

k^s

j^toj

T I Logo

by Harold Abelson

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland
Bogota Hamburg Johannesburg London Madrid
Mexico Montreal New Delhi Panama Paris
Sao Paulo Singapore Sydney Tokyo Toronto

To my parents, Anne and Benjamin Abelson

Libraryof CongressCatalogingin Publication Data

Abelson, Harold.

TI Logo.

Bibliography: p.
Includes index.

1. Tl 99/4A (Computer) - Programming. 2. LOGO j
(Computer program language) I.Title. II. Title: T.I. I
Logo.
QA76.8.T133A23 1984 001.64'24 83-19608
ISBN 0-07-038459-2

Copyright © 1984 by McGraw-Hill, Inc. Allrights reserved.
Printed in the United States of America. Except as permitted
under the UnitedStatesCopyrightActof 1976.no partof this
publication may be reproduced ordistributed inanyform or by
anymeans, or stored ina database or retrieval system, without
the prior writtenpermission of the publisher.

1234567890 . HAUHAL 8987654

J

teg

Printed and bound by Halliday Lithograph

L

L

L

Contents

Introduction vii

1. A First Look at Logo 1

1.1. The Computer Keyboard 1

1.2. Preparing to Use Logo 2

1.3. Using Logo Commands 3
1.3.1. Basic Turtle Commands 6

1.3.2. Correcting Typing Errors 8

1.3.3. Error Messages 8

1.3.4. Practice with Commands 9

1.4. Introduction to Procedures 12

1.4.1. Simple Procedures 12

1.4.2. Defining Procedures 14

1.4.3. Errors in Procedures 18

1.5. Other Graphics Commands 20
1.5.1. Drawing in Color 20

1.5.2. The Background 21

1.6. Modes of Using the Screen 22

1.6.1. Noturtle Mode 22

1.6.2. Turtle Mode 22

1.6.3. Edit Mode 22

2. Programming with Procedures 23

2.1. Procedures with Inputs 23

2.1.1. Multiple Inputs 25
2.1.2. Inputs as Private Names 26

2.1.3. An ARC Procedure 29

2.2. Repetition and Recursion 31
2.2.1. Thinking About Recursion 32

2.2.2. Conditional Commands and STOP 34

2.2.3. Thinking Harder About Recursion 36
2.2.4. Drawing Trees 39

3. Projects in Turtle Geometry 43

4. Animation 67

4.1. Sprites 67

iv / T I LOGO

4.1.1. Exploring with Sprites
4.1.2. Practice with Sprites

4.1.3. Talking to More Than One Sprite at a Time
4.2. Defining Shapes

4.2.1. Example: Birds Flying
4.2.2. Two Notes on the Shape Editor

4.3. Tiles

4.3.1. Positioning Tiles on the Screen

4.3.2. Foreground and Background Colors
4.3.3. Characters as Tiles

4.4. Project: A Simple Movie

5. Workspace, Filing, and Debugging

5.1. Managing Workspace

5.1.1. PO

5.1.2. ERASE

5.2. Saving and Retrieving Information
5.2.1. Using Cassette Tape

5.2.2. Using Diskette
5.2.3. Saving and Recalling Using Other
5.2.4. Other Uses of the File System

5.2.5. Obtaining Hard Copy: the PRINTOUT Command
5.3. Aids For Debugging

5.3.1. Pausing Execution with the AID Key
5.3.2. TRACEBACK

5.3.3. The DEBUG Option

6. Numbers, Words, and Lists

6.1. Numbers and Arithmetic

6.2. Outputs

6.2.1. Combining Operations

6.2.2. Example: Remainders and Random Numbers

6.3. Words

6.4. Lists

6.5. Naming

63.1. Local and Global Names
6.5.2. Free Variables

6.6. Conditional Expressions and Predicates

6.7. Details on Logo Syntax

6.7.1. How Logo Separates Lines into Words

6.7.2. Using Parentheses

6.7.3. The Minus Sign

67

70

71

75

76

79

79

80

81

82

84

91

91

91

91

92

92

93

94

95

95

96

96

97

98

99

99

100

101

103

104

106

110

112

113

115

118

118

119

122

|S§J

issfd

r

Via?

r

r

T

it^i

Contents / v

7. More Logo Projects 123

7.1. Arithmetic Quiz Program 123

7.2. Random-Sentence Generators 125

7.3. Nim: A Game-Playing Program 128
7.3.1. The Sub-Goal Plan 129

7.3.2. A Simple Scorekeeper 131
7.3.3. A Mechanical Player 133

7.3.4. Frills and Modifications 136

7.3.5. A Listing of the NIMPLAY Procedures 137
7.4. Growing Flowers 138

7.4.1. Coordinates for Sprites and Tiles 138
7.4.2. Defining the Shapes 139
7.4.3. The Grass 142

7.4.4. Planting the Bulbs 142

7.4.5. Sunrise 143

7.4.6. Growing the Flowers 143

7.4.7. Combining All the Pieces 146

7.4.8. Elaborations 146

8. Writing Interactive Programs 147

8.1. Controlling Screen Output 147
8.2. Keyboard Input 148

8.2.1. Example: Instant Response for Very Young Children 149
8.2.2. Keyboard Control of an Ongoing Process 149
8.2.3. Instant Response with Sprites 151

8.3. Example: The Dynaturtle Program 152
8.3.1. What is a Dynamic Turtle? 152

8.3.2. Activities with a Dynaturtle 153
8.3.3. Changing the Dynaturtle's Behavior 154
8.3.4. Sines and Cosines 156

9. Logo Music 159

9.1. Playing Melodies 159

9.1.1. A Simple Tune 161

9.1.2. T\ineblocks 162

9.1.3. Specifying Notes 164
9.2. Multiple Voices 167

9.3. Musical Accompaniment to Logo Procedures 168

10. Inputs, Outputs, and Recursion 171

10.1. REVERSE 172

^ 10.1.1. Reversing Words 173

vi/TI LOGO

10.1.2. Reversing Lists

10.1.3. Designing Recursive Procedures

10.2. Recursive Procedures that Manipulate Lists

10.2.1. The PICK Procedure

10.2.2. The MEMBER? Predicate

10.3. Radix Conversion

11. Advanced Use of Lists

11.1 Hierarchical Structures

11.1.1. List Operations
11.1.2. Example: Association Lists

11.2. Programs As Data

11.2.1. The RUN Command

11.2.2. The DEFINE Command

11.2.3. The TEXT Command

11.2.4. Adding New Programming Constructs
11.3. More Projects Using Lists

11.3.1. Example: The DOCTOR Program
11.3.2. The ANIMAL Program

12. Glossary of Logo Primitive Commands

12.1. Graphics Commands

12.2. Numeric Operations
12.3. Word and List Operations

12.4. Defining and Editing Procedures

12.5. Conditional Expressions
12.6. Predicates Used with Conditional Expressions

12.7. Controlling Procedure Execution

12.8. Input and Output

12.9. Naming

12.10. Filing and Managing Workspace

12.11. Music Primitives

12.12. Debugging Aids

12.13. Editing Commands

12.14. Other Special Keys

12.15. Miscellaneous Commands

12.16. Error Messages

References

Keyboard Reference Guide

Index

I«S:

175

175

176 !
176 Hiiifi

178

180 1
Igsl

183

184 1
ltd185

188

191

191 j
194

198 1

199 J
201

201

204 J
215

215
ys

221

222

J225

226

227

228
i

229
<i«g

231

231

232
L_

234
"

234

234 ue

235

235

Mi

239

241 "

243 1
tai

lijii'l

if

lift

km

iij^

L

gjj^f

Introduction

Logo is the name for a philosophy of education and for a continually

evolving family of computer languages that aid its realization. Its learning
environments articulate the principle that giving people personal control over

powerful computational resources can enable them to establish intimate

contact with profound ideas from science, from mathematics, and from the
art of intellectual model building. Its computer languages are designed to
transform computers into flexible tools to aid in learning, in playing, and in

exploring.

Logo's designers are guided by the vision of an educational tool with no

threshold and no ceiling. We try to make it possible for young children to
control the computer in self-directed ways, even at their very first exposure
to Logo. At the same time, we believe that Logo should be a general-purpose
programming system of considerable power and wealth of expression. In

fact, we regard these two goals as complementary rather than conflicting,
since it is the very lack of expressive power of primitive languages such as
BASIC that makes it difficult for beginners to write simple programs that do
interesting things. More than 10 years of experience at MIT and elsewhere

have demonstrated that people across the whole range of "mathematical
aptitude" enjoy using Logo to create original and sophisticated programs.
Logo has been successfully and productively used by preschool, elementary,
junior high, high school, and college students, and by their teachers.

Some of the important features of Logo are:

• Logo is a procedural language. Logo programs are created by combining
commands into groups called procedures and by using these procedures as

steps in other procedures, and so on to arbitrary levels of complexity. Each
individual step of a procedure may be any primitive Logo command or any
user-defined procedure. Procedures can communicate among themselves
via inputs and outputs.

• Logo is an interactive programming language. Any Logo command,
whether built into the language or defined as a procedure, can be executed
by simply typing the command at the keyboard. Logo's integrated editor
makes it easy to define, execute, and modify procedures, because there is
no necessity to deal with separate compilers, loaders, monitors, and so
forth.

