f I
e

Taking Off with BASI
on the Texas Instruments _
- Home Computer

Al

Nancy Ralph Watson

B e s

o e

AP TEXAS INSTRUMENTS

A

samAE

s

Boia State Scfowers

Taking Off with BASIC

Publishing Director: David T. Culverwell

Acquisitions Editor: Susan Love

Production Editor/Text Designer: Roberta L. Glencer

Manufacturing Director: John A. Komsa

Art Director/Cover Design: Don Sellers

Assistant Art Director: Bernard Vervin

Typesetting: Alexander Typesetting, Inc., Indianapolis, IN

Printing by: Fairfield Graphics, Fairfield, PA

Typefaces: Century Schoolbook (text), Eurostile (display), OCR-B (programs)

Taking Off with BASIC
on the Texas Instruments
Home Computer,

Nancy Ralph !(Ilatson

Robert J. Brady Co.

A Prentice-Hall Publishing
and Communications Company

Bowie, MD 20715

Taking Off with BASIC on the Texas Instruments Home Computer

Copyright © 1984 by Robert J. Brady Co.
All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechanical,

including photocopying and recording, or by any information storage and

retrieval system, without permission in writing from the publisher. For
information, address Robert J. Brady Co., Bowie, Maryland 20715.

Library of Congress Cataloging in Publication Data

Watson, Nancy Ralph.
Taking off with BASIC on the Texas Instruments Home Computer.

Includes index.

Summary: “A self-paced, hands-on approach for learning to program”
a Texas Instruments home computer in BASIC.

1. TI 99/4A (Computer)—Programming—Juvenile literature. 2. Basic
(Computer program language)—Juvenile literature. [1. TI 99/4A
(Computer)—Programming. 2. Basic (Computer program language) 3.

Programming (Computers)] I. Title. II. Title: Taking off with B.AS.I.C.

on the Texas Instruments home computer.
QA76.8.T133W38 1984 001.64’24 83-25834

ISBN 0-89303-870-9

Prentice-Hall International, Inc., London

Prentice-Hall Canada, Inc., Scarborough, Ontario
Prentice-Hall of Australia, Pty., Ltd., Sydney
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books, Limited, Petone, New Zealand
Editora Prentice-Hall Do Brasil LTDA., Rio de Janeiro

Printed in the United States of America

84 858687 88899091929394 10987654321

TABLE OF CONTENTS

PREFACE
TIPS ON HOW TO USE THE MANUAL
CHAPTERS

INTRODUCTION TO CHAPTERS 1—17

YOUR MICROCOMPUTER
PROGRAMMING STYLE

COMMANDS

THE PRINT AND GOTO STATEMENTS
EDITING

COUNTDOWN

VARIABLES AND LET STATEMENTS
IF/THEN STATEMENTS AND RELATIONS
FOR/NEXT STATEMENTS AND TIMERS
FOR/NEXT STATEMENTS AND VARIABLES
TAB

COLOR

STRING VARIABLES

INPUT

SOUND

SUBROUTINES

THE FINISHING TOUCHES

SUPPLEMENTS

INTRODUCTION TO SUPPLEMENTAL CHAPTERS

Na

ooOoNOULL

HARDWARE AND INITIALIZING
FLOW CHARTING
SAVING AND LOADING
IMMEDIATE MODE
EDITING
PUNCTUATION
READ/DATA

IF/THEN STATEMENTS
VCHAR

HCHAR

TAB AND FOR/NEXT
CHARACTER STRINGS
LENGTH

Y
e}
»

é
(0
(o)

14 MULTIPLE INPUTS

15 MUSIC

16 ON/GOTO AND RANDOM
17 MORECOLOR

APPENDIXA CHECKPOINT ANSWERS
APPENDIXB MUSICAL TONE CHART
APPENDIXC CHARACTER CODES

vi

127
129
135
139

143
149
151

155

to George, with love

Limits of Liability and Disclaimer of
Warranty

The author and publisher of this book have used their best efforts in
preparing this book and the programs contained in it. These efforts
include the development, research, and testing of the theories and
programs to determine their effectiveness. The author and publisher
make no warranty of any kind, expressed or implied, with regards to
these programs or the documentation contained in this book. The author
and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the
furnishing, performance, or use of these programs.

Trademarks of Material Mentioned in
This Text

Texas Instruments 99/4A is a registered trademark of Texas
Instruments, Inc.

Note to Authors

Do you have a manuscript or a software program related to personal
computers? Do you have an idea for developing such a project? If so, we
would like to hear from you. The Brady Co. produces a complete range
of books and applications software for the personal computer market.
We invite you to write to David Culverwell, Publishing Director, Robert
J. Brady Co., Bowie, MD 20715.

viii

2

PREFACE

TAKING OFF WITH BASIC is a self-paced, hands-on approach for
learning to program a computer in a language called BASIC. That is,
learning how to get your Texas Instruments computer (TI for short) to do
what you want it to do. The computer does not have a mind of its own—it
is only as clever as you make it. When you learn to write programs giving
the computer instructions to do certain things, you have gained much
power, for now you are in control of a machine that has many capabilities.

BASIC stands for Beginners All-Purpose Symbolic Instruction Code
and was invented in 1965 at Dartmouth College. It is thought to be the
most widely used computer language in the world. This is probably due to
its simplicity compared to other computer languages.

Throughout this manual you will discover all kinds of things that the
computer can do, and how you can make those things happen using
BASIC. Once you learn each different instruction, statement, and com-
mand that the computer understands, you will probably want to try some
of your own ideas instead of just using the ones in this manual. That is
exactly the purpose of this book. By creating your own programs you will
find out how much power you really do have. You will also realize that
you are smarter than the computer and will probably invent many new
ways of getting the computer to execute your instructions.

The first seventeen chapters teach you how to follow a plan instructing
the computer to make an object on the screen look like it is taking off. You
will be the designer of the object. There will be a countdown, sound
effects, and color, too. Each chapter adds new instructions until, at the
end of Chapter 17, you have one complete program.

Each chapter also has a CHECKPOINT which helps you evaluate how
well you are learning the material. The answers to each CHECKPOINT
are found in Appendix A.

The second part of the book has seventeen supplemental chapters. Each
supplement expands the ideas or introduces advanced concepts related to
the first seventeen chapters with the same number.

Appendix B is a listing of Musical Tones for use with the sound capabil-
ities of the TI and Appendix C is the Character Code Chart.

For your convenience, a list of the most frequently used statements and
commands, with page numbers for quick reference, can be found on the
inside front and back covers. A detailed Index is also included.

A friendly word of advice: don’t let this manual limit your ideas in any
way. Depending on the programmer’s personal style, there are many dif-

.

1X

X Taking Off with BASIC

fetent ways to write the same program and produce the same results. Use
the suggestions in this manual that make sense to you, and if you have a
better idea, try it! Be sure to write down each new idea in case you want
to use it later.

Be prepared to be challenged. You will be pleased with the results. Most
of all, enjoy this new learning experience.

ACKNOWLEDGMENTS

To Betty Bryan for freely volunteering evenings and weekends to assist
in the preparation of the manuscript.

To Tracy Hugo for offering her invaluable comments at the most criti-
cal time.

To my son Matthew for his creative designs and programs for the
graphics found throughout.

To George Watson for his patience and unselfish sharing of time,
encouragement, and expertise while helping to see this project to
completion.

To Sue Love whose enthusiasm and support made this a truly enjoyable
project.

TIPS ON HOW TO USE THIS BOOK

Taking Off with BASIC is divided into two sections: Chapters 1-17 and
Supplements 1-17. They can be used in two ways: read and complete
Chapter 1, and then complete Supplement 1; do the same for Chapter 2,
Supplement 2, etc. This is recommended for advanced users. A second way
to use the supplement chapters is to read them after the first seventeen
chapters have successfully been completed, treating the supplements
almost as a second book. This is recommended for beginning users.

Saving the Program

If you have a cassette tape recorder or disk drive, it is recommended
that you save the TAKE OFF program after completing each chapter so
you can load it into the computer each time you are ready to begin work-
ing again.

If you do not have a device to save the program, there is a PROGRAM
UPDATE at the end of each chapter. Here is how to use it:

1. After completing a chapter, edit the PROGRAM UPDATE at the
end of the chapter so that it corresponds with the program lines you
wrote. (The PROGRAM UPDATE is just an example, and yours
will not be identical to it.)

2. If you plan to continue to the next chapter immediately, you will
encounter a problem. At the beginning of each new chapter, there
are practice programs to enter so you can learn the concepts being
introduced. If you enter them as shown, they will interfere with the
TAKE OFF program. Most of the time you will not want to erase
the TAKE OFF program and have to re-enter it. You can avoid this
with a little trick. For the examples that are not related to the
TAKE OFF program, first type in this line:

1 GOTO 800 (Press ENTER)

and add 800 to the line numbers given in the examples. This causes
the computer to actually jump over the TAKE OFF program and
doesn’t bother it at all. When you are instructed to LOAD TAKE
OFF FILE NOW enter all of the line numbers you used for the
examples, one at a time, and press ENTER. For example,

xiii

xiv

Taking Off with BASIC
1 (Press ENTER)
800 (Press ENTER)
810 (Press ENTER)
820 (Press ENTER)

and so on. This eliminates those lines, and the TAKE OFF program
is again ready to be used.

If you finish a chapter and are not ready to continue with the next,
write the differences in your program on the PROGRAM UPDATE
and turn the machine off. When you return for another session, fol-
low the instructions in the new chapter until you reach LOAD
TAKE OFF FILE NOW. At this time, enter the entire PROGRAM
UPDATE in the previous chapter before proceeding with the rest of
the chapter.

Supervising Children

If you plan to assist children in the use of this book, these suggestions
may be helpful:

1.

2.

The reading level is approximately at the 6th grade level. It has
been used successfully with gifted students beginning at age 9.
Because of the individualized style of the book, children should be
allowed to establish a comfortable pace for themselves.

Depending on the level of experience of each user, help to determine
if and when a child is ready for the supplemental chapters.

Each chapter makes a nice lesson in terms of the time it takes to
complete (approximately 30 minutes) and its orientation toward
success.

One or two children may work together with the text at the com-
puter. However, they should complete the CHECKPOINTS sepa-
rately. If their understanding of the concepts is greatly different, or
if one child is going faster than the other, it may be best for them to
work alone or with someone closer to their level.

If the children save their work at the end of each chapter, help them
to select a special file name to use so that there is no chance of it
being chosen for another project. For example, first names or initials
are not always safe if a number of files are saved on one disk.

It is helpful for some children to have an introduction prior to
beginning work on a new chapter. This can take the form of a dis-
cussion of the concepts and examples, allowing for questions and

Tips on How to Use This Book XV

answers that will eliminate many of the questions that arise during
the work session.

Pressing ENTER

After typing an instruction into the computer, the ENTER key must be
pressed in order to place the instruction in the computer’s memory.

For the first several chapters you will be reminded of this. However,
eventually you will be on your own. You will probably have the experience
of typing in an instruction and sitting there, waiting for something to hap-
pen, not realizing that you have not pressed ENTER. The computer does
not know when you have finished writing an instruction—the only way it
knows is when the ENTER key is pressed. Beware of this occurrence.

Introduction to
Chapters 1-=17

TAKING OFF WITH BASIC has been written to make BASIC easy
to understand for those with little or no programming experience. The
chapters are short, and provide practice for each concept that is intro-
duced. By working through the frequent TRY THIS examples in each
chapter, you will build a program that includes a countdown and take-off
of an object you design yourself complete with color and sound. While it is
not necessary for you to have a device to save the work you do in each
chapter, you are encouraged to do so if you have either a cassette tape
recorder or disk drive. Otherwise, you may enter the PROGRAM
UPDATE at the end of the chapter you have completed before continuing
with a new chapter.

Good luck!

1 Your Microcomputer

You will notice that the Texas Instruments 99/4A microcomputer, or
TI as it is usually called, runs on electricity. If there’s a cord to plug in,
then there is usually an ON/QFF switch—right? Well, the TI has an ON/
OFF switch for each cord that comes with each piece of computer HARD-
WARE. HARDWARE is any equipment used with the microcomputer.
Make sure all cords are plugged in.

The television the computer is hooked up to is one piece of HARD-
WARE which needs to be turned on. It is also sometimes called a monitor
or CRT. Another piece of HARDWARE which needs to be turned on is
the KEYBOARD. The KEYBOARD is something like a typewriter
because it has keys with the alphabet and other characters on it. It is not
Just a typewriter, however, because underneath the keys are the parts
that make it a computer.

To turn on the KEYBOARD, find the small black rectangle on the
front right-hand corner and slide it to the right until you see the red light.
If you did not already do so, turn on the monitor (television). Now you are
in business!

Look at the monitor. Do you see the colorful screen and the name
TEXAS INSTRUMENTS, along with other things? This is like a title
page in a book. Notice also that it asks you to PRESS ANY KEY TO
CONTINUE. Another word for the information you see on the screen is
OUTPUT. That is what is coming from the computer to you. If you press
a key, it is called INPUT. That is what is going from you to the computer.
These two words, INPUT and OUTPUT, will be used frequently. Be sure
that you understand what they mean.

3

4 Taking Off with BASIC

For example, if you want the computer to work a math problem, you
must write some instructions. Are the instructions INPUT or OUTPUT?
Hopefully you said INPUT, since that is information you are PUTting
INto the computer.

After the instructions to do a problem are entered into the computer, an
answer will be shown. Is the answer INPUT or OUTPUT? Of course it is
OUTPUT, because the computer is PUTting OUT information on the
screen for you.

In the Preface, writing a PROGRAM was mentioned. Programs are also
called SOFTWARE. Everytime you want the computer to do something,
you must give it instructions in a language that the computer under-
stands. In English, we write sentences. In BASIC, a language the com-
puter understands, we write a series of STATEMENTS. STATEMENTS
are similar to sentences, but we cannot just tell the computer to PRINT
COMPUTERS ARE FUN TEN TIMES and expect it to do it. It is sim-
ple, but not that simple!

English has very specific rules, but so does BASIC. This manual will
teach you how to communicate with the computer in BASIC, plus explain
many of the rules of the language. You must spell everything correctly, or
the computer will not understand. Luckily, most of the words it knows are
short and easy, like END, PRINT, IF and STOP, to name a few.

The computer is just an extension of your brain. What you tell it, it will
do, as long as you do so in its language. After completing this manual you
will know one more language—but this computer still knows only one—
_ BASIC. (Some computers know several.)

Don’t worry if you make mistakes—that’s the quickest way to learn to
program. It won’t take long before you become comfortable with the hard-
ware used with the computer and the special vocabulary introduced.

CHECKPOINT INFORMATION

If you are able to answer most of the questions in the CHECKPOINTS
correctly, then you are ready to go on to the next chapter. If you have
trouble with some of them, go back and read the chapter again until you
can answer the CHECKPOINT questions successfully.

CHECKPOINT 1

1. The television connected to the TI-99/4A is also called a
or .

Your Microcomputer 5

2. Any piece of equipment used with microcomputers is called

3. The ON/OFF ‘swibch of the computer is on the front of the

We usually call the Texas Instruments microcomputer the
for short.

Information which you give to the computer is called
Information that the computer gives to you is called
Sentences in English aresimilarto _____in BASIC.
Writing instructions for the computer in BASIC is called

TO CHECK YOUR ANSWERS SEE PAGE 143 IN APPENDIX A

b

PN

XXXXXX
¥ %
XHURHHHHAX
¥ $% 9 *
¥ % ¥

2 Programming Style

Style refers to the particular way in which you do something. For exam-
ple, dancing and talking are done with a personal style. When you write a
program, you will develop your own style with which you feel comfort-
able. This chapter offers many suggestions that will be of great help as
you learn to program.

Get in the habit of making a plan for what you want to instruct the
computer to do. There are four steps to a good plan; 1) set a goal; 2) write
a program to carry it out; 3) check to see if it does what you want it to;
and 4) if it doesn’t work, correct it until it does. The word used by pro-
grammers for correcting a program is DEBUGGING.

Line Numbers

So that the computer will know in what order you want the instructions
to be followed, it is necessary to number each statement you write. An
important style rule is that you number each statement by tens. The first
line number will be 10, the second will be 20, and so on. If you start with
number 1, then use number 2, it would be ok, until you decide you want to
add something in between 1 and 2. Sorry, but there is no such line number
as 1%. Line numbers must be whole numbers. Numbering by tens gives
room to make mistakes, change your mind, and add new ideas. A finished
program rarely is numbered perfectly by 10’s, but it should always begin
that way.

7

8 Taking Off with BASIC

END Statement

Just as a sentence must have a period at the end, a program should have
an END statement. Since you don’t usually know exactly how long the
program is going to be, it is a good idea to choose an END statement line
number that is quite large. It is wise to use a number with all 9's, such as
999 or 9999. If you make a habit of always using 9’s in the END state-
ment, you will not have trouble remembering what number you used. Be
sure that your END line number is larger than the largest line number
you intend to use in the program. For example, if the program goes
through line number 1050, the END line number cannot be 999, since 999
is smaller than 1050. The number 9999 is the next number with all 9’s that
is larger than 1050.

REMarks

Another important suggestion for style deals with REM statements.
REM stands for REMarks. With a REM statement you can write
messages to yourself right in the program. These REM statements are
entirely for you because the computer completely ignores them when run-
ning the program.

Why would you want to write yourself messages in a program? Good
question. You speak in English, but write instructions to the computer in
BASIC. Sometimes it is easier to say in English what you are trying to do
in BASIC. For example, you might write a short program to calculate the
area of a triangle. You can write a REM statement that says in English
FOLLOWING IS A FORMULA TO CALCULATE THE AREA OF A
TRIANGLE and put it right in the program. REM statements are a way
to write in English within a BASIC program.

Believe it or not, after writing several programs, you will not remember
everything in each one. By using several REMS in each program, you can
go back and read any program you have written and know immediately
what it is intended to do.

Remember that REM statements are only for your use and that the
computer doesn’t care a bit about them as long as they have a line number
and REM is spelled correctly. In the next chapter you will have a chance
to write a program with REM statements.

Programming Style 9

Programming style depends on each individual but there are several
ideas which have been suggested that will increase programming effi-
ciency. Try to use them as you complete the exercises in each chapter.

CHECKPOINT 2

1. You should number your lines by when writing programs.
2. Every program must have an —_ _ _ statement.

3. If you want to write yourself messages within a program, use
statements.

4. When you first decide to write a program follow the four steps for a good

TO CHECK YOUR ANSWERS SEE PAGE 143 IN APPENDIX A

i
i i
i Vi
i Vv i
i v i
i i
i L2222 23 i
i +3%¢ i
i ss i
i R 2222 i
i E2 22222 i

Ho+ees
+ees B
Ho+ees 8
B o+ree @
“ L]
HHUHHHHY

3 Commands

Turn on the monitor and keyboard. Refer to page 3 of this manual for
help. On the screen is the title page. Press any key. You now have a choice.
Press the number 1. This prepares the computer to accept a BASIC pro-
gram. You will see the words TI BASIC near the bottom of the screen.
There also is a little arrow under those words, and a flashing black box.
This box is called a CURSOR and is where your program begins.

TI BASIC

>a

FIGURE 3-1

Throughout this manual there will be TRY THIS examples. When you
come to them, type the instructions listed in capital letters exactly as
shown and press the ENTER key. The ENTER key must be pressed after
each instruction is typed. You'll be reminded of this as we go along and
will quickly get used to doing it.

Commands

Commands are one-word instructions which, when typed on the key-
board and the ENTER key is Pressed, are carried out immediately, except

11

12 Taking Off with BASIC

when they are part of a program. There are four commands that are fre-
quently used.

1. NEW. Whenever you first begin to enter a program on the computer, .
it is important to type NEW first. If you don’t, anything the computer
had from a previous program will be a part of the new one. By typing
NEW, the computer erases everything it has in its memory so that you
can begin completely fresh. Be careful not.to type NEW unless you want
everything erased that you have been working on. If you do this by mis-
take, you will probably never make that error again!

Memory is the part inside the computer that remembers the instruc-
tions you entered. Typing NEW or turning off the computer completely
empties the memory.

9. LIST. LIST is a command that causes the computer to show each
program line that has been typed on the keyboard.

TRY THIS:
NEW (Press ENTER)
The screen blinks and the memory is cleared of anything that was in it.
TRY THIS:
LIST (Press ENTER)
You receive the message:
*#CAN'T DO THAT

That is because you have not typed any statements yet. There is nothing
in the memory to list. Let’s try an experiment. Type the following line
into the computer, exactly as shown.

TRY THIS:
10 PRINT 12345 (Press ENTER)
LIST (Press ENTER)

You should see line 10 appear on the screen. In fact, it should be on the
screen twice. Once for the time you typed it, and once after the LIST
command. The first line is input, and the second line is output. Do you
understand why? It is because the first line you typed in, and the second
line you asked the computer to produce for you.

3. RUN. RUN is another command that the computer will execute as
soon as it is typed and the ENTER key is pressed. Notice that the two

Commands 13

statements on the screen right now are identical. Each has a line number,
the word PRINT, and the number 12345.

TRY THIS:
RUN (Press ENTER)

Only the number 12345 is printed. That is because you have asked the
computer to follow the instruction in line 10, which told it to PRINT
those numbers. You also get the message:

DONE

which lets you know the computer has finished following all the
instructions.

TRY THIS:
LIST (Press ENTER)
RUN (Press ENTER)
LIST (Press ENTER)
RUN (Press ENTER)

LIST shows the entire instruction, and RUN makes the computer execute
(follow) it.

TRY THIS:
NEW (Press ENTER)
LIST (Press ENTER)

Line 10 is now erased from memory.

4. CALL CLEAR. There is one more command that is very useful at
times. It is the CALL CLEAR command.

TRY THIS:
CALL CLEAR (Press ENTER)

Do you see what it does? It gets rid of all the things on the screen (except
the arrow and cursor). It is not the same as typing NEW, however. It does
not erase the program from the computer’s memory—just from the screen.
Type in line 10 again just as you did before.

TRY THIS:
10 PRINT 12345 (Press ENTER)
CALL CLEAR (Press ENTER)

LIST (Press ENTER)

14 Taking Off with BASIC

Line 10 is still there. CALL CLEAR only erases the screen, not the com-
puter’s memory.

