HCHAR prints repetition characters horizon
tally. For example, the command

CALL HCHAR(12,16,30,10)
will print 10 cursor blocks across the screen starting at row 12, column 16. Numeric expressions may
be used for the arguments.
The screen is considered to have rows labeled 1-24, and columns 1-32. The valid character-codes and
repetitions are 0-32767.

CALL SCREEN—a BASIC subprogram that changes the screen color according to a numeric code
specified by the argument. For example

CALL SCREEN(7)

changes the screen background color to dark red. If you execute this subprogram as a direct command,
the border around your screen will change color for just a second. If CALL SCREEN is executed as a
statement, as in

10 CALL SCREEN(7)

and RUN,you will see the entire screen change color. A complete list of the color codes for the argument
of CALL SCREEN is given in the Appendix of Color Codes.
CALL SOUND—a subprogram which generates a sound. For example.

CALL SOUND(1000,300,1)
produces a tone which lasts 1000 msec (1 second), of frequency 300 Hz (see Hertz*) and volume 1. A
tone is a sound of a single frequency. The general form of CALLSOUND is

CALL SOUND(duration,frequency 1,volume 1,frequency
2,volume 2,frequency 3,volume 3,frequency 4,volume 4)

where the frequencies and volumes for 2, 3, and 4 are optional arguments. A negative frequency value
in the range -1 to -8 produces a predefined noise.
The duration of the sound may be specified from 1 to 4250 msec, the frequency from 110 to 44733 Hz,
and the volume from 0 (loudest) to 30 (quietest). A maximum of three tones and one noise can be gener
ated simultaneously.

CALL VCHAR—a BASIC subprogram which prints a character at a position on the screen specified
by the row and column numbers. The general form is

CALL VCHAR (row-number,column-number,character-code,number-of-repetitions)
The default value for the argument number-of-repetitions is 1. so it's not necessary to specify this argu
ment if you only want to print one character. The CALL VCHAR prints repetition characters vertically.
For example, the direct command

CALL VCHAR (12,16,30,10)
will print 10 cursor blocks down the middle of the screen starting at row 12, column 16.
The screen is considered to have rows labeled 1-24, and columns 1-32. The valid character-codes and
repetitions are 0-32767.

CALL JOTST—a BASIC subprogram which allows you to input data via the optional Wired Remote
Controllers.

CALL KET—a BASIC subprogram which allows the computer to read the keyboard and determine
what key is depressed or has been released. The general form Is

CALL KEY(key-unit,return-variable,status-variable)

200 -Glossary

The key-unit values may be 0-5. For more information on how these values set up the keyboard, see
the Appendix on Keyboard Mapping. The return-variable is given a numeric character code corre
sponding to the key pressed. The status-variable returns information concerning what has happened
since the last CALL KEY execution.

character function—see CHR$*.

character!*]—a letter, number, punctuation symbol, or special graphics symbol.
CHR$—a BASIC string function which can be used as either a direct command or in a statement.
CHR$ produces a character when a number or numeric expression is given as its argument. For exam
ple

PRINT CHR$(65)
prints the letter "A" on your screen. The CHR$ and ASC* functions are inversefunctions*. That is,
for any number X,

X=CHR$(ASC(X))
See also the Appendix of ASCII Character Codes.

CLEAR—pressing the FCTN and "4" key activates the CLEAR feature. The "4" key is referred to as
the CLEAR key because the printed scale that slides over the top row ofkeys is labeled "CLEAR" over
the "4" key. When a program is running, the FCTN and CLEAR keys will interrupt execution. If you
are typing in program lines using Number Mode (see NUM*) the FCTN and CLEAR will exit you from
Number Mode.

CLOSE—a BASIC word used in a direct command or statement to close files that have been opened
(see OPEN*). The argument of CLOSE is the file number to be closed. For example

CLOSE #1

will close file number 1. Note that the " # " sign must precede the file number.
command!*]—an instruction which the computer performs immediately. Commands are not a part of
a program and thus are entered with no preceding line number.
Command Mode[*]—when no program is running, the computer Is in the Command (or Immediate)
Mode and performs each task as it is entered.

command modules!*]—preprogrammed ROM* modules which are easily inserted in the TI computer
to extend its capabilities.

common logs—logarithms to base 10 (see base*, and LOG*). To convert from natural logs to common
logs, just divide by LOG(10). For example, to print the common log of 2. do

PRINT LOG(2)/LO6(10)

.3010299957

compiler—a program that translates or compiles source* code written in a high-level language into
machine language. While BASIC translates one line at a time, a compiler translates the entire program
Into machine language. This machine language version of the high-level program can then be exe
cuted. The code produced by a compiler executes much faster than a BASIC interpreter because the
BASIC Interpreter must translate each program line into machine code every time the line is encoun
tered. In contrast, the compiler does the translation only once. Compilers are commonly used for lan
guages such as FORTRAN and COBOL.
compound interest—rather than paying interest only once a year, banks may pay you interest by
the month or even daily. Your money grows faster this way. Of course, you also pay more interest to a
bank under compound interest if you borrow money.

computer animation—producing the illusion of movement (animation) by rapidly showing a
sequence of computer generated images.
CON—see CONTINUE*.

concatenation!*]—linking two or more strings* to make a longer string. The "fit" is the concatena
tion operator.

conditional branch—also called a conditional jump. Test for the truth or falseness of a relation
before branching to a line. An IF-THEN-ELSE statement is an example of a conditional branch. See
also branch*. IF*, and ON*.

constant!*]—a specific numeric or string* value. A numeric constant is any real number, such as 1.2
or -9054. A string constant is any combination of up to 112 characters enclosed in quotes, such as
"HELLO THERE" or "275 FIRST ST."

CONTINUE—long form of CON (see CON*). The CON or CONTINUE command resumes execution
after a breakpoint if you have not changed the program. See also BREAK* and BREAKPOINT*.
control characters—a term for control codes*. Although there are no pre-defined ASCII printable
characters for codes 0-29, they can be accessed through the CHR$* function just as if they were printa
ble.