• Logo's data objects (those things that can be named by individual variables,
passed directly as inputs to procedures, and returned as values) include not
only numbers and character strings, but also compound structures called
lists. Many computer languages force the programmer to manipulate data
structures in terms of sequences of operations on individual numbers and

/ T I LOGO

character strings. In contrast, Logo's lists are functional units that can be
transformed in single operations, making Logo a convenient and powerful
language for applications involving symbol manipulation. Moreover, the
fact that Logo procedures can themselves be represented and manipulated
as lists means that users can attain considerable direct control over the way

commands are interpreted—for example, to provide special interfaces to
Logo for the physicallyhandicapped or the very young.1

Another important aspect of Logo is its incorporation of a programming
area called turtle geometry. A turtle is a computer-controlled "cybernetic
animal" that lives on the display screen and responds to Logo commands
that make it move (FORWARD or BACK) and rotate (LEFTor RIGHT). As y
the turtle moves, it leaves a trace of its path and in this way can be used to
make drawings on the display screen. For example, the following Logo
procedure tells Logo how to make the turtle draw a square by repeating four ™
times the commands "go FORWARD 100 units, turn RIGHT 90 degrees":

TO SQUARE a

REPEAT 4 [FORWARD 100 RIGHT 90]
END

Turtle graphics is highly successful, both as an introduction to programming
for people of all ages and also as a foundation for a computer-based i
mathematics curriculum. In this book, we use turtle graphics to introduce the J
basic ideas of Logo programming, although we also cover other aspects of
the language.2 i

'Section 11.2.1 gives anexample of such aninterface. Theimplementation makes use of the fact thatit is
possible to write Logo procedures that themselves define procedures. Thebook byGoldenberg [10] describes
work during 1976 and 1977 using Logo with physically and emotionally handicapped children. More recent
research in this area is discussed in the article by Weir [17].

J

igi

2Inhisbook Mindstorms [5], Papert discusses the turtle asexemplary of the kindof computational "object to
think with" through which technology can lead to fundamental educational change. Mindstorms also ^J
discusses the Logo philosophy of education and therole of computer technology intransforming education.
Thebookby Abelson and diSessa [1] uses turtle geometry asthebasis for exploring in mathematics and
presents extended treatments of mathematical topics ranging from elementary geometry through General
Relativity. Although turtle geometry originated as a part of the Logo language, its use is not restricted to y
Logo. Other languages that have incorporated turtle graphics are Smalltalk (Kay (13] and Goldberg [9]) and
UCSD Pascal (Bowles[5]).

^i Introduction / ix

LTI Logo

Since its creation in 1968, Logo has been under continual development.3
As Logo is a complex and sophisticated language, most Logo work during

r the 1970s was conducted using large research computer systems. It is only
j recently that computers capable of supporting Logo have become inexpensive

enough for widespread use in schools and homes. In 1979 the MIT Logo
L Group and Texas Instruments began a joint effort to develop an

implementation of Logo for the TI home computer.4 The resulting TI Logo
system, which runs on the TI 99/4 and 99/4A computers is a powerful yet
easy-to-use programming language, which incorporates all the aspects of

Logo mentioned above. In addition, TI Logo includes the following special
*** features:

• TI Logo makes it easy for even very young children to create spectacular
animation effects through the use of sprites. Sprites, like turtles, are
"creatures" that live on the display screen. But unlike ordinary Logo
turtles, sprites can change their color and shape, and can move across the
screen smoothly and continuously under program control. Even more than
turtle graphics, sprites and animation provide an exciting area in which
beginners can experiment with the power of computation.

• TI Logo II includes commands for generating music with up to three voices
plus a "drum." When combined with the power of Logo procedures and
lists, this makes it easy to write programs that play tunes and harmonies.
Moreover, by synchronizing music and sprite graphics, even beginning
programmers can create animated movies with musical accompaniment.

^tl

i&jji-j

(foijj

A guide to this book

This book is an introduction to the Logo system and to programming in
Logo.5 You should think about learning Logo in three stages. The first stage,
covered in Chapters 1 and 2, includes the basics of defining procedures and
using turtle graphics to draw pictures on the display screen. Chapter 3
consists of suggestions for programming projects based on this material.
Chapter 4 introduces sprites and animation, and shows how to write simple
programs for making movies. Chapter 5 describes the mechanics of keeping

3Logo was initially developed in 1968 as part of a National Science Foundation sponsored research project
conducted at Bolt, Beranek & Newman, Inc., in Cambridge, Massachusetts (Feurzeig, et. at. [7]). The
majority of Logo work since then has been conducted at MIT in the Artificial Intelligence Laboratory and
the Division for Study and Research in Education, but there has also been significant continuing work at

BBN (Feurzeig, et. at. [8]), at the University of Edinburgh (Howe, et. at. [12]), and at a number of other

universities throughout the world.

4The TI Logo project implementation project atMIT was carried outunder thesupervision of Seymour Papert.
Principal contributors tothiseffortwereGary Drescher, Edward Hardebeck, Mark Gross,LeighKlotz,John Berlow,
Ralph Payne, Maxine Bobco, SidNolte, Richard Tarrent, John D'Angelo, Al Riccomi, andWyattDodd.

5There are currently tworeleases of TI Logo. The major difference between them isthat TI Logo II includes
commands for generating music while TI Logo I does not. This manual can be used with either version.

x TI LOGO

track of procedures and saving them in files. The next stage in learning Logo
includes writing procedures that use data—numbers, words, and lists as

introduced in Chapter 6—to carry out projects such as the ones presented in
Chapters 7 and 8, and also for using the Logo music system, which is
described in Chapter 9. The last section of Chapter 6 also discusses some fine
points of Logo syntax, which are mostly ignored in the first five chapters.
Chapters 10 and 11 cover advanced topics in Logo programming, including

using recursion to deal with words and lists and using lists to represent
complex data structures. Chapter 12 is a reference that describes the primitive

commands included in the TI Logo system.

Acknowledgements

The examples included in this book draw upon research conducted over the

past 10 years by members of the Logo Group at the MIT Division for Study
and Research in Education and the MIT Artificial Intelligence Laboratory.
Section 7.3 reprints a 1970 AI Lab Memo by Seymour Papert and Cynthia
Solomon. The projects in Chapter 3 come from material prepared by Dan
Watt as part of a teaching experiment conducted in the Brookline, MA,
elementary school system which is documented in [6]. I would like to thank
Greg Gargarian for help in assembling this chapter. The Dynaturtle project in
Chapter 8 is based on work by Andy diSessa and Dan Watt. The music
system draws on numerous ideas and experimental systems developed by
Jeanne Bamberger. I would also like to thank Dan Watt, Leigh Klotz, Nola
Sheffer, and Richard Carter for comments on previous drafts of this book.

NOTICE

P-Code Card

If you are using the Peripheral Expansion Box with the P-Code card inserted, turn
the P-Code OFF or remove the card. If you do a SAVE, RECALL, or PRINTOUT
with the P-Code card turned on, the computer goes through the console power-up
code and intothe UCSD p-System.* ^

SPRITE Wrap-around
Unlike the first version ofTI LOGO, where SPRITE 50 would automatically default im
to SPRITE 18, LOGO II attends only to sprites addressed as 0 through 31. Sprites
can be addressed only as SPRITE 0 through SPRITE 31 in LOGO II. Do not call a
sprite beyond the number 31. isi

*UCSD p-System is a trademark of the Regents of the University of California.

J

J

is

[Ml

L

CHAPTER 1

A First Look at Logo

This chapter introduces the basic mechanics of using Logo. It describes how
to execute simple commands and how to define and edit procedures. The
examples are given in terms of using turtle graphics to draw pictures on the
screen. Even though we do not, at this point, introduce more than a few

•m commands or attempt a full explanation of the rules for writing programs,
the material in this chapter and the next is sufficient to allow you to use Logo

for a wide variety of interesting projects such as the ones described in

Chapter 3. Try to work through this chapter at the computer keyboard,
experimenting with the different features as they are introduced.

[^ 1.1. The Computer Keyboard
If you have never used a computer before, you will need to become

L accustomed to a few idiosyncrasies of computer keyboards as compared with
typewriter keyboards. Be careful not to type the numeral 0 in place of the
letter O, or the numeral 1 in place of the letter I. These may look alike to a
person, but the keys generate different signals for the computer to interpret.
TI Logo uses uppercase letters only, so do not worry about using the SHIFT

key for typing letters. There are, however, a few symbols that are typed using
the SHIFT key. For example, the asterisk symbol * appears as SHIFT-8, just as
on an ordinary typewriter keyboard. To type *, hold down the SHIFT key and

press the 8 key (rather than trying to press both SHIFT and 8 simultaneously).
Computer keyboards generally include a few keys not ordinarily found on

typewriters. The key marked ENTER is used in Logo to signal the computer to
process a command line that has been typed.

The FCTN (function) key on the 99/4A is used like an alternate shift key to
obtain the symbols that are marked on the front of various keys. For

instance, the open bracket character [appears on the front of the R key, so to
type a [on the 99/4A, hold down the FCTN key and press R. Throughout this
book, we specify function characters by the prefix "FCTN," as in "FCTN-R."
Other FCTN symbols that are used in Logo programming are closed bracket],
double quote ", and the four arrow keys <-, -*, t, 1.

Logo also makes use of special symbols called DEL, ERASE, CLEAR, BEGIN,
*" PROC'D, AID, BACK, and QUIT. On the TI-99/4A, these are typed using FCTN,

together with the keys on the top row of the keyboard. The special symbol

2/ TI LOGO

(a)

names are marked on the plastic strip that is supplied with the TI-99/4A.

Figure 1.1 shows a diagram of the keyboard on the 99/4A with indications of

the special keys used with Logo.1

^ TlUl INCTRUMCNT* Tfooma1

(.if . ?J .J' It' is! 'el I 7| ia .a: .o =

"'f'al fa (E) Ifti JTMYllu; !l |0] |P;

<aJ i.sl (g) ii-l (oj |h) IjJ !k; Iui !',j

'EiLzf Ix| !c|'fyl(B; (Ml !M) |<1 \>\ [

J
Figure 1.1: The TI-99/4A keyboard with special

keys indicated.