TRY THIS:
NEW (Press ENTER)
LIST (Press ENTER)

It is now gone. NEW is very different from the command CALL CLEAR.

Making Corrections

Holding down the key marked FCTN on the keyboard, and pressing the
right arrow (—) found on the letter D, causes the cursor to move to the
right. Try moving the arrow to the right several spaces. Now move it to
the left by helding down the FCTN key and pressing the S. The left arrow
(«) is on the side of the S key.

Press ENTER and type your name, but spell it wrong. Don’t press
ENTER. Use FCTN and the arrows to go back and correct your name so
that it is spelled correctly. Type over the incorrect letters and they will be
replaced with the new letter you input from the keyboard. Use the space
bar to erase letters or numbers to the right of the cursor that are no longer
needed.

Type in other misspelled words and without pressing ENTER correct
them using FCTN and the left and right arrows. Use these arrows to cor-
rect spelling errors as you write programs.

NOTE: In the following chapters you will be writing a program which you
will want to keep so that you can continue building upon it. If you have a
cassette tape recorder or disk drive, follow the instructions in supplements
1 and 3 so you will be ready to save the program beginning with the next
chapter.

CHECKPOINT 3

1. When you type thecommand _____, the computer erases every-
thing in its memory.

2. Typethecommand — to see the program you have written
so far.

3. When are commands executed by the computer?

Commands 15

If you want the computer to follow instructions in a program, type the
command .

To erase everything on the screen, but not from the computer’s memory,
use the command .
Each time you type in a command, you must press to let
the computer know you are finished.

Which key must you hold down first if you want to use the left or right
arrow?
Use the left and right arrows when you want to

TO CHECK YOUR ANSWERS SEE PAGE 143 IN APPENDIX A

4 The PRINT and
GOTO Statements

Beginning with this chapter we will start writing the TAKE OFF pro-
gram which will be completed in Chapter 17. If you intend to save your
work on a cassette tape or disk, read Supplements 1 and 3 before proceed-
ing. You must have a tape or disk ready in order to save the program.

BASIC programs are made up of a series of statements that must have
line numbers. Following the NEW command below is an example of a
statement written in BASIC. To type the quotation marks (or any charac-
ter on the side of a key), hold down the FCTN key and press the key with
the character you want. To type the characters above the letters or num-
bers, hold down the SHIFT key before pressing the key with the character
you want.

TRY THIS:
NEW (Press ENTER)
10 PRINT "TAKING OFF WITH BASIC" (Press ENTER)

The line number is 10, the statement (instruction) is PRINT, and inside
the quotation marks is the message you want the computer to output or
show on the screen. The computer does not even look at (or care about)
what is inside the quotation marks. It just outputs whatever it finds,
exactly as you have entered it.

17

18 Taking Off with BASIC

Write your own line 20. Have the computer PRINT your name and
today’s date. (Hint: Be sure to put your own name and current date in
quotation marks.)

Line 20 will look something like this:

20 PRINT "PAT GOLDEN, APRIL 15, 1984"

TRY THIS:

LIST (Press ENTER)
RUN (Press ENTER)

Lines 10 and 20 should be showing on the screen as well as the output. If
not, type NEW and enter the two lines again. Be sure to press ENTER
after you are finished typing each line. If the two lines are on the screen
you are ready to continue.

Here is another experiment. Type line 30 with a PRINT statement and
inside the quotes type something silly.

TRY THIS:
30 PRINT "YOU ARE A B0Z0" (Press ENTER)
LIST (Press ENTER)
RUN (Press ENTER)

Are all three lines (10, 20 and 30) there? Use the LIST command as much
as you like to check to see if the computer is remembering everything you
want it to.

TRY THIS:
30 (Press ENTER)
LIST (Press ENTER)

What is missing? Line 30! You have discovered a way to erase just one
program line. Any time you want to get rid of one line of instructions,
simply type the line number and press ENTER. That line will be erased
as soon as ENTER is pressed.

TRY THIS:
9 REM TITLE OF PROGRAM (Press ENTER)
19 REM NAME AND DATE (Press ENTER)
LIST (Press ENTER)

Check to see that there are four lines of instructions on the screen; lines 9,
10, 19 and 20. They are also stored in the memory. Otherwise, when the
program is listed, it wouldn’t appear on the screen. Note that the com-
puter placed all the numbered instructions in order for you, even if you

PRINT and GOTO Statements 19

didn’t enter them that way. Now type the command RUN. If you
remembered to press ENTER, you should see the following on the screen:

TAKING OFF WITH BASIC
PAT GOLDEN, APRIL 15, 1984 (or whatever is in line 20)

Where are the REM statements you put in? Remember that the com-
puter ignores REM statements when it runs a program. LIST the pro-
gram and the REM statements are there, but you do not see them when
the program is executed.

Character Graphics

Soon you will discover why this book is called TAKING OFF WITH
BASIC. Using CHARACTER GRAPHICS, which is a fancy term that
refers to making pictures on the screen using the letters and symbols on
the keyboard, you will design your own picture, and it will be something
that “takes off”. For example, it might be a space ship, hot air balloon,
helicopter, or anything else you can think of that takes off going straight
up. Following is an example of a simple design in CHARACTER GRAPH-
ICS. Type in the lines just as you see them, spaces and all.

TRY THIS:

310 PRINT "XXXXXXX"
320 PRINT " XXXx"
330 PRINT " XXXXX"
340 PRINT "XXXXXXX"
350 PRINT " X"
360 PRINT " Xxxx"

You may first wonder why these program lines begin with line 310, after
the strong suggestion that line numbering be by ten’s. It is because in this
manual we are going to write a long program with many parts and it is
necessary to leave space for them. We already have decided on the entire
plan for this program and because of that it is already known what line
numbers are needed for each different section of the program.

LIST the program and check it. If there are any errors, correct them by
retyping the lines. It is always a good idea to proofread and look for errors
in each line before pressing ENTER, so that you can use the arrow keys to
go back and make corrections. Once you press ENTER, however, you can-
not use the arrow keys to go back to a certain line. There is another
method for making corrections after you press ENTER which you will
learn in the next chapter.

20 Taking Off with BASIC

RUN the program. This CHARACTER GRAPHICS design isn’t very
exciting. You can surely do better than that!

To design your own CHARACTER GRAPHICS, it is helpful to use the
grid in Figure 4-1 on page 21. Notice that each number, letter, or character
is in its own box. The design at the beginning of the chapter is a very
simple example of a program for an object. Use the large, blank grid on
page 22 (Figure 4-2) to design an object of your choice that takes off verti-
cally (straight up). You might want to make a copy of the blank grid to
use. The grid is the same size as the screen.

Write a complete program for one design on the grid before entering it:
line numbers, PRINT statement, quotation marks, graphic symbols, and
quotation marks again. Only use the blank spaces provided so you don’t
exceed the dimensions of the screen. Throughout this manual are illustra-
tions of taking off objects that have been included to spark your
imagination.

There is one important rule to remember when programming a design
for this project: begin at line number 310 and do not go beyond line 490. It
is OK to count by fives for line numbers if you need more room, but don’t
make it larger than the grid. Also, at line 300, write a REM statement
describing the space ship (or whatever object you design.) Run and debug
the program until you are satisfied with it.

GOTO Statement

Our next plan is to make the object take off. Only one statement is
needed to make the object take off.

TRY THIS:
495 G0TO 310 (Press ENTER)

Literally this line is saying “Go back to line 310 and do what it tells you.”
It will run all the lines between 310 and 495, which tells it to go back to
310 again. This makes the object look like it is taking off.

TRY THIS:
RUN (Press ENTER)

Press FCTN and the number 4 to stop the object. You have learned how
to get it going, but have no BASIC instruction for stopping it yet. A better
way to stop it will be introduced later but for now this is how you must
stop it. FCTN 4 (labeled above the 4 key as CLEAR) is a command telling
the computer to stop its execution of the program immediately. After giv-

PRINT and GOTO Statements 21

ing the command FCTN 4, the program stops and the computer tells you
at which line number the BREAKPOINT occurred. The BREAKPOINT
just means where it stopped. Sometimes having this information is very
helpful in correcting mistakes (BUGS), as you will discover.

TIP: If you type a PRINT statement that is so long that part of it must
go on the next row, it is important that you do not press ENTER until
you have finished typing the entire instruction.

3(0{0] |RIE|M HIE|R|E| [1]|S]| [TIHIE] |R|o|CIK|E|T
3l/{olp|R| I |N|T]" ZI\|n

3| /[S[P|R|1IN|T|" XX | X]| X[¥

32| o|lP|R|I [N|T|" / \| "
3|z2|5|P|R|1 |N|T|n / N
3(3[o|P|R|/|N[T]0 2¢| 3¢ 3¢[3¢ |96 [3¢ [[3¢ | 1
3|3|5|P|R[1|N|T|" () [n
3|¢(o|P|R|I|N|T|n (JIC
3|4[5|P|R| 1 |N|T]® ([2€] 2¢ 2| ¢ 9¢[3¢ | 2¢ | ¢) [0
3(slo[Plr|I|N|T]n / \|#
3|5|5|P[R|I([N]|T]|a / \/|#
3[6[0|P[R[I|N|T]|n X[XXX XXX X[X[X]IX] [X[n
3[e|5|P|R|1I|N|T]H X X X X/ u
3|7|0{P|R|1|N[T]|u X X X Xl
3l7(5|P[R|1|N]|T]|w X X|X|X[% X"
38| o|P|R|1|N[T]u X X|X X{n
3|18|5|P|R|1|N|T|u]| |/ X X \|["
3{q9iolP|R[I|N]|T|uv] |Xx X X X
3(9|5(PIR|I [N|T|n X XXX [X] X[X][X]|X X|n
4lolo|P|R|1|N|T |« X X|n
4 7]10|P|R|I [N]|T KX XX [X[X|X]|X[X]|X[X]x]|n
4|R{O|PR[I|N[T |0]|=|=|=]|=|=|=]|=|=|=]=[=]=]=]=[=T=T=T=Tw

FIGURE 4-1

22

Taking Off with BASIC

FIGURE 4-2

CHECKPOINT 4

Al ol

If you want the computer to show your name or any words on the screen as
part of a program, you must writea_____________ statement.

You can write yourself messagesin ___ statements, but they
won’t show up on the screen when the program is run.

A design or picture on the computer is called
Before each statement you must have a .
To stop the execution of a program hold down the key and
press .

TO CHECK YOUR ANSWERS SEE PAGE 144 IN APPENDIX A

PRINT and GOTO Statements 23

PROGRAM UPDATE

(The PROGRAM UPDATE lists your program up to this point.)

9 REM TITLE OF PROGRAM

10 PRINT "TAKING OFF WITH BASIC"

19 REM NAME AND DATE

20 PRINT "PAT GOLDEN, APRIL 15, 1984"

300 REM HERE IS THE ROCKET

310 - 490 (THE CHARACTER GRAPHICS YOU
DESIGNED ON THE GRID)

495 GOTO 310

999 END

NOTE: Save the TAKE OFF program in a file on tape or disk now.
Follow the instructions in Supplements 1 and 3.

If you don’t have a device to save the program, and are ready to turn
the computer off, enter the PROGRAM UPDATE before continuing with
Chapter 5. Your program will be a little different from the one in this
manual. Write your changes down so that you have a record of them.

Each new chapter introduces new statements and gives you practice
lines to enter. They will ruin the TAKE OFF program if it is still in the
memory. If you do two chapters in a row, here is a suggestion for you to
use as you start a new chapter so the practice lines won’t interfere with
the TAKE OFF program. Type in the line

1 6OTO 800
at the beginning of each new chapter. Add 800 to the line numbers sug-
gested in the examples. For example, if it tells you to type in line 10, enter

line 810; line 20 would become 820, and so on. Ignore the END statements.
When you come to the message

LOAD TAKE OFF FILE NOW

type each line number you were using for practice, entering them one at a
time and pressing ENTER after each one. It might look like this:

1 (Press ENTER)
810 (Press ENTER)
820 (Press ENTER)
830 (Press ENTER)

This gets rid of these lines without ruining the TAKE OFF program.

?? $ % # 4
? ? + % # #
? 7 $ % # #
? ? £ 3 # #
? ? % + # #
? ? % k2 # #
? ? % $ # #
* * * ¥ X ¥
X X% X X X ¥
¥ ¥ *
XX¥% X¥¥ XXX

CLLLLLLLL Lt

5 Editing

EDITING is a very powerful and useful capability of a computer. The
EDIT mode allows you to go back and make changes or corrections in any
line in the program. The only thing you cannot change is the line number.
If you want the line number changed, you must type the entire line over
again. The word EDIT simply means to make changes.

NOTE: At the beginning of each new chapter, it is assumed that the
TAKE OFF program is not loaded. That is OK since usually there are
examples to practice before adding new parts to the program. Always save
the program at the end of each chapter and load it only when you see this:

LOAD TAKE OFF FILE NOW

(Yes, it means NOW.)

Here’s how the TI editor works. Let’s EDIT (make a change in) line 10.
To do so you first must put (call) that line into the EDITOR. One way to
do this is to type the line number (10 in this case), hold down the FCTN
key, and press the up arrow (1), located on the E key.

TRY THIS:
10 (Hold down the FCTN key and press the letter E)

You should now have line 10 on the screen, ready to be EDITed.

The plan is to put a hyphen between the words TAKING and OFF.
Move the cursor by holding down the FCTN key and pressing the right
arrow until it reaches the blank space between the two words. Hold down

25

26 Taking Off with BASIC

the SHIFT key and type in a hyphen (-); it is located above the ENTER
key. Press ENTER. The change has now been made. To check this, LIST
the program again and look for the hyphen.

CAUTION: Do not use the space bar to move the cursor to the right
because this will erase letters or characters; the arrows do not.

For practice let’s change the year in line 20. Type 20 and FCTN E to
place it in the EDIT mode. Move the cursor to the 1984, using FCTN and
the right arrow. Simply type the numbers you want right over the other
ones—use 1985. Press ENTER and the changes are made. By typing LIST
20 you can list just line 20 instead of the entire program.

TRY THIS:

LIST 20 (Press ENTER)
The change has been made.
TRY THIS:

20 FCTN E (Press ENTER)

Press the FCTN key and arrows to change the year back to the correct
one. List line 20 to check that the change was made.

What if you decide to add more words in the middle of a PRINT state-
ment? There is a way to move everything over one or more spaces to make
room for additions. Put line 10 in the EDIT mode again. Make the line
read ROCKET TAKING OFF WITH BASIC. Move the cursor so that it
is over the spot where you want to add the word ROCKET. It should be
right on the T in TAKING OFF since that is where you want the word
ROCKET to begin. Once the cursor is located on the T, hold down the
FCTN key and press the 2 (INSERT) key once, and type ROCKET.
What happened? Everything moved over, making room for ROCKET.
Press the space bar once to add an extra space between ROCKET and
TAKING-OFF. Press ENTER and then LIST 10 to see if the change was
made correctly.

FCTN 2 warns the computer that you will be adding something to the
line and to make room for it. Add your middle name to line 20 using this
method. LIST 20 to see if it worked.

What if you decide you do not want your middle name in line 20? You
are in luck! Call line 20 to the EDITOR again. Move the cursor to the first
letter of your middle name and hold down the FCTN 1 (DEL for
DELETE)) key this time. The letter the cursor was on has disappeared.
Hold down the FCTN key and press 1 again. Do this until your entire
middle name is deleted (erased). Press ENTER and LIST 20. Your mid-
dle name should now be gone.

Editing 27

Erase (or delete) the word ROCKET from line 10. Practice with the
EDIT mode for a while to become comfortable with it. If you have any
changes you want to make in the graphic object, practice using the EDIT
mode to make them. For your quick reference, here is a list of the EDIT
Keys. :

Line # FCTNE (1) Puts line # given on the screen
ready to be edited.

FCTN D (-) Moves the cursor one space to the
right

FCTN S (<) Moves the cursor one space to the
left.

FCTN1 This is called the DELETE mode.

Use this when you want to erase
information from a line.

FCTN 2 This is called the INSERT mode.
Use this when you want to add
extra information to your line. Use
the space bar to move the letters
over.

ENTER After making your changes, press
ENTER to signal the computer to
permanently make changes. You
can press ENTER at any position
on the line.

CHECKPOINT 5

1. To make changes in program lines you must be in the
mode.

2. When you want to change a line, call for it by typing the ,
holdingdownthe ___ key, and typing .

3. To make room for additions in a line in the EDIT mode, hold down the

key, type a _ | and then enter the

information.

4. If you want to remove something from a line in the EDIT mode, hold down
the. keyandtypea .

5. Once you make the changes to the line, you must press for
the computer to put the changes into its memory.

TO CHECK YOUR ANSWERS SEE PAGE 144 IN APPENDIX A

28 Taking Off with BASIC

PROGRAM UPDATE

9 REM TITLE OF PROGRAM

10 PRINT "TAKING OFF WITH BASIC"

19 REM NAME AND DATE

20 PRINT "PAT GOLDEN, APRIL 15, 1984"

300 REM HERE IS THE ROCKET

310 -490 (THE CHARACTER GRAPHICS YOU DESIGNED
ON THE GRID)

495 GOTO 310

999 END

SAVE TAKE OFF FILE NOW

1333333232331

/S S
13333333333133133338333
¥ ¥
¥ * %%
XXX —_——— 33333
% : H X
¥ : : X
¥ ——— ¥
#
#

LB UR LI O L (R U T N R O N N N EERERERE]

6 Countdown

Whether your object is a rocket, UFO, balloon, or whatever, it should
have a COUNTDOWN so that it takes off on cue. A COUNTDOWN usu-
ally begins at a high number, over days or hours, but to keep it simple
ours will go from 10 to 0.

LOAD TAKE OFF FILE NOW

Remember when you wanted words to be placed on the screen? You
used a PRINT statement and put the words inside quotation marks. You
needed the quotation marks because the computer does not recognize
words that are not part of its vocabulary. However, it does recognize num-
bers. Therefore, when you want it to print numbers, you don’t need to use
quotation marks.

TRY THIS:
210 PRINT 10 (Press ENTER)

If you ran this, it would cause the computer to print a 10 on the screen.
Before you run it, add the rest of the COUNTDOWN. To save some room
here, we will number the lines by fives.

TRY THIS:

215 PRINT 9 (Press ENTER)
Go ahead and finish the COUNTDOWN by adding nine more lines. The
last line should be

29

30 Taking Off with BASIC

260 PRINT O (Press ENTER)
LIST 210-260 (Press ENTER)

Make any EDITING changes needed. The LIST command will allow you
to list a block of lines from the first line number specified to the last line
number. As your program grows in length, you will not want to waste time
listing the entire program. Use this method to list certain lines in any part
of the program you want to look at without having the rest of the pro-
gram also print on the screen.

Run the program and look for the COUNTDOWN. Stop the program
by typing FCTN 4.

TRY THIS:
270 STOP (Press ENTER)

What do you think will happen when you run the program now? Run it
and see if you were correct. The STOP statement lets you run parts of the
program to check them out without having to run the entire program,
since it will STOP without going on to the next line. Remember this trick
as you continue to write the program. You can remove the STOP state-
ment at any time by simply typing the line number of the STOP state-
ment and pressing ENTER.

Add a REM statement at line 200 for the COUNTDOWN. You are
probably wondering why the COUNTDOWN went so quickly when stop
was not used. That is how quickly the computer reads and executes pro-
gram instructions. There IS a way to slow it down, but it is a bit compli-
cated. Before learning how to slow it down, there are some other things
you must know that will be covered in the next chapter.

CHECKPOINT 6

1. When you want the computer to print numbers, it is not necessary to use

as you do when you want to print words.

2. If you want the computer to run only part of the program, you can make
the program stop anywhere as long as you type a state-
ment with a line number.

3. To get the computer to list only lines 100 through 200 of a program you
would type in the command .

TO CHECK YOUR ANSWERS SEE PAGE 144 IN APPENDIX A

Countdown

PROGRAM UPDATE

9 REM

10 PRINT
19 REM
20 PRINT

200
210
215
220
225
230
235
240
245
250
255
260
270
300
310

495
999

REM

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
sTOP
REM

- 490

TITLE OF PROGRAM

"TAKING OFF WITH BASIC"
NAME AND DATE

"PAT GOLDEN, APRIL 15, 1984"
COUNTDOWN

10

O=MNWHaUNO~NOO

HERE IS THE ROCKET
(THE CHARACTER GRAPHICS YOU
DESIGNED ON THE GRID)

GOTO 310

END

SAVE TAKE OFF FILE NOW

31

[511 LI
el

AL NI €0
ZEI0ESEREIRN)
Sisitasninnens?
1292222929299333¢
1
IR %
[SR ARI VT TR S T T A)

7 Variables and LET
Statements

The COUNTDOWN in the last chapter is actually quite inefficient. In
this chapter we will revise it so that it does the same thing but takes fewer
lines. A new statement called LET will be used.

We have talked about the fact that the computer knows numbers.
Sometimes it is helpful to give a number a name, especially if it is going to
be used more than once in a program. The computer has an area in it for
storing numbers that have names—similar to a group of boxes. For exam-
ple, if you wanted to give the number 10 the name A, you could use a LET
statement.

TRY THIS:
10 LET A = 10 (Press ENTER)
20 PRINT A (Press ENTER)
RUN (Press ENTER)

A is a variable name for the number 10. When the computer comes to this
LET statement, it finds an empty box in its memory, names it A, and
places a 10 in it. From this point on in the program, instead of using the
number 10, you can use the letter A, which is a kind of shortcut. If the
numbers in a program are very large, like thousands or millions, you only
have to name it in a LET statement and after that call it by the name you
gave it. The names you choose for the numbers are called VARIABLES.

33

34 Taking Off with BASIC

By using a LET statement you can tell the computer what you want a
VARIABLE to be called. They are called VARIABLES because you can
change the name of the VARIABLE at any time. The word VARIABLE
comes from the word VARY, which means to change.

LOAD TAKE OFF FILE NOW

Here is an example of how you can add a VARIABLE to your program
using a LET statement.

