Ballantine/31609/87.95 in USA « $10.75in Canéda

One of the world’s best selling authors of compdter{bbbks
@

Tim Hartell's
N\

FOR MOST POPULAR
HOME COMPUTERS THAT USE BASIC

Computers which can use

TIM HARTNELL'’S
GIANT BOOK
OF COMPUTER GAMES

.VIC 20
Apple Il and lle (and clones)
Commodore 64
Atari

IBM PC (and all clones)

TRS-80 Models 1, 2, and 3
TRS-80 Model 100
TRS-80 Color Computer

Texas Instruments T199/4a
(with extended BASIC)

Timex Sinclair 2000 series
(string-handling needs modification)

Plus any computer furnished with Microsoft BASIC

(BASIC Conversion Chart includeq)

.) . .
: ' !
. .
.
f

' -
, .
'

- . .

N : \

:

Cy T

T

TIM HARTNELL'S

Giant Book
of

Computer
Games

Tim Hartnell

Ballantine Books - New York

Copyright © 1983, 1984 by Tim Hartnell

This book is available to organizations for special use.
For further information, direct your inquiries to:
Ballantine Books

Special Sales Department

201 East 50th Street

New York, New York 10022

All rights reserved under International and Pan-American
Copyright Conventions. Published in the United States by
Ballantine Books, a division of Random House, Inc., New York,
and simultaneously in Canada by Random House of Canada
Limited, Toronto. Previously published in London and Melbourne
by Interface Publications.

Library of Congress Catalbg Card Number: 83-91157

ISBN 0-345-31609-6

APPLE II is a trademark of Apple Computer Inc. IBM PC is a
trademark of International Business Machines. This book has been
neither authorized nor endorsed by Apple Computer or
International Business Machines.

MASTER MIND is a registered trademark of Invicta Plastics.
OTHELLO is a registered trademark of Gabriel Industries.
Manufactured in the United States of America

First American Edition: April 1984

Designed by Gene Siegel

10987654

CONTENTS

INTRODUCTION 1
Getting the programs running on your system 2
Board Games 5
How the computer plays : 9
CHESS » 12
GOMOKU 34
FOUR IN A ROW 38
CHECKERS 45
SHOGUN 54
AWARI 58
KNIGHTSBRIDGE i 65
REVERSI/OTHELLO 71
Adventure 79
STRONGHOLD OF THE DWARVEN LORDS ' 87
THE DUKE OF DRAGONFEAR 92
SHADOW THIEVES - 101
THE BANNOCHBURN LEGACY 108
Simulations 129
MISTRESS OF XENOPHOBIA ' 133
RURAL PURSUITS 138
AVALANCHE 142

CHAIRMAN OF THE BOARD : 147

Dice Games

CHEMIN DE COMPUTER
MALIBU
SEVEN/ELEVEN

NO SWEAT
ONE-AND-TWENTY
SNAKE'’S EYES

UNDER ‘N’ OVER

Artificial Intelligence
ELIZA

ELECTRONIC BRAIN
PROBOSCIDEAN
AMANUENSIS

Just for Fun

INNER SPRING
NIMGRAB
TUTANKHAMEN’S TOMB
ROULETTE

FOLLOW THE LEADER
MADAME ZARA READS THE CARDS
CADDY

CAVALCADE OF PUZZLES
ROBOT MINEFIELD
NOUGHTS AND CROSSES
LAS VEGAS HIGH

Fun with your Printer
CELESTIA
BILLBOARD

Space Games
MOONLANDER I and II
HYPERWAR ‘

Brain Games
FASTERMIND
IDAHO STARS
IDAHO SQUARES
EXECUTIONER

155
159
166
173
176
180
184
191

195
200
207
214
222

227
230
232
235
240
247
249
255
260
273
279
284

291
291
299

308
306
310

319
322
325

- 331

335

CUBIST

MUMBLE MARBLE
CYCLOTRON
SWITCHEROO

FLIPPER

SEARCHING FOR DARYL

Creating your own Games

GAMES TO ADAPT
Glossary of Computer Terms

BASIC Conversion Chart

339
343
346
350
353
357

369
370

379

387

INTRODUCTION

Once upon a time it was not easy to write and play games with com-
puters. Back in the dim, dark past, it could cost you $80 to $100 an
hour just to rent access to a time-shared mainframe via a terminal.
And the only output you had was on the printout of a noisy, hard-to-
read teleprinter. Think what those restrictions would have done to
your current pattern of spending hours lovingly debugging, and im-
proving, your latest masterpiece.

We, fortunately, do not have to suffer such medieval conditions.
The luxury of having a computer of your own, driving a TV screen,
with unrestricted access to the machine, allows you to work for as long
as you like creating games and other programs.

In this book, you'll find a collection of my favorite ‘computer
games. I hope some of them will soon be up and running on your
computer, and are stored with your own favorite programs. They’re
sure to provide you with a lot of fun in the weeks ahead.

I've tried to produce a set of games which will provide varied
entertainment, to cater to your game interests, whatever they may be.
As you'll see by glancing through this book, the games range from
“classic” board games like CHESS and REVERSI/OTHELLO,
through just-for-fun simulations like the wacky MISTRESS OF
XENOPHOBIA, to the demanding ADVENTURE programs
STRONGHOLD OF THE DWARVEN LORDS and THE
BANNOCHBURN LEGACY. There are more than 40 games in this
book, which I wrote to ensure your computer never gets the chance to
voice the complaint, “I've got nothing to do,” again.

I've deliberately written the book so that it is “open-ended.” That
is, in contrast to many other collections of games programs on the
market, I've assumed you’ll want to adapt and improve the programs
once you get them up and running. Therefore, with many of them
I've included program breakdowns, some line by line, so you know
what each section of code is doing. As well, the introduction to each
section discusses a bit about the philosophy of writing games of that
type, has a word or two to say about the basic algorithms which you
can use to create games of that sort yourself, and generally aims to
give you a solid background against which you can expand and de-
velop your own game-writing skills. -

1

Near the back of the book you’'ll even find a section devoted
entirely to game ideas which you can convert into computer games.

Getting the programs running

I deliberately wrote the programs in this book in the most general
version of BASIC I could. Therefore, you'll find no PEEKs and
POKEs, no use of graphic character sets, and no use of such com-
mands as SOUND or PLAY. I've assumed you have access to READ
and DATA, and that your screen is around 32 to 40 characters wide
(and you'll find, if you have a computer like the VIC-20 with a screen
which is not that wide, it is very easy to adapt the program output to
fit, as many of the games only use the width of a playing board, say
12 characters). Standard string-handling commands (such as LEFTS$,
RIGHTS$, and MIDS$) are used, and these will need to be converted to
the Timex-Sinclair “string-slicing” mechanism if you have a computer
such as the T/S 1500 or the T/S 2068. This is not difficult to do, and
I've kept even string-handling to a minimum in these programs so
that the majority of programs should run on your system just by being
typed in directly.

Of course, youw’ll probably have to play with the display a little, in
order to make it as effective as possible. I expect, by the way, that
you’ll modify and adapt the programs to make the most of your sys-
tem, adding sound and color, plus your own system'’s graphics, wher-
ever you can.

Many of the programs reprint the board, or playing field, after
each turn. For simplicity, I've preceded these “reprints” with a CLS
command to clear the screen. Some systems demand a command of
the PRINT “CLR” type, so I'll expect you to make that replacement
whenever you come to it. More importantly, you’ll find that after the
screen has been cleared at the start of the game, the output of the
program can be made much more effective by replacing the CLS with
a “home” command, so that the program reprints “on top of itself”
each time round. This gives the impression in a program like ROBOT
MINEFIELD for example, that the robots are moving. The same can
be seen in the board games. Actually having the pieces move on the
board is highly effective, and adds much to your enjoyment when
running the programs.

Therefore, if your system has a means of resetting the cursor to
the top of the screen without clearing it first (such as PRINT AT 0,0
or PRINT @ O or LOCATE 1,1 or the like) make sure you put this in
the place of the CLS at the start of the reprint section.

These programs were written on an IBM PC®, On this computer,
if I want to generate random integers in the range, say, 1 to 10, I use

2

a command of the type A = INT(RND*10) + 1. You'll find this
format is used throughout the book. If your system does not accept
this, you may have to substitute either A = RND(10) or A =
INT(RND(0)*10) + 1 or A = INT(RND(1)*10) + 1 (and you may
well need to precede this with LET). You probably know exactly how
to do it right now, but if you’re not sure, look' up RND or “random
numbers” in your system’s manual.

The computer on which I developed the programs always gives
the same sequence of random numbers each time the program is run.
As numbers which are more or less genuinely randomly distributed
are needed in many programs, I've seeded the random number gener-
ator in each case by one of two methods.

I've either used INKEYS$ to hold the program in a loop, incre-
menting a variable as I do so, until a key is pressed, and then use that
variable to seed the random number generator (as in RANDOMIZE
N) or have taken the seconds part of the built-in clock on my com-
puter as the seed (which gives rise to that rather terrifying-looking
line RANDOMIZE VAL (RIGHT$(TIMES,2)) in many of the pro-
grams).