On the TI-99/4, which has no FCTN key, the additional FCTN symbols are

typed in alternative ways, using SHIFT. [Appendix A gives a complete list of
the special symbols used by Logo and the key sequences required to type
them on both the 99/4 and the 99/4A.I

1.2. Preparing to Use Logo

The TI Logo system operates on the TI-99/4 and TI-99/4A home

computers. In addition to the computer and the Logo cartridge, the system

requires a TI Memory Expansion Unit or a Peripheral Expansion Box with a
32K memory expansion card. If you wish to save your work on a diskette,
you must also attach a TI Disk Memory System. Alternatively, you can save

your work on cassette tape by attaching a cassette recorder. If your TI

computer system has an attached printer, you can use this to produce printed

copies of your work. Figure 1.2 shows two 99/4A systems configured to run

^•^jj-^^^l

lb)

Figure 1.2: ATI-99/4A system configured to run Logo.

'One importantpointto keepin mindwhenusing Logois to neverpress the quit key unless you aredone
using Logo. Pressing quit resets the computer and erases all programsand data from memory. On the 99/4A,
be especiallycareful when you type the symbol + (shift - =) to be sure that you do not mistakenly type

quit(fctn - =) instead.

LJ

|jft&M

IS

J

ififi

A First Look at Logo / 3

TI Logo. The first shows a Peripheral Expansion Box with a disk drive. The
second shows a Memory Expansion Unit with a cassette recorder.

Powering Up

If you are using the Disk Memory System, be sure to follow these steps in
powering up the system:

1. First turn on the disk controller and disk drive(s).

2. Next turn on the Peripheral Expansion Box or the Memory Expansion
unit.

3. Then turn on the computer console and any other devices.

4. Turn on the computer console and TV monitor last.

You must follow these steps in order, or the computer will not be able to

access the disk system. In this case, you must turn the power off and power
up the devices in the correct order.

Starting Logo

With the system powered up and the Logo cartridge inserted into the slot
on the computer console, you will see the master title display on the
computer screen.2 Press any key, and you will obtain a menu of available
system choices. Press the number next to TI Logo or TI Logo II. Logo will
start after a pause of about 5 seconds.

1.3. Using Logo Commands

Figure 1.3 is a photograph of the display screen as it appears when Logo is
first started. The system prints a welcome message followed by a line
beginning with a question mark. The question mark, called a. prompt,
indicates that Logo is waiting for you to give it a command. Just to the right

(a)

Figure 1.3: The display screen as it appears
when Logo is first started.

2You caninsert theLogo cartridge either before or after powering up the system. There is anautomatic reset
feature built into the computer so that the system will return to the master title display whenever a cartridge

is inserted into the console. If you want to remove the cartridge from the console, it is best to first return the

computer to the master title screen by pressing quit.

4/TI LOGO

(b) (c)

Figure 1.3: (Continued)

of the prompt is a black flashing symbol called a cursor. The cursor indicates

the position at which the characters you type will appear on the screen.

To give Logo a command, type the command and press the ENTER key. For
instance, to tell Logo to print the product of 37 and 67, you type the
command line

PRINT 37 * 67

That is, you type the keys P, R, I, N, T, space, 3, 7, space, *, space, 6, 7,
ENTER. The computer then prints 2479, followed by a new line with a

question mark prompt, indicating readiness to accept a new command. Bear
in mind that when you type a command line, it is not executed until you press

the ENTER key. To tell Logo to print the message "Logo is a language," you

type the command line

PRINT [LOGO IS A LANGUAGE]

followed by ENTER. This example illustrates how square brackets are used in

Logo to group words into lists? You can use lists in this way to print
messages on the screen, but there are many other uses for lists in Logo, and
we will study these in detail in Chapter 6.

The spaces in these command lines are important, because they indicate to

Logo how the line is to be broken into its component parts.4 If you type the
first command line omitting the space between the Tand the 3 as follows:

PRINT37 * 67

^Theopen and closed brackets are typed onthe99/4Aas fctn-Rand fctn-T, respectively. Onthe99/4,they
are typed as shift-4 and shift-5.

4Logo has some knowledge about where it is reasonable to divide lines intocomponent parts, even when they
are not separated by spaces. For example, it knows enough to interpret the string of 5 characters 37 * 67 as

containing three elements: the number 37, the symbol *, and the number 67. However, it is a good habit to

always use spaces to separate the elements of command lines, even when this is not strictly necessary. The

rules that determine exactly where spaces are necessary are discussed in Section 6.7.

lit

u

i&j3i:

isafl

J

Iif'

im

wyt

• ism

Md

A First Look at Logo / 5

then Logo will think you are telling it to execute a command named
PRINT37 and complain that it does not know how to do this, by responding
with the error message:

TELL ME HOW TO PRINT37

7PRINT 37 * 67

2479

7PRINT [LOGO IS A LANGUAGE]
LOGO IS A LANGUAGE

7PRINT37 * 67

TELL ME HOW TO PRINT37

Figure 1.4 shows a photograph of the screen as it appears after you have
given the three command lines described above, along with the computer's
responses to each line. The question mark shown at the beginning of each
command line is the prompt typed by Logo, and the rest of the line is the
command typed by the user. In this book, when we want to emphasize the
difference between the characters that you type and the characters that Logo
types, we print the latter characters in italics. For example, the first
command interaction in Figure 1.4 would be printed as

7PRINT 37 * 67

2479

Figure 1.4: Three command lines typed
to Logo, and the system's responses.

In later chapters, we will see how to write Logo programs that manipulate

numbers and text. But we begin our study of Logo by investigating how to
use the computer to produce drawings on the display screen by issuing
commands to a "creature" known as a turtle. To set up the screen for

drawing, type

TELLTURTLE

6/TI LOGO m

and press ENTER. The screen should now appear as shown in Figure 1.5, with i
the entire screen blank, except for asmall triangle in the center and a J
question mark near the bottom. The question mark, as before, is the prompt
indicating that Logo is ready to accept a command. When drawing, Logo -j
reserves the six lines at the bottom of the screen for your typed commands

and the computer's typed responses. The rest of the screen is for drawings.
When Logo is used in this way to draw pictures on the screen, the system is
said to be in turtle mode. The original screen arrangement with no space

reserved for graphics, as shown in Figures 1.3 and 1.4, is called noturtle
mode.5 Whenever Logo is in turtle mode, you can make it return to noturtle
mode by giving the command NOTURTLE.

Figure 1.5: Appearance of the display
screen when Logo enters turtle mode.

1.3.1. Basic Turtle Commands

The turtle is the triangular pointer that appears at the center of the screen
when Logo enters turtle mode. You make drawings by telling the turtle to
move and to leave a trace of its trail. There are four basic commands for

moving the turtle. The commands FORWARD and BACK make the turtle
move along the direction it is pointing. Each time you give a FORWARD or
BACK command, you must also specify a number that indicates how far the
turtle should move. The commands RIGHT and LEFT cause the turtle to

rotate. RIGHT and LEFT each require you to specify the amount of rotation
in degrees. Try typing the following sequence of Logo commands:

RIGHT 45

FORWARD 100

LEFT 135

FORWARD 150

^In noturtle mode there are 24 lines for typing. A more complete explanation of the different modes in which
the Logo system operates is given in Section 1.6.

Is

l*g

J

|aw)

il&jfl

L

A First Look at Logo / 7

Figure 1.6: Photograph of the display screen
showing a simple sequence turtle commands.

This should produce the wedge-shaped drawing shown in Figure 1.6.
Remember to terminate each command line with ENTER and to include a

space between the command word and the number. If you mistype a
character, you can delete the character by pressing ERASE.6 See Section 1.3.2
for more details on correcting typing errors.

The number following the command is called an input. FORWARD,
BACK, LEFT, and RIGHTeach need one input. Logo commands may or may
not require inputs, depending on the command. CLEARSCREEN is an
example of a command that takes no input. Later on we will see examples of
commands that require more than one input.

If you want to move the turtle without drawing a line, give the PENUP
command. Subsequent FORWARD and BACK commands will now make the

turtle move without leaving a trail. To resume drawing, give the PEN DOWN
command. Neither PENUP nor PENDOWN takes an input. The
HIDETURTLE command causes the turtle pointer to disappear, although the
turtle is still "there" and will draw lines if the pen is down. SHOWTURTLE
makes the pointer reappear. Figure 1.7 illustrates the use of these commands
to draw a simple picture.

If you want to start over and draw a new picture, you can use the
CLEARSCREEN command. This erases the screen and restores the turtle to

its initial location at the center of the screen, pointing straight up.7

turtle starts FORWARD 50 FORWARD 75

RIGHT 90 LEFT 45

*>erase is typedas fctn-3 on the99/4A andassmFT-Ton the 99/4.

7CLEARSCREEN can also beused in noturtle mode to clear the screen andreturn thecursor to the upper
left-hand corner.

8 / T I LOGO

BACK 50 PENUP

LEFT 45 FORWARD 25

PENDOWN

FORWARD 25

HIDETURTLE

Figure 1.7: Drawing with the turtle.

1.3.2. Correcting Typing Errors

As you type Logo commands, you will undoubtedly make a few typing
errors. Common errors include omitting characters, typing extra or wrong
characters, and transposing characters. To correct typing errors, use ERASE.
Each time you press ERASE, the character immediately to the left of the
cursor is erased, and the cursor moves one space to the left. For example, if
you typed

FORWXYD100

when you meant to type

FORWARD 100

you can correct the error by pressing ERASE 7 times to erase back to the W
and then retyping the rest of the line.