TRY THIS:
210 LET C =0 (Press ENTER)
215 PRINT C (Press ENTER)
230 sToP (Press ENTER)

Before running the program, delete the following lines (type the line
number and press ENTER after each one):

220 225 235 240 245 250 255 260 270

Run the program. You will notice that all it printed of the COUNT-
DOWN was a 0. LIST lines 200 through 300 (LIST 200-300) and examine
the program. In line 210 you have given the computer a new definition for
C using a LET statement. You have told it that from now on, whenever
you ask it to PRINT C it will print a 0.

Let’s change the value for the VARIABLE named C.

TRY THIS:
220 LET C = C + 1 (Press ENTER)
225 GOTO 215 (Press ENTER)
230 (Press ENTER)
LIST 200-230 (Press ENTER)
RUN (Press ENTER)

After a few seconds hold down the FCTN key and press 4. Can you figure
out what is happening? Why did it keep counting until you stopped it?
Lines 210-225 look like this:

210 LET C =0 (Press ENTER)
215 PRINT C (Press ENTER)
220 LET ¢ = ¢ + 1 (Press ENTER)
225 GOTO 215 (Press ENTER)

Line 210 places the value 0 in a box named C. Line 215 instructs the com-
puter to print whatever is in the box named C. Right now C = 0, so 0 is

Variables and LET Statements 35

printed on the screen. Line 220 adds 1 to the current value for C; C now
equals 1. Line 225 sends it back to line 215.

This time, when the computer adds 1 to the value in box C, it adds 1 to
1; C is now equal to 2. Line 220 prints a 2. This goes on and on adding one
each time in an infinite (endless) loop, until you stop it. It never goes
beyond line 225 the way it is now written.

One problem with the new program lines for the COUNTDOWN is that
it is counting from 0 on up, instead of from 10 down to 0. Can you make
changes in the program so that it counts backward instead of forward?
Hint: A hyphen, (-), is the subtraction symbol.

TRY THIS:
220 LET C =C - 1 (Press ENTER)
RUN (Press ENTER)

Stop the program (FCTN 4). What happened with the COUNTDOWN
this time? It counted backward from 0 until you stopped it. Line 210 tells
the computer to begin at 0. The value for C is printed at line 215, then 1 is
subtracted from C in line 220 (C=-1). If C started with a value of 10 in
line 210, then the COUNTDOWN would begin with the right number
(10).

TRY THIS:
210 LET € = 10 (Press ENTER)
RUN (Press ENTER)

Oh no! Now what is wrong? It won’t stop counting! Stop it using FCTN 4.
You have just created another infinite (or endless) loop. The program will
go on forever, or until the computer counts backward as far as it can. At
least you got it to go backward starting at 10. Don’t worry about the
COUNTDOWN not stopping at 0. That problem will be solved in the next
chapter.

TIP: Since you have been writing program lines for several chapters now,
you will no longer be reminded to press ENTER after entering each
instruction. Keep this in mind as you go through the rest of the manual.

CHECKPOINT 7

1. You can put a number into the computer’s memory but first you must give
the number a name.
- 2. To tell the computer what value you want a variable to have you must use
a statement.

36 Taking Off with BASIC

3. If you want a variable to increase by one each time it is printed, you would
write a LET statement with a +1 —1 (Circle one).
4. When you cause the computer to do something forever, this is called an
or loop.

TO CHECK YOUR ANSWERS SEE PAGE 144 IN APPENDIX A

PROGRAM UPDATE

9 REM TITLE OF PROGRAM

10 PRINT "TAKING OFF WITH BASIC"

19 REM NAME AND DATE

20 PRINT "PAT GOLDEN, APRIL 15, 1984"

200 REM COUNTDOWN

210 LET € = 10

215 PRINT C

220 LET C = C - 1

225 GOTO 215

300 REM HERE IS THE ROCKET

310 - 490 (THE CHARACTER GRAPHICS YOU
DESIGNED ON THE GRID)

495 GOTO 310

999 END

SAVE TAKE OFF FILE NOW

MW

! % !
(3233333333333 33333333323832 3
¢ ¥ !

! % !
! X !

8 IF/THEN
Statements and
Relations

Another new statement called IF/THEN helps to stop the COUNT-
DOWN wherever we want. Included in the statement there must be a
symbol of RELATION. Here is a handy chart for your reference:

RELATIONS
GREATER THAN > GREATER THAN OR EQUAL TO >=
LESS THAN < LESS THAN OR EQUAL TO <=
EQUAL TO = NOT EQUAL TO <>

These RELATION symbols are a very important part of computer pro-
gramming. You should memorize them so that you know which one to use
when certain situations arise. One of these symbols is needed in each IF/
THEN statement.

Here is a simple example. (Be sure to press ENTER after each instruc-
tion is typed.)

TRY THIS:

10 LET N
20 PRINT
30 LET N =N + 1

40 IF N = 5 THEN 60

1

37

38 Taking Off with BASIC

50 GOTO 20

60 PRINT "N IS EQUAL TO 5"
99 END

RUN

NOTE: If you are adding 800 to these practice lines, you must also add

800 to 60 in the IF/THEN statement and to 20 in the GOTO statement.
This program prints the numbers 1 to 4 on the screen. It prints N IS

EQUAL TO 5 when the value for N becomes 5 because of line 40 which

literally means, “If the value for N is equal to 5 then go to line number

60.” If N is not equal to 5 it goes on to line 50, which sends it to line 20.
Edit lines 40 and 60 to look like these:

40 IF N <> 5 THEN 60

60 PRINT "N IS NOT EQUAL TO 5"
LIST

RUN

Line 40 is saying, “If N is not equal to 5 then go to line 60.” It is not equal
to 5 (line 10 tells it N is equal to 1) so only a 1 is printed on the screen,
followed by N IS NOT EQUAL TO 5.

How would these lines change the output?

TRY THIS:

40 IF N > 3 THEN 60

60 PRINT "N IS GREATER THAN 3"
LIST

RUN

The output should be:

1
2
3
N IS GREATER THAN 3

since it prints numbers until N IS GREATER THAN 3. Then it prints
the message N IS GREATER THAN 3 at line 60.

LOAD TAKE OFF FILE NOW

We can use this same idea to stop the COUNTDOWN at 0.
TRY THIS:

225
250 IF C <> -1 THEN 215
LIST 210-250

IF/THEN Statements and Relations 39

The output will be

210 LET ¢ = 10

215 PRINT ¢

220 LET € = ¢c-1

250 IF C <>-1 THEN 215

Study the lines carefully.

The first time line 215 is reached, the number 10 is printed because C =
10. Line 220 subtracts one from the value of C, making C equal to 9. Line
250 literally instructs, “If the value for the variable C IS NOT EQUAL TO
—1 yet, then go back to line 215, print C again, and subtract one more from
the variable C.” C is now equal to 8 so it goes back to 215, prints 8 and
subtracts one from C again in line 220. C is now equal to 7 so at line 215 the
number 7 is printed. C is still not equal to —1 so it goes to 215 again.

After going through this loop eleven times, C will finally equal —1.
When this happens, line 250 will no longer be true. Let’s say that, at line
215, C is now —1. At line 250 it says, “If C is NOT EQUAL TO -1 then
go back to line 215.” But it IS equal to —1 so it will ignore the 215 part of
line 250, and continue to the next line (which is 300).

Run the program and see what happens this time. You finally have the
10 to 0 COUNTDOWN, just as in Chapter 6 with the countdown PRINT
statements, but in a much more efficient manner. The COUNTDOWN
still goes by very quickly, however.

Stop the program (FCTN 4). What would happen if you changed line
2507

TRY THIS:

250 IF C > -1 THEN 215
260 STOP

Run the program. What is different with the countdown? Nothing! Why?
You have changed the instruction slightly but not the meaning. Now it is
saying, “If the value for the variable C is greater than —1 THEN go back,
print C again, and subtract one from C.” This is essentially the same
instruction you had before, just said in a slightly different way. Here are
two more modifications for you to make:

TRY THIS:

250 IF € = -1 THEN 300
260 GOTO 215
LIST 200-260

Will this accomplish the same thing again? Run it. Stop the program and
run it again, watching the COUNTDOWN -carefully. Study the output

40

Taking Off with BASIC

until you understand why there is no change when running the program.
Remember that if line 250 is not true, the program will go on to the next
line and do whatever it says.

You can see that there are a number of ways you can write this part of
the program. Decide on the way in which you want to do it and make the
changes. In the next chapter you will learn how to make the COUNT-
DOWN count in actual seconds, instead of quickly as it does now.

CHECKPOINT 8

Ll S

5.

6.
7. The symbols referred to in this chapter are called

The symbol that stands for EQUAL TO is
The symbol that stands for NOT EQUAL TO is
The symbol that stands for LESS THAN is
The symbol that stands for GREATER THAN OR EQUAL TO is

The symbol that stands for LESS THAN OR EQUAL TO is

The symbol that. stands for GREATER THAN is

TO CHECK YOUR ANSWERS SEE PAGE 145 IN APPENDIX A

PROGRAM UPDATE

9 REM TITLE OF PROGRAM

10 PRINT "TAKING OFF WITH BASIC"

19 REM NAME AND DATE

20 PRINT "PAT GOLDEN, APRIL 15, 1984"
200 REM COUNTDOWN

210 LET € = 10
215 PRINT C
220 LET C = C -1

250 IF ¢ = -1 THEN 300

260 GOTO 215

300 REM HERE IS THE ROCKET

310 - 490 (THE CHARACTER GRAPHICS YOU

495

DESIGNED ON THE GRID)
GOTO 310

999 END

SAVE TAKE OFF FILE NOW

e AALAY -]
8 od (-]
-] “ -]
] -]

]]

8 8
]]

9 FOR/NEXT
Statements and Timers

Finally it is time to learn how to control the COUNTDOWN. Do you
have any idea about how you can get a computer to do something slower
than it normally does things? There is no instruction called SLOW
DOWN on the TI. We have to be very sneaky, but there is a way. We
simply instruct the computer to count to itself.

You have seen how quickly it prints 10 to 0 on the screen when C is used
as a variable in a LET statement, and one is subtracted from it each time.
There is a much easier way to tell the computer to count, using a FOR/
NEXT loop. A FOR/NEXT loop is actually two statements. The first one
is FOR, where we tell it to start counting. The NEXT is the second part
which tells it to continue counting.

Let’s have the computer count to 2000 and see how this works. In the
FOR/NEXT statement we will use a variable called T (for TIMER) to
tell the computer where to start counting. When you run the program,
you will actually see how fast the computer can count.

TRY THIS:

10 FOR T = 1 TO 2000
20 PRINT T

30 NEXT T

99 END

RUN

41

42 Taking Off with BASIC

In line 10 the word FOR appears, and in line 30 the word NEXT appears.
The FOR and NEXT will never appear on the same line, but you must
always have the same number of FORs and NEXTs in the program or you
will get an error message.

You can see that the computer is actually counting to 2000. Line 10
starts it at 1, it moves to line 20 and prints the value for T (1) and then
goes to line 30. NEXT T tells the computer to go back to line 10 and count
again. It goes through this cycle until it has counted to 2000, then stops.

Delete line 20 (PRINT T) and run the program again. It is still count-
ing to 2000, but it is not printing the numbers as it counts. Just like us, it
can count to itself faster than it can write all the numbers out. That’s why
it takes a few seconds to tell you it’s DONE. You can tell it to count to
any number; the larger it is, the longer it takes.

LOAD TAKE OFF FILE NOW

Now you will see why the line numbering has not been following the
“by tens” rule. The line numbers have been carefully chosen according to
the TAKE OFF program plan. If there were no plan we would have to
change many of the line numbers in each chapter to make room for new
ones.

TRY THIS:

230 FOR T = 1 TO 1000
240 NEXT T

Don’t run the program yet. In line 230, the instruction tells the computer
to count to one. It then goes to line 240 which tells it to go back to 230
unless it has finished counting to 1000 already. The computer has a built-
in check to see if it has counted to 1000 yet. Each time it gets to line 240, if
it has not reached 1000 yet, it will go back and automatically add one
more to the count.

Run this program and try to determine about how many seconds it
takes the computer to count from 1 to 1000. You can do this by seeing how
long it takes between printing each countdown number, since it counts to
1000 between each number. °

After it prints C at line 215, it counts to 1000 (as it is told to do in the
FOR/NEXT loop at lines 230 and 240) before getting to line 250. Here, C
is checked to see if it has reached -1 yet.

You must decide what number you think it should count to in order to
come as close to one second as possible—the count of 1 to 1000 is obviously
more than a second. A real COUNTDOWN should have each number on

FOR/NEXT Statements and Timers 43

the screen for about one second—right? Experiment by inserting smaller
numbers to find which one comes closest to one second and edit line 230
accordingly.

Add a REM statement at line 225 regarding the TIMER loop.

CHECKPOINT 9

1. Every time a FOR statement appears in the program, there must also be a
statement to go with it.

2. FOR/NEXT loops can be used as to slow down the
program.
3. FOR/NEXT loops slow down the computer because it makes the computer
to itself.

TO CHECK YOUR ANSWERS SEE PAGE 145 IN APPENDIX A

PROGRAM UPDATE

9 REM TITLE OF PROGRAM
10 PRINT "TAKING OFF WITH BASIC"
19 REM NAME AND DATE
20 PRINT "PAT GOLDEN, APRIL 15, 1984"
200 REM COUNTDOWN
210 LET € = 10
215 PRINT C
220 LET C = C -1
225 REM TIMER
230 FOR T = 1 TO 275
240 NEXT T

250 IF C = -1 THEN 300
260 GOTO 215

300 REM HERE IS THE ROCKET
310 - 490 (THE CHARACTER GRAPHICS YOU
DESIGNED ON THE GRID)

495 60TO 310
999 END

SAVE TAKE OFF FILE NOW

9)

()
(]
srrsirIieIIISLIILIILIIGGS
sriIeiLTIILILIILILILILSL

& &
& &
ttrrsrrsrsLLILILILIIQLILY
sEirrrrosssrItROIGSLTLE
R R R R R R R R R R R R R]

% %

3 %

% *

% *

* *
CHEFHE4P4 4444444004004 444D
CHEFEFH44 412144044444 4444D
2222222222222222222222

10 FOR/NEXT
Statements and
Variables

FOR/NEXT statements can also be used in ways other than as timers.
We can replace the LET statements in the program with a FOR/NEXT
loop. Remember how FOR/NEXT statements cause the computer to
count to itself? We can use this same idea to have it count from 10 to 0 in
place of the LET statements.

FOR/NEXT statements are simply a way to make the computer do
something the number of times we tell it to in the FOR statement. We can
make it count to itself, print numbers on the screen, or do many other
things. In this chapter we will have the FOR/NEXT loop take over the
job of the LET statements.

TRY THIS: LOOK AT THIS:
10 FOR C = 1 T0 10 10 LET C = 1
20 PRINT € 20 PRINT €
30 NEXT C 30 LET C=¢C +1
99 END 40 IF C = 11 THEN 99
RUN 50 GOTO 20

99 END

Both programs print the numbers from 1 to 10 on the screen. However,
the one on the left is shorter, making use of a FOR/NEXT loop. Study
each program (enter the one on the right if you like) until you understand
how they produce identical output.

45

46 Taking Off with BASIC

We will now edit the TAKE OFF program, taking out the LET state-
ments and inserting FOR/NEXT statements.

LOAD TAKE OFF FILE NOW
TRY THIS:

200 REM COUNTDOWN LoOOP
210 FOR € = 0 TO 10

215

220 PRINT C

250 NEXT C

260

LIST 200-260

This section of the program now looks like this:

200 REM COUNTDOWN LOOP
210 FOR C = 0 TO 10

220 PRINT C

225 REM TIMER LOOP

230 FOR T = 1 TO 275

240 NEXT T

250 NEXT C

Look at the lines one at a time:

200 is a new REM statement;

210 tells the computer to begin counting, starting at 0;

220 tells the computer to PRINT C, which right now is 0;

225 is a REMark;

230 is the timer loop, which makes the computer count to 275 beginning
with 1; .

240 tells the computer to go back to 230 and count to 2; it will keep
going from line 230 to line 240 to line 230 until it has finished counting to
the number 275. When it finishes counting to 275, it will go on to line 250.

250 tells the computer to go back to line 210 (to the beginning of the C
loop), where it was counting with the variable C. Since this is the first
time it has gone back to 210, C is now equal to just one.

We have gone through lines 200 to 250 once. The computer will repeat
this exact sequence, changing the value of C each time, until C is equal to
10, as specified in line 210. Each time it gets to line 230 it will count from 1
to 275 before getting to line 250 and returning to the beginning of the C
loop at line 210. (This is a time delay of about 1 second). When C is equal
to 10 it will go on to the instruction following line 250, because it has
finished the C FOR/NEXT loop.

This has been a difficult concept. The entire timer (T) FOR/ NEXT
loop is actually inside the (C) FOR/NEXT loop. Each time the T loop is

FOR/NEXT Statements and Variables 47

reached, the computer begins counting from 1 to 275 again, always start-
ing over at 1. It is called a NESTED LOOP since it is executed inside
another loop. This is completely legal as long as the second (minor) loop is
completely within the main loop. If you are unsure of your understanding,
go back and read through it again. Once you grasp this FOR/NEXT
statement, you have reached an important stage in programming.

Run the program after you have made sure there are no BUGS (errors) in
it. Is everything working correctly? Well, almost! We are back to counting
from 0 to 10 again, right? Let’s see how we can fix this problem. Unless you
tell it otherwise, the computer assumes that when you ask it to count, you
want it to count by ones, going forward. When it is given the instruction:

FOR C =1 T0 10
NEXT €

it counts from 1 to 10 by ones. If we give it the instruction:

FOR C = 100 TO 200
NEXT C

it counts from 100 to 200 by ones. How would we get it to count by twos if
that is what we wanted it to do? Study these lines:

FOR C = 100 TO 200 STEP +2
NEXT C

This tells the computer to count from 100 to 200 by twos instead of ones.
STEP +2 tells it exactly how to count.

Our problem happens to be that we want it to count BACKWARD by
ones from 10 to 0. Can you figure out how to make it do that?

TRY THIS:
210 FOR C = 10 TO O STEP -1

Run this program and see if it works. STEP -1 instructs it to count back-
ward, by ones, from 10 to 0. List the program and study it to understand
exactly what you have done. Just for fun, make it count backward from
100 to 10 by tens. Try some other combinations. After you are satisfied
that you understand this concept, edit line 210 one final time so that it
counts correctly from 10 to 0 for the COUNTDOWN.

CHECKPOINT 10

1. In timer loops the NEXT must come right after the FOR statement. Is this
true when used for other purposes besides timers? (Hint: Check the
UPDATE.)

2. What does the computer do when it has finished a FOR/NEXT loop?

48

6.

7.

Taking Off with BASIC

In a FOR/NEXT loop as follows:

FOR N = 5 TO 60

PRINT N

NEXT N

What will the value of N be on the fourth time around the loop?

Write a four line program (including an END statement) to make the com-
puter count and print the numbers 150 to 300 by threes.

Write a four line program (including an END statement) to make the com-
puter count and print the numbers -50 to -150 by sevens.

Unless you tell it to do otherwise, the computer will count by
in FOR/NEXT loops.
Explain why the FOR/NEXT statement is referred to as a “loop”.

TO CHECK YOUR ANSWERS SEE PAGE 145 IN APPENDIX A

PROGRAM UPDATE

9 REM TITLE OF PROGRAM

10 PRINT "TAKING OFF WITH BASIC"
19 REM NAME AND DATE

20 PRINT "PAT GOLDEN, 1984"

200 REM COUNTDOWN LOOP

210 FOR ¢ = 10 TO O STEP -1

215 PRINT C

225 REM TIMER

230 FOR T = 1 TO 275

240 NEXT T

250 NEXT C

300 REM HERE IS THE ROCKET

310-490 (THE CHARACTER GRAPHICS YOU

DESIGNED ON THE GRID)

495 GOTO 310
999 END

SAVE TAKE OFF FILE NOW

HHg4us HEHHAHY
i i
i i
i i
i i
HUHAHHYE

11 TAB

There are two things you can do to the countdown to make it just a
little bit better. One has to do with where the countdown appears on the
screen. The other deals with the numbers staying on the screen during the
countdown and only going away when the object takes off. Wouldn't it be
neater if only one number appeared on the screen at a time? Let’s clean up
these two small problems.

LOAD TAKE OFF FILE NOW

LIST line 220. It should read:
220 PRINT C

Unless we tell the computer otherwise, it prints information beginning at
the bottom left corner of the screen. That is why the countdown appears
in that area. There is an extra instruction we can add to the PRINT state-
ment that will make the computer center the information by moving it to
the right. It is called TAB.

On a typewriter there is a key called TAB. You can set it so that when
you press it, the typewriter carriage moves over to where you want to
begin typing. The TI-99/4A computer does not have this key, but you can
add such an instruction to the PRINT statement. Here is an example:

220 PRINT TAB(10); C

Line 220 tells the computer to move 10 spaces to the right and then print
the value for C. The semicolon (;) is a required separator between the

49

50 Taking Off with BASIC

TAB instruction and the variable C. Edit line 220 in the program so that
it is exactly like the one shown above. LIST the line to check for errors,
and then RUN it. Do you like this location for the countdown? If you
want it more to the right or left, change TAB(10) to a greater or smaller
number until it is exactly where you want it.

To solve the second problem (each countdown number staying on the
screen), we will make use of the command CALL CLEAR that has already
been introduced. It is going to be of great use now. If you are careful with
the line number for the CALL CLEAR statement, it will cause each
number of the countdown to disappear before the next one appears. LIST
program lines 200-250. Where do you think you should insert the CALL
CLEAR line? Actually, there is more than one place which would work.

TRY THIS:

215 CALL CLEAR
RUN

Does this work? RUN the entire program again. Experiment with other
placements of CALL CLEAR and see what the results are.

Here are a few suggestions for tidying up the program before going to
the next chapter. You might want to put a CALL CLEAR at line 2 to
start the program off with a clean screen. There may be other places
where you would like to insert CALL CLEAR as well. Another thing you
could do would be to add a timer loop for the title page so that it stays on
the screen briefly (see lines 30-31 in the PROGRAM UPDATE). Go ahead
and fix the program in any way you desire. In the next few chapters you
will be adding color, sound, a new title page, and making some decisions
regarding the readiness of the object for takeoff.