If your computer does not produce the same numbers in the same
sequence every time you run the program, drop these lines al-
together. Alternatively, just use RANDOMIZE (or RAND) without a
following number, if your system accepts that. Again, your manual
will tell you what to do. If you’re not sure what to do, and your com-
puter will not accept the long line including TIMES$, then just leave it
out altogether. The program will function perfectly well without it.

Although much of the output within quote marks in PRINT
. statements is in lower-case, all programs (with the exception of the

CHESS one, which needs lower-case letters to signify the human’s
_pieces) expect input-in upper case letters. If your system does not
have lower-case letters, simply put the material in PRINT statements
in upper-case. It has been put in lower-case just because I think it
looks better, but it has nothing to do with the actual running of the
program.

You'll probably find, in fact, that when you get to entering the
programs you’ll automatically make the small changes needed to ac-
commodate the special features of your system. I've included the
above notes in the book just to make sure you can get the programs
up and running as quickly as possible. However, you may well find
you don’t need them at all. So don’t be intimidated by the length of
this initial section of the book.

The majority of the programs in this book will fit well within 8K.
THE BANNOCHBURN LEGACY is the exception, which demands
nearly 17K on my system. CHESS occupies 8K, with the shorter pro-

3

grams generally under 4K. If you have trouble getting a program into
your system because of shortage of memory, cut out the REM state-
ments (the majority of GOSUB and GOTO calls do not reference the
leading REM, but go to the actual routine itself which follows the
identifying REM), and shorten the PRINT statements. It is impossi-
ble to predict exactly how much memory the programs will take on
your system, because of the different ways memory is organized, and
the working space the program requires differs from system to sys-
tem.

To maximize the length of program you can get into your ma-
chine (and to keep program entry time down to a minimum) few of
the programs include instructions. These are in the text. However, if
you have the memory (and the inclination) you can easily add a “Do
you want instructions” line as part of the initialization subroutine, and
then include a shortened form of the instructions from the text in your
program.

I've followed structured programming techniques in all programs
which lent themselves to that approach. This is explained in the mate-
rial supporting the CHESS program. You may well find, as I did
when I actually decided to put all the advice I'd read in books and
articles into action, that working in a “top down” manner made writ-
ing and modifying programs a much simpler, and more precise, ac-
tivity than it had been before. As a bonus, it is much easier to get a
program up and running when it’s written this way. Most importantly,
you can get to the fun parts—actually running the thing—much more
quickly.

Many programs include a delay loop. As the actual delay pro-
duced will depend on your system, you should adjust these dummy
loops (which are generally held in subroutines at the very end of the
program) so that the screen display is as effective as possible.

Finally, a word about variables. In several cases complete words
(such as SCORE) have been used as variable names. However, only
the first two letters of the name are significant. If your system only
accepts two-letter variable names, enter just the first two letters (such
as SC in our example). Even if your system only recognizes the first
two letters of a variable name, you should include the name in full if
your system will accept it. You will find that it will be easier to under-
stand what is happening within a program if you do this.

I think we should get to the fun parts immediately.

Good game-playing!

Tim Hartnell
London,
May 1983

Board Games

Some games could not have existed without computers.

Think of the whole range of Space Intruder types of games and
the Pacperson ones. These could have not come into being before the
computer—using a TV-like screen for output—was developed. Many
other games, of course, predate the computer by thousands of years.
However, more and more of these traditional games have now been
computerized, with board games being as popular with computer
games players as they were with players in precomputer days.

In this section of the book, we have a generous crop of board
games:

* CHESS

* GOMOKU

* FOUR IN A ROW

* CHECKERS

« SHOGUN (HASAMI SHOGD

¢ AWARI

« KNIGHTSBRIDGE

+ REVERSI (OTHELLO)

We'll start this section of the book with a discussion on how board
games can be easily modified to make it possible for a computer to
handle them. Apart from AWARI, the ideas we’ll discuss in the next
few pages have been applied to every board game in this section of
the book.

There is a common thread which holds together all the programs
in this section of the book, a thread which you can also use to help
you develop programs to play your favorite board games. Look first at

this diagram. It shows a checkerboard numbered to make it easy for
the computer to handle.

You can indicate any square on the board by referring to the number
along the left-hand side, (such as 3), then the number along the top
(such as 4). In this case, the line numbered 3 (along the left-hand side)
and the line numbered 4 (along the top) meet at the square numbered
34. If you wish to move a piece, you can do so by entering the num-
ber of the square you’re moving from (such as 55), then the number
you’re moving to (such as 66) and the computer can understand ex-
actly what you're doing. There is no need to change the numbers
entered by the human player into another set in order to allow the
computer to interpret them.

That is the first “secret” of writing board games so your computer
can play them. The second is that a board numbered in this way has
another great advantage over one which is simply numbered from one
to 64 in order. When you move a piece in any direction on this
board—no matter where you start—the difference between the
squares is the same.

8

Tll try to expand on that somewhat cryptic statement. If you
move one square up and to the right—Ilike the move of a piece in
checkers—you will move from, say, 24 to 35; or from 53 to 64; or
from 71 to 82. But notice that no matter where you are on the board,
the difference between your starting and ending squares is always 11.
If you move diagonally up to the left, you'll move from, say, 26 to 35
(plus 9), or 66 to 75 (also plus 9) or from 22 to 31 (plus 9 again).

This predictability makes it relatively simple to create a board
which the computer can handle.

How the computer plays

. Imagine the computer has a checkers piece on the square num-
bered 24. It could be programmed to check each square on the board,
and every time it found one of its own pieces, could check if there was
a human piece on the square numbered the same as its piece (that is,
24 in this example), plus 11 (that is, on 35); and it could check to see
whether the square which was 11 past that, 46, was blank. If it found
that all these conditions were true, the computer could jump over
square 35 into square 46, and capture the piece currently occupying
3s. '

This, in essence, is how many computer board games—from
checkers, through Reversi, to chess—work, based on a simple 8 by 8
grid numbered in this way.

If you were writing chess on this board (as the CHESS game
we'll look at shortly was, in fact, written), you could specify the moves
of, for example, the knight, by knowing it can always move to squares
which are the following “numerical distances” from the square on
which the piece now sits:

21 12 -8 -18 -21 -12 19 8

Try it now, by placing a coin on square number 55, and move it
as if it were a knight, working out the mathematical relationship be-
tween the starting square, and the square you’re moving to. You
should find the differences are the same as the numbers listed above.

The programs in this section, and in many other parts of this
book, were written in a “top down” manner, in an attempt to produce
a structured program which is relatively easy to follow and modify.
Many of the programs were written by entering the following “bare
code” at the start:

10 REM NAME OF GAME
20 GOSUB S000:REM INITIALISE
30 GOSUB BOOO:REM PRINT BOARD

40 GOSUB 1000:REM COMPUTER MOVES

50 GOSUB BOOO:REM PRINT BOARD

60 GOSUB 7000:REM HUMAN MOVES

70 Check if humen has won or computer has
won and if so branch to end of
game message...

80 GOTO 30

This structure was written, in nearly all cases, before I had the
slightest idea how I was to accomplish the goals I had set myself for
each of the subroutines.

All programs were written out completely on paper before the
computer was even turned on, so that a version of the game could be
“hand run” before starting to actually grapple with the game on the
computer. This enabled the worst bugs to be caught right at the be-
ginning.

I strongly advise you to follow a similar process when you write
programs. I had read this advice myself, in several articles and books,
and—predictably enough—had ignored it, until I found myself on a
two-week holiday in Wales, miles from the nearest computer store,
with a burning desire to write a chess program. The program in this
book is based on that original program, written on paper in a rented
cottage on the Welsh coast, and dreamed up as my dog and I wan-
dered for miles along the seafront.

Among the many great advantages I discovered regarding pro-
gramming on paper in this way was the willingness with which I com-
pletely discarded whole blocks of code if they were found to be
unworkable. It is much more difficult to decide to erase a whole sec-
tion of code from a program once you actually have it in the computer
than it is to just tear up a piece of paper. The temptation—when lines
of program are actually in the computer—is to fiddle with them, in an
attempt to make them work, at least after a fashion.

‘Working on paper, then, tends to prevent having code which
really should not be in a program from somehow being patched to-
gether to make it work. Working with a structured outline, such as
that I've described, makes it simple to know which parts of the pro-
gram carry out which task. I know, for example, in the outline above,
that the board is printed by the subroutine starting at line 8000.
Therefore, if the board comes out looking a bit odd, I know imme-
diately which section of the code I should concentrate on.

As well as helping in the early “get it working” stage, a structured
program tends to invite improvements. Once you have, for example,
your own CHECKERS program up and running, you can go back to
it some time in the future to try and make it play a little better by

10

going just to that part of the code which covers the computer’s game.
You will not have to wade through vast acres of code, trying to work
out just what each line does, and which particular lines control the
computer’s play.

The methods I've just outlined are used throughout this and most
other sections of the book. It may prove instructive to look through
some of the programs to follow through the listing, and work out
which section does what. In many programs, you’ll see that I've in-
cluded lines of asterisks as a REM statement. These break the pro-
gram into separate modules which should help you follow the program
through. ’

11

CHESS

CHESS is one of the greatest challenges which can face a computer
programmer. To analyze how a human plays chess, and then to try
and break that analysis into a number of ideas which can be ex-
pressed clearly enough to be written into a program, is a formidable
task.