Glossary 201

control codes—codes which are not assigned to a printable character. Control codes are normally
used in data communications, and to control devices such as printers. The standard control codes for
the T1-99/4A have code numbers 0-29. See also the Appendices on Function and Control Key Codes,
and Keyboard Mapping for typical applications and information on how to generate these codes from
the keyboard.

control variable—see FOR*.

COS—the COS function returns the cosine of its argument in radians. The cosine of a right triangle is
defined as the side adjacent the angle to the hypotenuse. For example:

PRINT C0S(.5)

.8775825619

cosine function—see COS*.

cursor!*]—a symbol which indicates where the next character* will appear on the screen when you
press a key.

data[*]—basic elements of information which are processed or produced by the computer.
DATA—a BASIC word used in statements which contain the data read by READ* statements*
database—a collection of items. Sometimes spelled "data base".
data files—files of data. Sometimes spelled "data files".
debugging—to remove the bugs in a program or equipment. The term bugs refers to any problems or
errors which prevents your program or equipment from working properly.
decrement—to decrease. Commonly used to mean decrease by one.
DEF—a BASIC word used in a statement that allows you to define your own function. For example,

10 DEF SQUARE(X)=X*X

20 PRINT SQUARE(2)
Line 10 defines the function "SQUARE". Line 20 prints the value of SQUARE when its argument is 2.
default!*]—a standard characteristic or value which the computer assumes If certain specifications
are omitted within a statement* or a program*.
DELETE—a BASIC word used to delete files from a storage device such as a disk.
delimit—to specify the limits.
destructive cursor—a cursor which erases every character it passes over.
device!*]—(see accessory devices).
DIM—a BASIC word used to declare dimensioned variables. The argument of DIM is the array name
and its maximum index. For example,

DIM N(100)

declares an array called N consisting of the elements* N(0), N(l). N(2) N(100). The three dots indi
cate that the elements N(3) to N(99) are also declared. The computer allocates space for each element of
a numeric array. However, each element of a string array is set to no characters (the null string). Up to
three dimensions or indexes can be defined for an array. The default value for each index is 10. So it's
not really necessary to do a

DIM N(10)

or

DIM N(10,10)
or

DIM N(10,10,10)
More than one array name can be specified by a DIM statement.
dimensioned variables—variables which are accessed by a number or numeric expression as well as
a name. Dimensioned variables must be declared by a DIM statement (see DIM*).
direct command—an instruction to the computer which is immediately executed. Sometimes called
just "command". That is, a direct command has no line number as does a statement. In some com
mands, such as TRACE and BREAK the action of the command is not apparent to you until the pro
gram starts to execute.

disk!*]—a mass storage device capable of random and sequential access.
DISPLAT—a BASIC word used in statements or direct commands to print information on the screen.
Equivalent to PRINT when printing to the screen.
display!*]—(noun) the video screen: (verb) to cause characters to appear on the screen.
display memory—a special portion of the computer memory which contains information about the
characters on the screen. The display memory contains the ASCII code, foreground color, and back
ground color of each character.
dummy argument—an argument whose name does not matter.
duration—the time that a sound produced by CALL SOUND* lasts.

202 -Glossary

dynamic—changing
editing—verb form of "edit," which means to alter or change. Editing a program may involve the
addition, replacement or deletion of characters.
Edit Hode[*]—the mode used to change existing program lines. The EDIT mode is entered by using
the Edit Command or by entering the line number followedby SHIFTJ-or SHIFTf. The line specified is
displayed on the screen and changes can be made to any character* using the editing keys.
element—an item of an array*.
END—a BASIC word which causes the computer to stop execution. The END is commonly the highest
numbered statement in a program. Use of END is optional since the computer automatically stops after
executing the line with the highest line number. See also STOP*.
end-of-file[*]—the condition indicating that all data* has been read from aflle*.
ENTER—a key which, when pressed, tells the computer that you're done entering a line of input
EOF—a BASIC function which determines if the end-of-file has been reached. Not used with cassette
tape.

execute!*]—to run a program; to perform the task specified by a statement* or command*.
EXP—the exponential function of BASIC.This function raises the number e to the power given by its
argument. The argument is the exponent of e. For example:

PRINT EXP(1)

2.718281828
see also LOG*.

exponent!*]—a number indicating the power to which a number or expression* is to be raised; usu
ally written at the right and above the number. For example, 28=2x2x2x2x2x2x2x2. InTI
BASIC the exponent is entered following the A symbol or following the letter "E" in scientific nota
tion*. For example, 2"=2 A 8; 1.3 x 10"= 1.3E25.

exponential—another term for scientific notation. See also exponent
exponential function—see EXP*.
exponentiation—the process of raising a number to a power. See also exponent.
expression!*]—a combination of constants, variables, and operators which can be evaluated to a
single result. Included are numeric, string, and relational expressions.
FCTN—a key which is used with other keys to provide extra functions. For example, pressing the
FCTN key and then a key with a printable symbol on its side will print that character. Thus FCTN and
the "I" key will print a question mark "?".
field—a group of 14 columns
file[*]—a collection of related data records stored on a device;also used interchangeably with device*
for input/output equipment which cannot use multiple files, such a a line printer.
FIXED—a BASIC word used in an OPENstatement to specifythat the records are all the same length.
The optional argument of FIXED may be a number or numeric expression which tells the maximum
length of a record.
fixed-length records!*]—records in afile* which are all the same length. If a file has fixed-length
records of 95 characters, each record will be allocated 95 bytes* even if the data* occupies only 76
positions. The computer will add padding characters on the right to ensure that the record has the
specified length.
flowchart—a diagram consisting otgraphical symbols and arrows which describe the logical deci
sions and flow of data in a program.
FOR—part of a FOR-NEXT loop. The FOR-NEXT statements cause controlled looping between state
ments. For example,

10 FOR 1=1 T0 10 STEP 2
20 PRINT I

30 NEXT I

40 PRINT "DONE"

causes the numbers 1, 3, 5, 7. and 9 to be printed on your screen. The control variable I is initially set
to the lower limit of 1. Line 20 prints I and line 30 adds the STEP size of 2 to I and then checks to see if
this new value of I exceeds the upper limit of 10. If not, the computer starts execution again from the
line following the FOR. If the new value of I exceeds the upper limit, then the computer starts executing
the statement after the NEXT. Any legal variable name can be used for the control variable.
foreground color—the color of a character. See also background color*, and CALL COLOR*.
format—the manner or appearance in which something, such as output, is presented.
frequency— 1 divided by the period of a wave. The frequency specifies the number of occurrences of a
wave's peak amplitude per second for a wave of a single frequency.