1.3.3. Error Messages

If Logo cannot execute the input line, it replies with an error message.
Logo's error messages attempt to be helpful in describing what went wrong.
For example, if you try to execute the command line

PRINT 3 +

Logo will reply

TELL ME MORE

because it expects to find something more on the line after the + to be added
to 3. Another common error message is the result of attempting to use a
command that has not been defined. For instance, if you try to execute

J

tsJ

laJ

(g«

tj

1«S!

ls&&

L

A First Lookat Logo / 9

TURN 100

Logo will respond

TELL ME HOW TO TURN

unless you have first defined a procedure named TURN.8 The TELL ME HOW
TO error message often occurs as a result of a typing error. For example, if
you type an input line like

FORWARD100

omitting the space between the D and the 1, Logo responds

TELL ME HOW TO FORWARD100

because Logo reads the entire line as a single word, which it assumes is
L supposed to be the name of a procedure.

When Logo responds to your command with an error message, you should
try to determine the reason for the error. Sometimes it is a simple typing
error. If so, you can retype the line. Alternatively, the reason for the error

,m may be hidden deep in the design of one of your programs. The activity of
rooting out and repairing errors in programs is called debugging, and Logo

L provides debugging aids to make this task easier. These are described in
Section 5.3.

1.3.4. Practice With Commands

If this is your first exposure to Logo, it would be a good idea to review the
material covered so far by drawing some figures using the turtle commands.
Try to understand any error messages that occur. Following are some things
to note in your exploring.

Wraparound

The turtle screen is 240 "turtle steps" wide by 144 steps high. If you give a
command that moves the turtle outside this range, the turtle wraps around to
appear at the opposite edge of the screen. That is to say, driving the turtle off
the top of the screen makes it reappear at the bottom of the screen and
continue drawing. Driving the turtle off the right edge of the screen makes it
reappear at the left of the screen, and so on.

"Section 1.4 explains how to define procedures.

10/T I LOGO

Out of Ink |
After you have drawn a large number of lines on the screen, Logo may

signal the error message

OUT OF INK j
This indicates that the turtle's capacity for drawing has been used up, and it
cannot draw any additional lines. At this point, you must clear the screen if
you want to continue drawing.9 ^

Abbreviations {
Some of the commonly used Logo commands have abbreviations to help taj

you save typing. Abbreviations for some of the commands we have seen so
far are

tedFORWARD FD

BACK BK

RIGHT RT

LEFT LT

PENUP PU

PENDOWN PD

HIDETURTLE HT

SHOWTURTLE ST

CLEARSCREEN CS

l<jrj.

Multiple Commands ona Line j
There is no restriction that each line be only asingle Logo command. If J

you like, you can execute lines like

FORWARD 10 PENUP FORWARD 10

Logo will execute the separatecommands in order, from left to right. If some
command on the line causes an error, Logo will execute the commands up
until the point of the error before typing an error message. However, single
lines that contain many separate commands can be confusing, and it is
generally better to use only one command per line.

9The limiteddrawing capacityis a consequence of the way that turtle linesare implemented using tilegraphics.
We will discuss this in Section 4.3.3.

J

t&&>

t«!

L

•agi

fat

A First Look at Logo /11

The REPEAT Command

One useful addition to your repertoire of Logo commands is REPEAT.

REPEAT takes two inputs—a number and a list of commands—and repeats
the commands in the list the designated number of times. For example,

REPEAT 4 [FORWARD 30 RIGHT 90]

makes the turtle draw a square. Notice that the list of commands is enclosed

in square brackets.10 This is a very simple example of how lists are used in
Logo to group things. Lists are introduced in Section 6.4.

REPEATS can be nested. For a pretty effect, try

REPEAT 10 [REPEAT 4 [FORWARD 30 RIGHT 90] RIGHT 36]

which produces the drawing shown in Figure 1.8. Playing with nested
REPEATs can be fun, but in terms of program clarity and power, it is much
better to combine commands by defining procedures, as we describe in
Section 1.4.

Figure 1.8: Using nested REPEATS to produce a complex drawing.

Long Command Lines

Lines on the display screen can be at most 30 characters long. Figure 1.8

illustrates how Logo treats command lines that are longer than 30 characters.

When you type the 31st character of a command line, Logo will move the
cursor to the next screen line, at which point you can continue typing. To

execute a long line, you type ENTER as usual. Even with this multiple line
capability, no input line may be longer than 127 characters. Logo will refuse
to insert more than this many characters in a command line.

In this book, long command lines are not shown as they appear on the
screen. Instead they are indented to make them easier to read. When you
type in the program examples in the book, continue typing the indented
portions as part of one long line, as shown in Figure 1.8.

l°Be sure to usesquare brackets [], not parentheses (), forlists. Youtype [] by pressing fctn-R and fctn-T.

12/T I LOGO

Stopping Execution With the BACK Key
When Logo is executing a command, pressing the BACK key (FCTN-9) causes

it to stop whatever it is doing and wait for a new command. Logo types

STOPPED

followed by the question mark prompt. For example, if you should start
Logo executing some long process like

REPEAT 10000 [PRINT 1]

and then think better of it, you can halt it by pressing BACK. Be sure to use
BACK rather than QUIT to halt a Logo program.11

1.4. Introduction to Procedures

You can regard Logo commands like FORWARD, PRINT, and so on, as
words that the computer understands when the Logo system is started. These
"built-in" words are called primitives. One of the most important things
about the Logo language is that it makes it easy for you to teach the
computer new words. Once you define a new word, it becomes part of the
computer's working vocabulary and can be used just as if it were a primitive.
You teach Logo new words by defining them in terms of words that are
already known. These definitions are called procedures, and this section
describes the simple mechanics of how to define and edit procedures. As in
the previous section, the examples are drawn from turtle graphics programs.

1.4.1. Simple Procedures

The following sequence of commands makes the turtle draw a rectangular
box as shown in Figure 1.9:

(a)

TO BOX FORWARD 40

FORWARD 40 RIGHT 90

RIGHT 90 FORWARD 20

FORWARD 20 END

RIGHT 90

Figure 1.9: Shapes drawn by the BOX,
BOXES, and PINWHEEL procedures.

11 Pressing quitresets thecomputer anddestroys all stored data.

FORWARD 40

RIGHT 90

FORWARD 20

RIGHT 90

FORWARD 40

RIGHT 90

FORWARD 20

taii

j

taiil

m

ja&i&i

J

J

tsffii

ay

ffigj

fofer*

A FirstLookat Logo/13

You can teach the computer to execute this sequence of commands whenever
you give the command BOX by defining BOX as a procedure:

TO BOXES FORWARD 15

BOX RIGHT 90

PENUP PENDOWN

FORWARD 5 BOX

LEFT 90 END

TO BOX

FORWARD 40
RIGHT 00
FORWARb 20
RIGHT 9d

FORWARD 40

RIGHT 90

FORWARD 20
END

Before typing this definition to Logo, you will need to know about the
Logo procedure editor which is described below in Section 1.4.2. Notice first
that the format of the procedure definition is

• A title line, whichconsists of the word TO followed by the name you
choose for the procedure.

• A body, which is the sequence of command lines that make up the
definition.

• The word END to indicate that this is the end of the definition.

Once BOX is defined, it can now be used in further definitions, such as

(b)

TO PINWHEEL

REPEAT 4 (BOX)
END

Figure 1.9: (Continued)

TO BOXES

BOX

PENUP

FORWARD 5

LEFT 90

FORWARD 15

RIGHT 90

PENDOWN

BOX

END

or

14/ T I LOGO

TO PINWHEEL

REPEAT 4 [BOX]
END

which produce the drawings shown in Figure 1.9. When a procedure is used
as part of the definition of a new procedure, it is referred to as a
subprocedure of the new procedure.

Remember that once a procedure is defined, you can consider it to be just
another word that the computer "knows." You tell Logo to execute any of
these procedures in the same way that you tell it to execute a primitive
command—by typing the name of the command followed by ENTER.

1.4.2. Defining Procedures

Procedure definitions like the ones in the previous section are typed into
the Logo system using a procedure editor. The following paragraphs describe
how to define procedures such as the BOX procedure shown above. When
Logo gives its question mark prompt, you type

TO BOX

and press ENTER. The screen should now be clear, except for a procedure title
line TO BOX, followed by an END. The screen background also changes
color to a light green to indicate that you are now using the procedure editor,
or, are in so-called edit mode. This configuration is shown in Figure 1.10.

C=i

l«Bi

l«iiji

Figure 1.10: The display screen as it appears «
when you enter edit mode by typing TO BOX.

The Procedure Editor

In edit mode, you type in the procedure definition line by line. The major
difference between typing at the procedure editor and typing regular Logo
commands is that pressing ENTER merely moves the cursor to the beginning
of the next line, rather than telling Logo to execute the current line as a
command. Logo is now storing your command lines as part of the procedure,
rather than executing them.

ISM

£9

Ic£3

(ii£J

A First Look at Logo / 15

After you have typed in the procedure definition, you press BACK. The
definition will be processed and Logo will be ready to accept a new
command.

Editing Commands

When you typeyourdefinitions into the procedure editor, you can type
characters and use ERASE to correct typing errors as usual. There are also a
large number of more powerful editing commands to aid you in typingand
changing procedure definitions.

ERASE FCTN-3

DEL FCTN-1

fFCTN-E

FCTN-S

FCTN-D

FCTN-F

Pressing the ERASE key, just as at Logo command
level, deletes the character to the left of the cursor
and moves the cursor one space to the left. In
addition, if the cursor is at the beginning of the line,
pressing ERASE combines that line with the previous
line.