It cannot be claimed that this CHESS program is a particularly
successful attempt to surmount the challenge I've described. While it
plays chess on a reasonably coherent basis, it does not play well, and
should prove no real challenge to defeat. Why then include it in the
book, alongside other games which are practically unbeatable?

I've put the CHESS program in this book precisely because chess
has proved such an attraction to computer programmers. Very few
chess programs have ever been publlshed (I know of one which ap-
peared in Creative Computing magazine in December 1981, under
the title Chess C.4, by Michael Rakaska; two others which appear in
books; and the machine level listing of Sargon II), which suggests how
difficult a task it is to produce a program of this type. I felt that the
very rarity of published chess programs gave weight to any argument
in favor of including this one.

The poss1b1hty of a machine playing chess against man has oc-
cupied men’s minds for hundreds of years. A chess-playing automaton
built by Baron von Kempelen, which played its first exhibition match
before royalty in Vienna in 1770, captured the imagination of much
of Europe. Unfortunately, the machine was little more than an elabo-
rate conjuring trick, with a man in a hidden compartment operating
the playing mechanism. It was a highly successful fraud, nevertheless,
and an examination of its moves shows the man stuffed inside the
device certainly knew his chess. While doing some research into the
history of game-playing at the British Museum, I found in the British
Library a book from the last century, 50 Games Played by the Chess
Automaton, which some earnest reader had annotated in the last 100
years. The human players came in for more scathing comments—
such as “This move brands the player as a beginner!”—than the ma-
chine ever received.

But despite its reputation, the machine could not' really play
chess. The first real approach to a device which would play a com-
plete game of chess (as opposed to machines, a few of which were
built early this century, to play particular endgames) was in 1949,
when on March 9 Claude Shannon, then a research worker at Bell
Telephone Laboratories, Murray Hill, New Jersey, presented a paper

12

called Programming a Computer for Playing Chess at a New York
convention.

As David Levy points out in his fascinating book Chess and Com-
puters (Computer Science Press, Inc., Potomac, Maryland, 1976) the
real significance of Shannon’s paper lies not only in the fact that it was
first, but that “many of Shannon’s original ideas can still be seen in
today’s programs” (p. 40).

Shannon said in that paper that the number of possible moves in
a 40-move game approached 10 raised to the 120th power, a number
which is of the same order as the atoms in the universe. Clearly any
program which attempted to evaluate all those moves would be
around a long time (say 10 to the 90th power years) before the first
king’s pawn made its foray out towards the center.

To make the program in this book play, and to get it to play
reasonably quickly, demanded—as I'm sure you can appreciate—a
number of compromises. I traded in-depth evaluation against some
rough and ready playing ideas (such as programming the computer to
move pieces to help hold the center as much as possible; to develop
knights as soon as possible in a game; to capture by a pawn, regard-
less of the fact that the pawn faced immediate capture, whenever
possible; to hold the king as immobile as possible, at least in the early
stages of the game, when a cowardly approach would seem to make
good sense; and to allow pieces with vast mobility—such as the
queen—a randomly weighted decision-making mechanism which
would ensure it did not sail off to the other side of the board just
because a clear channel was open for it to do so).

I followed a clear structure in laying out the program, which has
ensured that it plays as quickly as possible. The structure, in fact, is
not as transparent as I hoped it would be when I first wrote the pro-
gram. The complexity and number of demands put upon the com-
puter by the game when I finally got the program up and running
meant that my best-laid plans of producing a clearly structured pro-
gram went somewhat astray. Nevertheless, the program does play ex-
tremely quickly, and if it does not play well, at least it is an opponent
with quirks which can never fail to exasperate and amuse.

At the end of the listing there is a section which will tell you how
to modify the program to get it to play against itself. This is a fascinat-
ing demonstration program, and one which never fails to arouse inter-
est when it is up and running, especially from those who consider
themselves experts at the game. I ran one game of “auto-chess,” with
a printer connected, and before the program listing I'll show you that,
so you can judge for yourself what sort of an opponent the computer
will make.

The “auto-chess” variation makes use of the exchange sides op-

13

tion within the game, swapping sides after each move. When you
swap sides, as you can do if you feel the computer could do with some
help, and you give it the side you were playing on, the pieces are
exchanged as if they were reflected across a mirror placed at the cen-
ter of the board. That is, a queen swapping sides ends up on the
correct-colored square, and so on. Try the exchange a few times when
you're playing and the operation of this mechanism will be quite
clear. '

A final word, before we get down to our demonstration program.
The computer must be watched to make sure it does not cheat. It will
only do so extremely rarely, but (unless you're feeling particularly
generous) if it—for example—moves into check you should take this
as a sign that the program wishes to resign. Again, the machine some-
times has problems getting out of check. Here you may wish to be a
bit more tolerant, as it will usually manage to do so within the next
move or so. Alternatively, you can regard any such failure by the
computer as an acknowledgment of your superior play.

Before the listing of the program, I'll show you a few stages in a
game played by the computer against itself. The computer changed
sides after each move, and printed the board after every second
move.

ABCDEFGH ABCDETFGH
8 RNBQKBNR 8 8 RNBQKBNR 8
T PPPPPPPP T 7 pPPP.PPPP T
6!.0...0.6 6......"6
5..00000005 5...?...-5
y ., . . P . o o . b 4 . . . P e s . o K&
3.--000.003 30.0000003
2 ppP.PPPP 2 2 ppPpP.PPPP 2
1 rnbgqkbnrer 1 1 rnbqgqkbdbnr 1

ABCDETFGH ABCDETFGH

(XX XXX XXX ZZZ2E2ZZZEXRXIRESSXSRZSZSAZSRRRR2 2222}

14

ABCDETFGH

ABCDEFGH

Or~vwinrMMN ™

KOy o o o oK
Z By o o o e
MO o ¢ ¢ o Q0
MO o e o oM
Q ¢ e Q ¢ o T

Bopcoopb.

Z R e e o o0

- T -

O~V MNN—

O~V INT NN

KR o o o o0 8

-3 - VR B R I = O <
MABds o o o o Q0
MBI o e e oM

[« B -
MO o o ¢ o .O
-2 - VIR T T B W -
KA o o o o0

O~V NN ~—

ABCDEFGH

ABCDEFGH

' ZXXX2ZXXRXEXESXSSXSRSSXRSASRSESRSSRSAZSA R A2 A2 4 2

ABCDEPFGH

ABCDEFGH

D~V MNMN —

MR o o o o0 8

R - "I IR Y = A
M o e o o Q0O
MO e o o0 oM
Q oo e QA o o O

M e o ¢ o0
|2 - VIR S S S S « S
- R - -

O~V NN ™~

o~V MAN v

mAs ¢ o o QK

Z0hd o o o s QS
MO o ¢ ¢ o0
MO e e e oM
[« 2N -V - N -

BoP.c‘opb
|3 - VI S S T I«)
MR o o o208

O~V ON ™

ABCDEFGH

ABCDEFGH

Y XX X s XXX XXXXXXZXXXZX2222ZXX2Z22RZ2 222222222 XX 2

ABCDETFGH

ABCDEFGH

ot~ MnNTTMN v~

B A o o o o0, 8
-3 - P Y - N =
M ¢ e, o o Q.0
(-3 - PR N - SN v
(= NI -V AN -
M e o o0 o0
e By o o o o) o
MAAE o o3 Q8

O~V INITMNMN -

D~V INTFT MN ™

BB o o o oL
Z Ry o o o QK
M o oy o o OO0

MO e e eQ oM
O o o QO o o O
M e o e 0,0

ZDy o o o e o

(- VI - I - N

ot~V INnNTrMN ~—

ABCDEFGH

ABCDETFGH

I XXX XXX RIAAASAZSSSIISZS 2222 X)

15

ABCDEFGH

ABCDETFGH

ot~V MAN v~

KRR o ¢ o 0L
eBy o o o o QO .
m «Za Ao 0
M el e e oM
Q e o o o O
M ePs o o0 .0
By o 2D e o o
[+ K- T~ R =~ = N 9

Ot~V N NN ™

Ot~O I NN ~

B A o o o o K

‘NP o o v.opn.