Glossary 203

function!*]—a feature which allows you to specify as "single" operations a variety of procedures,
each of which actually contains a number of steps: for example, a procedure to produce the square root
via a simple reference name.

GOSUB—a BASIC word used in a statement which directs the computer to execute the subroutine
specified by the argument of GOSUB. For example, the statement

20 GOSUB 100

directs the computer to execute the subroutine starting at line 100. See also RETURN*.
GOTO—a BASIC word used in statements to make the computer GOTO a line. The argument of GOTO
is the next line that the computer will execute after the GOTO. For example:

10 GOTO 30

20 PRINT

30 PRINT 2+2

the "GOTO 30" of line 10 will make the computer skip line 20 and execute line 30 next.
graphics!*]—visual constructions on the screen, such as graphs, patterns, and drawings, both statio
nary and animated. TI BASIC has built-in subprograms which provide easy-to-use color graphic capa
bilities.

graphics line!*]—a 32-character line used by the TI BASIC graphics subprograms.
grid—a rectangular arrangement of lines. For example, the pattern formed by the wires of a screen
door is an example of a grid. The horizontal and vertical coordinates of points you can print at on the
TV screen using CALL HCHAR*and CALL VCHAR* define a grid.
hardware!*]—the various devices which comprise a computer system, including memory, the key
board, the screen, disk drives, line printers, etc.
Hertz—a unit of frequency named after the famous 19th century physicist Heinrich Hertz. A Hertz
equals one cycle per second and is abbreviated Hz.
hexadecimal!*]—a base-16 number system using 16 symbols, 0-9 and A-F. It is used as a convenient
"shorthand" way to express binary* code. For example, 1010 in binary = A in hexadecimal.
11111111 = FF. Hexadecimal is used in constructing patterns for graphics characters in the CALL
CHAR subprogram.
Hz—see Hertz*.

D?—a BASIC word used in a statement with THEN and optionally ELSE to specify a conditional
branch* in a program. The general form is

IF relation THEN line number XX ELSE line number YY

The IF statement says that if the relation is true, the computer should execute line number XX next. If
the relation is false, the computer executes line number YY next. For example.

20 IF A=B THEN 100 ELSE 60

Line 20 says that if the variable A equals the variable B. the computer should execute line 100 next. If
A is unequal to B. the computer will execute line 60 next. Without the ELSE, the computer would just
execute the line following 20 if the relation was false.
immediate mode[*]—see Command Mode*.
increment!*]—a positive or negative value which consistently modifies a variable*.
incremented—see increment*.

index number—a number or numeric expression which specifies a specific variable in an array*.
Another name for an index number is subscript*.
index variable—a variable* which is used to index or select another quantity. For example, in the
dimensioned variable. A(I), the variable I is called the index variable because it selects a specific A(I).
See also dimensioned variables*.

Individual Retirement Account (IRA)—a method by which you save money toward your retire
ment and not pay taxes until you start collecting. For example, an employed person can contribute up
to $2000 a year toward an IRA. You do not pay taxes on the money contributed or the interest until the
money is withdrawn which you can start at age 59'/2. For more details, check with any bank.
infinite loop—a loop that will never terminate unless the program is interrupted. For example, the
program consisting of the singe line

10 GOTO 10

forms an infinite loop.
initial value—the first value that a variable is given.
inner loop—a loop which lies entirely inside of another.
INPUT—a BASIC word used in a statement which halts execution to allow you to enter input from the
keyboard. For example, the program

10 INPUT B

20 PRINT 2*B

204 —Glossary

will halt when line 10 is executed. You'll see a "?" to prompt you to enter a value for B. Optionally, you
can include some text to be printed by enclosing it within quotes. For example,

10 INPUT"NUMBER=?":B

20 PRINT 2*B

The general form is
INPUT "Text":List of Variables

Actually, the text string can be a string variable. For example,
10 A$="NUMBERS=?"
20 INPUT A$:A,B
30 PRINT A+B

will also work. The INPUT is also used to input data from a storage device.
input[*]—(noun) data* to be placed in computer memory; (verb) the process of transferring data into
memory.

input line!*]—the amount of data* which can be entered at one time. In TI BASIC,this is 112 charac
ters.