Pressing the DEL key deletes the character at the
current cursor position, that is, the character over
which the cursor is flashing. In addition, if the
cursor is at the right end of the line, pressing del
combines that line with the next line.

Pressing any of the arrow keys (up, down, right, or
left) moves the cursor one space in the direction of
the arrow without rubbing out any character.

BEGIN FCTN-5 Pressing the BEGIN key moves the cursor to the
beginning of the line.

PROC'D fctn-6 Pressing the PROC'D key moves the cursor to the
right end of the line.

CLEAR FCTN-4 Pressing the CLEAR deletes all characters on the line
from the cursor rightwards.

For example, to change the line

FORWXYD 100

to

FORWARD 100

start with the cursor just to the right of the number 100. Then you can
position the cursor under the X by pressing left arrow 7 times, then delete the
X and the Y by pressing DEL twice, and then type the characters AR. Another

16/ T I LOGO

way to make the same change is to position the cursor under the D by
pressing the left arrow key 5 times, thendelete the Xand the Yby pressing
ERASE twice, and then type AR.

If you usean editing key in a context where it doesn't make sense (for
instance, trying to move to a nonexistent line), Logo will flash the screen
briefly.

Changing Procedure Definitions
Suppose you want to change thedefinition of a procedure. For example,

you may want to change the definition of PINWHEEL on page 9 from

TO PINWHEEL

REPEAT 4 [BOX]
END

to

TO PINWHEEL

FORWARD 50

REPEAT 8 [RIGHT45 BOX]
BACK 90

END

so that it now makes the drawing shownin Figure 1.11. To accomplish this,
you give the command

TO PINWHEEL

FORWARD 50

REPEAT 8 [RIGHT 45 BOX)
BACK 90

END

TO FAN

REPEAT 8 [RIGHT45 BOX]
END

Figure 1.11: Shapes drawn by the modified PINWHEEL and FAN procedures.

uj

j

(si

mi

J

i«j

J
laiiil

as AFirstLookat Logo/17

r EDIT PINWHEEL

L

Logo now places you in edit mode with the original text of the PINWHEEL
procedure shown on the screen. Now edit the definition, inserting and
deleting text using any of the editing commands described above. When you
have finished editing, press BACK. The definition is now changed and Logo is
ready for a new command.

When you change a procedure definition, the computer then uses the new,
*• not the old, definition anytime the procedure is executed.

Changing the procedure's name (by editing the title line) is equivalent to
[defining a new procedure with the new title. For example, ifyou edit the
Li PINWHEEL definition to read

TO FAN

to REPEAT 8 [RIGHT 45 BOX]
END

-

(which draws the shape shown in Figure 1.11), Logowill remember both FAN
and PINWHEEL.

Printing Procedures and Titles

™ In order to see the definition of a procedure, you can use the PO (PO
stands for "print out") command followed by the name of the procedure.
Here is an example:

PO PINWHEEL

TO PINWHEEL

ta FORWARD 50
REPEAT 8 [RIGHT 45 BOX]

r BACK 90

IMS

r Another useful Logo command is PP (PP stands for "print procedures"),
| which lists the title lines of all procedures that are currently defined; for

example:

f PP
*> TO PINWHEEL

TO FAN

\ TO BOXES
L TO BOX

If the printout is too long to fit on a single screen, Logo will pause when it
•m fills the screen and type the message

r PRESS ENTER TO CONTINUE

18 / T I LOGO

Pressing ENTER will showthe next screenful. SeeSection 5.1.1 for more
details on printing procedures. tsgi

Defining More Than One Procedure at a Time
If you like, you can use theeditor to define more than one procedure

definitionat a time. You simply type in the definitions in sequence. Besure **
to end each separate procedure definition with END.

As with multiple commands on a line, defining more than one procedure at
once can cause confusion, because if some procedure definition is badly «**
formed and causes a definition error (seeSection 1.4.3 below), the procedure
definitions that follow it will not be processed. It is generally better to enter
and exit edit mode for each procedure separately. <s

More Than One Screenful

Sometimes, eitherbecause you have a verylong proceduredefinition, or, m
more commonly, because you are defining many procedures at once, you
maywant to edit more lines of text than can fit on the screen at once. Logo
allows you to do this. If the cursor is at the bottom of the screen and you
press RETURN, the lines of text will scroll upwards to produce a new blank
line. In general, the screen can be thought of as a window onto a much
longer page of text that scrolls as you move thecursor from line to line so
that the part you are editing is always within the window.

(Si

(«J

Long Lines in Procedures
As is the case with command lines, lines in Logo procedures can be more

than one screen-line (30 characters) long, up to 127 characters. When you
type the 31st character of a long line using the procedure editor, the cursor
moves to the left of the next screen line while you continue typing. ••

1.4.3. Errors in Procedures

If Logo encounters an error while executing a procedure, it prints an error
message as described in Section 1.3.3 together with four pieces of
information: m

• A description of the error.

• The level number at which the error occurred. m

• The number of the line that contained the error.

• The name of the procedure in which the error occurred.

The meaning of "level number" follows. A procedure that is called directly
by a typed command line is said to be running at level 1; a procedure called
bya level 1 procedure issaid to beat level 2, and so on. Thegreater the level, «•
the longer the "chain of procedure calls" from the typed-in command to the
procedure in which the error occurred.

li&stj

A First Look at Logo / 19

For example, suppose you define the procedure

TO BLOCK

ELL

RIGHT 90

ELL

END

and the definition of the subprocedure ELL contains a typing error (in the
third line of the procedure):

TO ELL

FORWARD 50

RIGHT 90

FORWAXD 25

END

Then if you give the command BLOCK, Logo will run until it tries to execute
thethird line in ELL for the first time at which point it will type

TELL ME HOW TO FORWAXD

AT LEVEL 2 LINE 3 OF ELL

At this pointyou should edit ELL and correct the mistyped line.

Errors in Procedure Definitions

When Logo processes a procedure definition, it does not look for errors in
the lines that make up the body of thedefinition. For example, if you make a
typing error, as in the second line below:

TO PINWHEEL

REPEAT 8 [RIGXT 45 BOX]
END

the fact that RIGHT has been mistyped as RIGXTwill cause an error when
Logo attempts to execute PINWHEEL, not when you define the procedure.12
On the other hand, there arecertain things that can cause errors when you
press the BACK key and the definition is processed. For example, you may
mistakenly use the editing operations to remove the word TO from the title
linewhile you are editing or cause the definition to be badly formed in some
other way. Logo will complain, for example, if you try to definea procedure

l2Onc very good reason for this is that it is always possible that you did mean to type RIGXT, and you will be
defining a procedure named RIGXT before using PINWHEEL. One facility that acomputer language can
provide toencourage sound programming practices isto make it possible to write definitions in terms of
procedures that have not yet been defined.

20/TI LOGO

with the same name as some Logo primitive. For instance, if you attempt to
define a procedure named FORWARD, Logo will respond to your pressing
the BACK key with the error message

TO DOESN'T LIKE FORWARD AS INPUT J

1.5. Other Graphics Commands

In addition to the turtle commands FORWARD, BACK, LEFT, and RIGHT, J
Logo allows you to move theturtle byspecifying x,y Cartesian coordinates.
The SXY command takes two numeric inputs and moves the turtle to the
corresponding x,y screen location. There are also commands XCOR and ^
YCOR which output the turtle's position.13 The SETHEADING command
rotates the turtle so that it faces in a specified direction, and the HEADING
command outputs the turtle's heading. Giving the command HOME moves ^
the turtle back to its initial position at the center of the screen and facing
straight up.

Besides drawing with PENUP and PENDOWN, you can also makethe
turtle erase any lines that it passes over. You do this by using the command
PEN ERASE (abbreviated PE). For instance, if you want to erase some lines
in adrawing, you can type PENERASE and then drive the turtle over those j
lines. There is also acommand PENREVERSE (abbreviated PR), which is ^
like a combination of PENDOWN and PENERASE. When the pen is
reversed, the turtlewill "reverse" anypoints that it passes over. Any dot that
is off will be turned on, and any dot that is on will be turned off. •**

Section 12.1 gives a complete list of thegraphics commands that arebuilt
into Logo.

1.5.1. Drawing in Color

The SETCOLOR command (abbreviated SC) changes the color in which
the turtle draws. SETCOLOR takes as input a number, which specifies the
designated color. Thereare 16 colors available in TI Logo:

CLEAR 0 RUST 8

BLACK 1 ORANGE 9

GREEN 2 YELLOW 10

LIME 3 LEMON 11

BLUE 4 OLIVE 12

SKY 5 PURPLE 13

RED 6 GRAY 14

CYAN 7 WHITE 15

l^See Section 6.2 on how to useoutputs.

}

Hm

(•fl&fl

(.&&

L

A First Look at Logo / 21

For instance, to make the turtledraw in white, you can give the command

SETCOLOR 15

Alternatively, you can specify the name of the color rather than the number.
You do this by using the name as input, preceded by a colon (:) as in14

SETCOLOR .WHITE

The COLOR command outputs (as a number) the current color in which the
turtle is drawing.

1.5.2. The Background
r

f

I

last

You can also changethe background color of the screen to be any of the
above colors. There are two ways to do this. One is to use the command
COLORBACKGROUND (abbreviated CB). For instance, to change the
background color to yellow, you can type either

COLORBACKGROUND 10

or

COLORBACKGROUND :YELLOW

TELL and Graphical Objects
Youcan also change the background color by typing

TELL BACKGROUND

followed by a SETCOLOR command, such as

SETCOLOR :YELLOW

The general idea here is that TELL is a command that "directs the computer's
attention" to various kinds of graphical objects. So far we have seen two
graphical objects, the TURTLE and the BACKGROUND. When the

,4The use ofthe colon here is not specifically related to colors or to drawing. Rather, itreflects the general
way in which things in Logo can benamed. When Logo isstarted, thesymbol WHITE is predefined to bea
name forthe number 15 (and theother color names likewise). For instance, if youtype

PRINT :WHITE

Logo will print 15.The colon syntax :WHITEdirects Logo to find the value associated with WHITE. We will
seeother uses of: in dealing with inputs to procedures in Section 2.1 and with the MAKE command in
Section 6.5.