M o s QO ¢ oD
M eR e el e X
l« ZEC TN - VRN -SSR .
M e o o0 o0
efy o o s e % o
ELZ ¢« oS QAN

O~-Oo N MmN

ABCDETFGH

ABCDETFGH

Q!..[Ql.ll’ll!l.’lllli!.C".!!.l!".i".ﬁll'!!‘

ABCDETFGH

ABCDETFGH

OM~OVINT MN v~

Oy o o o .pnr
By o o o e O o
M 202 .0
M e sy e QO e M
D e O o O
M ePBy o o ¢ .0
st o e ¢ o o
[¥ - "N - B W

O~w N MmN —

Ot~V MNN

O o s o o 0 S
efly o o o e 0 o
m Z oS 0
M e o e o M
[« N - - R
B..P e o o o 0O
o fly o o o o o

[J- VRS~ - N T

OO N NN~

ABCDETFGH

ABCDETFGH

XX XX 22X SRR 2SR RS ESEZSSSRSSXRSXER Y

ABCDETFGH

ABCDETFGH

O~-VvVinr NN~

ol o, .N [~ I -
- T T - N
M e e O o 0.0
M e e e o N
e I -
M ey o o o o 0O
N N - B
- - PR I - - &

O~V MN v~

O t~ONTMEN ™

A o o o8,
ey, ¢ o o o Q) o
m « OS2 o0
M e e e oM
O o Q4 o o o O
m LP * o s e O
ey o e QA o o o

A oo o O 8

O~V NN

ABCDEFGH

A BCDETFGH

LA A A X R R R R N R X R X S S X R RS X XXX Y

16

PNDwWwEuno o

ABCDEFGH ABCDETFGH
R.BQKB.R 8 8 R.BQKB.R
P.¢.....PP T 7 P ... ¢ .. P
e« « P o oo . b 6 . .P. . . P,
. P .PPP.N 5 5 . P.PpPpP.N
e P e « «P on X y :p. ¢ .P..n
n.ocpapo3 3n..bp>.p.
Pe « ¢« o« » « P 2 2 P e o o o o o P
r.bqgqkbd.r 1 1 r.bgqkb.r
ABCDETFGH ABCDETFGH

= NDWEUNoh] ®

X X X XX XXX XXX 22222222 XXX XX

Now here is the lisﬁhg of the chess game:

10 REM Chess

20 GOSUB 2970

30 GOTO 60

40 GOSUB 2580

50 GOSUB 2820

60 GOSUB 2580

70 REM X XXX 2222222222322 22222222¢2¢2/
80 IF A$ = "S" THEN END

90 IF A$ = "X" THEN PRINT "EXCHANGING SIDE
S":GOSUB 3540:4% = "

100 IF A$ = "P" THEN GOSUB 3730

110 REM SERBRBLRRBERAEERERABRERARNEERRRTRER
120 FOR Z = 1 TO 16:T(Z) = O:NEXT Z

130 U = 0

140 PRINT "Please stand by"

150 FOR Q = 1 TO 64:IF A(S(Q))>=BB AND A(S
(Q)) <=RB THEN U = U. +1:T(U) = S(Q):IF A(S
(Q))=KB THEN KM=S(Q)

160 NEXT Q:IF U<3 THEN GOTO 2230

170 GOTO 650

180 FOR Q = 1 TO U:IF A(T(Q))=KB THEN T(Q)
=T(U):T(U) = KM

190 NEXT Q

200 Q = INT(RND*#*3)

210 IF A$ = "C" THEN Q = 0

220 IF QKU THEN Q = Q + 1

230 Z = T(Q):GOSUB 280

17

18

240 IF MM = 1 THEN GOSUB 2500:GOTO 40
250 IF Q<U THEN 220

260 GOTO 2360
270 REM #HERRARSANERERRANNDNARRENNNRUNNRRS

IZBQ IF A(Z) = QB THEN GOSUB 910
290 IF A(Z) = RB THEN GOSUB 1170
300 IF A(Z) = BB THEN GOSUB 1420
310 IF A(Z) = NB THEN GOSUB 1690
320 IF A(Z) = PB THEN GOSUB 2240
330 RETURN

340 REM ll*l*!*l*!!.l!ll!****i*i*!'!!l*Ql
IF A(X) = 107 THEN MM = 0: Q = Q + 1:R
ETURN '
360 IF X + 9 > 88 THEN 380
370 IF A(X + 9)<83 AND A(X + 9)>65 AND RND
<.96 THEN RETURN
IF X - 11<11 THEN 400
390 IF A(X-11)<83 AND A(X-11)>65 AND RNDK.
96 THEN RETURN

(5007 AD = 0 .
%!I]AY = 0

20/ AX = X + Q(AY + AD)

430 IF AX<11 OR AX>88 THEN 460
440 AP = A(AX)

450 IF AP = Q OR AP = R AND RND>.8 OR AP
= B AND RND >.5 THEN RETURN.

AY = AY + 1
470 IF AY < 8 THEN 420
480 AD = AD + 7
490 IF AD<56 THEN 410
500 AY = 1

511 X + N(AY)
520 IF AX<11 OR AX>88 THEN 540
530 IF A(AX) = N THEN RETURN

(550 AY = AY + 1
550 IF AY<9 THEN 510
560 AY = 1

AX = X + K(AY)
580 IF AX<11 OR AX>88 THEN 600
590 IF (A(AX)=K OR A(AX)=P) AND RND>.1 THE
N RETURN

AY = AY + 1
610 IF AY<9 THEN 570
620 MM = 1 '

¢ a

630 RETURN -
640 REM #E SRR BEREERIRRSRNRRANANNRRNRRNERSY

650' Z = KM

660 ¥ = 0

670 ¥ = Y + 1
680 X = Z + N(Y)

690 IF X<11 OR X>88 THEN 600
700 IF A(X) = N THEN 1870

710 IF Y<8 THEN 670
720 REM SS SRS RRRRRARNRRRNRBNRRNRNNERNND

730 D = 0
740 Y = 1
750 X = Z + Q(Y + D)

760 IF X<11 OR X>88 THEN 810
770 IF A(X) = B OR A(X) = Q OR A(X) = R TH
EN 1870

780 IF A(X)<>E THEN 810

790 Y = Y + 1 '

800 IF Y<8 THEN 750

810 D = D + 7

820 IF D<49 THEN 750

830 X = Z + 11

840 IF X>88 THEN 860

850 IF A(X)=P THEN 1870

860 X = Z - 11

870 IF X<11 THEN 180

880 IF A(X)=P THEN 1870

890 GOTO 180
GO0 REM #E BN RN SRausr i et inntnunntinnnunnss

910 D = 0.
920°Y = 1
930 X = Z + Q(Y + D)

940 IF X<11 OR X>88 THEN 1000

950 IF A(X)=42 OR A(X)>=BB AND A(X)<=RB TH
EN 1000

960 IF A(X)>=B AND A(X)<=R THEN GOSUB 350:
IF MM <> 1 THEN 1000

970 IF MM = 1 THEN RETURN

980 Y = Y + 1

990 IF Y<7 THEN 930

i000 D = D + T

1010 IF D < 42 THEN 920

1020 RETURN
1030 REM SN ER RSN e R RN N NN NN AN R RN NN RN NN

19

20

55101@ D
0\Y
570 1
070 IF

1080 IF
1090 IF
EN GOTO
1100 IF
1110 ¥

1120 IF
D

IF
RET
REM

1140
1150
1160

D
Y
X

1170

0
1190
120
1210
THEN 169
1220 IF
:IF MM

IF

1230 IF MM

1240 Y
1250 IF

D
1270 IF
1280 RET
1290 REM

F

I

1330
1340 IF
1350 IF
1360 IF
1370 ¥

138Q IF
T390\ D
00 IF

1410 RET

1429 IF

0

1

Z + Q(Y + D)
X<11 OR X>88 THEN 1130
A(X)<>E THEN 1130

RND>.5 THEN GOSUB 350:IF MM = 0 TH
1130
MM = 1 THEN RETURN
Y + 1
Y<8 THEN GOTO 1060
D + 7
D<49 THEN 1050
URN

I ZZ2 222222222022 222X 2]

0

1
Z + R(Y + D)

IF X<11 OR X>88 THEN 1260

A(X)==99 OR A(X)>=BB AND A(X)<=RB
0 .
A(X)>=B AND A(X)<=R THEN GOSUB 350
0 THEN GOTO 1260
1. THEN ‘RETURN

Y + 1 ‘
Y<T THEN 1190

D + 7T
D<21 THEN 1180

URN
RERRRERARRARRRERRRRERRRRRRRRERRRER

0

1

Z + R(Y + D)

X<11 OR X>88 THEN 1390
A(X)<>E THEN 1390
RND<.,1 THEN GOSUB 350
MM 1 THEN RETURN

Y + 1
Y < 7 THEN 1320

D + 7
D<21 THEN 1310
URN
A(Z) <> BB THEN RETURN

143
104

o

1

] X Z + B(Y + D)

1460 IF X<11 OR X>88 THEN 1520

1470 IF A(X)=-99 OR A(X)>=BB AND A(X)(RB
THEN 1520

1480 IF A(X)>=B AND A(X)<=R THEN GOSUB 350
¢:IF MM <> 1 THEN 1520

1490 IF MM = 1 THEN RETURN

1500 Y = Y + 1

1 IF Y<7 THEN 1450

\M520)D = D + 7

1530 IF D<21 THEN 1440

1540 RETURN
1550 REM # RSB RRRANNRARRERRNERNNNRRRNRNNDY

60)D
1570} Y = 1
1580 X = Z + B(Y + D)
IF X<11 OR X>88 THEN 1650
1600 IF A(X) <> E THEN 1650
1610 IF RND>.05 THEN GOSUB 350:IF MM <> 1
THEN 1650
1620 IF MM = 1
1630 ¥ = Y + 1
1640 IF Y<7 THEN 1580
650)D = D'+ 7

660 IF D<21 THEN 1570
1670 RETURN
1680 REM ###ERRRRERABRRNRERRARRAERARARRRRS

‘h69o?x'= 1
1700)X = Z + N(Y)