CHECKPOINT 11

1. What command can you insert into the program, along with a line number,
that will produce a new, clean screen each time it is encountered by the
computer?

2. Byusingtheword —____, along with a number in parentheses,
you can alter the placement of information on the screen.

3. Write a statement that puts the word BANANA 15 spaces to the right on
the screen:

TO CHECK YOUR ANSWERS SEE PAGE 146 IN APPENDIX A

TAB

PROGRAM UPDATE

2

9
10
19
20
30
31
200
210
215
220
225
230
240
250
300

310-

495
999

CALL CLEAR

REM TITLE OF PROGRAM

PRINT "TAKING OFF WITH BASIC"

REM NAME AND DATE

PRINT "PAT GOLDEN, APRIL 15, 1984"
FOR T =1 TO 1000

NEXT T

REM COUNTDOWN

FOR € = 10 TO O STEP -1

CALL CLEAR

PRINT TAB(14); ¢

REM TIMER

FOR T = 1 TO 275

NEXT T

NEXT C

REM HERE IS THE ROCKET

490 (THE CHARACTER GRAPHICS YOU
DESIGNED ON THE GRID)

GOTO 310

END

SAVE TAKE OFF FILE NOW

81

12 Color

The TI microcomputer is unique because it has so many colors that it
can display. How good the colors are depends on the quality of your moni-
tor or television the TI is connected to. Each color is assigned a code
number. Below is a list of these COLOR CODES for the TT:

COLOR CODES
Transparent 1 Medium red 9
Black 2 Light Red 10
Medium Green 3 Dark Yellow 11
Light Green 4 Light Yellow 12
Dark Blue 5 Dark Green 13
Light Blue 6 Magenta 14
Dark Red 7 Gray 15
Cyan 8 White 16

You may not even know some of these colors. You will get a chance to
experiment and see what they look like. The instruction telling the com-
puter to change the color of the screen looks like this:

CALL SCREEN (11)

The number in parentheses is one of the color codes, dark yellow. Chang-
ing the screen color is easy. However, a timer loop is needed in order to see
the new screen color for a while. This is how a FOR/NEXT loop is used:

TRY THIS:
53

54 Taking Off with BASIC

10 CALL CLEAR

30 CALL SCREEN (14)
40 FOR T = 1 TO 500
50 NEXT T

99 END

RUN

This program clears the screen, then changes the screen color to code 14,
magenta. The timer loop causes the screen to remain that color for a count
of 500 before returning to blue. Do you want to see how all the colors
look? Let’s try a nested loop to do a demonstration. Edit the program to
change line 30 and add lines 20 and 60.

TRY THIS:

20 FOR C = 1 TO 16
30 CALL SCREEN (C)
60 NEXT C

We have added a FOR/NEXT loop assigning variable C the numbers 1
through 16 since there are 16 colors on the chart. In line 30 these numbers
will be substituted for the C, and each different color will stay on the
screen for a count of 1 to 500. Run the program and see how it works.

Using the CALL SCREEN instruction makes the TAKE OFF program
more interesting and attractive.

LOAD TAKE OFF FILE NOW
TRY THIS:
199 CALL SCREEN (7)
RUN

What did it do? The color changed to dark red, color code 7, before the
countdown. Any time you want the screen color to change just add
another line number with a CALL SCREEN statement and the color code
number in parentheses. Write a line to make the screen change to dark
green for the TAKE OFF. Use line number 299.

Don’t worry if the colors aren’t quite right. If you want, you can adjust
the tint and color knobs on the monitor to improve the quality.

Notice that the natural blue color of the screen is returned after the
program finishes running. Add color anywhere you want in the program
and experiment with different colors.

Color 55

CHECKPOINT 12

1. How many different colors are available on the TI?
2. What is the statement used in programs to give the screen color?

3. How do you specify what color you want the screen to be in the color state-
ment?
4. Where can you put color statements in the program?

TO CHECK YOUR ANSWERS SEE PAGE 146 IN APPENDIX A
PROGRAM UPDATE

2 CALL CLEAR
9 REM TITLE OF PROGRAM
10 PRINT "TAKING OFF WITH BASIC"
19 REM NAME AND DATE
20 PRINT "PAT GOLDEN, APRIL 15, 1984"
30 FOR T = 1 TO 1000
31 NEXT T
199 CALL SCREEN (7)
200 REM COUNTDOWN
210 FOR C = 10 TO O STEP -1
215 CALL CLEAR
220 PRINT TAB(14); C
225 REM TIMER
230 FOR T = 1 TO 275
240 NEXT T
250 NEXT €
299 CALL SCREEN (13)
300 REM HERE IS THE ROCKET
310 - 490 (THE CHARACTER GRAPHICS YOU
DESIGNED ON THE GRID)
495 GOTO 310
999 END

SAVE TAKE OFF FILE NOW

1 '
[RESTTTYEEEY)

13 String Variables

What in the world are STRING VARIABLES? So far, when we have
defined variables, we have chosen a variable name for a NUMERIC
(number) value. Often in programming we want to use variables with
words or other characters on the keyboard. They are called STRING
VARIABLES.

STRING VARIABLES are not really variables at all since they do not
usually represent numbers. However, they are handled the same in the
computer’s memory as long as you warn the computer that a STRING
VARIABLE is going to be defined. The dollar sign ($) is used for the
warning. Quotation marks must also surround the word. In the line

10 LET CITY$ = "PHOENIX"

the computer finds an empty memory box for a STRING VARIABLE
named CITY$ and places PHOENIX in it. Just like in the line

30 LET A = 20

the computer finds an empty box for a NUMERIC VARIABLE named A
and places 20 in it.

CITYS is the name of the STRING VARIABLE. The $ attached to it
in the LET statement is the warning the computer needs. If the quotation
marks are left out, the computer will be confused since you warned it to
expect a word but then didn’t use quotation marks. This will produce an
error message.

Here is an example of a short program using a STRING VARIABLE.

87

68 Taking Off with BASIC

TRY THIS:

10 LET CITY$ = "PHOENIX"
20 PRINT CITYS

99 END

RUN

The output for this program would be

PHOENIX

since the computer goes to its memory and prints whatever is in the mem-
ory box named CITY$. In the line

30 LET A = 20

the computer saw the A and knew you would enter a number because the

A did not have a $ as part of its name. In line 10 it saw the variable named

CITYS, so it expected a word in quotation marks after the equal sign.
What do you think would happen if you changed line 10 above to read

10 LET CITY$ = PHOENIX

The computer would give the error message

STRING-NUMBER MISMATCH IN 10

because CITY$ tells it to look for a word in quotation marks, and the
quotation marks are missing.

TRY THIS:
30 LET A = "20"

You will get the same error message because you are telling the computer
to expect a number and instead there are quotation marks. Remember
that the computer does not even look inside the quotes so there is no way
it can know there is a number there. It is legal to put numbers inside the
quotation marks but isn’t done very often since a numeric variable name
can be used for that purpose. 4

One way you can remember what the $ is for is that it looks something
like the letter S. When you see a variable such as CITYS$, we call it CITY
STRING. The variable N$ would be called N STRING.

Let’s try putting a string variable into the program.

String Variables 59

LOAD TAKE OFF FILE NOW

TRY THIS:

5 LET TITLE$ = "TAKING OFF WITH BASIC"
10 PRINT TITLES

After making the above changes, run the program to see if the changes
made any difference in the way it runs. It should be exactly the same as it
was before the editing. Make similar changes for line 20 in the program. It
will look something like this:

6 LET NAMES$ = "PAT GOLDEN"

7 LET DATE$ = "APRIL 15, 1984"
20 PRINT NAMES$,DATES
RUN

Notice there are numbers in the STRING VARIABLE in Line 7. When
words and numbers are used together it is usually easier to define them
altogether with one STRING VARIABLE name.

NOTE: When you list the entire program it will now be too long to show
on the screen all at the same time. To stop it in the middle of the listing,
use FCTN 4, or just give it certain line numbers to list.

CHECKPOINT 13

1. What is a STRING VARIABLE?

2. Write a LET statement using a STRING VARIABLE.

w

What is the opposite of a STRING VARIABLE?
How would you say this variable in English? NAMES$
5. If you want to have a variable to represent a street name, what might you

call it?
6. What is wrong with each of the following statements?

e

STATEMENT ERROR
10 LET H = "HEIGHT"
20 LET TIMES = 3
30 LET NAMES = MATT
40 LET A$ = "1962"
50 LET PHONE = "5558155"

TO CHECK YOUR ANSWERS SEE PAGE 146 IN APPENDIX A

60 Taking Off with BASIC

PROGRAM UPDATE

2 CALL CLEAR
5 LET TITLES = "TAKING OFF WITH BASIC"

6 LET NAME$S = "PAT GOLDEN"

7 LET DATE$ = "APRIL 15, 1984"

9 REM TITLE OF PROGRAM

10 PRINT TITLES

19 REM NAME AND DATE

20 PRINT NAMES,DATES

30 FOR T = 1 TO 1000

31 NEXT T

199 CALL SCREEN (7)

200 REM COUNTDOWN

210 FOR € = 10 TO O STEP -1

215 CALL CLEAR

220 PRINT TAB(14); €

225 REM TIMER

230 FOR T = 1 TO 275

240 NEXT T

250 NEXT €

299 CALL SCREEN (13)
300 REM HERE IS THE ROCKET

310 - 490 (THE CHARACTER GRAPHICS YOU

DESIGNED ON THE GRID)

495 GOTO 310
999 END

SAVE TAKE OFF FILE NOW

14 INPUT

A neat thing about string variables is that they allow you to INTER-
ACT with the computer. The word INTERACT means that whoever runs
the program has a chance to put some things into it as it is running. The
user can be permitted to INTERACT with the computer by the use of
INPUT statements. A skillful programmer can make the user feel like a
real part of the programming process. An INPUT statement is a little
tricky.

TRY THIS:

10 PRINT "WHAT IS YOUR NAME"
20 INPUT NAMES

30 PRINT NAMES$

99 END

Notice that in line 30 we have instructed the computer to PRINT
NAMES$ but have not written a LET statement defining what NAMES is.
That is because line 20 allows whoever runs the program to decide what
will be in the memory location for NAMES$. You must run the program to
understand how you can interact with the computer through an INPUT
statement. :

TRY THIS:
RUN

The output is what you entered in answer to the question WHAT IS
YOUR NAME?

61

62 Taking Off with BASIC

Line 10 prints on the screen WHAT IS YOUR NAME

Line 20 instructs the computer to print a question mark and waits for
the user to answer the question. Type in your first name and press
ENTER. It now assigns whatever word you entered to an empty memory
box called NAME$. Whenever the computer comes to an INPUT state-
ment, it puts a question mark on the next line and waits for the user to
answer the question.

Line 30 tells it to print what is in the memory box called NAMES, so
your name will appear on the screen.

Let’s expand this short program to include a numeric variable as
INPUT. Remember that numeric variables do not have a $ in the name.

TRY THIS:

40 PRINT "WHAT IS YOUR AGE"
50 INPUT AGE
60 PRINT AGE

AGE will be the name of the memory location where the number input for
age is placed.

Run the program and answer each question, pressing ENTER after you
do so. The output for this 7 line program (if the name is PAT and the age
is 20) is:

PAT

20

As mentioned earlier, even though there were no question marks after
the questions in lines 10 and 40, they do appear on the screen after the
questions are asked. The computer, as soon as it comes to an INPUT
statement, automatically prints a question mark. INPUT to the computer
means that a question has been asked, so it takes care of the question
mark for you.

LOAD TAKE OFF FILE NOW

It is time to edit the takeoff program again using the INPUT state-
ment. Lines 5 and 10 look something like this:

5 LET TITLES = "TAKING OFF WITH BASIC"
10 PRINT TITLES

Add line 4 and retype line 5 as follows:

4 PRINT "WHAT DO YOU WANT TO CALL THIS PROGRAM"
5 INPUT TITLES

INPUT 63

Line 10 remains the same. Notice that TITLES$ is still the name of the
program, no matter what the user enters. It might be TAKE OFF OF A
HELICOPTER or anything else the user enters. Run the program. What
you enter for the title will be words so it must have a STRING VARIA-
BLE name.

As you have seen, numeric variables can also be used with INPUT
statements. In the lines

40 PRINT "WHAT IS THE DATE"
45 INPUT DATE

the computer expects a number since DATE is a numeric variable name.
Use INPUT statements in lines 20 - 70 to allow the user to input his or
her own name and current date. To make room for this, you must delete
the timer in lines 30 and 31 and place it at lines 80 and 90.
Run and list the program. It is looking pretty impressive!

CHECKPOINT 14

1. What does the computer do when it comes to an INPUT statement in a
program?
2. What kind of statement should come before each INPUT statement?

3. What does it mean when we say that the computer interacts with the
user?

4. If you ask a question that will have a numeric answer, the INPUT state-
ment musthavea_______ variable name.

TO CHECK YOUR ANSWERS SEE PAGE 147 IN APPENDIX A

PROGRAM UPDATE

CALL CLEAR

PRINT "WHAT DO YOU WANT TO CALL THIS PROGRAM"
INPUT TITLES$

REM TITLE OF PROGRAM

10 PRINT TITLES

15 FOR T = 1 TO 500

16 NEXT T

17 CALL CLEAR

19 REM NAME AND DATE

20 PRINT "WHAT IS YOUR NAME"

oSN

64 Taking Off with BASIC

25 INPUT NAMES$

30 PRINT "WHAT IS THE MONTH"
35 INPUT MONTHS

40 PRINT "WHAT IS THE DATE"
45 INPUT DATE

50 PRINT "WHAT IS THE YEAR"
55 INPUT YEAR

60 PRINT NAMES$

70 PRINT MONTH$;DATE;",";YEAR
80 FOR T = 1 TO 1000

90 NEXT T

199 CALL SCREEN (7)

200 REM COUNTDOWN

210 FOR C = 10 TO O STEP -1
215 CALL CLEAR
220 PRINT TAB(14); C
225 REM TIMER

230 FOR T = 1 TO 275

240 NEXT T

250 NEXT C

299 CALL SCREEN (13)

300 REM HERE IS THE ROCKET
310-490 (THE CHARACTER GRAPHICS YOU

DESIGNED ON THE GRID)

495 GOTO 310

999 END

SAVE TAKE OFF FILE NOW

You can surely guess what this chapter is about. The TI has a wide
variety of sounds it can make. In order to learn how to use them, there are
some vocabulary words that must be defined.

CALL SOUND

This is the statement used to warn the computer to expect further
instructions about exactly what sound you want played. In addition to
the CALL SOUND statement, there are three numbers that must be
included in parentheses. The format of the statement looks like this:

CALL SOUND(1000,262,5)

DURATION

The first number inside the parentheses refers to how long you want the
sound to be played. In the example above, the sound is played for a length
of 1000. Each CALL SOUND statement must have the DURATION
number immediately following the left parentheses. The number 4250 is
the longest number that is allowed for DURATION; the shortest is 1. A
DURATION of 1000 is about 2 seconds.

65

66 Taking Off with BASIC

TONE

The note you want to hear is called the TONE and is the second
number inside the parentheses. There is a code number for each note the
computer can play. Appendix B lists the numbers for many musical notes.
A list of Middle C through High C is shown below. In the line on page 65,
262 refers to Middle C (check this with the chart). There must be no
spaces between the numbers and commas inside the parentheses.

VOLUME

Loudness is determined by the third number inside the parentheses. In
the example, the loudness number is 5. The loudest VOLUME is the
number 0, and the softest is the number 30 (which you may have trouble
hearing at all!). Remember that before you type the VOLUME number,
you must have a comma.

TONE NUMBERS FOR MIDDLE C THROUGH HIGH C

262 MIDDLE C
294 D

330 E

349 F

392 G

440 A

494 B

523 HIGH C

If we wanted to write lines to play the notes Middle C, E, G and High C,
they would look like this:

TRY THIS:

10 CALL SOUND(1000,262,5)
20 CALL SOUND(1000,330,5)
30 CALL SOUND(1000,392,5)
40 CALL SOUND(1000,523,5)
99 END

These lines each have the CALL SOUND statement, parentheses, a dura-
tion number of 1000, the number of each different note, and a volume level
of 5. Run the program. If you don’t hear anything, turn up the volume on
the monitor.

We could make each note shorter and softer than the last by editing the
lines.

Sound 67

TRY THIS:

10 CALL SOUND(700,262,10)
20 CALL SOUND(500,330,15)
30 CALL SOUND(250,392,20)
40 CALL SOUND(100,523,25)

Run the program again. Notice how the duration number keeps getting
smaller, and we made it softer by increasing the volume number. The tone
numbers stayed the same as before.

Now it’s time to put some sound into your program.

LOAD TAKE OFF FILE NOW

How about putting in the whole scale to begin with? We’ll use a dura-
tion of 500 and a volume of 5. The scale will include every note from Mid-
dle C to High C. The first line will look like this:

510 CALL SOUND(500,262,5)

Using line numbers 520 through 580, write the other seven program lines.
When you are finished, add a REM statement at line 500 explaining what
will be happening in lines 510-580.

After you enter these lines and check them for errors, run the program
and see how it sounds. To check it out you will have to omit the GOTO
statement that causes your object to continue taking off (line 495). Other-
wise, it will never get to the CALL SOUND instructions.

TRY THIS:
495 (Press ENTER)
The GOTO will be reinserted later.

CHECKPOINT 15

1. What are the two words necessary in the statement that instructs the com-
puter to play a musical note?
What does DURATION mean?
What does TONE mean?
What does VOLUME mean?
What are the numeric limits for VOLUME?
What are the numeric limits for DURATION?
How do you indicate what TONE you want played?

NegkwN

68 Taking Off with BASIC

8. Inside the parentheses, what number comes first? What
number comessecond? _ Third?

TO CHECK YOUR ANSWERS SEE PAGE 148 IN APPENDIX A

PROGRAM UPDATE

2 CALL CLEAR

4 PRINT "WHAT DO YOU WANT TO CALL THIS PROGRAM"

5 INPUT TITLES

9 REM TITLE OF PROGRAM

10 PRINT TITLES

15 FOR T = 1 TO 500

16 NEXT T

17 CALL CLEAR

19 REM NAME AND DATE

20 PRINT "WHAT IS YOUR NAME"
25 INPUT NAMES

30 PRINT "WHAT IS THE MONTH"
35 INPUT MONTHS$

40 PRINT "WHAT IS THE DATE"
45 INPUT DATE

50 PRINT "WHAT IS THE YEAR"
55 INPUT YEAR

60 PRINT NAMES

70 PRINT MONTH$,DATE;",";YEAR
80 FOR T =1 TO 1000

90 NEXT T
199 CALL SCREEN (7)
200 REM COUNTDOWN
210 FOR C = 10 TO O STEP -1
215 CALL CLEAR
220 PRINT TAB(14); C
225 REM TIMER
230 FOR T = 1 T0 275
240 NEXT T
250 NEXT C
299 CALL SCREEN (13)
300 REM HERE IS THE ROCKET
310- 490 (THE CHARACTER GRAPHICS YOU

DESIGNED ON THE GRID)

500 REM SOUND EFFECTS
510 CALL SOUND(500,262,5)
520 CALL SOUND(500,294,5)

530
540
550
560
570
580
999

CALL
CALL
CALL
CALL
CALL
CALL
END

SOUND(500,330,5)
SOUND(500,349,5)
SOUND(500,392,5)
SOUND(500,440,5)
SOUND(500,494,5)
SOUND(500,523,5)

SAVE TAKE OFF FILE NOW

Sound

69

o] / /
(=} O-——————————— /
a] o /
o O-———mm e

o]

o =]
cooo

16 Subroutines

A SUBROUTINE is a self-contained set of instructions that you may
put into a program and cause to be run whenever you want without writ-
ing it over each time. For example, remember the sound section you wrote
in the last chapter? We can use it in different places in the program as a
SUBROUTINE but it only needs to appear in the program once.

LOAD TAKE OFF FILE NOW

Two statements are needed to put a SUBROUTINE into operation:
GOSUB and RETURN. When the computer comes to a GOSUB state-
ment, it might look like this:

205 GosuB 510

This is literally saying, “Go run the instructions that begin at line 510.”
The computer jumps to line 510, ignores everything in between, and exe-
cutes line 510 and everything that follows that line until it reaches the
RETURN statement:

590 RETURN

When it sees RETURN, it goes back to the instruction immediately fol-
lowing the GOSUB line that sent it.

TRY THIS:

205 GosuB 510
495 6oTO 310
590 RETURN
RUN

71

72 Taking Off with BASIC

Hooray! The TAKE OFF is back intact. We are using the musical scale as
a SUBROUTINE now. After it finished playing lines 510-580, line 590
RETURN:S it to line 210.

Let’s put the scale at the beginning of the program just for fun.
TRY THIS:
3 Gosus 510

The RETURN at line 590 will automatically send it back to line 4 (since
line 4 is the next line following 3).

Here is a problem for you. It doesn’t make much sense to have a musical
scale play before the TAKE OFF. Why not experiment and see if you can
make a better sound for the TAKE OFF? Can you simulate an explosion
or the sound of a helicopter? You might need more TONES. The entire
list of tones can be found in APPENDIX B. Supplement 16 also has some
information about special noises you might find helpful.

CHECKPOINT 16

1. What is a SUBROUTINE?

2. What two statements are necessary as part of the instructions to use a
SUBROUTINE?

3. What must come after the GOSUB statement on the same line?

What does it indicate?