22 . TI LOGO

computer is "talking to" an object (via TELL), all the graphics commands
refer to that object. If you type

TELL BACKGROUND ,

and then give the COLOR command, the number returned will be the color y
of the background. You must also be sure that the command is one that
makes sense for the object you are TELLing. For instance, if you type

TELL BACKGROUND

FORWARD 50

Logo will respond with the error message

BACKGROUND CAN'T FORWARD

In this case, you probably meant for the turtle to go forward, so you should
redirect the computer's attention to the turtle by typing

TELLTURTLE

As graphical objects go, the background is a rather limited one, since all
it cando ischange color. We'll meet more versatile graphical objects in
Chapter 4.

1.6. Modes of Using the Screen

This chapter has presented the basics of executing Logo commands and
defining simple procedures. As a summary, we note that Logo uses the
display screen in three different ways, or modes.

1.6.1. Noturtle Mode

Logo starts in noturtle mode. You type in command lines, terminated with
ENTER. Logo executes the line and prints a response, if appropriate.

1.6.2. Turtle Mode

Typing TELL TURTLE causes Logo to enter turtle mode as shown in
Figure 1.5, with the screen cleared and the turtle at the center. In turtle
mode, you use the turtle for drawing on the screen. The NOTURTLE
command exits turtle mode and enters noturtle mode.

1.6.3. Edit Mode

Executing the commands TO or EDIT places Logo in edit mode, which
allows you to use the procedure editor as described in Section 1.4.2. Pressing
the back key exits edit mode and processes the definitions.

J

(SJ

J

i<am

i,ift&

l-ttfril

t±a

L*p*a

L

CHAPTER

Programming with Procedures

In the Introduction we stressed that the ability to define procedures is one of
the powerful features of the Logo language. In this chapter we explain more
about how procedures can be used and, in particular, how they can be used
to build up complex programs in simple steps. With the material covered in
this chapter, you should have enough information about Logo to undertake
many projects in turtle geometry. Be sure to type TELL TURTLE before
trying any of the activities in this chapter.

2.1. Procedures with Inputs

The procedures discussed in Section 1.4 do exactly the same thing each
time they are executed. Each turtle procedure draws the same drawing each
time. Contrast this with a command like FORWARD.

FORWARD 50

does not draw exactly the same thing as

FORWARD 25

The fact that the FORWARD command takes an input is what enables you to
use this one command to draw lines of all different lengths.

In Logo, you can define procedures that take inputs. Consider, for
example, the following procedure, which draws a square 50 units in a side:

TO SQUARE

REPEAT 4 [FORWARD 50 RIGHT 90]
END

Whenever you give the command SQUARE, the turtle draws a square with
side 50. You can change the definition of SQUARE so that it can be used to
draw squares of all different sizes:

TO SQUARE :SIDE

lu REPEAT4 [FORWARD :SIDE RIGHT 90]
END

The new SQUARE procedure takes an input that specifies the side of the
square to be drawn. The procedure is executed just like any Logo command

24 / T I LOGO

that takes an input. That is, to draw a square of side 50, you type

SQUARE 50

To draw a square of side 25, you type

SQUARE 25

and so on.1

The definition of SQUARE illustrates the general rule for defining
procedures that take inputs. You choose a name for the input and include it
in the procedure title line, preceded by a colon.2 Now you use the input name
(with the colon) wherever you would normally use the value of the input in
the procedure body.

To define a procedure with inputs, you use the procedure editor just as in
defining any procedure. To enter the editor, type TO followed by as much of
the title line as you like, followed by ENTER. For example, if you type TO
SQUARE :SIDE (enter), you will enter the editor, and the title line of the
procedure will be TO SQUARE :SIDE. If you type TO SQUARE (ENTER),
you will enter the editor with the title line TO SQUARE, and the :SIDE part
of the title line can be added using the normal editing operations.3

Here's another example. You can modify the original (side 50) SQUARE
procedure to draw a diagonal of the square and return the turtle to its
starting point. The procedure uses the fact that the length of the diagonal is
the square root of 2 (about 1.4, or 7/5) times the length of the side.

TO DIAG

REPEAT 4 [FORWARD 50 RIGHT 90]
RIGHT 45

FORWARD 70

BACK 70

LEFT 45

END

Figure 2.1: Shape drawn by the
DIAG procedure.

Figure 2.1 shows the shape drawn by this procedure. To draw the shape in all
different sizes, you can use

*A common beginners' mistakeis to type SQUARE:50,basedon the (reasonable) misunderstanding that the
colon meanssomethinglike "here is your input." Instead,as we shallseebelow,the colon as used in :SIDE
means "the value associated with the name SIDE."

^Logo tradition is to pronounce the colonas"dots." That is :SIDE is pronounced "dots SIDE."

3In the first release of Tl Logo, you should type onlyTO and the procedure title and add the inputswith the
editing operations. In TI Logo II, you can use either method as described above.

<sd

is

l^rim

IsiJ

(si

i^a

liai

Imp

I

\ti&i

TO DIAG :SIZE

REPEAT 4 [FORWARD :SIZE RIGHT 90]
RIGHT 45

FORWARD (:SIZE * 7) / 5
BACK (:SIZE * 7) / 5
LEFT 45

END

2.1.1. Multiple Inputs

Programming with Procedures / 25

Logo procedures may be defined to accept more than one input. You
simply choose a name for each input and include it in the title line, preceded
by a colon. For example, the following two-input procedure can be used to
draw rectangles of varying sizes and shapes:

(a)

(b)

TO RECTANGLE :HEIGHT:LENGTH

FORWARD :HEIGHT

RIGHT 90

FORWARD :LENGTH

RIGHT 90

FORWARD :HEIGHT

RIGHT 90

FORWARD :LENGTH

RIGHT 90

END

Figure 2.2: Two rectangles drawn by the

RECTANGLE procedure.

As shown in Figure 2.2, executing the command

RECTANGLE 50 10

draws a long, skinny rectangle, whereas

RECTANGLE 50 50

draws a square.

26 / TI LOGO

2.1.2. Inputs as Private Names

Defining a Logo procedure involves grouping together a seriesof
commands under a name chosen by the programmer. Using inputs also
involves naming, but in a different sense. Although a new procedure is
incorporated as part of Logo's working vocabulary, the name of an input is
private to the procedure that uses the input.

Since input names are private, different procedures may use the same
names for inputs without these names interfering with each other. One way to
think about this is to imagine that each time a procedure is executed, it sets
up a "private library" that associates with its input names the actual input
values with which the procedure was called. When the procedure executes a
line that contains an input name (signaled by :) it looks up the value in the
library and substitutes the values for the name. For example, the previous
RECTANGLE procedure, called with

RECTANGLE 10 50

would set up a private library as shown in Figure 2.3.

RECTANGLE

HEIGHT 10

LENGTH 50 Figure 2.3: Private library set up by
executing RECTANGLE 10 50

Theinput values areassociated with the input names in the orderin which
they appear in thetitle line. In this case, the first input, 10, is associated with
the first input name, HEIGHT, and the second input, 50, is associated with
the second name, LENGTH.

We've already seen in Chapter 1 that the individual steps in a procedure
can themselves be procedures. Since each procedure maintains its own private
libraryof inputvalues, there is no conflict between the input names used by
the different procedures. For example, here is RECTANGLE used as part of a
procedure for drawing a flag, as shown in Figure 2.4:

TO FLAG :HEIGHT

FORWARD :HEIGHT

RECTANGLE (:HEIGHT / 2) :HEIGHT
BACK :HEIGHT

END

i/apl

isi

i-#&

t$ti®

£Z3

Programming with Procedures / 27

Figure 2.4: Figure drawn by executing FLAG50.

The FLAG procedure draws a "pole" of a specified HEIGHT, then draws on
top of the pole a rectangle of dimensions HEIGHT/2 by HEIGHT, then moves
the turtle back to the base of the pole. Note the use of parentheses around
OHEIGHT / 2). These are not actually necessary for Logo to understand what
is meant, but they make the program easier to read.4

Let's examine in detail what happens when you execute the command

FLAG 50

This creates a private library for FLAG in which HEIGHT is associated with
50 and begins executing the definition of FLAG, starting with the first line

FORWARD :HEIGHT

Looking in the private library, Logo finds that 50 is the value associated with
HEIGHT, so it makes the turtle go FORWARD 50. Next it must execute the
line

RECTANGLE (:HEIGHT / 2) :HEIGHT

To do this, Logo first determines the values of the two inputs that must be
given to RECTANGLE. The first input is half the value of HEIGHT, or 25,
and the second input is HEIGHT itself, or 50. Now RECTANGLE is called
with inputs 25 and 50. This sets up a private library for RECTANGLE in
which the names of RECTANGLE'S inputs, HEIGHT and LENGTH, are
associated with 25 and 50, respectively. The entire picture is as shown in

^Section 6.7.2discusses the rules for using parentheses in Logo.

28 / TI LOGO

Figure 2.5. Even though the name HEIGHT is associated with 50 in FLAG'S
library and with 25 in RECTANGLE'S library, there is no conflict between the

two. Each procedure looks up its own values in its own library.