1710 IF X<11 OR X>88 THEN 1750
1720 IF A(X) =-99 THEN 1750
1730 IF A(X)>=B AND A(X)<=R THEN GOSUB 350

0

THEN RETURN

1740 IF MM = 1 THEN RETURN
v Y =Y + 1
1760 IF Y<9 THEN 1700

1770 RETURN
1780 REM **&l*ﬂ*!*i*i!**l#ﬂﬁiﬁ**ﬂii!*****i

M790/Y = 0

21

x = Z + N(INT(RND*8 + 1))
§T0 IF X<11 OR X>88 THEN 1800
1820 IF A(X) =-99 THEN 1800
1830 ¥ = Y +

1

1840 IF A(X) = E THEN GOSUB 350

1850 IF MM = 1 OR Y > 20 THEN RETURN
0 -

1860 GOTO 180
[1870\ YK = 1
‘EI:,Z = KM

1890 X Z + K(YK):X1 = X

1900 IF X<11 OR X>88 THEN 2200

1910 IF A(X)=-99 OR A(X)>65 AND A(X)<83 TH
EN 2200

1920 IF A(X)>97 AND A(X)<115 THEN 2200
1930 2

1940 Y = 0
50/Y = Y + 1
1960 X = Z + N(Y)

1970 IF X<11 OR X>88 THEN 1990
1980 IF A(X)=N THEN 2200

1990/ IF Y<8 THEN 1950
5000 REM HeRNURRUAIRARARONIRARRERARKNARNES

2010 D = 0
2020 ¥ = 1
12030)X = Z +Q(Y + D)

2040 IF X<11 OR X>88 THEN 2090 .

2050 IF A(X)=B OR A(X)=Q OR A(X)=R THEN 22
00

2060 IF A(X)<>E THEN 2090
2070 Y = ¥ + 1

2080 IF Y<8 THEN 2030

O(D =D + 7T

21 IF D<U9 THEN 2030

2110 X = Z + 11

2120 IF X>88 THEN 2140

" 2130 IF A(X)=P THEN 2200
‘?ﬂﬁ!:x =2 - 11
50 IF X<11 THEN 2170
2160 IF A(X) = P THEN 2200
'Iagiﬁlx = X1:2 = KM
2180 MM = 1

2190 GOSUB 2500: GOTO 40
\ YK = YK + 1

2210 Z = KM

2220 IF YK<9 THEN 1880

[2230] PRINT "I concede, champ!":END
X =72 + 9

2250 IF A(X)>=B AND A(X)<=R THEN MM = 1:IF
A(X)=P AND RND<.2 THEN MM = 0

2260 IF MM = 1 THEN RETURN

2270 IF Z = 12 THEN RETURN

2280 X = Z - 11 '

2290 IF A(X)>=B AND A(X)<=R THEN MM = 1:IF

A(X)=P AND RND<.2 THEN MM = 0

2300 RETURN
2310 REM #RG S Sauaunnnunanninsasusnnsnsnns

IF Z - 10%(INT(2/10))=7 AND A(Z-1)=E
AND A(Z-2)=E AND (A(Z=-13)=E OR A(Z-13)=42)
AND (A(Z+7)=E OR A(Z+T7)=-99) THEN X = Z =
2:MM = 1:RETURN
2330 IF A(Z-1)=E AND A(Z-12)<98 AND A(Z+8)
<98 THEN X=Z-1:MM = 1:RETURN
2340 IF RND<.05 AND A(Z-1)=E THEN X=Z-1:MM
=1 .
2350 RETURN
Q = INT(RND#RND#5):IF Q>U THEN 2360
IF QKU THEN Q = Q + 1
. 2380 2 = T(Q)
- 2390 IF A(Z)=PB THEN GOSUB 2320
2400 IF A(Z)=NB THEN GOSUB 1790
2410 IF A(Z)=BB THEN GOSUB 1560
2420 IF A(Z)=RB THEN GOSUB 1300
2430 IF A(Z)=QB THEN GOSUB 1040
2440 IF A(Z)=KB AND A$<>"C" AND RND<K.07 TH
EN GOSUB 1870
2450 IF MM=0 AND Q<U THEN GOTO 2370
2460 IF MM=1 THEN GOSUB 2500:GOTO 40
2470 UK = UK + 1:IF UK>8 THEN 2230

2480 GOTO 2360
2490 REM un&;nu&*aausa;;a&*&uu&&aaalsioiaa

IF A(Z)=KB AND A$<>"C" AND RND>.1 THE
N MM=0:GOTO 2360

2510 IF A(Z)=PB AND ((X-10%INT(X/10) > Z
OINT(Z/10) OR ABS(X-Z)>11)) THEN MM=z=0:U
U + 1:G0TO 230

-1

23

{—

2520 IF A(X) = K THEN PRINT WCHECK": MM=0
:U = U + 1:GOTO 230

2530 A(X) = A(Z):A(Z) = E

2540, PRINT "I will move from ";

2550 FZ=INT(Z/10):PRINT CHR$(FZ+64);Z~-10%*F
Z;" to ";:FX=zINT(X/10):PRINT CHR$(FX+6H);X
-108FX:FOR O = 1 TO 1000:NEXT O

2560 RETURN ,
2570 REM #HE RSN RRIARUARFRARERNRNANARBRRNNNS

2580 CLS
2590 GOSUB 2670 .
2600 FOR X=8 TO 1 STEP -1
2610 PRINT TAB(10);X;" ";
2620 FOR Y = 10 TO 80 STEP 10
2630 IF A(Y+1)=PB THEN A(Y+1)=QB
2640 IF A(Y+8)=B THEN A(Y+8)=Q
2650 PRINT CHR$(A(X+Y));" m;
2660 NEXT Y:PRINT X:NEXT X:MM = 0
670/ PRINT: PRINT TAB(14);"A B C D E F G H"
:PRINT '
2680 REM #ERERURBRRAERNINBEGHRFRRRBRRRRNERENS

2690 RETURN

2700 Z = KM

2710 QK = 0

T27200 M = Z + K(QK)

2730 IF M<11 OR M>88 THEN 2780 .
2740 IF A(M)=-99 OR A(M)>65 AND A(M)<83 OR
MM=0 THEN 2780

2750 X = M

2760 KM=2Z

2770 RETURN
\2780)IF QK<8 THEN 2720
790 IF A$<>n"C" THEN RETURN
2800 GOTO 2230
2810 REM SRELRRRAREERRRTRARRRRARNIRANINNNDY

[B20] PRINT

2830 INPUT "FROM (LETTER,NUMBER)";A$

2840 IF LEN(A$)<>2 THEN 2820

2850)INPUT "TO";B$

2860 IF LEN(B$)<>2 THEN 2850

2870 X = 10%(ASC(A$)-64)+VAL(RIGHT$(AS,1))

24

2880 Y = 10%(ASC(B$)-64)+VAL(RIGHT$(BS$,1))

2890 PRINT "Enter C check"

2900 PRINT *® P - to print board"
2910 PRINT " X - to exchange sides"
2920 PRINT " S - to stop game"

2930 INPUT "Or press RETURN to continue®;A
$

2940 IF A(Y)>=75 AND A(Y)<=82 THEN GOSUB 3
660

2950 A(Y) = A(X):A(X) = 46:RETURN
2060 REM #URBERRRERERRSRRRORRRRNRNNTNNNGNS

EEEBICLS:PRINT "PLEASE ENGAGE CAPS LOCK":P
RINT"THEN PRESS RETURN"
32980,N = N + 1:IF INKEY$ = "" THEN 2980

2990 RANDOMIZE N:CLS:PRINT "Please stand b

yn

3000 DEFINT A - Z

3010 MM=0:A$=""

3020 DIM A(99),R(28),B(28),N(8),Q(56),K(8)
,2(88),5(64),T(16)

3030 P=112: R=114: N=110: B=98: Q=113: K=1
07: E=46

3040 PB=80: RB=82: NB=78: BB=66: QB=81: KB
=75

3050 FOR Z = 1 TO 99:A(Z) = - 99:NEXT 2
3060 REM X X XXX XXX XXXZXXXX2XX222 X2 222222 2]

3070 FOR Z = 1 TO 64:READ X:READ Y:A(X)=Y:
NEXT Z

3080 DATA 18,82,28,78,38,66,48,81
3090 DATA 58,75,68,66,78,78,88,82
3100 DATA 17,80,27,80,37,80,47,80
3110 DATA 57,80,67,80,77,80,87,80
3120 DATA 16,46,26,46,36,46,46,46
3130 DATA 56,46,66,46,76,46,86,46
3140 DATA 15,46,25,46,35,46,45,46
3150 DATA 55,46,65,46,75,46,85,46
3160 DATA 14,46,24,46,34,46,44,46
3170 DATA 54,46,64,46,74,46,84,46
3180 DATA 13,46,23,46,33,46,43,46
3190 DATA 53,46,63,46,73,46,83,46
3200 DATA 12,112,22,112,32,112,42,112

!