4. How many times can you use one SUBROUTINE in a program?

TO CHECK YOUR ANSWERS SEE PAGE 148 IN APPENDIX A

PROGRAM UPDATE

2 CALL CLEAR

3 GosuB 510

4 PRINT "WHAT DO YOU WANT TO CALL THIS PROGRAM"
5 INPUT TITLES

9 REM TITLE OF PROGRAM

10 PRINT "TAKING OFF WITH BASIC"

15 FOR T = 1 TO 500

16 NEXT T

17 CALL CLEAR

Subroutines

19 REM NAME AND DATE
20 PRINT "WHAT IS YOUR NAME"
25 INPUT NAMES$
30 PRINT "WHAT IS THE MONTH"
35 INPUT MONTHS$
40 PRINT "WHAT 1S THE DATE"
45 INPUT DATE
50 PRINT "WHAT IS THE YEAR"
55 INPUT YEAR
60 PRINT NAME$S
70 PRINT MONTHS,DATE;",";YEAR
80 FOR T = 1 70 1000
90 NEXT T
199 CALL SCREEN (7)
200 REM COUNTDOWN
205 GosuB 510
210 FOR C = 10 TO O STEP -1
215 CALL CLEAR
220 PRINT TAB(14); C
225 REM TIMER
230 FOR T = 1 TO 275
240 NEXT T
250 NEXT €
299 CALL SCREEN (13)
300 REM HERE IS THE ROCKET
310-490 (THE CHARACTER GRAPHICS YOU
DESIGNED ON THE GRID)
495 GOTO 310
500 REM SOUND EFFECTS
510 CALL SOUND(500,262,5)
520 CALL SOUND(500,294,5)
530 CALL SOUND(500,330,5)
540 CALL SOUND(500,349,5)
550 CALL SOUND(500,392,5)
560 CALL SOUND(500,440,5)
570 CALL SOUND(500,494,5)
580 CALL SOUND(500,523,5)
590 RETURN
999 END

SAVE TAKE OFF FILE NOW

73

EEXEAXEXFEXANXX
* %
¥ ¥
% 3
X HHHBHOHGURBHHBEEE X
#HHHEH G *
L] HEHHBBNHARER X
HHHHH B O 88 *

HEHHN LEL L2

R OK

% *

221222223
X %
x X
¥ ¥
¥ ¥
AXXXX
[33.333

17 Finishing Touches

The program you have been creating for 16 chapters is now near com-
pletion. Just as you reread a letter you have written to make certain it
says just what you want, programmers do the same with their collection
of instructions. In reviewing the TAKE OFF program, here are some
things to check for:

REM statement. It is easy to put enough REM statements in a pro-
gram so anyone could read it and follow what the computer is supposed to
do. To make REMs easy to see, you can surround them with several
asterisks:

10 REM ***INITIALIZE VARIABLES***

END statement. Make sure you have included an END statement in
the program. This should be done early in your writing. On some com-
puters, you cannot save a program if there is no END statement.

Title Page. Run the TAKE OFF program and look at the title page.
Using color, formatting, and other statements you have learned, make the
title page look impressive. You might even want to design some special
characters for your own name. Supplements 10 and 12 have some sugges-
tions that might be helpful.

Color. Insert color throughout the program to make it more interesting.

Sound. Using sound in certain parts of a program can also be very effec-
tive. Special tunes before the title page appears, at the time of the take
off, and as a finale are appropriate placements.

Interaction. Using input, you might want to allow the user to be more
in control of the program. For example, ask the user to decide how many
times the object will take off, what colors to use, or what tune to play.

75

76 Taking Off with BASIC

You might ask the user to input certain personal information and then use
it in the program.

As you can see, there are an endless number of changes and additions
you could make to this program. What you have designed is unique. It
reflects your personality as well as your understanding of the concepts you
have learned. It is also very interesting to look at others’ programs to see
how they have written a program similar to yours. You will find many
differences, but each one is still correct. .

If a printer is available to you, print out a listing of the final TAKE
OFF program so that some day in the future you can look at your first
major program. Most likely, you will be amazed at how well you did. You
will probably be glad that you have many REM statements throughout it.

Hopefully your first experiences at writing a computer program were
challenging, fun, and satisfying. Now you can TAKE OFF on your own!

MAKE FINAL CHANGES
AND SAVE TAKE OFF FILE NOW

Introduction To
Supplemental Chapters

The seventeen supplemental chapters are for those of you who are in
one of the following categories; advanced users who already know the
material in Chapters 1-17; or those of you who have successfully com-
pleted the first seventeen chapters and want to continue with more
advanced BASIC concepts.

Some of the exercises in this section will suggest additions or updates to
the TAKE OFF program. However, the main goals of the supplemental
chapters are to offer enrichment material, engrain the BASIC concepts
presented in chapters 1-17, and encourage the generalization of the
BASIC language to applications which are not related to the TAKE OFF
program. This section will also serve to round out your knowledge of
BASIC programming and increase your comfort level with the TI-99/4A.

NOTE: If you do each supplement after completing each regular chapter,
be sure to save the TAKE OFF file before beginning the supplement.

7

SUPPLEMENT 1
Hardware and
Initializing

There is a variety of equipment or hardware which you can purchase for
the TI-99/4A. Some of it will be described here, along with instructions for
making preparations for using it to save the work you will be doing as you go
through this manual. First, a few more vocabulary words will be helpful.

Floppy Disk

Also called a DISKETTE or DISK, it is about the shape of a 45 record,
very flexible, and comes in a square paper envelope. You can buy FLOPPY
DISKS with programs (software) already on them, such as games or educa-
tional lessons. You may also put your own program on a FLOPPY DISK so
that you can save it. The FLOPPY DISK is in a permanent envelope to
protect it from scratches, dust, or any other things that can ruin it. It must
be treated carefully and should never be placed on top of something that is
heated, like the television, or left in hot places. Once a DISK is ruined, it
cannot be used again. A blank disk costs about $3 to $5.

79

80 Taking Off with BASIC

Disk Drive

This is a piece of hardware which resembles a rectangular box and is
labeled DISK DRIVE. When the switch on the back is pressed on its left -
side, it is in the OFF position. The door on the front can be opened to
accept a FLOPPY DISK.

Disk Controller

A silver rectangular box labeled DISK CONTROLLER is the piece of
hardware necessary to run the disk drive. The switch is on the front right.
The OFF position is when the switch is pushed toward the left.

Command Module

A black plastic hand-sized item similar to a cassette tape, the COM-
MAND MODULE has software stored inside it. Like a diskette, it may be
a game or educational lesson. The module entitled DISK MANAGER is
necessary when you are working with a floppy disk. The DISK MAN-
AGER has information on it that helps you operate the computer.

Peripheral Expansion System

You may have purchased a PERIPHERAL EXPANSION SYSTEM
for your TI-99/4A which combines the disk drive and disk controller. The
word peripheral simply means “something on the outside”. Expansion
refers to adding hardware to your computer equipment. A System is a
collection of units. In this case, it includes the disk drive, disk controller,
and can also include extra memory.

Cassette Tape Player

A tape recorder can also be used to save and load software on the TIL
It is less expensive than a disk drive, but also is slower at loading and
saving. It is, however, the only alternative to a disk drive or Peripheral
Expansion System and is very nice to have if a drive is not in the budget.

Hardware and Initializing 81

Cassette Tape

For TI systems with tape recorders, purchase tapes of good quality,
and not longer than C-60 for saving and loading programs. Tapes do not
hold as much information as disks and are not as durable.

File

Once a program is written and placed on a floppy disk or cassette tape,
it is called a FILE. Each FILE has its own name so that you can find
what you want very easily.

Initialization

This is the process of preparing a new, blank floppy disk to save pro-
grams on. If a disk is not INITIALIZED, you cannot save programs on it.
It is not necessary to initialize tapes, however. Each microcomputer’s
memory is a little different so that you cannot take a disk or tape you
made on the TI and use it on a different brand of microcomputer.

Initializing a Floppy Disk

The TI microcomputer must be turned on in a specific way or it will not
operate properly. Following are the instructions for initializing a new,
blank disk, along with the directions for turning on the different pieces of
hardware. If you have a Peripheral Expansion System, see the informa-
tion in parentheses. You should follow these instructions if you plan to
save the program to be written in chapters 1-17.

1. Make sure that all switches are OFF on the KEYBOARD, DISK DRIVE,
and DISK CONTROLLER (or Peripheral Expansion System).

2. Hold the new disk with your right hand, thumb on the label. (The fingers
on your right hand will be on the label.)

3. Open the disk drive door.

4. Gently slip the disk into the drive so that the label is facing up and is the
last to go in. (The label should be facing right.)

5. Close the disk drive door.

6. Hold the DISK MANAGER command module in your right hand with
the label facing your palm.

7. Find the area to the right of the TI-99/4A label on the top of the key-
board. Firmly push the DISK MANAGER command module into this
area.

82

8.

Taking Off with BASIC

Turn the switches ON in the following order (ORDER IS VERY
IMPORTANT):

A. DISK DRIVE

B. DISK CONTROLLER

C. KEYBOARD

D. MONITOR

E. (PERIPHERAL EXPANSION SYSTEM)

You could destroy a disk if you do not follow the correct order.

9.

10.
11.
12.
13.
14.
15.

16.

17.

18.

19.

20.

The screen should now say
TEXAS INSTRUMENTS HOME COMPUTER

If the screen remains blank, turn everything off and repeat steps 6 and 7.
If the screen still remains blank, start over with Step 1.

Press any key to go to the next screen.

Press the number for DISK MANAGER and wait for the next screen.
Press the number for DISK COMMANDS and press ENTER.

Press the number for INITIALIZE NEW DISK and press ENTER.
Press the number for MASTER DISK. This indicates that your new
floppy disk is in the disk drive (or the first one if you have more than one).
Type in the name of your new disk. For example, you might want to call it
«“PATSDISK1”. You can choose whatever name you want. Limit your
name to less than 15 letters or numbers, and leave NO spaces inside the
quotation marks. Press ENTER.

Press the letter Y and press ENTER.

Hold down the shift key and press the V briefly. The disk drive will now
go on and the disk will be initialized. It will take about two minutes to do
s0.

You have now initialized the disk. Remove it from the drive until you are
ready to save something on it or load something from it. Label it with a
felt pen. (A pencil or hard point pen will damage the disk.) Replace it in
its protective envelope and keep it in some kind of container.
Instructions are given in Supplement 3 for saving and loading files.

SUPPLEMENT 2
Flow Charting

Programming style is important to develop so that programs are easy to
read and follow by anyone looking at them. When you write programs you
should not sit down at the computer and begin to write lines of instruc-
tions. Before you ever get to the microcomputer, you should know what
your goal is and have the entire program largely written. There is a
method of organizing a program so that it can be programmed more easily
called FLOW CHARTING.

Steps to Planning a Program

There are 7 steps to planning a program or part of a program when
FLOW CHARTING is used.

1.

2.

NS ok w

Decide what the problem is you want to solve or what you want the com-
puter to do.

Sketch out a flow chart showing the order you want the computer to follow
in carrying out your plan.

Write program instructions for each box on the flow chart you have drawn.
Enter the instructions into the computer.

Run the program to see if it does what you want it to.

Debug the program (fix the mistakes.)

Repeat steps 5 and 6 until you are satisfied with the results.

83

84 Taking Off with BASIC

START

GET 800K

(START ’

y SIT DOWN
GET BOOK <
Y A
‘ OPEN BOOK
SIT DOWN
+ NO
OPEN BOOK YES \
Y
READ
ND
YES
CLOSE BOOK
‘ CLOSE BOOK
GET UP
GET UP
Y *
PUT BODK AWAY
PUT BOOK AWAY

|

FIGURE S2-1 FIGURE S2-2

Flow Charting 85

Sample Flow Chart

First we will draw a FLOW CHART for a practical activity that has
nothing to do with programming. Follow the flow chart shown on the left
of page 84 for reading a book.

The flow chart in Figure S2-1 is very simple. Notice how it differs from
Figure S2-2 for the same activity. In Figure S2-2 there is an opportunity
to make some decisions. The arrows tell it where to go, whether the
answer is YES or NO. The shapes you see around the words are important
too. Figure S2-3 defines each shape.

The plan we intend to use for the TAKE OFF program looks like Figure
S2-4 on page 86.

It’s not as complicated as it may seem. Follow each symbol, reading
inside what the computer will do. Pay particular attention to the arrows
and you can’t get lost.

STOP OR START ACTIONS DECISIONS INPUT/OUTPUT
OVAL RECTANGLE DIAMOND PARALLELOGRAM

FIGURE S2-3

86 Taking Off with BASIC

START

PLAY MUSIC
SUBROUTINE

READ DATA
FOR TITLE

PAUSE

READ DATA
FOR NAME
AND DATE

PRINT
NAME AND
DATE

PAUSE

l

PLAY MUSIC
SUBROUTINE

FIGURE S2-4

COUNTOOWN
SUBROUTINE

PRINT
COUNTOOWN
NUMBER

PAUSE

NUMBER - & NO
YES

TAKE-CFF
SUBROUTINE

Flow Charting 87

EXERCISES

1. Make a flow chart for this activity. You want to go to the store on your
bike to get a notebook. Put these steps in order and draw the correct shapes
around them. Add any other steps which you think are important.

IS TRAFFIC COMING?
FIND NOTEBOOK IN STORE
GET BIKE

STOP

IS NOTEBOOK OK?
UNLOCK BIKE

LOCK BIKE

PAY FOR NOTEBOOK
CROSS STREET

GET OFF BIKE

GET ON BIKE
ENTER STORE
LEAVE STORE

AT STORE?

RIDE BIKE
INTERSECTION

AT HOME?

START

PUT BIKE AWAY

2. Write a flow chart for the following activities, using your own ideas for the
necessary steps to complete it:

Eating a meal
Playing a card game
Going to a movie
Making a sandwich

peop

SUPPLEMENT 3
SAVING and LOADING

Writing programs for a computer is a time consuming undertaking. For
long programs, many hours are involved. Even if you write a program in
one day, you usually want to come back and make some changes (debug
it) at a later time. Consequently, there must be some way to SAVE what
you have written so that you can turn off the computer at the end of a
session and not lose all your work.

When the computer is turned on, it remembers the instructions you
have entered only as long as it stays turned on. Our memory is different.
When we go to sleep, we wake up remembering many things. Going to
sleep does not erase everything we know from our memory. The computer
does not have a living brain like ours, so it is necessary for us to have a
way of SAVING what we want it to remember so that it will be there the
next time we are ready to continue working on the project.

In Supplement 1 you may have initialized a disk (prepared one to save
your work), or perhaps you are using a cassette tape. Disks or tapes take the
place of the computer’s memory. Just as you can save voices on cassette
tapes, or songs on records, you can save a program on a floppy disk or cas-
sette tape. The disk must be initialized on the microcomputer on which you
wish to run your program. This is explained in Supplement 1. Remember
that you cannot use a TI disk or tape on any other kind of microcomputer.

After you complete each lesson in Chapters 3-17, you will want to
SAVE what you have added to the TAKE OFF program on the prepared

89

9 Taking Off with BASIC
disk (or tape) if you have the hardware to do so. The following is a prac-
tice exercise to save a file on a disk or tape.

Saving a Program on a Disk:

1. Insert the disk in the disk drive and turn on the hardware in this order:

a. Disk Drive

b. Disk Controller
c. Keyboard

d. Monitor

o

(Peripheral Expansion System)

(If the equipment is already on, just insert the disk in the drive.)
2. Put the DISK MANAGER command module in place
3. Type this four-line program and press ENTER at the end of each line:

10 REM *PRACTICE PROGRAM TO SAVE*
20 PRINT "THIS IS ONLY A TEST SAVE"
30 PRINT "END OF TEST SAVE"

99 END

SAVE DSK1.TESTSAVE

This program tells the computer to save, on a disk (DSK) in drive 1, the 4
instructions you have entered. It names the file TESTSAVE. The drive
will go on for a few seconds. Wait until you see the flashing cursor in the
lower left corner, which means your program is now saved. You can choose
any name for the file, but leave no spaces in it.

Loading a File Saved on a Disk

Let’s say that after saving the TESTSAVE file you have finished work-
ing on the computer. Remove the disk from the disk drive, and turn off
the hardware. It is now the next day and you sit down at the TT and want
to see the TESTSAVE file. Follow these instructions:

1. Insert the disk, DISK MANAGER, and turn on the hardware in the cor-
rect order.
2. Go to TI Basic and enter this:

OLD DSK1.TESTSAVE

This tells the computer to find an old file (all files already saved are called
OLD) on a disk in drive 1 named TESTSAVE. The drive will go on and
search the disk for a file by that name. When the program has been located
you will see the flashing cursor again.

3.

Saving and Loading 91

Type LIST and TESTSAVE will appear on the screen. You can now add to
it or make changes. If you do, then you MUST save the file again or else
the changes will NOT be recorded on the disk. To save the new version
enter:

SAVE DSK1.TESTSAVE

You give the same command whenever you want to save a file, new or old.
You can name the file anything you want, of course.

Cataloging the Disk

You may forget what programs you have saved on the disk. Follow
these steps to get a CATALOG (listing) of the programs on it:

10.

PPNk N

Insert the disk in the disk drive.

Turn on the hardware if it is not already on.

Press any key.

Press the number for DISK MANAGER.

Wait for DISK MANAGER options to appear.

Press the number for DISK COMMANDS and then ENTER.
Press the number for CATALOG DISK and then ENTER.
Press the number for MASTER DISK and then ENTER.
Press the number for SCREEN and then ENTER.

Hold down the SHIFT key and press the V.

The contents of the disk will appear. It will list FILENAME, SIZE,
TYPE and P. You need only worry about the FILENAME list, since this
is what you use when you want to look at or run one of your programs.
Remember that you must be in TI BASIC in order to load a program from
a disk. Practice SAVING, LOADING, and CATALOGING with your
disk. You must use the EXACT name as shown in the catalog.

Saving a File on Tape

1.
2.

3.

Insert the tape into the tape recorder.
Go to TI BASIC and enter this four-line program exactly as shown. Press
ENTER at the end of each line:

10 REM *PRACTICE PROGRAM TO SAVE*
20 PRINT "THIS IS ONLY A TEST SAVE"
30 PRINT "END OF TEST SAVE"

99 END

Enter this command:

92

Taking Off with BASIC

SAVE CS1.TESTSAVE

which tells the computer to save on a cassette tape (CS) a file named
TESTSAVE.

There will now be instructions on the screen which you should follow to
complete the saving process.

Loading a File Saved on Tape

Now that the file TESTSAVE is saved on the tape, you can turn off the
computer and leave. When you return, this is how to put TESTSAVE (or
any file you have saved) back into the computer’s memory:

4

1
2.
3.
4

Insert the tape into the recorder.
Turn on all the hardware.

Go to T1 BASIC.

Enter

OLD CS1.TESTSAVE

Follow the instructions on the screen.

When it has been loaded, the flashing cursor will appear in the lower left
corner. Simply type LIST and the program will appear. You can now add
to it or make changes. If you do, you MUST save it again or else the
changes will NOT be recorded on the tape. Use the same file name you used
before, and the new version will replace the old one:

SAVE CS1.TESTSAVE

You will be taken through the same process as before with instructions on
the screen to follow.

Cataloging the Tape

Cassette tapes cannot be catalogued on a computer. It is very important
that you keep a careful record of the files and file names that you save on
a tape for your reference.

SUPPLEMENT 4
Immediate Mode

The computer has a special capability called the IMMEDIATE MODE.
This mode allows you to get immediate action or execution of the instruc-
tions you enter. Line numbers are not used.

TRY THIS: (Press ENTER after each line)

NEW
PRINT 12345

Immediately after pressing ENTER the computer follows the instruc-
tions. NEW erases everything from the memory. On the screen are the
numbers 12345, because it was told to PRINT them. The PRINT state-
ment is necessary so that you can see the results on the screen.

TRY THIS:

CALL CLEAR
PRINT 10 + 20 - 5

You are using the TI as a calculator now—an expensive one at that! The
major difference between the IMMEDIATE MODE and the PROGRAM-
MING MODE is that in the IMMEDIATE MODE only one instruction
can be executed at a time, no line numbers are used, and it is not necessary
to type RUN since each instruction is executed as soon as ENTER is
pressed. When you write a program, you accumulate several numbered

93

94 Taking Off with BASIC

lines of instructions and each one is executed in order when you give the
RUN command.

When using the computer to do math, either in the IMMEDIATE
MODE or the PROGRAMMING MODE, there are some important rules
to follow. First, study this list of arithmetic symbols the computer knows.

+ ADDITION - SUBTRACTION + MULTIPLICATION
/ DIVISION A EXPONENTIATION () PARENTHESES

The PLUS and MINUS symbols are easy to remember. They were used
in the example of the IMMEDIATE MODE above:

1+ 2
10 + 20 - 5

The asterisk (*) and slash (/) are used by most computers to indicate
multiplication and division.

TRY THIS:
PRINT 2 * 10 / 5

The answer should be 4 since 2 times 10 is 20 and 20 divided by 5 is 4. Do
you agree? Predict the answer to this line:

PRINT 5 * 3 + 10

The answer is 25.
TRY THIS:

PRINT 10 + 5 * 3

The answer is 25. When doing a math problem the rule is to always do the
multiplication and division before doing the addition and subtraction. In
the problem:

PRINT 5 * 3 + 10

it first multiplied 5 and 3 (15) and then added 10 (25). In the problem
PRINT 10 + 5 * 3, it multiplied first (5 * 3 = 15) and added 10, no matter
in what order the problem was entered. If your answer was 45, it’s because
you ADDED 10 + 5 first, then multiplied 15 by 3 to get 45. When you use
the computer as a calculator you must remember that multiplication and
division are done before addition and subtraction. Predict the answer to
this line:

PRINT 30 - 20 /7 10

Immediate Mode 95

The answer is 28 since the division is done first: 20 divided by 10 is 2; 30 -
2 is 28. Experiment with some problems of your own, each time predicting
what the answer will be.

There is a more advanced arithmetic concept which stands for

EXPONENTIATION (squaring, cubing, etc.).
TRY THIS:
PRINT 4 A 2

This instructs the computer to SQUARE the number 4. Literally, it means
“4 to the second power”. When writing this problem by hand, it looks like
this: 4 and the answer is 16. To SQUARE a number means to multiply it by
itself. Predict the answer to this line before pressing ENTER.

TRY THIS:
PRINT 3 A 2

Three times itself (3 * 3 or 32 is 9. In higher mathematics exponentiation is

used frequently. You will probably not use it very often in everyday math.
The parentheses () are also important when doing arithmetic on the

computer. What do you think the answer to this problem will be?

TRY THIS:
PRINT (4 + 2) * 3

Using parentheses is a way of getting the computer to do a calculation
BEFORE any other. The answer would be 18; 4 + 2 (6) is calculated first
due to the parentheses surrounding that problem; then 6 is multiplied by
3 (18). If the parentheses were removed from the problem the answer
would be 10; 2 times 3 = 6, and 6 + 4 = 10. Check this on the computer
without the parenthesis.