HEIGHT SO

FORWARD HEIGHT

{"rECTANGLE (:HEIGHT/2)~| -
I HEIGHT I
I 1

BACK HEIGHT

HEIGHT 2S

LENGTH SO

Figure 2.5: Private libraries set up by
executing FLAG 50.

The importance of private input names is that you can use a procedure
without concern for the details of precisely how it is coded, but rather just
concentrating on what it does. When you write the FLAG procedure, you can
regard RECTANGLE as a "black box" that draws a rectangle, without
worrying about what names it uses for its inputs. Indeed, as far as FLAG is
concerned, RECTANGLE might have been a primitive included in the Logo
system.

The technique of regarding a procedure (even a complex procedure) as a
black box whose details you needn't worry about at the moment is a crucial
idea in programming or, indeed, in any kind of design enterprise. Each time
you define a new procedure, you can use it as a building block in more
complex procedures, and in this way you can build up very complex
processes in what Papert [15] refers to as "mind-size bites."

As a simple illustration, once you have defined FLAG you can use it to
easily make a procedure that draws a flag and moves the turtle over a bit:5

TO FLAG.AND.MOVE :SIZE :SPACING

PENDOWN

FLAG :SIZE

PENUP

RIGHT 90

FORWARD :SPACING

LEFT 90

END

You can use this to draw a row of flags as in Figure 2.6:

Figure 2.6: Picture drawn by ROW 20 30 4.

^The period usedin a namelikeFLAG.AND.MOVE is interpreted asan ordinary character. Logodoesnot
allow spaces to be part of procedure names, so the period is a useful way to make long names more readable.

J

j

iSL

j

L

Programming with Procedures / 29

TO ROW :SIZE :SPACING :HOW.MANY

REPEAT :HOW.MANY [FLAG.AND.MOVE :S|ZE :SPACING]
END

2.1.3. An ARC Procedure

As another example of using procedures with inputs, we'll consider the
problem of writing a procedure to draw circular arcs. This is not only a good
example of using procedures, but is also a useful building block to have in
making drawings.

The ARC procedure is based on making the turtle go FORWARD a small
fixed distance, turning a small fixed angle, and repeating this over and
over—this draws a good approximation to a circular arc.6 When the turtle
has turned through 360 degrees, a complete circle will have been drawn. This
leads to the following CIRCLE procedure:7

TO CIRCLE1

REPEAT 360 [FORWARD 1 RIGHT 1]

END

This draws a circle, but it is very slow, especially if you use it without hiding
the turtle. The problem is that there are so many FORWARD 1, LEFT 1
moves. And these are mostly unnecessary, because, within the accuracy of the
display screen, a regular polygon with more than 20 sides is indistinguishable
from a circle. For example, you can replace the CIRCLE1 procedure above
by the following procedure, which draws a regular 36-sided polygon:

TO CIRCLE2

REPEAT 36 [FORWARD 10 RIGHT 10]
END

(Notice that you multiply the FORWARD step by 10 in order to keep the
circle the same size as before.) The CIRCLE2 procedure runs about 10 times
as fast as CIRCLE1 and looks almost the same on the display screen.

^This is a fundamental idea in turtle geometry, based on the fact that a circle is a curve of constant curvature.

This observation is the key to many turtle-based approaches to mathematics as described in the book by

Abelson and diSessa [1].

7The digit 1 included as partof the nameCIRCLE1 is interpreted as an ordinarycharacter. It is standard
practice to name minor variants of procedures by appending a number to the name.

30/TI LOGO tJ

You can make this procedure more useful by giving it an input that varies 1
the size of the circle: I

tig)

TO CIRCLE :SIZE

REPEAT 36 [FORWARD :SIZE RIGHT 10] j
END °»

Note that the turtle still turns 10 degrees at eachstep, so varying the size of]
the FORWARD step varies thesize of thecircle. Figure 2.7 shows some usl
circles drawn by the CIRCLE procedure.

o

CIRCLE 1 CIRCLE 2 CIRCLE 8

Figure 2.7: Circles drawn by the CIRCLE procedure.

An arc procedure can be implemented in the same way, except the turtle
should turn through as many degrees as there are degrees in the arc. The
following procedure draws circular arcs turning toward the right:

ARCRIGHT50 60 ARCLEFT 50 90 ARCRIGHT30180 ARCLEFT 100 20

J

J
Figure 2.8: Circular arcs drawn by the ARCRIGHT procedure.

TO ARCRIGHT :SIZE :DEGREES J
REPEAT :DEGREES/10 [FORWARD :SIZE RIGHT 10] ^
END

Note that we divide the DEGREES input by 10 to obtain the number of
10-degree steps the turtle should perform to construct an arc of that many
degrees.8 An ARCLEFT procedure can be designed in exactly the same way.
Figure 2.8 shows some arcs generated by this procedure.

Once you have defined ARCRIGHT and ARCLEFT, you can use them to
develop all sorts of interesting shapes. Figure 2.9 shows two examples.

"in TI Logo, division always produces aninteger quotient; forinstance, 76/10 yields 7. Ourarc procedure will
give a correct result only when the DEGREES input is a multiple of 10.

L

i^j

lfflra*

fifffijl

2.2. Repetition and Recursion

TO PETAL :SIZE

ARCRIGHT :SIZE 60

RIGHT 120

ARCRIGHT :SIZE 60

RIGHT 120

END

TO FLOWER :SIZE

REPEAT 6 [PETAL:SIZE RIGHT 60]
END

FLOWER 100

Programming with Procedures / 31

TORAY:SIZE

ARCLEFT :SIZE 90

ARCRIGHT :SIZE 90

ARCLEFT :SIZE 90

ARCRIGHT :SIZE 90

END

TO SUN :SIZE

REPEAT 9 [RAYrSIZE RIGHT 160]
END

SUN 50

Figure 2.9: Simple procedures that use arcs.

We've already seen the use of the Logo REPEAT command (page 7) to
repeat a series of steps a fixed number of times. Another way to make
something repeat is to define a procedure that includes a call to itself as the
final line. For example,

TO SQUARE .SIZE

FORWARD :SIZE

RIGHT 90

SQUARE :SIZE

END

makes the turtle move in a square pattern over and over again until you stop

it by pressing BACK. You can think of the way this procedure works as a kind
of joke—the steps of a procedure can include calls to any procedure, so why
not call the procedure itself? In this case, the definition of SQUARE is "go
forward, turn right, and then do SQUARE again." And this last step entails
going forward, turning right, and then doing SQUARE again, and so on
forever.9

One disadvantage of this SQUARE, as opposed to the one we have been
previously using,

TO SQUARE :SIZE

REPEAT 4 [FORWARD :SIZE RIGHT 90]
END

9Compare: If a genie appears andoffersyouthree wishes, youshould useyourthirdwishto wish for three
more wishes.

32/TI LOGO

is that it goes on indefinitely and so is not a good building block to use in
making more complex drawings. On the other hand, this kind of indefinite
repetition can be useful in situations in which you do not know (or cannot

easily figure out) how many times to repeat some sequence of steps. The
following program is an excellent example:

TOPOLY:SIDE:ANGLE

FORWARD :SIDE

RIGHT :ANGLE

POLY:SIDE:ANGLE

END

Figure 2.10 shows some of the many figures drawn by POLY as the angle
varies. They are all closed figures, but the number of sides that must be
drawn before the figure closes depends in a complicated way upon the
ANGLE input to the program.10 Using the indefinite repeat you can draw
them all with a single, simple procedure.

Recursion is the programming word for the ability to use the term POLY as
part of the definition of POLYor, in general, to write procedures that call
themselves.11

2.2.1. Thinking About Recursion

The recursive procedures above have a very simple form—they merely
repeat an unchangeable cycle over and over again. Recursion is a much more
powerful idea and can be used to obtain much more complicated effects. We
shall meet many examples. To take just a small step beyond the purely
repetitive kind of recursion, consider

TO COUNTDOWN :NUMBER

PRINT :NUMBER

COUNTDOWN : NUMBER - 1

END

POLY 50 120 POLY 50 160 POLY 60 80

Figure 2.10: Shapes drawn by the POLY program.

POLY 80 144

'^This phenomenon forms thebasis for a number of mathematical investigations involving symmetry and
number theory, described in Abelson and diSessa [I].

"Languages likeFortran and(most versions of) BASICdo not allow recursion because the implementation of
a computer language is simplified if one can assume that there are no recursive functions.

1
j

lsl

kgfij

•^ Programming with Procedures / 33

f Let's examine what happens if you give the command

COUNTDOWN 10

I To understand the effect of this command, look back at the definition of the
COUNTDOWN procedure. You see that it needs an input and that is uses the
name NUMBER for this input. In this case, you have given 10as the input,
so the procedure takes NUMBER to be 10.12 The first line says

PRINT :NUMBER

L» so it prints 10 and goes on to the next line, which is

r COUNTDOWN :NUMBER - 1

or, in this case

COUNTDOWN 9

This order causes the same effect as if you had typed in the command

L COUNTDOWN 9

which would be to print 9 and then give the order

COUNTDOWN 8

and so on ... In sum, the effect of

COUNTDOWN 10

is to print 10, 9, 8, 7, 6, 5, 4, 3, 2,1,0, -1, -2, . . . until you stop the
process by pressing BACK.

Another example of the same programming technique is the following
modification of the POLY program on page 23:

TO POLYSPI :SIDE :ANGLE

FORWARD :SIDE

RIGHT :ANGLE

POLYSPI (:SIDE + 3) :ANGLE
END

Giving the command

POLYSPI 0 90

l2Using the terminology introduced in Section 2.1.2, we would say that COUNTDOWN sets up a private
library in which the name NUMBER is associated with 10.