25

26

3210
3220
3230
3240

3250
326
270

3300
3310
3320
3330
3340

3360
3370
3380
3390
3400
3410
3420
3430
34140
3450
3460
3470
3480
3490
3500
3510
3520
3530

|

3560
3570

3580)

3550
3600
3610

DATA 52,112,62,112,72,112,82,112
DATA 11,114,21,110,31,98,41,113

DATA 51,107,61,98,71,110,81,114
REM #45R S aRARRRRRRtnnasnasnsanennss

RESTORE 3270

FOR Z = 1 TO 8:READ N(Z):NEXT Z
DATA 19,-19,21,-21,-8,8,12,=-12
FOR Z = 1 TO 28:READ R(Z):NEXT 2
DATA 10,20,30,40,50,50,50

DATA -1,'-2,-3,-!“,-5,-51-5

DATA -10,-20,-30,-40,-50,=50,=50
DATA 1,2,3,4,5,5,5

RESTORE 3350 .

FOR Z = 1 TO 28:READ B(Z):NEXT.Z
DATA -11,-22,-33,-44,-55,-55,=-55
DATA 11,22,33,44,55,55,55

DATA 9,18,27,36,45,45,45

DATA -9,-18,-27,-36,-45,-45,-45
RESTORE 3290 ‘
FOR Z = 1 TO 56:READ Q(Z):NEXT 2
FOR Z = 1 TO 8:READ K(Z):NEXT Z
DATA 1,11,9,10,-10,-9,-11,-1 ’
FOR Z = 1 TO 64:READ S(Z):NEXT 2
DATA 46,56,36,66,47,57,45,55 .
DATA 37167’35;65’28’78)27'77
DATA 44,54,26,76,38,68,17,87"
DATA 18,88,34,64,25,75,16,86
DATA 48,24,74,15,85,14,84,43
DATA 53,33,62,23,73,52,42,62
DATA 32,83,13,72,22,12,82,41
DATA 51,31,61,21,71,11,81,58
CLS:RETURN

REM S#SRRUSRSRARAERBRRNIFESSIRRBERRRERS

FOR Z = 11 TO 88:Z2(Z) = A(Z): NEXT Z
FOR Z = 11 TO 88:X = Z - 10%INT(Z/10)

IF X = 0 OR X = 9 THEN 3580

A(Z) = Z(Z + 9 - X#2)

NEXT Z

FOR Z = 11 TO 88:M = A(Z)

IF M>=B THEN A(Z) = A(Z) + PB - P

IF M<=RB AND M>=BB THEN A(Z) = A(Z) -

PB + P
3620 NEXT Z
3630 GOSUB 2580

3640 RETURN
3650 REM ##HZREBEFRNRNDERFRRNNAURABARNRRNS

CM:INT(RND“I) + 1
3670 ON CM GOSUB 3690,3700,3710,3720
3680 FOR J = 1 TO 1000:NEXT J:RETURN
PRINT "Well donel!l":RETURN
PRINT "Good move":RETURN
PRINT "Great move, champ!":RETURN

PRINT "Got me...":RETURN
LPRINT NS S s s st nn o uunu e nnanusuuy

GOSUB 3800
3750 FOR X=8 TO 1 STEP -1
3760 LPRINT TAB(5);X;" ";
3770 FOR Y = 10 TO 80 STEP 10
3780 LPRINT CHR$(A(X+Y));" ";
3790 NEXT Y:LPRINT X:NEXT X
LPRINT:LPRINT TAB(9);"A B C D EF G H
:LPRINT
3810 RETURN

If you wish to get the computer to play against itself, change line
2580 to the following:

2580 CLS:PRINT "Player"PR"at top of screen"

and chahge the first 10 lines of the program so that they read as
follows: ‘

15 PR = 1

20 GOSUB 2970

30 GOTO 60

40 GOSUB 2580

50 A$ = "Xn

60 IF PR = 2 THEN PR = 1: GOTO 80

70 PR = 2

80 IF A$ = n"S" THEN END

90 IF A$ = "X" THEN PRINT "EXCHANGING SIDE

S":GOSUB 35u40:A$ = ""
100 IF PR = 2 THEN GOSUB 3730

27

If you want the computer to trigger your printer from time to
time during a game, to give you “snapshots” of the program in action,
add the following:

3730 IF RND >.08 THEN RETURN
3735 LPRINT "R NSRSt iaanndionsnnttnsnesnnss
L

3740 GOSUB 3800

How the program works

We'll have a look at a few parts of the chess program now, so that
if you decide to modify it to improve its play, you’ll know which bits
to attack first.

As explained in the introduction to this section of the book, the
program starts with a series of subroutine calls which are cycled
through as the game progresses. After the first REM statement identi-
fying the program, the computer goes to the subroutine from line
2970 which initializes the variables. Next, line 30 jumps to line 60,
which calls up the board printing subroutine at line 2580, This rou-
tine, like the other board-printing routines in this section, starts off
with a clear screen (CLS) command. If you have a HOME key, or
similar (such as PRINT @ 0, PRINT AT 0,0 or LOCATE 1,1) you
. should put this in the place of the CLS. Then the board will simply be
reprinted over its old image, which gives a very effective impression
of the pieces moving. It is far more satisfactory than clearing the
screen each time the board must be reprinted.

After the board is printed, the program continues past line 60
into the computer move section. First it checks the status of A$, which
is a string set by the player after each move. If A$ equals S then the
human player has signaled a desire to quit the game, so the program
ends. If A$ has been set to X (for exchange) the program goes to the
subroutine from line 3540 to swap sides. If A$ is equal to P, the
computer moves to the subroutine from line 3730 which dumps the
current board to the printer.

Now the computer play begins in earnest. First, the T array
(which will hold the location of the computer pieces) is filled with
zeroes, and the piece counter variable (U) is set to zero. The loop in
lines 150 and 160 goes through each square on the board, counting
the pieces (U is incremented each time a piece is found, and storing
the location of each piece in the elements of the T array. When the
king (variable KB, for “king black”) is found, the variable KM (for
“king marker”) is set equal to that, so the computer knows where its
king is at all times. If U is less than three (line 160) then the computer

28

goes to line 2230 to concede the game. It has no endgame strategy,
and tends to flounder if it has too few pieces.

Line 170 jumps the action to 650, where a long routine checks
whether the king is in check. Each section of the code in this part of
the program checks for danger from a particular piece. The first part,
from 650 to 710, checks for danger from human knights, while the
next (730 to 890) looks for lurking queens, bishops, rooks, and pawns.
- If no danger has been found, so the program flow is not redirected by
the numerous GOTOs in this section, line 890 sends the program back
to 180 where it starts looking for a move.

Lines 180 and 190 reshuffle the contents of the T array, so that
the king is the very last piece in the array. In general, the computer
will try to move its pieces in terms of their position within this array,
so if the king is at the end, it will only move if the computer judges no
other move is worthwhile. As I said before the listing, this is one of
my rough and ready chess-playing ideas and is based on the principle
that if the king moves as little as possible, it is unlikely to get into
danger. This, of course, is not always true. However, for the kind of
chess the program plays it is a reasonable assumption, and certainly
less dangerous than the alternative, which would see the king belting
around exposing himself to danger at every turn.

Now Q is set to either 0, 1, or 2 by line 210 and reset to 0 in line
210 if the human has signaled C for check. Q determines where in the
T array the computer will start looking for its move. The random
element is introduced here so that the computer does not always do
the same thing when confronted with similar board positions. One is
added to Q if Q is less than U (that is, less than the total number of
pieces the computer has on the board) and then Z is set equal to that
element of the T array, which is the location of the computer piece on
the board.)

The subroutine at line 280 is now called. If you look at that sub-
routine, youw'll see that lines 280 to 320 determine which piece it is
dealing with. The computer plays black, and to make it easy to follow
what is happening in the listing, QB is used to indicate the queen
(“queen black”), RB is the rook, BB the bishop, NB the knight, and
PB the pawn. So the computer—in this little subroutine—just finds
out what piece it has in hand, and then directs the computer to the
relevant subroutine to check for a capture by that piece.

Now you should be getting an idea of how the program works.
Essentially, it finds its pieces; if it is not in check it puts the pieces in
an order dictated by the layout of the board (that will be explained
when we get to the end of the program listing) with the king at the
end of this list; then it looks for a capture with each of the pieces in
turn.

29

The most important variable (after KM, the king marker) is MM
(which stands for “machine move”). You'll see MM in line 240. MM
is set initially to zero, and only gets reset to one when a move is
found. Line 240 checks the value of MM and if it finds it is a one,
knows that a move has been found, so goes to the subroutine from line
2500. Here it checks to see that.(a) it is not trying to move its king
without due cause; (b) that it is not moving a pawn unintelligently;
and (c) that it is not just about to capture the human’s king. Any of
these three cases will cause the MM flag to be reset to zero, and the
action reverts to line 230 to find another move. (If the computer finds
case “c” is true, it prints CHECK on the screen, then continues look-
ing for its move.)

If it finds that the three conditions are not true, then it actually
makes the move (line 2530 makes the needed changes to the ele-
ments of the A array, the array that actually holds the board), then
tells you—using lines 2540 and 2550—the move it is to make, then
returns to the start of the program where the board is reprinted.