INT—the integer function of BASIC. This function truncates or cuts off the decimal portion of the
argument of INT. For example;

PRINT INT(2.5)

2

returns a 2 because the decimal part, .5, is removed by INT.
integer function—see INT.
integer!9]—a whole number, either positive, negative, or zero.
INTERNAL—a BASIC word used in an OPEN* statement to tell the computer to record data in inter
nal machine format. This format is more efficient for the computer.

internal data-format!*]—data* in the form used directly by the computer. Internal numeric data is
8 bytes* long plus 1 byte which specifies the length. The length for internal string data is one byte per
character in the string* plus one length-byte.
interpreter—a program which interprets or converts each line of the source code to machine code as
it is encountered. The BASIC in your computer is an Interpreter.

inverse functions—functions which are the opposite of one another. For example
X=EXP(L0G(X))

for any number X, the above is an identity because that EXP and LOG functions are inverse functions.
Likewise, the CHR$ and ASC functions are inverse functions since for any character X$ within the
range of their allowed arguments

X$=CHR$(ASC(X$))

For example, enter the following direct command:
PRINT CHR$(ASC("A"))

and you'll see an "A" printed. See also the Appendix of ASCII Character Codes.
I/O!*]—Input/'Output; usually refers to a device function. I/O is used for communication between the
computer and other devices (e.g.. keyboard, disk).

iteration!*]—the technique of repeating a group of program statements; one repetition of such a
group. See loop*.
key-unit—the first argument of CALL KEY*. The key-unit defines the mode In which the keyboard is
scanned. See the Appendix of Keyboard Mapping.
kilobyte—1024 bytes. Commonly abbreviated as K byte. For example, your TI-99/4A computer has
16 Kbytes of RAM*.
LBN—a BASIC string function which returns the lengthofa string used as its argument. For example,

PRINT LENC'AA")

2

returns a value of 2 because there are two characters in the string "AA".
length function—see LEN*.
LET—a BASICword which assigns a value to a variable. LET is optional and so is usually not explic
itly typed in. For example,

LET X=1

and

X=1
both assign the value 1 to X. You can assign values to variables by either a direct command or in a
statement.

level—the level of detail in a pseudocode program. Higher levels have less detail than low level
descriptions. The term level is also applied to the description of computer languages. A high level Ian-

Glossary 205

guage such as BASIC is much closer to English than assembly language or machine language. See also
BASIC*, assembly language*, and machine language*.

limit—the end or border of a quantity.

line[*]—see graphics line, input line, print line, or program line.

linear array—dimensioned variables with a single index. For example, N(I) is a linear array. The term
"linear array" comes from a geometric analogy to a straight line of array elements since only one index
is used per element.

LIST—a BASIC word which lists the program in memory. The general form of LIST is
LIST starting line-final line

If no arguments are given for the starting and final line, the LIST command lists the entire program. If
the starting line is absent, the program lists up to the final line. For example,

LIST -300

will list from the lowest line number up to and including line 300. If the final line is not specified, the
program lists until the end of the program. For example,

LIST 300-

will list from line 300 to the end.

The LIST command can also be used to list a program to a device through the RS-232-C interface. For
example, if you have a printer operating at 1200 baud connected via the RS-232 C interface, the com
mand

LIST "RS232.BA=1200"
will print your program on the printer.
literal—a character or symbol that has no special meaning to the computer. For example, "A", "B",
"!", "#" etc. have no special meaning nor does the string of literals "MONEY". However, "PRINT".
"LIST", "*", "/", do have special meaning to the computer when used as a command or statement.
These words or symbols with special meaning to the computer are called tokens. Putting these tokens
within quotes turns off their special meaning. For example

PRINT "PRINT"

uses the command PRINT to print the string of literals "PRINT."
load—the process of loading a program from a storage device such as cassette tape, wafer tape or disk
back into the memory of the computer. For a cassette tape, type in

OLD CS1

and press the ENTER key.

LOG—the BASIC function which returns the natural logarithm (log)of its argument. The natural log is
to the base e. In general, for the number y which equals e raised to the X'th power

Y=eAX

then X is the log of Y. In other words X = LOG(Y). For example:
PRINT LOG (1)

0

The log of 1 is 0 because
l=e°

where Y= 1 and X=0.

The EXP and LOG functions are inverse functions of each other. That is, for any number Y.
Y=L0G (EXP(Y))

For example:
PRINT LOG (EXP(D)

1

since

Y=eAL0G (Y)

is an identity. That is, both sides of this equation always match for any number Y.

logical operators—test for the truth or falseness of relations. The logical operators are:
= equal
< less than

> greater than
< > unequal
< = less than or equal to
> = greater than or equal to

The result of a logical test returns the value "-1" if the result is true or "0" if the result is false. For
example,

PRINT 3>2

-1

PRINT "AB">="A"

-1

206 -Glossary

are both true, while
PRINT 3=2

0

is false.

loop!*]—a group of consecutive program lines which are repeatedly performed, usually a specified
number of times.

machine language—the lowest level language that the computer understands. Machine language
consists of bits (see bits*) that tell the computer exactly what to do. A high-level language like BASIC
must interpret each BASIC command or statement into a low-level code that the computer under
stands. See also BASIC* and level*. Machine language is very hard for most people to directly write
programs. However,you can write programs that execute very rapidly in machine language compared
to BASIC.

magnitude—the value or size of a number, without regard to its sign. For example +2, and -2 both
have a magnitude of 2. The magnitude is also called the absolute value of a number (see ABS*).
main program—portion of the program that is the main control.
mantissa!*]—the base number portion of a number expressed in scientific notation*. In 3.264E + 4,
the mantissa is 3.264.

mass storage device!*]—an accessory device*, such as a cassette recorder or disk drive, which
stores programs and/or data* for later use by the computer. This information is usually recorded in a
format readable by the computer, not people.
memory!*]—see RAM, and ROM, and mass storage device.
milliseconds—thousandths of a second, where the prefix milll means 1/1000. The abbreviation of
milliseconds is msec, or just ms.
mode—manner or way.
module!*]—see Command Module.
msec.—abbreviation of milliseconds*.

multi—prefix meaning multiple; that is, more than one.
natural logarithm function—see LOG*.
negative duration—in a CALL SOUND statement* a negative duration specifies that any sound
being generated by another statement should be stopped and the current CALLSOUND be executed.
nested loops—loops which lie entirely within one another. See also loop*. FOR*.
NEW—a BASIC command which deletes the program in memory, and also any variables.
NEXT—see FOR*.

noise[*]—various sounds which can be used to produce interesting sound effects. A noise, rather than
a tone, is generated by the CALLSOUNDsubprogram* when a negative frequency value is specified (-
1 through -8).
normalized radix representation—a common way of internally storing binary numbers in the com
puter. After a decimal number has been converted to binary, the most significant" 1" of the mantissa*
is not stored. For more details, see BASIC: Advanced Concepts.
null string!*]—a string* which contains no characters and has zero length.
NUM—short form of NUMBER*.