Here are some more predictions for you to make:

PRINT (8 - 4) / 2
PRINT 8 - 4 / 2
PRINT (8 + 6) / 2 + 4 - 1
PRINT 8 + 6 / 2 + (4 - 1)

The order the computer must follow when doing an arithmetic problem is
called the ORDER OF OPERATIONS:

FIRST it calculates anything inside the parentheses
SECOND it calculates EXPONENTIATION

THIRD it calculates MULTIPLICATION and DIVISION
FOURTH it calculates ADDITION and SUBTRACTION

96 Taking Off with BASIC

It also ALWAYS begins looking at the problem from left to right, so in
the problem:

PRINT (4+3) * (7-1) / 6

FIRST it calculates (4 + 3) (=7) in parentheses;

SECOND it calculates (7 - 1) (=6) in parentheses;

THIRD it calculates 7 times 6 (=42) multiplication on the left;
FOURTH it calculates 42 divided by 6 (=7) division on the right;

Do you see how important it is to know how you want a problem fig-
ured out before entering it into the computer? For example, here is a prob-
lem and the instruction for it:

There are 5 boys and each buys 2 hamburgers. When they are finished
eating, 3 of the boys buy one more. How many hamburgers were
purchased?

PRINT 5 * 2 + 3

A total of 13 hamburgers are purchased. What about this problem?

Two boys come into the restaurant and then 3 more friends join them.
They each buy 5 hamburgers (they’re very hungry boys!). How many did
they buy altogether?

PRINT (2 + 3) * 5

First you add the number of boys (in parentheses) then multiply the
answer by 5. This looks similar to the instructions for the first problem,
but gives a different answer. Do you understand why? If not, go over the
examples again.

Always plan ahead to decide how you want to write the PRINT state-
ment so that it does the arithmetic problem in the correct order.

EXERCISES

1. Figure out these problems using the IMMEDIATE MODE by placing the
parentheses in the correct spot to get the answer provided:

a. T+ 4+*5 Answer = 55
b. 6/3-2+1 Answer = 1
c. 20-4/4+4 Answer =8
d 20+ 5*10-6 Answer = 40

2. A dozen eggs cost 89 cents. How much does one egg cost?

3. Terry washes cars for $2.50 and trucks for $3.00. How much does Terry
make if he washes three cars and two trucks?

4. Pat babysits for $2.50 per hour, but after midnight the fee increases to
$3.00. How much is made if Pat babysits from 7 p.m. to 2 am.?

SUPPLEMENT 5
Editing

The Texas Instruments 99/4A microcomputer has one of the best edi-
tors available today. One way of editing a line of instructions was illus-
trated in Chapter 5. There are actually two other methods that can be
used for editing just as easily.

The way you already know is to enter the number of the line you want
to edit, hold down the FCTN key, and press the letter E (up arrow). This
places the line indicated on the screen and allows you to use certain keys
to make changes in it without retyping the entire line.

A second way to use the edit mode is to enter the number of the line you
want to edit, press the FCTN key and then the X (down arrow). This also
prints the instruction on the screen, ready to be edited, exactly as FCTN
E does.

TRY THIS:
10 PRINT "HAVE A NICE DAY" (Press ENTER)

For practice, let’s change the message in line 10 to HAVE A NICE EVE-
NING. Type 10, press the FCTN key, and then press X to place the line in
the edit mode. Move the cursor to the D in DAY using the FCTN key and
the right arrow. Simply type EVENING right over the word DAY. Press
ENTER and the changes are made. Type LIST 10 to check to see that the
change was made.

The third way to edit a line is also easy.

97

98 Taking Off with BASIC

TRY THIS:
EDIT 10 (Press ENTER)

Again, you can use the FCTN key and arrows to change EVENING to
MORNING. Don’t forget that the question marks must be at the end of
the line. List line 10 to check that the change was made.

Choose whichever of the three methods of editing you find easiest to use
since they all accomplish the same thing.

Here is one additional tip that comes in handy. Let’s say that you have
a ten line program, with line numbers from 10 to 99. You want to edit
lines 30, 40 and 50, but for some reason you want to edit line 40 first. You
would enter

40 FCTN E

and edit the line. A shortcut way to get line 30 on the screen for editing is
to enter

FCTN E (Up arrow)
This places the line just before the one currently in the editor on the
screen. Following the same idea, if line 40 is in the editor and you enter
FCTN X (Down arrow)

line 50, or the line right after the one currently in the edit mode is placed
on the screen. You will find that the FCTN and arrow keys will save you a
lot of time when editing programs.

EXERCISE

1. Write a short program to print several things on the screen. Go back and
edit them using all three methods to determine which one you feel most
comfortable with.

SUPPLEMENT 6
Punctuation

The semicolon (;) and the comma (,) have special meanings in BASIC.
When you use the PRINT statement, you can control the way in which it
shows the information on the screen. This is referred to as
FORMATTING.

The COMMA tells the computer to start printing at the beginning of a
FIELD. On the TI, each row of print is divided into two FIELDS of four-
teen (14) spaces each.

TRY THIS:

10 PRINT 1,2
RUN

This instruction prints a 1 at space number 1 and a 2 to its right at space
number 15, the beginning of the second FIELD. Let’s try some examples.

TRY THIS:

10 PRINT 1,2,3,4
RUN

When you type a comma between the numbers you can only get two num-
bers on a line since there are only two FIELDS per row. A number or word
can be up to fourteen spaces long, because that is the length of one
FIELD.

99

100 Taking Off with BASIC

TRY THIS:

10 PRINT "HI","FRIEND"
RUN

HI is printed beginning in the first space, then the comma instructs the
computer to begin the word FRIEND in space 14, the beginning of the
second FIELD.

The SEMICOLON tells the computer to print one number (or word)
right next to the other.

TRY THIS:

10 PRINT 1;2
RUN

Notice that there is one space before the 1, and 3 spaces between the 1 and
2. These spaces are automatically put in by the computer in case a nega-
tive sign were needed. If you type -1, the minus sign will take the first
space which is now vacant.

TRY THIS:

20 PRINT 1;2;3;4
RUN

Three spaces are left between each number.
TRY THIS:

10 PRINT 1;2,3;4
LIST
RUN

There is a large space between the 2 and 3 since a comma was used there.

TRY THIS:

NEW
10 PRINT "HI";"FRIEND"
20 PRINT "HI","FRIEND"
RUN

Notice how it is printed differently on the screen with a comma than when
a semicolon is used. Semicolons leave no space between the words.

TRY THIS:

20 PRINT "HI ";"FRIEND"
RUN

Punctuation 101

To insert a space between two words you can put a space inside the quota-
tion marks. The computer prints exactly what is inside the quotation
marks—even spaces.

The semicolon always means to print what follows the semicolon,
whether it’s a word in the very next space or if it’s a number on the same
line. Before running this program, predict what the output will be.

TRY THIS:

NEW

10 CALL CLEAR
20 PRINT "GUM";
30 PRINT "BALL"
99 END

RUN

Were you right? Lines 20 and 30 print out on the same line. This is a very
important concept. The semicolon at the end of line 20 still has the same
meaning as before. It instructs the computer to leave no spaces between
GUM and BALL. It doesn’t matter that the second word is on a different
line of instructions in the program.

EXERCISES
1. Enter this program:

10 PRINT "I LIVE IN"
20 PRINT "PHOENIX"
99 END

Edit line 10, and insert the correct punctuation (comma or semicolon) so
that the output looks like this:

I LIVE IN PHOENIX (or whatever your city is)
2. Write a 3 line program using commas and semicolons that gives the follow-
ing output:
2 4
-8 245 92
400 50

3. Write a one line program to print your first and last names, one space
apart, on the same line. Rewrite the program using two PRINT statements
to produce the same output.

4. Design a PRINT statement to list the names of a baseball team’s players,
each player’s position, and number of hits. Use one PRINT statement for
each separate name, position and number of hits. Format the program so
that the output looks like this:

102

Taking Off with BASIC

PLAYER NAME POSITION
Smith Pitcher

HITS
7

SUPPLEMENT 7
READ/DATA

The LET statement is one method of assigning values to variables.

TRY THIS:

NEW

10 REM #***ADDING TWO NUMBERS***
20 LETC =0

30 LET A =5

40 LET B = 6

50 LETC=A+8B

60 PRINT C

99 END

RUN

This is a sample program to add 5 and 6 and print out the answer. The
output will be 11. Let’s say that you want to add two more numbers to C.
You could keep writing LET statements giving values and names to the
numbers you want to add, but there is a better way.

The READ/DATA statement is another way of assigning values to
variables. When you use the LET statement, such as LET A = 5, and
then want to change the value of A to 6, you would either have to edit the
line or type it over. There is a way to change the values of variables inside
a program. The READ/DATA statement allows you to substitute differ-
ent values for one variable without rewriting the LET statements.

103

104 Taking Off with BASIC

TRY THIS:

20 LET C =0

30 READ A

40

50 LET C = C + A

70 GOTO 30

80 REM #*%*VALUES FOR A*%*
90 DATA 5,6,7,8

99 END

LIST

The entire program looks like this:

10 REM ***ADDING TWO NUMBERS*#**
20 LET C =0

30 READ A

50LET C=C + A

60 PRINT C

70 GoTO 30

80 REM #***VALUES FOR A%%*

90 DATA 5,6,7,8

99 END

Run the program. (Don’t worry about the error message for now.) Look at
the output. Line 30 tells the computer to look for a DATA statement line
and whatever the first value is in it, assign it to the variable named A. A is
now equal to 5. Line 50 instructs the computer to add variable A to C (0 +
5 = 5). Line 60 instructs that the value of C be printed. Right now C = 5,
and so 5 is placed in the memory box C.

Line 70 then tells the computer to go back to line 30 and READ the
next value in the DATA statement (which is 6) and assign it to A. In line
50C = C + A means C = 5 + 6, since the new value for A is 6 and the
old value for C is 5. The new value for C is 5 + 6 so 11 is printed and
placed into memory location C. The third time around what will variable
A have for its value? If you said 7 you are absolutely right! In line 50, C =
11 + 7; 18 is printed. The last time C = 18 + 8 or 26.

Now for the explanation of the error message. The fourth time the com-
puter got to line 70 and then went back to look for the next new value for
A there was none left since all the values had already been used. There-
fore, the computer tells you

DATA ERROR IN 30

This is because the data (numbers in the DATA statement) have all been
used. There is a way to avoid this problem which will be discussed in the

Read/Data 105

next chapter. The important thing is that you understand what produced
the DATA error.

Looking back at the program, if you want to change the numbers being
added you need only edit line 90, inserting the new values. The values
must be separated by commas, but there is no limit to the number of val-
ues in a DATA statement.

The DATA statement can appear anywhere in a program but a good
habit and a rule you should follow is to put the DATA statement at the
end of the program, right before the END statement. The READ state-
ment must come before you attempt to use any of the variables named in
the program. For example, if you try to use the variable A before you have
a READ statement, A will have a value of zero (0). The computer assumnes
all variables are 0 until told otherwise.

TRY THIS:
NEW
10 REM ***ADDING NUMBERS#**#
20 LET Z =0

30 READ A,B,C,D

40 LET Z=A +B+C+D
50 PRINT Z

60 DATA 5,6,7,8

99 END

The computer assigned memory locations to these values: A = 5; B = 6;
C = 7; D = 8. When it was told to READ, it placed the first DATA value
in memory location A. It then read 6 for B, 7 for C, and 8 for D. This
accomplishes the same thing the last program did but in fewer lines.
READ/DATA statements are very versatile. Edit the program with these
lines.

TRY THIS:

15 LET X
40 LET z
45 LET X
55 PRINT
LIST

o> 0
*» *
o w

X 0 onn

Run the edited version of the program. This time Z = 30 (A * Bor 5 * 6)
and X = 56 (C * D or 7 * 8). There is no error message now since only four
variables were read and used (A, B, C, and D) and there were 4 values
available for them in the DATA statement.

106 Taking Off with BASIC

You will be interested to know that the LET in LET statements is
optional. For example,

1S LET X =0

gets the same results as
15X =20

This is a shortcut which can be used. However, some programmers con-
tinue to use LET so that the program is easier to read.

EXERCISES

1. READ five sets of numbers to be multiplied. For example, 2 * 3, 4 * 5, and
so on. Each time have the answer printed in the following format:

2 %3 =6

2. Using only one READ and one DATA statement, READ one value for
each of the variables A, B, C, D, E, F, and then add them together. Print
out their sum.

3. Using READ/DATA statements, calculate totals of the following amounts
of chemicals needed for five city swimming pools. The output should look
like this:

TOTAL AMOUNT OF CHEMICAL A
TOTAL AMOUNT OF CHEMICAL B

nn
L)

DATA POOL 1 POOL 2 POOL 3
CHEMICAL A 100 gals 75 gals 125 gals
CHEMICAL B 35 gals 25 gals 43 gals

4. Try to figure out a way to avoid the DATA ERROR message when you use
one variable name and several values in the DATA statement. If you have
trouble, wait for the next chapter and then come back to do this exercise.

SUPPLEMENT 8
IF/THEN Statements

In this chapter you will learn how to combine READ/DATA state-
ments with other statements.

TRY THIS:

20 READ A

30 PRINT A

40 GOTO 20

90 DATA 34,42,56,78,10
99 END

RUN

In line 20 the computer reads the first number in the DATA list in line 90
and the value of A becomes 34. Line 30 prints 34 and line 40 sends it back
to read the second number in the data list; 42. After reading and printing
out the five values in the DATA statement, you get the same error
message that you got in the last chapter:

*DATA ERROR IN 20

The IF/THEN statement is one way to avoid this error. The IF/THEN
statement allows the computer to regulate a program by skipping or
BRANCHING to another section of the program if a variable meets cer-
tain conditions. We can do this with a FLAG. A FLAG is a value in the
DATA statement that is not intended to be used except to alert the com-

107

108 Taking Off with BASIC

puter that it is the last value. In other words, it is a dummy variable. The
FLAG number will be -999.

TRY THIS:

95 DATA -999
LIST

Depending on what your data looks like, select a FLAG that is unusual. In
this program, a number like 56 would not make a good FLAG but -999 is a
good number since it is very different from any of the other data. Here is
the way to use the IF/THEN statement and flag to eliminate the error
message.

TRY THIS:

25 IF A = -999 THEN 99
LIST
RUN

When the computer goes through each READ and PRINT statement, it
must also read line 25. Therefore, once it has READ and PRINTED the
five values for A and comes to -999 in the DATA statement, what does
line 25 do? Literally, line 25 says that, “If A is equal to -999 then go
directly to line 99”, which is the END. If A is not equal to -999, then the
computer ignores the rest of line 25 and continues on to line 30.

If you put the IF/THEN statement before line 20 (try line 15) would
you get the same output? If you are not sure then delete line 25 and add
the IF/THEN statement at line 15 to check out your answer. It is impor-
tant that you be able to predict not only what an IF/THEN statement
will do but also what it will do differently depending on where it is placed
within a program.

EXERCISES

1. Print all the numbers from 12 to 20 using GOTO, IF/THEN, and READ/
DATA statements. Insert a flag to avoid an error message.

2. Write a program that READs in several ages to be assigned to a variable A.
If the age is less than 12, print out one message. If the age is between 12
and 20, print a different message. If it is over 20, print a third message.

SUPPLEMENT 9
VCHAR

There is an advanced graphic statement called VCHAR that allows you
to specify or define a character and then call for it to be printed on a
certain row on the screen. The V stands for vertical (up and down). The
statement looks like this:

10 CALL VCHAR (12,16,42)

The first number specifies the ROW. For example, if row 1 were used, the
character would be placed at the very top of the screen. Row 12 is 12 lines
down the screen.

The second number, 16, refers to the COLUMN. Column 16 is about
half way across the screen to the right.

The last number instructs the computer what it is you want printed in
ROW 12, COLUMN 16, using a character code number. If you look at
page 151, you will see that code 42 is an asterisk (*). If you enter line 10
and run it, the * will be printed on the screen, in the proper row and
column, but it happens so quickly it’s impossible to see it. A timer loop is
essential when VCHAR is used.

TRY THIS:

NEW

5 CALL CLEAR

10 REM *PRINT AN * IN ROW 12 COLUMN 16*
20 CALL VCHAR (12,16,42)

109

110 Taking Off with BASIC

30 REM *PAUSE TO SHOW CHARACTER%*
40 FOR TIMER = 1 TO 300

50 NEXT TIMER

60 CALL CLEAR

70 FOR TIMER = 1 T0 200

80 NEXT TIMER

90 GOTO 5

99 END

RUN

This is a program that will flash an asterisk on and off the screen. In
line 20 the instruction tells the computer to go to row 12, column 16, and
print the symbol for the character code 42, which is the *. (The computer
really only knows symbols or letters as character codes, as shown in
Appendix C.) In lines 40 and 50 the TIMER loop causes the * to remain
on the screen for a count of 300. The screen clears at line 60 and line 70
makes the computer count to 200 before returning to line 20 which prints
the * again. '

Add these lines to the program:

55 REM *PRINT A # IN ROW 12 COLUMN 16%
60 CALL VCHAR (12,16,35)

65 REM *PAUSE TO SHOW CHARACTER*

RUN

Now the * and # are alternating flashing on the screen. Edit lines 20 and
60 to flash the letters H and I on the screen. Use Appendix C to determine
the code numbers.

Are you ready for something really fancy? As you have seen, the
VCHAR statement requires a ROW and a COLUMN number. You can
add to the COLUMN or ROW numbers causing the character to move
from one spot to another using a FOR/NEXT loop. We’ll add lines 12 and
90, and edit 20 and: 60.

TRY THIS:

12 FOR I = 3 TO 20

20 CALL VCHAR (2,1,42)
60 CALL VCHAR (2,1,35)
90 NEXT I

LIST

Run the program. Each time the VCHAR is shown on the screen its loca-
tion will increase by one column, since the value of I increases by one each
time the loop is entered. The value for I replaces the I in the VCHAR

VCHAR 111

statements. It stops when I reaches 20, which is near the right edge of the
screen.

The same thing can be done by substituting a variable from a FOR/
NEXT loop in place of the ROW number. Edit lines 20 and 60 again.

TRY THIS:

20 CALL VCHAR(I,I,2)
60 CALL VCHAR(I,I,35)
RUN

The value of I from the FOR/NEXT loop is used for both the row and
column in the VCHAR statements. Since the I increases by one each time,
the row and column also increase by one each time.

EXERCISES

1. Create a program which will cause a letter to go from the lower left of the
screen to the upper right of the screen, as if it were walking up stairs. Now
make it go the opposite way, down the stairs.

2. Design a program that will show a number flying across the screen from left
to right.

SUPPLEMENT 10
HCHAR

If you enjoyed learning how to use the VCHAR statement in Supple-
ment 9, you will have even more fun with HCHAR. The H stands for
horizontal (left and right). Similar to VCHAR, HCHAR allows you to
place any character (old or new) on the screen in a particular row and
column. But we can add one additional number in the statement which
stands for the number of times you want the character repeated across the
screen. In the line

1 CALL CLEAR
10 CALL HCHAR (14,5,42,18)
RUN

the 14 and 5 are the row and column numbers the character will start in,
Just like with VCHAR statements. The next number is also the same
because 42 is the character code for the asterisk. It tells the computer how
many *’s to print beginning at row 14, column 5. Enter line 10 exactly as
shown above and run it. Wow! Add line 20 to make another row of *’s
under it.

TRY THIS:

20 CALL HCHAR(16,5,42,18)
RUN

113

114 Taking Off with BASIC

Can you imagine how much you can do with this new statement? By
inserting a variable name in the first spot (row), and adding a FOR/
NEXT loop, some interesting things can happen.

TRY THIS:

NEW

10 CALL CLEAR

20 FOR R =1 TO 18

30 CALL HCHAR(R,5,42,10)
40 NEXT R

99 END

RUN

The row value changes each time it'g(;es through the loop, causing the *’s
to be printed on each row from 1 to 18. Are you ready to go one step
further? We can also insert a variable name for the column, using the
value in the same FOR/NEXT loop so that it also changes each time.
This gets a bit tricky. Edit line 30:

30 CALL HCHAR(R,R,42,10)
RUN

This time the first ten *’s will begin at row 1, column 1 and go to the right.
The second time through the loop they will begin at row 2, column 2; the
third time at row 3, column 3, and by the time it gets to the last loop they
will be printed at row 18, column 18.

Let’s try one more thing, getting even more interesting. Edit lines 20, 30
and 40 as follows:

20 FOR C = 65 TO 90

30 CALL HCHAR(10,1,C,28)
40 NEXT C

RUN

Line 20 now gives values for the character in the HCHAR statement. The
first character that will be printed across the entire tenth row will be let-
ter A (character code 65). The second time through the loop character
number, 66 (B) is printed over the line of A’s. Character code 90 is the
letter Z, so this program prints one line of each letter of the alphabet
before stopping.

Any number in the parentheses can be substituted with variable names,
and a series of FOR/NEXT loops or LET statements can be cleverly
inserted to create some interesting effects.

HCHAR 11§

The number for repetition can also be used in the CALL VCHAR state-
ment. The repetitions will start in the row and column indicated and go in
a vertical (downward) direction.

EXERCISES

1. Write a program to outline the entire screen in one symbol. Add screen
color. Place your name in the middle of the screen. ,

2. Using FOR/NEXT loops, write a program to fill the screen with symbols,
one row at a time.

3. If you are working on the TAKE OFF program, use HCHAR to design an
elaborate title page with the title, your name and date inside a special
border. ’

SUPPLEMENT 11
TAB and FOR/NEXT

Formatting can make a simple program much more interesting. As you
know, the PRINT TAB function allows the programmer to give an
instruction which will place the output on any position on a line.

TRY THIS:

10 PRINT TAB (10);"THIS IS COLUMN 10"
RUN

Line 10 above shows a PRINT TAB statement followed by the number 10
in parentheses. The number in parentheses indicates the number of spaces
to the right that you want THIS IS COLUMN 10 printed. The semicolon
must separate the parentheses and the message in quotation marks. By
combining PRINT TAB in a program with a FOR/NEXT loop some
interesting effects can be created.