If, however, MM was not equal to one when the computer came
to line 240, it then moves on to 250 where the machine checks that it
has not used up all its pieces (which will be the case if Q equals U),
and if it finds it has not, goes back to line 220, where Q is incre-
mented by one, and the process begins again. If, however, Q is equal
to U, the computer decides it cannot make a legal move, and goes to
2360 to look for a non-capture move. The next section, as we've al-
ready discussed, sends the action to various parts of the program
which control individual pieces.

If we look at the section from line 2360, we see that it starts by
setting Q to a random number between zero and four. The use of the
double RND ensures that it will tend to choose lower numbers in that
range more often than higher ones. Z is set equal to the Qth element
of the T array (as before when we were looking for captures) and then
the lines from 2390 to 2440 send the program to the sections of code
which control their moves.

We won’t look at each of these sections for individual piece
moves because each of them works in a similar way. Understand the
basic principle of one, and you can easily deduce how the others
work.

We'll look at the section which moves a knight, as we have al-
ready had some discussion (in the introduction to this section of the
book) of how knights move. Look at the section of code from line
1790. As you’ll discover when we look at the initialization section of
the program, an array is set up for each piece which holds the possible
moves (in terms of a numerical displacement from the starting square)
for that piece. The Q array holds the possible queen moves, the B

30

array, the moves the bishop can make, and so on. Therefore, we know
the N array, which is referred to in line 1800, holds the legal moves of
the knight.

In this line, the variable X is set equal to Z (the square the piece
occupies) plus an element (chosen at random) of the N array. Line
1810 checks to see that this possible “destination” square is not off the
board (which it would be if its value was less than 11 or greater than
88) or equal to —99 (which would also mean it was off the board). Y is
the variable which counts the number of potential moves tried. It is
incremented by one in line 1830, and then the computer checks the
value now held by A(X), which is the destination square. If it finds it
holds the value E (for “empty”) then it knows it can move into that
square. But it does not necessanly just leap into A(X) just because this
is an empty square.

First it goes to the subroutine from line 350 which checks to see
if the intended destination square is under attack. On returning from
that destination it checks (line 1850) to see if MM is equal to one. If it
is, the computer knows the move it is considering has been approved,
and so moves to the section of code which actually makes the move. If
Y is greater than 20, which means 20 moves have been tried without
success, then this also triggers a return, so a new piece can be tried. If
both these conditions are found to be false, the computer goes back to
line 1800 to get a new knight move at random.

In essence, this is how every possible move is generated, and
tested. The knight is a little simpler than the other pieces because it
can leap over intervening pieces. The other pieces have to check that
a clear path exists for them to carry out their intended move, but this
is not very difficult to achieve.

If you move now to the section of the program from line 2970,
you’ll see that the initialization takes place here. First the computer
asks the player to “ENGAGE CAPS LOCK ... THEN PRESS RE-
TURN.” The computer counts how long this takes (using N as a coun-
ter) and uses this value to seed the random number generator. As in
all programs in this book, if your RANDOMIZE function works dif-
ferently from this, change the line to suit your particular dialect of
BASIC. Line 3000 ensures that all variables will be treated as integer
variables. This is included to maximize the running speed, but can be
left out without harm if you do not have a DEFINT on your com-
puter. MM (machine move, remember) is set to zero in line 3010 and
A$ (which holds messages from the player such as the desire to ex-
change sides) is set to the null string.

A number of arrays are now dimensioned. A holds the board it-
self, R the rook moves, B the bishop moves, N the knight moves, Q
the queen moves, K the king moves, Z the exchange sides mecha-

31

nism, S the priority sequence which determines the order in which
squares are checked for pieces, and T the location of the pieces on the
board before each move is made.

The next two lines initialize the variables which are the human
and computer pieces as follows:

P - human pawn

R - human rook

N — human knight

@ - human queen

K — human king

E - an empty square
PB - computer pawn
RB — computer rook
NB - computer knight
BB - computer bishop
QB - computer queen
KB — computer king

The next line (3050) fills the A array (which will hold the board)
with a dummy value (—99). This ensures that any square which is not
subsequently given a value will be ignored when the program is run-
ning. This program, by the way, uses a numbered board similar to the
one shown at the start of this section of the book, but it is “on its side
and back to front,” with a layout as follows:

18 28 38 ‘48 58 68 78 88 *8

17 27 37 47 57 67 77 87 *7

16 26 36 46 56 66 76 B6 *6
15 25 35 45 55 65 75 85 *5

14 24 34 44 54 64 74 84 *4

13 23 33 43 53 63 73 83 *3

12 22 32 42 52 62 72 B2 *2

11 21 31 41 51 61 71 81 *1

SERREEBABEAREXAGERRSB R %

A B C D E F G H

The next section of the program fills the arrays, with the Z loop
(in line 3070) putting all the pieces in their place for the start of the
game. The next section is fairly obvious when you examine it, with
3260 putting the values for knight moves into the N array, 3280
doing the same for the rook and 3340 for the bishop. The DATA
pointer is then restored to line 3290, the start of the rook information,

32

so that the Q array (for the queen) can be filled with the locations for
both the rook and the bishop because, of course, the queen is able to
make the moves of both pieces. '

Line 3430 fills the S array with the numbers in DATA state-
ments line 3430 to 3510. These are probably the key reason why the
program runs so quickly when it .is underway. This series of numbers
is the order in which the squares on the board are checked. If you
compare this sequence with the “numbered board” given on the pre-
vious page, you'll be able to work out the sequence. It starts with the -
.squares in front of the starting position. of the two key pawns followed
by the squares either side of those, before moving back to look at the
squares where the key pawns begin the game. Once you've worked
through this list, you may well want to modify this sequence. This
array, more than any other, determines the kind of game the com-
puter will play. If you don’t agree with the sequence I've set up, by all
means change it and see what effect this has on the game the com-
puter plays.

The “exchange sides” routine is from 3540 to 3640. A series of
comments when the computer loses a piece (“Great move, champ!”
and so on) is generated by the routine from 3660 to 3720. The final
section of code dumps the current board to the printer.

33

1234561738

GOMOKU

You'll find GOMOKU an easy game to learn, but one which is almost
Have a look at these board positions from the start of one game I

played against the program. Studying the printouts will show you how

You have to try to get five of your pieces (the H’s) in a row in any
. the game unfolds, and will show you how to play it:

direction, while the computer is trying to do the same.

12345678

impossible to win. The computer plays extremely well in this pro-
gram, which is based on one written by Graham Charlton.

- N M N0 M~ - 0N Mar INWO i~

e o o o o s o O QO o ¢ o o o & o o0O
e o o o o o o~ D= o o o oI o o o~
e o o 8 s e DDV O ¢ ¢ ¢ s ¢ sV
e e e o o o o0 D o o o ¢IMOX o1n
e o ¢ s o o= 2 e s e e o o=
e e o o ol oM M o o o o o o3 o N
e o o o o o o o\ N o o o o o o o o\
[] e o' o L L] L * - [] L] . L] L] L] . o v

— NN INW -

1

N M N0 -0

~ A M INWOE~® —N M N0 D

e o o o o o s eoC© O o o o 0o 0 ¢ s 00
e o o o o o o o~ D~ o o ¢ ¢ o o o o~
e e s s s e WO O + ¢ 600000
* e e oM s e N . N o o o eOXM oin
e o) o o o o o S e e o e o ez
e s o o o oM o M o ¢ o s o ol o
o o o o 0o o o o\ N ¢ o ¢ o o 0o 0o o\
* s s o o o o owv ~— o o 0o o s o s o

- NN INO -0 NN~

34

123456738

1234561738

- QN M= INOL-D©

e ¢ o) o o o 00O

Y - N -
e o DX DDV
e o IO X o0
DD e o e
o o o o ol e M

e b~

e o o o o o o (N

* L] L] L] L) . L] L ad

QNN INWO -

- N M INO -

e 60 o o o o0
e o ol ol o=
e s s sV
e e smODI on
e s e s oz
e e o s oI oM
e s o o o » o (N

[] L] L] * L] L] . =

QAN M= DO

1234561738

1234561738

— NMar N0~

e oD ¢ oD e
s eOmMm M o=
s s cOmEmOW
e e SOOI on
FDVLITVOL sz
e o o o ol eM
O..Q...Oa

[] L] L 4 L] L L] . *=

~—NMIT DO~

LAV T Ta R VoI - o)

o o8) o e o s0O
e o oI oI o~
e e tOXMIXXOVW
e o eIMOD X 1IN

cDD OO e
e o s 0 o eOn
e e o o o o o\
c s s o s o o

- N M INWO -

Here’s thé listing for your very own game of GOMOKU:

=]
MOOOOOO
onmmMmamMmNM
W712131
omMmMmMmMmMmmmMmma
ODPDDPDDD
Znnnnnn
OOOOOO
EFEO000O0D0O
[eNeNoNeoNo NN
— QN N N0 -

80 IF L>3 THEN PRINT:PRINT "I WINII":END

90 GOTO 40

N: IF A(E)<>Z THEN RETURN
1 V

+ N:
+ 1:GOTO 110

= A
= E
120 K = K

100 E
110 E

130 CLS

140 PRINT:PRINT:PRINT

150 PRINT TAB(12);"1 2 3 4 5 6 7 8"

160 FOR A

1 TO 8:PRINT TAB(8);A

170 FOR B = 2 TO 9

35

36

180
190
200

210

220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

4o0
k10
420
430
4yo0
450
460
70
480
490
500
510
520
THEN
530
540
550
560 .
570
580
590

PRINT CHR$(A(A®10 + B));" n;

NEXT B

PRINT A

NEXT A

PRINT TAB(12);"1 2 3 4 5 6 7 8"
RETURN

PRINT:PRINT

PRINT "Please enter your move..."
INPUT G

G =G + 1

IF G<12 OR G>89 OR A(G)<>46 THEN 260
Z = H

A(G) = Z

RETURN

A = G

L=20

FOR X = 1 TO 4:K = 0:N = X(X)
GOSUB 100 .