NUMBER—long form of NUM. A BASIC function which automatically provides a line number when
you are typing in program lines. For example:

NUM 100
will generate line numbers 100, 110, 120, ... To stop this automatic line numbering, just press the
ENTER key without typing anything after the number. You can also stop by press the FCTN and
CLEAR keys. The general form of NUM is

NUM starting line,increment
where the first argument is the starting line number and the second argument is the increment of the
lines. The default values are 100 for the starting line and 10 as the increment.
Number Mode[*]—the mode assumed by the computer when it is automatically generating program
line* numbers for entering or changing statements.
numeric string—a string of legal numeric symbols, which may consist of the numerals 0-9; the " + "
or"-" signs, the letter "E", and a decimal point. For example.
"1"

"-2"

"-3.5E-3"

are all legal numeric strings. Legal numeric strings can be converted by the VAL* function to a
number. Likewise the STR$* function can convert a number to a string.

Glossary 207

Leading and trailing blanks in a numeric string are ignored by VAL. For example
PRINT VAL (" 1 ")

will print the number 1.
The two leading and two trailing spaces after the numeral 1 in the string " 1 " are ignored by VAL.
numeric variable—a variable whose value is a number.

OLD—a BASIC command used to read in a program from a storage device. For example, the direct
command

OLD CS1

will instruct the computer to read in the program stored on cassette device 1. You will be prompted by
the computer as to what to do. See also SAVE*.

ON—a BASIC word used with either GOTO or GOSUB to direct execution depending on the value of a
variable. The general form is

ON numeric-expression GOTO line number 1,line number 2, . . .
or

ON numeric-expression GOSUB line number 1,line number 2, . . .
The computer evaluates the numeric expression and truncates it to an integer. Then the computer uses
that value as a pointer to direct execution to the list of line numbers. For example, if X = 2, the state
ment

20 ON X GOTO 40,60,80
will direct the computer to line 60 since that is the second line number in the list. The ON is an exam
ple of a conditional branch* statement.
OPEN—a BASIC word which can be used in a direct command or statement to open a device such as a
cassette tape unit, disk, RS-232C interface, etc. for access by a program. See also OUTPUT*, RELA
TIVE*, SEQUENTIAL*, INTERNAL*, and FIXED*.

operator!*]—a symbol used in calculations (numeric operators) or in relationship comparisons (rela
tional operators). The numeric operators are +, -, *. /, A. The relational operators are >, <, =. < =.
> = , <>.

OPTION BASE—a BASIC word used in a statement to set the lower limit of array subscripts to one
instead of zero. The argument of OPTION BASE is either "0" or "1". For example, the statement

10 OPTION BASE 1

sets the lower limit of arrays to 1. If there is no OPTION BASE in a program, the default value is zero for
the lower limit of array subscripts.
outer loop—a loop which lies entirely outside of another.
output!*]—(noun) information supplied by the computer; (verb) the process of transferring informa
tion from the computer's memory onto a device, such as a screen, line printer, or mass storage
device*.

OUTPUT—a BASIC word used in an OPEN statement to specify that a file may only be written.
overflow!*]—the condition which occurs when a rounded value greater than 9.9999999999999E127
or less than -9.9999999999999E 127 is entered or computed. When this happens, the value is
replaced by the computer's limit, a warning is displayed, and the program* continues.
parameter!*]—any of a set of values that determine or affect the output of a statement* orfunction*.
Pascal—a computer language designed by Niklaus Wirth and named in honor of the famous 17th
century physicist and mathematician, Blaise Pascal. For more information on the history of computers
and fundamental computer technology, see the book Foundations ofComputer Technology.
period—the time between events. For example, if you borrow money, the period is the time between
your monthly payments. If you deposit money in a bank, the period is the time interval between pay
ments of interest to you. For a sound wave described by a sine wave, the period is the time between two
adjacent peaks of the wave. The frequency is 1 divided by the period. So if the time between peaks is
.001 second, the frequency is 1000 cycles or 1000 Hz (see Hertz*).
permutation—an ordered arrangement of objects. For example, the numbers 1,2. and 3 can be
arranged in the following ways

123

132

213

231

312

321

Each of these arrangements is called a permutation of 1, 2, and 3. Note that the order in which the
numbers are arranged makes each permutation unique.
picture elements—the dots or elements which make up a picture. Also called pixels.
pitch—the frequency of a sound wave.

208 -Glossary

pixels—contraction of the term picture elements*.
planes—layers in which sprites* can be defined. Sprites in one plane can appear to pass over or
under other sprites depending on which plane the sprite is defined in.
pointer—a variable which keeps track or points to another variable or item of data. Your computer
uses an internal pointer ot keep track of the next item to read in a DATA* statement. See also READ*.
POS—a BASIC string function which returns the starting position of a search string in a data string.
The general form of POS is

POS (data string.search string.starting position of search)
For example, the direct command

PRINT P0S("ABCDEVD",1)
4

returns a value of 4 because the "D" is found at the fourth position from the left of "ABCDE".
position function—see POS*.

power-of-ten—see scientific notation*.

principal—the amount you own. For example, if you put $1000 into a savings account, the $1000 is
called the principal. If you earn 10% interest per year, then after one year your principal is $1000 +
$100 = $1100.