TRY THIS:

NEW

10 FOR A = 1 to 28 STEP 4
20 PRINT TAB (A);'"PEACHES"
30 NEXT A

99 END

RUN

117

118 Taking Off with BASIC

The FOR/NEXT loop has already been used in a variety of ways. In this
program, if A is equal to 1 in line 10, the first time through the program
PEACHES will be printed at space (TAB) number 1. Step 30 sends it back
to line 10 where A is now equal to 1 plus 4 (5). The STEP 4 instruction
tells the computer to add 4 each time it goes through the loop. (It auto-
matically adds only one if you do not specify STEP with a number.)
When the computer encounters line 20 for the second time it will print
“PEACHES” beginning at space (TAB) 5. On what TAB will it print
“PEACHES?” the third time around? Add another 4 to the previous value
5 and you get TAB 9. :

Run the program again. Try to follow the logic of the computer to
determine how the PRINT TAB works.

TRY THIS:

10 FOR A = 28 TO 1 STEP -2
RUN

Why does PEACHES appear in the places it does? Experiment with the
FOR/NEXT loop and TAB statement with some original ideas of your
own.

EXERCISES

1. Write a program to flash your name in different spots on the screen.

2. Melissa has three dogs and wants to write a program to print their names,
ages, and weights. Write a program using READ/DATA, FOR/NEXT and
PRINT TAB statements that will produce the following output:

NAME AGE WEIGHT
PIP 5 20
COOKIE 3 40

FLUFF 2 10

SUPPLEMENT 12
Character Strings

In this chapter you will learn how to make your own characters to print
on the screen. For example, press the letter K and look at it. You can
make a letter, or anything the same size of a letter, and then print it out
on the screen. It is also possible to make several small characters and put
them together so that they make a large design of some kind.

This is how it works. Look at Figure S12-1 on page 120. It has a total of
64 boxes. See the dark line drawn down the middle? This separates the
left group of boxes from the right group of boxes. Each of the eight rows
has four left boxes and four right boxes.

These 64 boxes look large but when put altogether they are actually just
the size of the letter K or any other letter you press. Our plan is to make a
design the size of a letter that looks like a happy face. To do this, we must
darken certain boxes in the diagram in Figure S12-1. The diagram will
look like Figure S12-2 on page 120.

There is a special code to tell the computer how to darken in the boxes,
done in groups of four, beginning with Row 1 Left, and Row 1 Right; then
Row 2 Left, and Row 2 Right, and so on. The code for darkening each set
of four boxes is given a number or letter.

There are a total of 16 ways each set of four boxes can be filled in. They
can all be empty, or all dark—that is two ways. Only the first box or last
box can be dark—that makes four ways. There are 12 other combinations
of filling in four boxes.

119

120

Taking Off with BASIC
CODE LEFT RIGHT

LEFT RIGHT
ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6
ROW 7
ROW 8

FIGURE S12-1
CODE LEFT RIGHT

LEFT RIGHT
w1 00
rw2 00
rows 24
rws 00
pows _18
rows 42
owr 24
rows _18

FIGURE $12-2

Character Strings 121

In the Pattern Chart below there is an X if a box is to be left empty,
and a # if the box is to be darkened. Look at 0 and F before you look at
the pattern codes in between.

If none of the four boxes in a row are dark, then the actual pattern for
the 4 box set would be XXXX. It’s pattern code is zero. If they all are
darkened, the actual pattern would be # # # #, and the Pattern Code
would be the letter F. The other codes are between 0 and F.

ACTUAL PATTERN ACTUAL PATTERN
PATTERN CODE PATTERN CODE

XXXX 0 #XXX 8
XXX # 1 #XX# 9
XX#X 2 #X#X A
XX## 3 #X#H# B
X#XX 4 # #XX C
X#X# 5 HHEXH D
X##X 6 ###X E
X&E## 7 HAHEH F

Since there are a total of 16 groups of four boxes, the code for a design
the size of one letter will have 16 letters and/or numbers. If we wanted all
the 64 boxes dark, the code would be

FFFFFFFFFFFFFFFF

If only the first box on the top left and last box on the bottom right were
to be filled in, the code would be

8000000000000001

Now to the happy face. The diagram in Figure S12-2 shows that the
first two complete rows of boxes will be empty. The code for that will be

0000

Remember that we first give the Pattern Code for Row 1 Left, then Row 1
Right, Row 2 Left, and Row 2 Right. Row 3 Left has its third box dark-
ened, so the code will be 2 (XX # X). The code for Row 3 Right will be 4
(X #XX). The next entire row (4) is empty, adding two more zeros to the
code:

00002400

We are half way done with the happy face code. This is what the com-
pleted code looks like:

0000240018422418

122 Taking Off with BASIC

Check it out yourself with the diagram—is it right? It sure is. Now how do
we get the computer to print it on the screen? There are two ways.

First we must give this little guy a name. The computer has already
given every letter and number it knows a name (Character Code), but it
left several undefined Character Codes available for you to use. These
names are also numbers. For example, the letter A’s number name is 65.
The symbol $’s name/number is 36. The number names that we can use
are 96-159. Let’s choose the number name 100 for our happy face. Here is
what the instruction looks like:

10 CALL CHAR(100,''0000240018422418")

In line 10, CALL CHAR is telling the computer “Call (or name) a new
character by the first number inside the parentheses.” Inside the paren-
theses 100 is the number/name it comes to. The pattern code inside the
quotation marks is now known to the computer by the character code 100.

Now we want to see character 100. Line 10 is still in the memory defin-
ing character 100, but we haven’t told the computer to put it on the screen
yet. The character will be very small.

TRY THIS:

20 PRINT CHR$(100)
30 FOR T = 1 TO 1000
40 NEXT T

99 END

LIST

RUN

Line 20 literally means for the computer to “Print the CHARACTER
STRING named 100 on the screen.” CHARACTER STRING refers to a
character that is defined by something inside quotation marks. Remember
that CHR$ 100 is defined in line 10 with 16 separate numbers surrounded
by quotation marks (see line 10).

Why is the timer loop necessary? Without it, the character would be
flashed too quickly to see.

Another method of placing the new character on the screen is to make
use of VCHAR.

TRY THIS:

5 CALL CLEAR

20 CALL VCHAR (10,16,100)
LIST

RUN

Character Strings 123

The difference in this line 20 and the first one is that CALL VCHAR
allows exact placement on the screen using row and column number.

By designing characters that fit together, you can make a large design.
For example, to darken all the spots in the 64 block grid you would use 16
F’s in the CALL CHAR statement. The code would look like this:

CALL CHAR (96,"FFFFFFFFFFFFFFFF")

Sketch out your design using several small grids carefully positioned
together. The diagram in Figure S12-1 can be copied several times to fill in
as you like and then taped together to design the characters. Then, using
CALL VCHAR or CALL HCHAR and the correct row and column num-
bers, each character can be placed together to make a complete design.

EXERCISES

1. Usethe CALL CHAR and VCHAR to place a design in several spots on the
screen.

2. Design two figures using the CALL CHAR statement. Make one character
with legs apart and the other with legs together. Design a program that will
show one character briefly and then the other briefly so that it will appear
that the figure is jumping.

3. Make a design using at least 9 new characters. Have it move across the
screen.

SUPPLEMENT 13
LENGTH

String variables are a lot of fun. The LEN statement is an interesting
concept. This short program gives an example of the LEN statement:

TRY THIS:

NEW

10 LET NAMES$ = "MATT"

20 PRINT NAMES$;LEN(NAMES)
99 END

RUN

Let’s look at the program line by line:

Line 10 assigns MATT to a string variable called NAMES$.

Line 20 first instructs that MATT be printed (NAMES$) and then comes
the new statement: LEN(NAMES). This simply tells the computer to
print the number of characters in NAMES$. Since NAMES$ has MATT in
its memory location, and MATT has four characters in it, a 4 is printed.
The output is

MATT 4

Let’s add a few more lines to the program.

125

126 Taking Off with BASIC

TRY THIS:

30 LET PETNAMES$ = "FLUFF"

40 PRINT PETNAMES;LEN(PETNAMES)
LIST

RUN

Line 30 defines a string variable named PETNAME$ as FLUFF.
Line 40 tells the computer to print the actual PETNAME$ (FLUFF)
and the number of characters in it, so the output is

MATT 4
FLUFF 5

Here are two more lines to add.
Try this:

50 PRINT LEN(NAMES) + LENC(PETNAMES)
60 PRINT LEN(C"CAT')

LIST

RUN

Line 50 instructs that the LENgth of the two string variables, NAME$
and PETNAMES, be added together. The number 9 is the output since
there are 4 letters in MATT and 5 in FLUFF. Notice it does not tell the
computer to print the actual string variables.

Line 60 is an example of how to determine the LENgth of a string varia-
ble without first defining it in a LET statement. Specify LEN and inside
the parentheses and quotation marks place the string variable you want
to know the number of characters in.

There are many other statements used with string variables such as
POS, SEG$, STR$, and VAL. They are somewhat complicated and
involve more difficult concepts. Refer to the TI BASIC Manual if you
wish to expand your learning of more advanced statements.

EXERCISES

1. Using LET or READ/DATA statements, enter several names and have the
computer determine how long they are. Experiment by using long names,
short names, and names with spaces or characters instead of letters.

2. Using LEN, write a program to produce this output:

A 1 BE 2 SEE 3 FOUR 4

SUPPLEMENT 14
Multiple Inputs

Expanding upon the simple INPUT statement, a shortcut is available.
The program

NEW

10 PRINT "WHAT IS YOUR NAME"
20 INPUT NAMES$

30 PRINT NAMES$

99 END

can also be written

10 (omit this Lline)

20 INPUT "WHAT IS YOUR NAME':NAMES
30 PRINT NAMES$

99 END

The PRINT statement can be included in the INPUT statement as long
as a colon (:) is placed after the last quotation mark and the variable name
is specified. (On some microcomputers a semicolon is used in this situa-
tion.) Enter and run the second 4 line program shown.

The colon (:) in line 20 below is necessary. It warns the computer that
the variable names for your input follow.

127

128

Taking Off with BASIC

TRY THIS:

NEW
10 INPUT "LIST YOUR NAME, AGE AND WEIGHT, SEPARATING EACH

WITH A COMMA.":NAMES$, AGE,WEIGHT

20 PRINT NAMES;AGE;WEIGHT
99 END
RUN

Follow the instructions on the screen. The name, age, and weight you
input are printed on the screen.

The statement in line 10 is called a MULTIPLE INPUT statement
since it asks for several pieces of information from the user. As long as
each variable is named after the colon, and separated by commas, there is
no limit to the amount of information that can be INPUT. The user must
separate input by commas and use no spaces. Effective use of MULTIPLE
INPUTS require that the question be stated properly in the INPUT
statement. It is usually easier to input one item at a time.

EXERCISES

1.

2.

Using the INPUT and colon shortcuts, write a program that asks the user
to enter three pieces of information about his/her family and print it out.
Write a program using MULTIPLE INPUT statements to get some infor-
mation. Ask the user to input the name of one food and its price. Print it
and then ask the user the same question three more times. You should be
able to write it in 4 or 5 lines. The output will look something like this:

HAMBURGER .99

FRIES .59
ONION RINGS 1.19
DRINK .79

Edit the TAKE OFF program so that you make use of colons to space the
output more neatly.

SUPPLEMENT 15
Music

The CALL SOUND statement does not only produce sound, but it
makes music! You can use READ/DATA and FOR/NEXT statements to

make your own tunes.
The CALL SOUND statement is made up of several things.

TRY THIS:

NEW
60 CALL SOUND(1000,450,2)
RUN

This makes a sound with a duration of 1000, tone number 262, and a vol-
ume of 5.

TRY THIS:
60 CALL SOUNDCD,T,V)

Don’t run the line yet. Previously, you used numbers in the parentheses
after the CALL SOUND statement. In line 60 there are now variable
names inside the parentheses in place of numbers. The first variable (D)
refers to the length of time the note is heard (duration). The T stands for
the tone number and the V indicates the loudness of the sound (volume).
Of course, values must be assigned to these three variables:

TRY THIS:
129

130 Taking Off with BASIC

10 LET D = 1000
20 LET T = 450
30 LET V = 2

99 END

LIST

There should be 5 lines in the program. Run the program. One sound is
produced.

Let’s add more notes. Since the tone number now has a variable name,
we can change it by reading different values for it from a DATA state-
ment. In fact, we'll give it 8 different values to play.

TRY THIS:

20

40 FOR S =1 T0 8

50 READ T

70 NEXT S

80 DATA 523,659,587,698,659,784,698,880
LIST

RUN

Do you know why the FOR/NEXT loop is from one to eight? It's because
there are eight pieces of data (eight different tone numbers) to read from
the DATA statement. Each time it reads a new tone number it plays it
before going through the FOR/NEXT loop again. It does this eight times.
Four scales of notes are shown in Appendix B on page 149 with their
actual tone names and the code numbers for each.

Find code number 523 in Appendix B (523 is the first value in the
DATA statement). The tone name is C. On the piano it would be called
High C. The second number in the DATA statement is E. Find the tone
names for the other six code numbers in the DATA statement.

Guess what? The CALL SOUND statement can be written so that more
than one sound is played at a time. The first variable inside the parenthe-
sis, duration, applies to all of the tones to be played. However, the actual
notes and their loudness (volume) must be specified for each note. After
the duration number, the tone code and volume number are listed for the
first note. The same is done for the next two notes.

TRY THIS:

NEW
10 CALL SOUND(1000,110,2,175,1,117,3)

Notice that the first tone, 110, has a volume (or loudness) of 2; tone 175
has a volume of 1, and tone 117 has a volume of 3. Each number must be

Music 131

separated by a comma, and no spaces are allowed. Run the one-line pro-
gram and see if you can hear the three different tones.

When you use the CALL SOUND statement you can also produce spe-
cial noises. There are eight noises on the TI, identified with the code num-
bers —1 to —8.

TRY THIS:

10 CALL SOUND(2000,-1,5)
RUN

Again the three numbers stand for duration, tone code, and volume. Write
seven more lines so that you can hear all eight noises. You can even add a
sound to as many as three musical tones just by adding the noise code and
volume at the end.

TRY THIS:

10 CALL SOUND (1000,440,2,880,10,659,5,-6,17)
RUN

If you would like to write tunes on the computer, this can also be done.
You have already learned how to produce one, two, or three sounds at one
time. You also know that the length of the sound can be changed. Think
of the tune to Happy Birthday To You. There are a total of six tones
when you say the first line. Say it to yourself and notice the different
lengths of the note for “Hap” and *py” and “To’ “You”. A program for
these four words require six lines—one for each note.

TRY THIS:

NEW

10 CALL SOUND (500,262,2)
20 CALL SOUND (500,262,2)
30 CALL SOUND (1000,277,2)
40 CALL SOUND (1000,262,2)
50 CALL SOUND (1000,349,2)
60 CALL SOUND (1000,330,2)
99 END

The shorter sounds have a duration of 500 and the longer ones have a
duration of 1000. Run the program. Does it sound OK?

132 Taking Off with BASIC

With written music, notes that are not filled in are called whole notes
and look like this:

O it's a whole note)

FIGURE $15-1

Their duration is about 1000. Notes that are not darkened in and have
tails are called half notes and look like this:

J {Its a half note)

FIGURE $15-2

Their duration is about 500. In the Happy Birthday tune there are 2 half
notes and 4 whole notes. A quarter note has a duration of about 250 and

looks like this:
J {it's a quarter note)

FIGURE $15-3

EXERCISES

1. Examine the musical scale Tone Chart below and write a program to pro-
duce this short piece of music. Notice that there are some whole notes and
some half notes. The first program line will look like this:

10 CALL SOUND (250,262,2)

Choose any volume you like.

QL
)|
)

L BN

FIGURE S15-4

Music 133

o O
N
e O
="
S

—o—

¢ D E F G A B c

262 294 330 349 392 440 494 523
FIGURE S15-5

2. Write a program to play this song. A quarter note with an extra tail,

I it's an eighth note)

FIGURE S15-6

is an eighth note. It receives 1/2 of a quarter note duration or about 125.

4 BEEe S
ST

FIGURE $15-7

0l
)
o

ol

3. Choose three notes and read them into memory. Write a program using a
FOR/NEXT statement to play the notes forward and backWward.

4. Use some of your own music ideas, favorite songs, or just experiment with
some different sounds.

5. Experiment with the lower frequencies and the noise command to make a
rocket blastoff sound. If you want, put it in your TAKE OFF program.

SUPPLEMENT 16
ON/GOTO and
RANDOM

There is a statement called ON/GOTO which is similar to GOSUB/
RETURN statements.

TRY THIS:

NEW

10 INPUT "PICK A NUMBER FROM 1 TO 3": N
20 ON N GOTO 50,70,90

30 PRINT "THOUGHT YOU COULD FOOL ME, DIDN'T YOU?"
40 GOTO 10

50 PRINT "YOU CHOSE THE NUMBER 1"

60 GOTO 10

70 PRINT "YOU CHOSE THE NUMBER 2"

80 G0TO 10

90 PRINT "YOU CHOSE THE NUMBER 3"

95 GOTO 10

99 END

Run the program. Play it several times to get the idea of what it is doing.
Enter numbers other than 1, 2 and 3 once in a while to see what happens.
Try to figure out what line 20 is doing. Stop the program using FCTN 4.

135

136 Taking Off with BASIC

Line 20 instructs the computer “If N (the name given to the input
number of the user) is equal to 1 then go to line 50; if N is equal to the
number 2, go to line 70; if the input number is 3, go to line 90.”

Lines 50, 70 and 90 tell it what to print.

What if the user chooses the number 0 or 4? Then the computer ignores
line 20 after determining that the input is not 1, 2 or 3 and continues to
line 30 and prints a message. Line 40 then returns the program to line 10
to allow the user to pick another number.

There must be one line number specified in the ON/GOTO statement
for each acceptable input number. The input numbers must begin with 1.

Here is another application of the ON/GOTO statement:

TRY THIS:

NEW

10 RANDOMIZE

20 LET N = INT(6 * RND) + 1

30 ON N GOTO 40,50,60,70,80,90
40 PRINT "DICE THROW = 1"

45 GOTO 20

50 PRINT "DICE THROW
55 GOTO 20

60 PRINT "DICE THROW
65 GOTO 20

70 PRINT "DICE THROW
75 GOTO 20

80 PRINT "DICE THROW
85 GOTO 20

90 PRINT "DICE THROW
95 GOTO 20

99 END

RUN

2"

3"

4"

5"

n
L

Lines 10 and 20 have new concepts in them. In this program the computer
will continuously simulate throwing a die by selecting a random number
from.1 to 6 and tell you each time what it chose. (Don’t forget FCTN 4
stops the execution of the program.) A random number is one that is cho-
sen off the top of your head. If you asked a friend to choose a number
from 1 to 6, the choice would be a random number.

The computer can be instructed to choose a random number too. In line
10 the word RANDOMIZE is necessary to warn the computer than it will
be expected to choose a different number each time. (Sometimes it does
choose the same number twice, but this is just a coincidence.) Line 20 tells
the computer to choose a number from 1 to 6 (like rolling one die). It is

ON/GOTO and RANDOM 137

not important to know what everything else means in line 20 except to
know that the 6 in it refers to choosing a number from 1 to 6. If you
changed the 6 to a 10, the computer would choose numbers from 1 to 10.

After it chooses a number from 1 to 6, line 30 tells it that if it chose the
number 1, it should go to line 40 and print DICE THROW = 1. If it chose
the number 6, for example, it goes to line 90, and so on. Notice that there
are 6 line numbers in the ON/GOTO statement, one for each of the six
possible die throws.

EXERCISES

1.

Write a program using ON/GOTO to ask a multiple choice question. Print
the question and list four answers (1, 2, 3, and 4). The user chooses an
answer. If the answer is correct the user receives a message that says
“RIGHT ON!”. If incorrect the question will be repeated and the user gets
to choose another answer.

Write a program to have the computer choose random numbers from 1 to 4.
Each time it chooses one, it goes to a line and adds one to a variable. For
example, if the number chosen is 1 then you might have a LET statement
that looks like this: LET ONE = ONE + 1. Stop it after 20 random num-
bers have been choosen and print out the number of times it chose each
number from 1 to 4.

Make a game for the user to pick a number from 1 to 100. Tell the user that
the computer has chosen a number to guess. If the guess is too low, give a
message that says YOUR NUMBER IS TOO LOW. If the guess is too
high, give an appropriate message. Let the user continue until the correct
number is guessed and then give the message CONGRATULATIONS!
YOU GUESSED THE NUMBER!

There is a much more efficient way to write the die throwing program with-
out using an ON/GOTO statement. Can you do it?

SUPPLEMENT 17

More Color

In Chapter 12 you learned how to change the color of the screen. It
requires a color code number, in parentheses, after the CALL SCREEN
statement. Another statement dealing with color is CALL COLOR. It uses
the same color codes as CALL SCREEN, which are listed for you here:

TRANSPARENT 1
BLACK 2
MEDIUM GREEN 3
LIGHT GREEN 4
DARK BLUE 5
LIGHT BLUE 6

COLOR CODES

DARK RED 7
CYAN 8
MEDIUM RED 9
LIGHT RED 10
DARK YELLOW 11
LIGHT YELLOW 12

DARK GREEN 13
MAGENTA 14
GRAY 15
WHITE 16

The CALL COLOR statement does not change the color of the screen;
it changes only the color behind a letter or symbol. For example, you could
have a black asterisk on the screen with red behind just that one asterisk.
The CALL COLOR statement must also have a CALL HCHAR or CALL
VCHAR statement following which also includes important information.

TRY THIS:
1 CALL CLEAR

10 CALL COLOR(2,7,5)

20 CALL HCHAR(5,10,42,15)

30 GoTO 30

139

140 Taking Off with BASIC

Let’s discuss this three line program before you run it.

Line 10 is the new statement with three numbers in parentheses, sepa-
rated by commas.

The first number (2 in the example) is the SET to which the asterisk
belongs in the Character Code Chart. Take a look at page 151 in Appendix
C. Notice that in addition to each different number and symbol having its
own code, each is also assigned to a SET. For example, code 42 is an aster-
isk in SET 2; code 72 is the letter H in SET 6. The SET number of the
letter or symbol you choose must be specified in the CALL COLOR
statement.

The second number (7 in the example) is the color the character will be.
Color code 7 is dark red, so the asterisks will be dark red.