N = - N:GOSUB 100

IF K>L THEN L = K

NEXT X

IF L>3 THEN PRINT:PRINT "You win!I":END

T = 1

IF T<>2 THEN Z = C
IF T = 2 THEN Z = H
tH1 = 0:L = 0

0
OR A = 12 TO 89
0 .

TTWO
n =

IF A(A)<>46 THEN 57

FOR X = 1 TO 4:K = 0:N

GOSUB 100

N = - N:GOSUB 100

IF K>L THEN H1 = 0:L = K

IF L<>K THEN 540 :

IF T=1 AND L<4 OR (T=2 OR T=3) AND LK2
540 ' .

M =M+ 1

NEXT X

IF M<=H1 THEN 570

H1 = M:G = A

NEXT A

IF H1<>0 THEN 650

T =T+ 1: IF T<>4 THEN 410

X(X)

600
610
620
630
640

A 1

G = INT(RND*77) + 13

IF A(G) = 46 THEN 650

A = A + 1:IF A<100 THEN 610

PRINT:PRINT "I concede the game":PRINT"

to a master!I":END

650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
8140
850
860
870
880
890
900
910
920

A(G) = C
z .
FO
K
N X(X)

GOSUB 100

N = =-N:GOSUB 100
IF K>L THEN L=K
NEXT X

RETURN

CLS

DIM A(100),X(4)
FORC = 1 TO 8
FOR B = 2 TO 9
A(C®10 + B) = 46
NEXT B

NEXT C

FOR Q = 1 TO 4
READ Z: X(Q) =
NEXT Q

DATA 1,9,10,11
H = ASC("H"):C = ASC("C")

PRINT:PRINT "Enter Y if you want the"
PRINT "first move, N if you don't"
N=20

N =N+ 1

A$ = INKEYS$

IF A$ <> "y" AND A$ <> "Y" AND A$ <> "n

tL =20
04

"n >

G
T

-

c.
X
0

Hwnxn

Z

" AND A$ <> "N" THEN 900

930
940
950
960
970
980
990

RANDOMIZE N

CLS

IF A$ = "y"™ OR A$ = "Y" THEN RETURN
FOR J = 1 TO INT(RND®#12) + 1

READ Z

NEXT J

A(Z) = C

1000 RETURN
1010 DATA 34,35,44,46,47,54,55,56,57,66

37

FOUR IN A ROW

In this game, FOUR IN A ROW, as its name suggests, the aim is to
get four of your pieces (the H’s) in a line in any direction, before the
computer (using the C’s) manages to do so.

You indicate your choice of move by specifying the column in
which you want to move your piece. The piece then drops to the
lowest available position within that column.

The computer plays this game fairly well, and surprisingly
quickly, considering the number of times it can go through those loops
within the program.

I was not particularly pleased when I finished the first hand-writ-
ten version of this program, because it seemed to me that I had taken
a “brute force” approach to solving the problem. I was sure there
would be a more clever way to do it. However, I continued with the
program, and then entered it into the computer. It won the first game,
even though it played a little oddly, so,I knew I was onto a winner,
despite the programming approach. Then, when thinking about it
later I realized that if the program was correctly structured (as it was),
had no redundant code (and it hasn't, as far as I can see), ran quickly
and well, it did not need “fiddling” to make the programming more
tricky. Transparent code is always better than overly clever con-
voluted code which, although it may occupy less space, and may run a
few microseconds faster, is almost impossible to modify.

So the program you have here is my “brute force” version. It is
generously supplied with REM statements so you have little trouble
in working out what each section of code does. It should also prove
fairly simple to modify, once you have played a few games with it in
its present form.

In this version of FOUR IN A ROW, the computer always allows
the human to have the first move, and bases its initial move on that
made by the human. You may wish to modify the program so that
there is an option for the computer to have the opening move.

Before we get to the listing of FOUR IN A ROW, here’s one
game played against the program:

38

e e o b=

e o o0
e o o in
[&2~ 0
e o oM

e oM
e o oM
e o o\

L L] * T

Whieh column do you
wish to move into? 3

Your move...

Stand by for my move...

* o o~
o o o \O
e e IN
O B &
o o M
e DN
¢ ol -

e o o b~

e o o\O

>3-
e eoelm N
e o o (N

[] L LI ot

¢ o o oD~
¢ o o o e\O
e s MOO N
OO I
e smOLIM
e sOINOLOWN
cOO XM

e o o o o~
e o o s o0
e e OO MW
sOTmOU X

s MmO M

e s IO N

e o o o} v

Which column do you
wish to move into? 7

Your move,..

Which column do you
wish to move into? §

Your move...

39

e e s sL MM~
s e 0 e 8 sDWO
e s s smODOW
v smOTO TS
csOmmOT M
c s s iOmON
smLOLO X -

e e e DI~
e o o o o & o O
e o s MO ODN
* ¢+ OO I
e eOXmMINIOX M
e e s cOMON

sexOODOINI «—

Your move...

Your move,..

Which column do you

Which column do you

wish to move into? 6

wish to move into? y

~

e o e O XX I~
e o o DOV
s o 4 ININO O LIN
emmOImOX =
ocooxEmToxTmm
s s s cODMOUN
emOOO XN v

s o ¢ OO X~
e o o sDDIKMOV
e s s IMmMOO I

e e OO I

sODODEImIXOI M
e o o eI N
O OD I

e e MO I~
s e s sOMOW
e e e mImOLO WY
ormnToxmnox=
ovoooxmxXxoxTm
e ctOXMO IOy
oHCCC.HH.I

e s SO XX~
e s o DOV
e ¢ MO O W
oonoxoxss

voommomm’

e e OO N
elmOODOD IR «—

Your move...

I've defeated you,

human!

Whieh column do you
wish to move into? 2

40

This is the listing for FOUR IN A ROW: |

10 REM Four-in-a-row

20 GOSUB 1090:REM INITIALISE

30 GOSUB 860:REM PRINT BOARD

40 GOSUB 680:REM WIN CHECK

50 GOSUB 980:REM HUMAN MOVE ’
60 GOSUB 860:REM PRINT BOARD

70 GOSUB 680:REM WIN CHECK

80 GOSUB 110:REM COMPUTER MOVE

90 GOTO 30

100 REM #Saaasssansss

110 REM COMPUTER MOVE

120 PRINT:PRINT "Stand by for my move..."

130 B = 10

140 B = B + 1

150 IF A(B) = - 9 THEN 180

160 IF A(B) = C THEN X = C:GOTO 210
170 IF A(B) = H THEN X = H:GOTO 210

180 IF B < 77 THEN 140

190 GOTO 480

200 REM SRRBRBRBERRRZRARERRBRAAARS

210 REM FOUR IN ROW DANGER/CHANCE?

220 REM ACROSS

230 IF A(B+1) = X AND A(B+2) = X AND A(B+3
) = E AND A(B + 13) <> E THEN MOVE = B + 3
:GOTO 650 |

240 IF A(B-1) = X AND A(B-2) = X AND A(B-3
) = E AND A(B + 7) <> E THEN MOVE = B = 3:
GOTO 650

250 IF A(B+1) = X AND A(B+2) = X AND A(B-1
) = E AND A(B + 9) <> E THEN MOVE = B = 1:
GOTO 650

260 IF A(B=1) = X AND A(B+2) ='X AND A(B+1
) = E AND A(B+11) <> E THEN MOVE = B + 1:G
0TO 650

270 IF A(B+1) = X AND A(B-1) = X AND A(B+2
) = E AND A(B+12) <> E THEN MOVE = B + 2:G
0TO 650

280 IF A(B+1) = X AND A(B=1) = X AND A(B-2
) = E AND A(B+8) <> E THEN MOVE = B - 2:GO
TO 650

290 IF A(B-1) = X AND A(B-2) = X AND A(B+1

41

42

) = E AND A(B+11) <> E THEN MOVE = B + 1:G
0TO 650

300 REM DOWN

310 IF B > 20 THEN IF A(B-10) = X AND A(B-
20) = X AND A(B+10) = E AND A(B+20) <> E T
HEN MOVE = B + 10:GOTO 650

320 REM DIAGONALS -

330 IF A(B+11) = X AND A(B+22) = X AND A(B
-11) = E AND A(B-1) <> E THEN MOVE = B =~ -1
1:GOTO 650

340 IF A(B+9) = X AND A(B+18) = X AND A(B-
9) = E AND A(B+1) <> E THEN MOVE = B - 9:G
0TO 650

350 REM #8828 R32G0RRRRREE.

360 REM MAKE/BLOCK THREE?

370 REM ACROSS