PRINT—a BASIC word that prints the value of variables or the results of calculations. PRINT is also
used to output data to files on storage devices such as cassette tape and disk. PRINT may be used as a
direct command or in a statement.

printable—capable of producing a visible character.
print line[*]—a 28-position line used by the PRINT and DISPLAY statements.

program!*]—a set of statements which tell the computer how to perform a complete task.
program line[*]—a line containing a single statement*. The maximum length of a program line is
112 characters*.

prompt!*]—a symbol (>) which marks the beginning of each command* or program line* you enter;
a symbol or phrase that requests input from the user.

pseudo—a prefix which literally means false. See also pseudo-random number*.
pseudocode—literally meaning "false code". Pseudocode consists of English-like statements that
describe the program.
pseudorandom—see pseudo-random number*. Another spelling of pseudo-random.
pseudo-random number!*]—a number produced by a definite set of calculations (algorithm) but
which is sufficiently random to be considered as such for some particular purpose. A true random
number is obtained entirely by chance.
radix-100[*]—a number system based on 100. See "Accuracy Information" (in the TI-99/4A User's
Reference Guide) for information on number representation.

RAM[*]—random access memory; the main memory where program statements and data* are tempo
rarily stored during program execution*. New programs and data can be read in, accessed, and
changed in RAM. Data stored in RAM is erased whenever the power is turned offor BASIC Is exited.
random access memory—see RAM*.

random number—a number whose value is not known in advance. See also pseudo-random
number*, and RND*.

RANDOMIZE—a function which starts the pseudo random numbers of RNDat a different place in the
sequence of possible pseudo-random numbers. RANDOMIZE is commonly used as a statement in
games which use RND so that you won't get the same random numbers and thus play, each time the
program is run. You may also include an argument with RANDOMIZE, called the seed*, to start the
pseudo random numbers offat a certain place in the sequence of numbers. Parentheses are not used for
the argument of RANDOMIZE. For example:

RANDOMIZE 1

supplies a seed value of 1.

READ—a BASIC word used in statements to assign values from one or more DATA* statements to
variables. For example

10 READ A,B
20 DATA 5,10

When the computer executes line 10, it assigns the values A=5 and B= 10. The computer keeps track
of the next item to be read with an Internal pointer*. See also RESTORE*.

read-only memory—see ROM*.

Glossary 209

record!*]—(noun) a collection of related data elements, such as an individual's payroll information or
a student's test scores. A group of similar records, such as a company's payroll records, is called a
file*.

relation—sometimes called a relationship; a group of logical operators and operands. For example,
2=3

"AB">="A"

are both relations.

RELATIVE—a BASIC word used in an OPEN* statement to tell the computer that random-access
files are to be used. Random-access files are to be used with a disk, but not with cassette tape.

REM—a BASICword used in statements to provide documentation or remarks about a program. Any
text following the REM is not executed by the computer. For example,

10 REM PRINT 2+2

20 PRINT 3+3

the statement of line,10 prints nothing because the text after the REM is not executed by the computer.
If you list the program, you can read the remarks.

renumbers—see RESEQUENCE*.

RES—short form of RESEQUENCE*.

resequence—see RESEQUENCE*.

RESEQUENCE—long form of RES*. The RESEQUENCE or RES command renumbers program
lines. The general form is

RES starting line, increment
For example:

RES 100,10
will resequence a program so that the lowest line number is 100 and the following lines are 110. 120.
130...

The default value* of the increment is 10 and so the above command is equivalent to
RES 100

The default value of the starting line is 100 and so the command
RES ,30

will renumber lines as 100, 130, 160,...

reserved wordf*]—m programming languages, a special word with a predefined meaning. A reserved
word must be spelled correctly, appear in the proper order in a statement* or command*, and cannot
be used as a variable* name.

RESTORE—a BASIC word which resets the pointer of READ* back to the first DATA* item of a list.
The optional argument of RESTORE enables you to specify the line number of the DATA statement
you want to reset the pointer to. For example:

10 READ A

20 DATA 5,2
30 DATA 10

40 RESTORE

50 READ B

60 PRINT A;B
the above program assigns A=5 when line 10 is executed. Line 40 restores the pointer to the "5" in
line 20 because no argument is specified. So line 50 will assign B=5. However, if line 40 was

40 RESTORE 30

the pointer is set to the first item in line 30 and so line 50 sets B= 10. RESTORE may also be used with
storage devices such as tape and disk. For more details, see the TI-99/4A User's Reference Guide.

RETURN—a BASIC word used in a statement to end a subroutine call. The GOSUB* directs the com
puter to begin execution from a subroutine* at a certain line. The RETURN statement directs the com
puter to return from the subroutine.

return-variable—the second argument of CALL KEY*. The return-variable is assigned the value
read from the keyboard by CALL KEY.

RND—a BASIC function which generates a pseudo-random number*. No argument is needed for
RND. Each time RND is used, it selects the next pseudorandom number from the thousands available.
Every time you issue a NEW command, the sequence starts off with the same initial pseudorandom
number of .5291877823. Likewise, the RUN. BYE. FCTN and QUIT commands, or turning off power to
the computer will start the pseudorandom numbers from the beginning with .5291877823.
ROM[*]—read-only memory; certain instructions for the computer are permanently stored in ROM
and can be accessed but cannot be changed. Turning the power off does not erase ROM.

210 -Glossary

RUN—a BASICcommand which tells the computer to start executing the program in memory from its
lowest line number. If you supply an argument to RUN, the computer will start execution from that
line. For example:

RUN 30

will start execution from line 30. Note that the argument of RUNis not in parentheses.
Run Mode[*]—when the computer is executing* a program, it is in Run Mode. Run Mode is termi
nated when program execution ends normally or abnormally. You can cause the computer to leave
Run Mode by pressing CLEAR during program execution (see Breakpoint*).
SAVE—a BASIC word used in a direct command used to write a program to a storage device. For
example, the direct command

SAVE CS1

will instruct the computer to store the program in memory on cassette unit 1. You will be prompted by
the computer as to how to do this. See also OLD*.
saving programs—a way you can save programs on a storage material such as cassette tape, wafer
tape, or disk. Tape and disk use magnetic materials for storage of information. Thus, when you turn
the power off, your program has not disappeared if you've saved it. Data can also be saved (see OPEN*.
The command to save a program varies with the type of device used for storage. For example, with a
cassette recorder, just type in