The third number (5 in the example) is the color that will appear behind
the dark red asterisks—dark blue.

Line 20 is the HCHAR statement you are familiar with. The numbers
represent the row and column numbers, the character code, and the
number of repetitions.

It is the HCHAR statement that gives the character code, but the
CALL COLOR statement that gives the SET number.

Line 30 is a new way to keep the program on the screen without using a
FOR/NEXT loop. It is actually sending itself to itself—an infinite loop.
To stop it, use FCTN 4 again, and keep this GOTO trick in mind for use in
debugging programs.

Run the program now and 15 dark red asterisks with a dark blue back-
ground should appear in a horizontal line across row 5 on the screen begin-
ning in column 10.

Edit line 20 using VCHAR.

TRY THIS:

20 CALL VCHAR(5,10,42,15)
RUN

This time the same color scheme is used, but the asterisks are in a vertical
line (downward).

You can also use a character you defined yourself in the VCHAR or
HCHAR statements, as long as you identify the SET number in the
CALL COLOR statement. Appendix C also lists SET numbers for these
on page 151.

EXERCISES

1. Use CALL CHAR to make a design combining at least 6 blocks and then
use CALL COLOR to color it.

More Color 141

Make a border of #’s around the screen. Use different colors for the screen,
the #’s and their background.

Design a fancy title page for the TAKE OFF program using color, a special
border, and possibly special characters for your name.

el A

=N oo

Appendix A

CHECKPOINT ANSWERS

CHECKPOINT 1

The television connected to the TI-99/4A is also called a MONITOR or CRT.
Any piece of equipment used with microcomputers is called HARDWARE.
The ON/OFF switch of the computer is on the front of the KEYBOARD.
We usually call the Texas Instruments microcomputer the TI for short.
Information that you give to the computer is called INPUT.

Information that the computer gives to you is called OUTPUT.

Sentences in English are similar to STATEMENTS in BASIC.

Whriting instructions for the computer in BASIC is called PROGRAMMING.

CHECKPOINT 2

You should number your lines by TENS when writing programs.

Every program must have an END statement.

If you want to write yourself messages within a program, use REM
statements.

When you first decide to write a program follow the four steps for a good
PLAN.

CHECKPOINT 3

When you type the command NEW, the computer erases everything in its
memory.

Type the command LIST to see the program you have written so far.
When are commands executed by the computer? IMMEDIATELY
AFTER YOU TYPE THEM IN AND PRESS ENTER.

If you want the computer to follow instructions in a program, type the
command RUN.

To erase everything on the screen, but not from the computer’s memory,
use the command CALL CLEAR.

Each time you type in a command, you must press ENTER to let the com-
puter know you are finished.

143

144

Ll

Taking Off with BASIC

Which key must you hold down first if you want to use the left or right
arrow? FCTN

Use the left and right arrows when you want to MOVE THE CURSOR
BACK AND FORTH TO CORRECT ERRORS.

CHECKPOINT 4

If you want the computer to show your name or any words on the screen as
part of a program, you must write a PRINT statement.

You can write yourself messages in REM statements, but they won’t show
up on the screen when the program is run.

A design or picture on the computer is called CHARACTER GRAPHICS.
Before each statement you must have a LINE NUMBER.

To stop the execution of a program hold down the FCTN key and press 4.

CHECKPOINT S5

To make changes in program lines you must be in the EDIT mode.

When you want to change a line, you call for it by typing the LINE
NUMBER, holding down the FCTN key, and typing E.

To make room for additions in a line in the EDIT mode, hold down the
FCTN key, type a 2, and then enter the information.

If you want to remove something from a line in the EDIT mode, hold down
the FCTN key and type a 1.

Once you make the changes to the line, you must press ENTER for the
computer to put the changes into its memory.

CHECKPOINT 6

When you want the computer to print numbers, it is not necessary to use
QUOTATION MARKS as you do when you want it to print words.

If you want the computer to run only part of a program, you can make the
program stop anywhere as long as you type a STOP statement with a line
number.

To get the computer to list only lines 100 through 200 of a program, you
would type in the command LIST 100-200.

CHECKPOINT 7

You can put a number into the computer’s memory but first you must give
the number a VARIABLE name.

To tell the computer what value you want a variable to have, you must use
a LET statement.

NS AN

o

Appendix A 145

If you want a variable to increase by one each time it is printed, you would
write a LET statement with a +1.

When you cause the computer to do something forever, this is called an
INFINITE or ENDLESS loop.

CHECKPOINT 8

The symbol that stands for EQUAL TO is =.

The symbol that stands for NOT EQUAL TO is <>.

The symbol that stands for LESS THAN is <.

The symbol that stands for GREATER THAN OR EQUAL TO is > =.
The symbol that stands for LESS THAN OR EQUAL TO is < =.

The symbol that stands for GREATER THAN is >.

The symbols referred to in this chapter are called RELATIONS.

CHECKPOINT 9

Every time a FOR statement appears in a program, there must also be a
NEXT statement to go with it.

FOR/NEXT loops can be used as TIMERS to slow down the program.
FOR/NEXT loops slow down the computer because it makes the computer
COUNT to itself.

CHECKPOINT 10

In timer loops the NEXT must come right after the FOR statement. Is this
true when used for other purposes besides timers? NO.

What does the computer do when it has finished a FOR/NEXT loop? IT
CONTINUES ON TO THE VERY NEXT LINE AND EXECUTES IT.
In a FOR/NEXT loop as follows:

FOR N = 5 TO 60
PRINT N
NEXT N

What will the value of N be on the fourth time around the loop? THE
VALUE WILL BE 8.

Write a four line program (including an END statement) to make the com-
puter count and print the numbers 150 to 300 by threes:

10 FOR C = 150 TO 300 STEP 3
20 PRINT €

30 NEXT C

99 END

146

(=
.

Taking Off with BASIC

Write a four line program (including an END statement) to make the com-
puter count and print the numbers -50 to -150 by sevens.

10 FOR C = =50 TO -150 STEP -7
20 PRINT C

30 NEXT C

99 END

Unless you tell it to do otherwise, the computer will count BY ONES in
FOR/NEXT loops.

Explain why the FOR/NEXT statement is referred to as a “loop”. A
LOOP IS SOMETHING THAT KEEPS GOING AROUND, LIKE A
CIRCLE. A FOR/NEXT LOOP CONTINUES DOING WHAT IT IS
INSTRUCTED TO DO UNTIL IT COMES TO THE LAST NUMBER
IN THE FOR STATEMENT.

CHECKPOINT 11

What command can you insert into the program, along with a line number,
that will produce a new, clean screen each time it is encountered by the
computer? CALL CLEAR

By using the word TAB, along with a number in parentheses, you can alter
the placement of information on the screen.

Write a statement that puts the word BANANA 15 spaces to the right on
the screen:

10 PRINT TAB(15);"BANANA"

CHECKPOINT 12

How many different colors are available on the TI? 16

What is the statement used in programs to give the screen color? CALL
SCREEN

How do you specify what color you want the screen to be in the color state-
ment? YOU PUT THE NUMBER OF THE COLOR INSIDE PAREN-
THESES AFTER THE CALL SCREEN STATEMENT.

Where can you put color statements in the program? ANYWHERE

CHECKPOINT 13

What is a STRING VARIABLE? A VARIABLE THAT IS MADE UP
OF LETTERS OR WORDS.
Write a LET statement using a STRING VARIABLE.

10 LET PET$ = "FLUFF"

&

Appendix A 147

(Your variable name can be anything as long as you use the $ and quota-
tion marks correctly.)

What is the opposite of a STRING VARIABLE? NUMERIC VARIABLE
How would you say this variable in English? NAME$

NAME STRING

If you want to have a variable to represent a street name, what might you
call it? STREETS$ or STNAMES$

What is wrong with each of the following statements?

10 LET H = "HEIGHT" HEIGHT IS STRING DATA SO THE
VARIABLE NAME SHOULD BE
HEIGHT$
3 IS A NUMERIC VALUE SO THE $
IN THE VARIABLE NAME TIMES$
SHOULD NOT BE THERE. THE
CORRECT LINE SHOULD BE:
20 LET TIME=3
MATT MATT IS STRING DATA AND MUST
BE INSIDE QUOTATION MARKS.
THE CORRECT LINE SHOULD BE:
30 LET NAME$ = “MATT”
40 LET AS$ = "1962" THIS ACTUALLY IS OK BUT FOR
1962 TO BE TREATED AS A
NUMBER INSTEAD OF A WORD IT
WOULD HAVE TO BE WRITTEN
40 LET A = 1962
50 LET PHONE = "5558155" THE NUMBER SHOULD NOT BE IN
QUOTATION MARKS SINCE IT IS A
NUMERIC VALUE. THE CORRECT
LINE SHOULD BE:
50 LET PHONE = 5558155

n
W

20 LET TIMES

30 LET NAMES

CHECKPOINT 14

What does the computer do when it comes to an INPUT statement in a
program? IT PRINTS A ? AND WAITS FOR A RESPONSE FROM
THE USER.

What kind of statement should come before each INPUT statement? A
PRINT STATEMENT WITH A QUESTION TO ANSWER.

What does it mean when we say that the computer INTERACTS with the
user? IT ALLOWS THE USER TO PUT INFORMATION INTO THE
COMPUTER TO BE USED IN THE PROGRAM.

If you ask a question that will have a numeric answer, the INPUT state-
ment must have a NUMERIC variable name.

148

Nee

Taking Off with BASIC

CHECKPOINT 15

What are the two words necessary in the statement that instructs the com-
puter to play a musical note? CALL SOUND.

What does DURATION mean? THAT IS HOW LONG YOU WANT
THE SOUND TO PLAY.

What does TONE mean? TONE REFERS TO THE NOTE YOU WANT
PLAYED.

What does VOLUME mean? VOLUME IS HOW LOUD OR SOFT THE
NOTE WILL BE PLAYED.

What are the numeric limits for VOLUME? 0 TO 30

What are the numeric limits for DURATION? 1 TO 4250

How do you indicate what TONE you want played? YOU MUST
INCLUDE THE TONE NUMBER IN THE CALL SOUND
STATEMENT.

Inside the parentheses, what number comes first? DURATION What
number comes second? TONE Third? VOLUME

CHECKPOINT 16

What is a SUBROUTINE? A SUBROUTINE IS A SET OF INSTRUC-
TIONS THAT CAN BE USED ANYWHERE AND ANYTIME IN A
PROGRAM.

What two statements are necessary as part of the instructions to use a sub-
routine? GOSUB and RETURN

What must come after the GOSUB statement on the same line? A LINE
NUMBER INDICATING WHERE THE SUBROUTINE IS LOCATED
IN THE PROGRAM.

How many times can you use one subroutine in a program? AS MANY
TIMES AS YOU WANT.

CODE
NUMBER
110
117
123
131
139
147
156
165
175
185
196
208
220
233
247
262
277
294
311
330
349
370
392
415
440

APPENDIX B

MUSICAL TONE CHART

TONE
NAME

A
A#,Bp
B

C (Low C)
C#,Dp
D

D#, Ep
E

F

F#,Gpb
G

G#, Ap
A (Below middle C)
A#,Bp
B

C (Middle C)
C#,Dp
D
D#,Ep
E

F

F#,Gp
G

G#, Ap
A

149

CODE
NUMBER
440
466
494
523
554
587
622
659
698
740
784
831
880
932
988
1047
1109
1175
1245
1319
1397
1480
1568
1661
1760

TONE
NAME
A
A#,Bp
B

C (High C)
C#,Dp
D
D#,Eb
E

F
F#,Gp
G

G#, Ap
A (Above high C)
A#,Bp
B

C
C#,Dp
D
D#,Ep
E

F
F#,Gp
G
G#,Ap
A

Appendix C

CHARACTER CODES
STANDARD CHARACTER CODES
SET #1 SET #2
CODE # CHARACTER CODE # CHARACTER

32 (SPACE) 40 (
33 ! 41)
34 ‘ 42 *
35 # 43 +
36 $ 44 ;
37 % 45 -
38 & 46 .
39 ’ 47 /

SET #3 SET #4

CODE # CHARACTER CODE # CHARACTER

48 0 56 8
49 1 57 9
50 2 58 :
51 3 59 ;
52 4 60 <
53 5 61 =
54 6 62 >
55 7 63 ?

151

152 Taking Off with BASIC

SET #5 SET #6
CODE # CHARACTER CODE # CHARACTER
64 72 H
65 A 73 I
66 B 74 J
67 C 75 K
68 D 76 L
69 E 77 M
70 F 78 N
71 G 79 o
SET #7 SET #8
CODE # CHARACTER CODE # CHARACTER
80 P 88 X
81 Q 89 Y
82 R 90 //
83 S 91]
84 T 92 \
85 U 93 [
86 \ 94 A
87 W 95 .

UNDEFINED CHARACTER CODES

These are the codes which can be defined by the programmer using
CHRS$ (see Supplement 12).

SET # 9 SET #10 SET #11 SET #12
96 104 112 120
97 105 113 121
98 106 114 122
99 107 115 123
100 108 116 124
101 109 117 125
102 110 118 126

103 111 119 127

Appendix C 153

SET #13 SET #14 SET #15 SET #16
128 136 144 152
129 137 145 153
130 138 146 154
131 139 147 155
132 140 148 156
133 141 149 157
134 142 150 158

135 143 151 159

INDEX

Addition Symbol (+), 94
Adjusting color on the
television, 54
Advanced users, 77
Answers to Checkpoints, 143
Appendix A (Checkpoint
Answers),
143
Appendix B (Musical Tone
Chart), 149
Appendix C (Character Codes),
151
Arithmetic Operations, 94
Arrow keys
left, 14, 19
right, 14, 19, 25, 26
Asterisk symbol (*)
multiplication, 94

BASIC, 1, 4,17, 77, 99
BASIC command, 11
BASIC statement, 5, 8,17
Branching, 107
BREAKPOINT, 21

Bug, 21, 47

Calculator, 93

CALL CHAR, 122

CALL CLEAR, 13, 50

CALL COLOR, 139

CALL HCHAR, 113

CALL SCREEN, 53

CALL SOUND, 65, 129

CALL VCHAR, 122

Cassette tape, 17, 81

Cassette tape player, 14, 80, 81

155

Catalog, 91

Cataloging a disk, 91

Cataloging a tape, 92

Character codes, 122, 151

Character Code Chart
(Appendix C), 151

Character graphics, 19, 109,
113,119

Character graphics grid, 22

Character strings, 119, 122

Checkpoint answers
(Appendix A), 143

Checkpoint information, 4

Children and use of the
manual, xiti

CHRS, 122

Clear (FCTN 4), 20, 30, 135, 136

Colon (:), 99, 127

Color, 53, 75, 139

Color chart, 53

Color codes (Appendix B), 149

Column number, 109, 113

Comma (,), 99

Command, 11

Command Module, 77

Conditions, 37, 107

Corrections, 14, 18, 19, 21, 25, 97

Countdown, 29, 35, 37, 41

Counting backwards, 47

Counting by twos, 47

CRT, 3

Cursor, 11

Dartmouth College, ix
DATA Statement, 103, 107
DATA ERROR, 104, 107

156 Taking Off with BASIC

Data

numeric, 33

string, 57
Debugging, 7, 20, 83, 89
DELete (FCTN 1), 27
Deleting a line, 34
Dice throwing, 136
Disk controller, 80, 81
Disk drive, 14, 80, 81
Disk (also diskette), 17,79,81,89
DISK MANAGER, 80, 81, 90
Division Symbol (/), 94
Dollar sign (string), 57
Dummy variable, 108
Duration, 65, 129

EDIT, 25
Editing, 25, 97
Eighth note, 133
END statement, 8, 75
Endless loop, 35
ENTER key, 11, 12, 18, 27, 93
Equal symbol
in LET statement, 33
in relations, 37
Equal to (=), 37
Erasing a line, 37
Error
correcting, 14, 18, 19, 21, 25
debugging, 7, 20, 47
left arrow, 14,19
messages, 12, 42, 57, 58 ,104,
107
retyping a line, 19
right arrow, 14, 19, 25, 26
Executing a program
(running), 13, 19, 20, 71
Exponentiation Symbol (1), 94

FCTN keys
1 - DELete, 26’ 27

2 - INSert, 26, 27
4 - stop, 20, 30, 135, 136
D - -, 13, 25, 27
E -1, 25, 26, 27, 97
S -,13,27
X-1,97
Field, 99
File, 81, 89
File name, 81
Flag, 107
Floppy disk, 79, 81, 89
Flowchart, 83
Flowchart symbols, 85
Formatting, 75, 99
FOR/NEXT statement, 41, 45,
110, 114,117,129

GOSUB/RETURN statement,
71,135

GOTO statement, 17
Graphics, 19
Greater than, 37
Greater than or equal to, 37
Grid

for character codes, 120

for character graphics, 21

Half note, 132

Happy Birthday To You, 131
Hardware, 3, 77

HCHAR, 113

Horizontal, 113

IF/THEN statement, 37, 107
Immediate mode, 93

Infinite loop, 35
Initialization, 81

Initializing a disk, 81, 89
INPUT statement, 61, 75, 127
Input, 3, 61

INSert (FCTN 2), 26, 27

Interacting with the computer,
61, 75

Key, 49
Keyboard, 3, 19

Language (programming), ix, 1
LENgth, 125
Less than, 37
Less than or equal to, 37
LET statement, 33, 61, 103
Line

erasing or deleting, 18, 34

numbering, 7, 19, 42

ordering or sequencing, 18
LIST command, 12, 18
Loading a file, 80, 89, 92
Loop

counter, 41

endless, 35

FOR/NEXT, 41

infinite, 35

nested, 47

step size, 47

timer, 41, 45, 47, 63, 109, 122

Memory, 11, 18, 33, 57, 61
Memory boxes or locations, 62,
104,105
Message
error, 12, 42, 57, 58, 104, 107
REM, 8, 19, 20, 75
Minus symbol (-) subtraction,
94
Monitor, 3
Multiple input statements,
127
Multiplication symbol (), 94
Music, 66
Musical scale, 66, 72

Index 157

Musical tone chart (Appendix
B), 149

Nested loops, 47

NEW command, 12, 17, 93
NEXT statement, 41

Not equal to, 37

Numeric variable, 33, 57, 62

ON/GOTO statement, 135
ON/OFF switch, 3

Order of operations, 95
Output, 3, 17, 46, 117, 125

Parentheses; 94

Pattern codes, 120

Pattern Code Chart, 120

Peripheral Expansion System,
80, 81

Plan, 7, 83

Plus symbol (+), 94

PRINT statement, 17, 20, 21, 29,
49, 99, 127

PRINT TAB statement, 49, 117

Program, 4, 8, 89

Program plan, 7, 83

Programming, 7, 20, 61, 75

Programming mode, 93, 94

Programming style, 7, 83

Program Updates, 23

Protecting a disk, 79

Punctuation, 99

Quarter note, 132
Question mark, 62
Quotation marks, 17, 20, 57, 117

RANDOMIZE, 136

Random numbers, 136

READ/DATA statement, 103,
107,129

158 Taking Off with BASIC

Relations
equal to, 37
greater than, 37
greater than or equal to, 37
less than, 37
less than or equal to, 37
not equal to, 37
REM statement, 8, 19, 20, 75
RETURN statement, 71
RND, 136
Row, 109, 113
Running a program
(executing), 13, 19, 20, 71
RUN command, 12, 93

SAVE command, 89

Saving a program, 80, 81, 89, 91

Screen color, 53

Semicolon (;), 49, 99, 117

Sequencing line numbers, 18

SET, 140

SHIFT key, 17, 26

Slash symbol (/) division, 94

Software, 4, 79

Sound, 65, 75

SOUND statement, 65

Space bar, 14, 26 R

Statement, 4, 5, 8, 17

STEP, 47

Steps for planning a program,
7, 83

Step size, 47

STOP statement, 30

Stopping a program (FCTN 4),
20, 30, 135, 136

String variable, 57, 63, 125

Style, programming, 7, 83

Subroutines, 71

Subtraction symbol (-), 94

Supervising children, xiii

TAB, 49, 117

Tape, 89, 91

Tape recorder, 80, 92

Television, 3, 54

TESTSAVE, 90, 92

Texas Instruments computer,
2, 49, 53, 65, 77, 79, 97

Tone, 66, 72,129

Tone numbers, 66

Timer loop, 41, 45, 47, 53, 63,
109, 122

Undefined character codes, 122

Variables
defining, 33, 57, 103
naming, 33, 127
numeric, 33, 57, 62
string, 57, 63, 125
VCHAR, 109
Vertical, 109
Volume, 66, 129

Whole note, 132

Prepublication reviewers say:

“Style and level of presentation are exgeHent. .. it's easy-to-read and very
direct, great continuity throughout ...” ,

“..of all the Tl kids' books, this one is superior!”

Taking Off with BASIC on the
Texas Instruments Home Computer

Nancy Ralph Watson

Now—a comprehensive, self-paced guide to BASIC programming on the
Texas Instruments Home Computer, uniquely designed for children and
young adults! This book starts with the most simple BASIC statements
and commands, then proceeds to more complex ideas through the “build-
ing” effect of using just one program theme throughout—the “rocket take-
off” program. With this program, children learn all the necessary elements
of BASIC as well as the specific character of the Tl 99/4A..itself. What's
more—they’ll have fun while learning, too, as they experience the
countdown, sound effects, and color along the way—all designed to
enhance their “take off” of BASIC knowledge!

Actually two books in one, this guide also contains 17 supplemental
chapters that expand the BASIC concepts introduced in the first 17 cor-
responding chapters. Also includes:

» A thorough listing of musical tones for use of sound capabilities on the
Tl Home Computer

o Alist of the most frequently-used statements and commands with page-
numbers for quick reference '

* A comprehensive character code chart!

Preface / Tips On How To Use The Manual / Acknowledgments / Chap-
ters / Introduction / Your Microcomputer / Programming Style / Com-
mands / Print And GOTO / Editing / Countdown / Variables And Let
Statements / If-Then And Relations / For-Next Statements And Timers /
For-Next Statements And Variables / Tab / Color / String Variables /
Input / Sound / Subroutines / The Finishing Touches

	front-cover
	content01
	content02
	content03
	content04
	content05
	content06
	back-cover