SAVE CS1

and press the ENTER key. Then follow the Instructions shown by your computer. Consult the manual
that came with your storage device for more details on how to use them. See also load*.
scientific notation!*]— a method of expressing very large or very small numbers by using a base
number (mantissa*) times ten raised to some power (exponent*). To represent scientific notation in TI
BASIC, enter the sign, then the mantissa, the letter E, and the power often (preceded by a minus sign if
negative). For example, 3.264E4; -2.47E-17.
screen color—see CALL SCREEN*.

scroll!*]—to move the text on the screen so that additional information can be displayed.
scrolling—verb form of scroll. The contents of your display move up the top of the screen as new
material is added to the bottom of the screen. So as new lines are added to the bottom, the older lines
disappear from the top.
seed—the argument of RANDOMIZE*.
SEG$—a BASICstring function which returns a segment of a string. The general form of SEG$ is

SEG$(string,starting position/final position)
where a portion or segment of the string is returned from the starting position to the final position. For
example, the direct command

PRINT SEG$("ABCDE",3,5)
CDE

prints the segment "CDE" returned by the SEG$ function.
segment function—see SEG$*.
sequential—occurring one after another.
SEQUENTIAL—a BASIC word used in an OPEN* statement to tell the computer that sequential files
are to be used. Sequential files must be used with cassette tape.
SGN—the sign function of BASIC. T^iis function returns a value of 1 if its argument is greater than
zero; a value of zero if the argument equals zero; or a value of-1 if the argument is less than zero. For
example:

PRINT SGN(2.5)
1

PRINT SGN(0)

0

PRINT SGN(-2.5)
-1

sign function—see SGN*.
simple variable—a variable which is not a dimensioned variable. A simple variable is accessed by its
name and not by an index number*. Simple variables are not declared in a DM* statement. See also
dimensioned variables*.

simulate—to act in all details like something else. An imitation does not act in all details like the
original, but a simulation attempts to.
SIN—the sine of its argument in radians is returned by the SIN function. For a right triangle, the sine
of an angle is the ratio of the side opposite the angle to the hypotenuse. For example:

PRINT SIN(.5)

Glossary 211

.4794255386

sine function—see SIN*.

software!*]—various programs which are executed by the computer, including programs built into
the computer, Command Module* programs, and programs entered by the user.
source code—the program that you want to execute. The BASIC Interpreter* is a program that exe
cutes every line of your source code (what you type in), line by line. In contrast, a compiler translates
all the source code into machine language* before executing the machine language equivalent of your
high level source code.
sprites—graphic images maintained in special hardware.
SQR—the square root function. The computer calculates the square root of the argument of SQR. For
example:

PRINT SQR(25)
5

gives a value of 5 because the square root of 25 is 5.
square root function—see SQR*.
stack—special area of the computer's memory which is accessed in a sequential manner.
statement!*]—an instruction preceded by a line number in a program. IN TI BASIC, only one state
ment is allowed in a program line*.
static—unchanging
status-variable—the third argument of CALL KEY*. The status-variable returns a value of 1. -1, or 0
after the computer executes a CALL KEY statement. A value of 1 is returned if a new key was pressed
since the last time CALL KEY was executed. A value of -1 is returned if the same key was pressed,
while 0 is returned if no key was pressed.
STEP—see FOR*.

STOP—a BASIC word which causes the program execution to end. Equivalent to END*.
STR$—a BASIC string function which converts a number or numeric expression to a string. For
example,

PRINT STRS(100)

100

prints the string "100". The STR$ and VALfunctions are inverse functions, that is. for any string X$.
the following identity holds.

X$=STR$(VAL(X$))

string!*]—a series of letters, numbers, and symbols treated as a unit.
string function—see STR$* and stringfunctions*.
string functions—BASIC functions which apply to strings. For example. CHR$*. ASC*, LEN*.
POS*, STR$*, VAL*, and SEG$* are string functions.
subprogram!*]—a predefined general-purpose procedure accessible to the user through the CALL
statement in TI BASIC. Subprograms extend the capability of BASIC and cannot be easily program
med in BASIC.

subroutine call—the process by which the computer calls a subroutine. The computer first stores the
address of the next instruction it would have executed on the stack, and then starts executing from the
line number following the GOSUB*.
subroutines!*]—a program segment which can be used more than once during the execution* of a
program, such as a complex set of calculations or a print routine. In TI BASIC, a subroutine is entered
by a GOSUB statement and ends with a RETURN statement.

subscript!*]—a numeric expression which specifies a particular item in an array*. In TI BASIC the
subscript is written in parentheses immediately following the array name.
TAB—the TAB function moves the current printing position to the column given by the argument of
TAB. Columns are numbered from 1 to 28 where column 1 is the left most column. For example:

PRINT TAB(3);"A"
A

prints the letter "A" in the third column from the left because the argument of TAB is "3". The actual
column at which tabbing starts also depends on the number of characters to be printed. See the discus
sion in the book.

tabbing—verb form of TAB*.
TAN—the TAN function returns the tangent of its argument in radians. The tangent of a right triangle
is defined as the side opposite the angle to the side adjacent the angle. For example:

PRINT TAN(.5)

.5463024898

212 -Glossary

tangent function—see TAN*.
three-dimensional array—dimensioned variables with three index variables. For example, N(I,J,K).
trace[*]—listing the order in which the computer performs program statements. Tracing the line num
bers can help you find errors in a program flow.
TRACE—a BASIC word that can be used to trace the execution of a program. TRACE can be used as
either a direct command or in a statement. When the program executes, the computer displays the line
numbers being executed. See also UNTRACE*.
transparent—clear, having no color of its own. A color code of " 1" selects the transparent color. See
also Appendix of Color Codes. CALL COLOR*, and CALLSCREEN*.
truncated—to cut off or truncate. For example, the INT function truncates the decimal part of a
number.

two-dimensional array—dimensioned variables with two index variables. For example, N(I,J) is a
two-dimensional aray.
unary operator—an operator which acts on a single operand. For example, the unary minus or nega
tion operator, inverts the sign of the following operator. An example is -2. The "-" is the unary minus.
It makes the " + 2" which follows into a "-2."

UNBREAK—a BASIC word which can be used In either a direct command or statement to remove
effects of the BREAK*.

unconditional jump—forcing the computer to start execution from another line. A GOTO is an exam
ple of an unconditional jump (see GOTO*). An IF-THEN-ELSE statement is a conditionaljump* (also
called a conditional branch*), because the computer first tests the IF* relation beforedeciding whether
to jump.

underflow!*]—the condition which occurs when the computer generates a numeric value greater than
-IE-128, less than IE-128, and not zero. When an underflow occurs, the value is replaced by zero.
UNTRACE—a BASIC word which ends the action of TRACE*. UNTRACE can be used as either a
direct command or in a program statement.
user-defined function.—see DEF*.

user-friendly—a program designed with consideration for the user, especially a new user.
VAL—a BASIC string function which converts a numeric string or numeric string expression to a
number. For example:

PRINT VAL("100")

100

returns the number 100. See also STR$*.

value function—see VAL*.

variable!*]—a name given to a value which may vary during program execution. You can think of a
variable as a memory location where values can be replaced by new values during program execution.
variable-length records!*]—records in a file* which vary in length depending on the amount of
data* per record*.Using variable-length records conserves space on a file.Variable-length records can
only be accessed sequentially.

volatile—to disappear unless maintained. For example, the contents of RAM* may disappear unless
power is maintained to the computer. So RAM is said to be volatile. In contrast, ROM* is non-volatile.
That is why the BASICin your computer is stored in ROM. The BASICwon't disappear when power is
turned off because it's stored in ROM, unlike your programs which are stored in RAM. However, you
can't change the ROMand so that's why programs are stored in RAM.
volume—the amplitude or loudness of a sound produced by CALL SOUND*.

Index

absolute value function, ABS 29
address 97

algorithms 124
alphanumeric 2
arctangent function, ATN 34
argument 19
arithmetic expression 12
arithmetic operator 11
array 90
ASCII 73

assembly language 171
auto repeat 2
background color 163
base 10

binary number 26
bit 27

BREAKPOINT 68

BREAK 114

BYE, DELETE 171
byte 27
CALL CHAR 155
CALL CLEAR 137

CALL COLOR 163

CALL GCHAR 166
CALL HCHAR 142

CALL KEY 137

CALL SCREEN 162

CALL SOUND 148

CALL VCHAR 142

character function, CHR$ 117
common logs 32
compiler 171
compound interest 62
computer animation 155
concatenation 17

conditional branch 74
CONTINUE, CON 68
control characters 117

control codes 117
control variable 80
cosine function, COS 33
cursor 1

database 89
datafiles 99
DATA 96

debugging 69
default value 40
DEF 134

delimit 68
destructive cursor 146
dimensioned variables 89
dimension 92
DIM 92

display memory 166
dummy argument 135
duration 148

dynamic 166
editing 3
element 90
END 70

EOF 171

execute 35
exponential function, EXP 30
exponential notation 8
exponentiation 10
exponent 10
false code 113
field 15
flowchart 111
foreground color 163
format 86
FOR 80

frequency 148
GOSUB 129
GOTO 67
grid 142

213

214 -Index

hertz 149

hexadecimal 156
Hz 149

IF 74

incremented 8lw, ,-,* . -". -
index number 90

index variable 80

initial value 81
inner loop 83
INPUT 55

input 2
integer function, INT 27
interpreter 170
inverse function, ASC 118
Individual Retirement Account

(IRA) 63
key-unit 138
kilobyte 27
length function, LEN 1lis
LET 47

limit 81

linear array 104
LIST 36

literal 16

load 63

logical operators 71
loop 69
machine language 17.0
magnitude 20
main program 130
milliseconds 148

mode 138

msec. 148

multi 104

natural logarithm function,
LOG 31

negative duration 149
nested loops 83
NEW 42

NEXT 80

normalized radix
representation 27

null string 68
NUMBER 42

numeric string 17
numeric variable 48

NUM 42

Number Mode 43
OLD 63
OPEN 102

OPTION BASE 107

.outerloop 83
OUTPUT 103
output 5
parameter 82
period 62
permutation 127
picture elements 156
pitch 148
pixels 156
planes 171
pointer 97
position function, POS 119
power-of-ten 8
principal 60
printable 2
program 35
prompt 1
pseudocode 113
pseudorandom 25
pseudo 25
Pascal 139
random number 24
random-access memory, RAM 35
RANDOMIZE 25
read-only memory, ROM 35
READ 96

relation 71

REM 109

renumber 40

RESEQUENCE 40
resequence 40
reserved word 50

RESTORE 96

RES 40

returnTvariable 138
RETURN 129

RND 24

RUN 36

SAVE 63
saving programs 63
scientific 8
screen color 162

scrolling 4

seed 26

segment function, SEG$ 121
sequential 103
sign function, SGN 30
simple variable 90
simulate 24
sine function, SIN 32
sprites 171
square root function, SQR 21
stack 130

statement 35

static 166

status-variable 139

STEP 81

STOP 70

string function, STR$ 120
string functions 1,17
string 16
subprogram 137
subroutine call 130

subroutine 129

Index

subscript 90
tabbing 19
TAB 19

tangent function, TAN 34
three-dimensional array 104
TRACE 113

transparent 164
truncated 53

two-dimensional array 104
unary operator 11
UNBREAK 115

unconditional jump 69
UNTRACE 114

user-defined function. 134

user-friendly 94
value function 121

VAL 121

variable 47

volatile 38

volume 149

215

	front-cover
	content01
	content02
	content03
	content04
	content05
	content06
	content07
	content08
	back-cover