&*^

34 / T I LOGO

leads to the sequence of turtle moves

FORWARD 0

RIGHT 90

FORWARD 3

RIGHT 90

FORWARD 6

RIGHT 90

FORWARD 9

RIGHT 90

which procedures a square-like spiral.13 By changing the ANGLE input, you can
draw all sorts of spiral shapes, as shown in Figure 2.11. Part of the power of
recursion is the fact that such simple programs can lead to such varied,
unexpected results.

POLYSPI 5 120 POLYSPI 5 144

Figure 2.11: Shapes drawn by the POLYSPI program.

2.2.2. Conditional Commands and STOP

Suppose you want COUNTDOWN to stop before printing 0. You can do
this as follows:

TO COUNTDOWN :NUMBER

IF :NUMBER = 0 STOP

PRINT :NUMBER

COUNTDOWN .NUMBER - 1

END

,3Or"squiral," asit was dubbed bya fifth-grade Logo Programmer whodiscovered this figure.

ii&j

|#fc!

J

tm

(&»q Programming with Procedures / 35

f The IF statement is used in Logo to perform tests, in this case to test
t,, whether the value of NUMBER is zero. If so, the COUNTDOWN procedure

STOPs. That is, rather than continuing with the next line in the procedure, it
L returns control to wherever the procedure was originally called from. So in

response to the command

r

tiitsart

M

COUNTDOWN 5

the computer prints 5, 4, 3, 2, 1 and prompts for a new command.
Keep in mind that the idea of STOP is that when a procedure stops, the

next command that gets executed is the one after the command that called
the procedure. For example,

TO BLASTOFF

COUNTDOWN 10

FORWARD 100

END

counts down from 10 to 1 and then moves the turtle.14

The IF statement is called a conditional expression. It has the form

IF {some condition is true} {do some action}

If the condition is true, then the rest of the line is executed. If not, execution
proceeds with the next line. If you like, you can separate the condition and
the action with the word THEN as in

TO COUNTDOWN :NUMBER

IF :NUMBER = 0 THEN STOP

PRINT :NUMBER

COUNTDOWN : NUMBER - 1

END

Either way is acceptable. The THEN is completely optional.
The kinds of conditions that can be tested are generated by Logo

operations called predicates. Predicates are things whose value is either true
or false. COUNTDOWN uses =, which is true if the two things it is
comparing are equal. Two other predicates are >, which tests whether the

number on its left is greater than the number on its right, and <, which tests
for less than. These three predicates deal with numbers.15 Logo includes
other predicates for dealing with other kinds of data. It is also easy to define
your own special-purpose predicates (see Section 6.6).

14This stopping behavior isjustwhat normally happens aftera procedure executes its final line. If youlike,
you can imagine that every procedure includes a STOP command at its end.

15Actually, = canbeused for testing equality of anytwo pieces of Logodata. A precise description of the
behavior of = is given in Section 12.6.

36 / TI LOGO

Here is a turtle program based on the COUNTDOWN model. It draws a
tower of squares that get smaller and smaller and stops when the squares get
very tiny, as shown in Figure 2.12.

El

TO TOWER :SIZE

IF :SIZE < 1 THEN STOP

SQUARE :SIZE

FORWARD :SIZE

TOWER :SIZE / 2

ENC

Figure 2.12: Picture drawn by TOWER 50.

2.2.3. Thinking Harder About Recursion

The recursion examples we have seen so far, in which the recursive call is
the final step in the procedure, can be readily viewed as a kind of generalized
repetition.16 Other uses of recursion can be much more powerful but,
unfortunately, much harder to understand. Let's compare the COUNTDOWN
procedure from Section 2.2.2:

TO COUNTDOWN :NUMBER

IF :NUMBER = 0 STOP

PRINT :NUMBER

COUNTDOWN :NUMBER - 1

END

with the following similar-looking procedure:

TO MYSTERY :NUMBER

IF :NUMBER = 0 STOP

MYSTERY:NUMBER - 1

PRINT :NUMBER

END

As we saw,

COUNTDOWN 3

'"The special case of recursion inwhich the recursive call isthe final step issometimes called tail recursion.
Logo includes techniques for implementing tail recursion efficiently, so that a tail recursive procedure can

effectively run "forever" without running out of storage.

j

j

J

.tes

^p4

fej

mi

M

Programming with Procedures / 37

prints 3, 2, 1. In contrast

MYSTERY 3

prints 1, 2, 3. Most people find this very hard to understand.
Let's trace through the process carefully. You first call MYSTERY with the

input 3, so, as explained on page 9, MYSTERY sets up a private library in
which NUMBER is associated with 3. It checks whether the value of

NUMBER is 0, which it is not, so MYSTERY proceeds to the next line which
produces the command

MYSTERY 2

Now let's stop and think. Eventually this second MYSTERY call will stop,
and the original

MYSTERY 3

procedure will have to continue with the next command after the call. But

this means that there will have to be, in some sense, two MYSTERY
procedures existing at once—the one called by the command

MYSTERY 2

and the original one called by the command

MYSTERY 3

which is waiting for the other MYSTERY to stop, so it can continue.
Moreover, each MYSTERY has its own value for NUMBER—NUMBER is 2

for one and 3 for the other. Each MYSTERY must maintain a separate
private library.17 The situation is shown in Figure 2.13.

NUMBER 3

IF NUMBER > 0 [STOP]

I 1
j MYSTERY :NUMBER - 1 I-
I J

PRINT NUMBER

NUMBER 1

Figure 2.13: Beginning execution of
MYSTERY 3.

17In other words, theprivate library isassociated, notwith a procedure, butwith agiven call to a procedure
(or what is technically called an activation of a procedure).

38/TI LOGO

Let's go on. The first thing that the

MYSTERY 2

procedure does is check whether the value for NUMBER is equal to 0. Since
this is not the case, MYSTERY gives the command

MYSTERY 1

and so now there are three MYSTERY procedures! And

MYSTERY 1

does a test and calls up yet another

MYSTERY 0

which makes four MYSTERY calls all existing at once as shown in Figure
2.14. Note that so far nothing has been printed. All that has happened is that
MYSTERY procedures have called up more MYSTERY procedures.

i_j

J
i

I

j

J

ISf f
NUMBER 3 NUMBER 2 NUMBER 1 NUMBER 0

IF rNUMBER » o [stop) IF NUMBER • o [stop] IF NUMBER o [stop] IF :NUMBER • o [stop]
tsj

r~
1 MYSTERY:NUM

1_

PRINT :NUMBE

prints 3
and stops

Figure 2.14:

IBER - 1 1 y
J

R

1 MYSTERY :NUMBER-1 I y
L J

PRINT :NUMBER

prints 2

and stops

r
MYSTERY:NU»

l_

PRINT -NUM8E

prints 1
and stops

1)
ABER-1 1 y

J

:r

MYSTERY

PRINT :NL

just st

:NUM8ER-1

MBER

OpSv tssA

m
Complete execution of MYSTERY 3.

Now

MYSTERY 0

performs its test and finds that the value of NUMBER is indeed 0. So it
STOPs and the process continues with the procedure that called it, namely,

MYSTERY 1

This MYSTERY now proceeds with the next line after the call, which says to
print the value of NUMBER. Since NUMBER is 1 (in this MYSTERY'S
private library), it prints 1. Now it is done and so returns to the procedure
that called it, namely

MYSTERY 2

y&i

L

Programming with Procedures / 39

This MYSTERY now,continues with the line after the call, which says to
print NUMBER. Since NUMBER is 2 (in this private library), it prints 2 and
returns to its caller, namely,

MYSTERY 3

which prints 3 and returns to its caller, which is the main Logo command
level.

Whew! Try going through this example again step by step, referring to
Figure 2.14. In essence, this complex process is doing nothing more than
unwinding the following rule:

• When a procedure is called, the calling procedure waits until the second

procedure stops and then continues with the next instruction after the call.

Recursion, however, forces us to appreciate all the ramifications of this
simple sounding rule. In particular:

• There may be several instances (or "activations") of the "same" procedure
all coexisting at once.

• Each procedure activation has a separate private library, so the "same"
name may be associated with different values in different procedure
activations.

• The order in which things happen can be very confusing.18

2.2.4. Drawing Trees

As another example of complex use of recursion, let's look at a program
that draws a binary tree, as in Figure 2.15.

*J< *J<

Figure 2.15: A binary tree.

Think about how you would describe this figure. One way to do it would
be to say something like "the tree is a vee-shape with a smaller tree at each
tip. And each smaller tree is a vee-shape with a still smaller tree at each of its

18More specifically, things happen in thereverse order from thewayonemight expect. Thisisa consequence
of the fact that the last procedure called is the first one to stop.

40 / TI LOGO

tips, and so on." This is a recursive description of the tree. You can translate
this description into a recursiveprocedure that draws the figure. You start
with the following commands that make the turtle draw a vee-shape of a
certain length and return to its initial position and heading:

LEFT 45

FORWARD :LENGTH

BACK :LENGTH

RIGHT 90 *•*
FORWARD :LENGTH

BACK '.LENGTH

LEFT 45 ^

This is the basic vee-shape of the tree. Now, according to the recursive
description, the entire tree consists of this vee with smaller vees (say, half as
big) drawn at each tip. So the TREE procedure should be something like

TO TREE :LENGTH

LEFT 45

FORWARD :LENGTH

TREE :LENGTH / 2 m
BACK :LENGTH

RIGHT 90

FORWARD :LENGTH

TREE :LENGTH / 2

BACK :LENGTH

LEFT 45

END

But this doesn't quite work. Consider—ifyou call TREE with an input of
20, this will make the turtle go LEFT 45, FORWARD 20 and call

TREE 10

which will make the turtle go LEFT 45, FORWARD 10 and call

TREE 5

and so on forever.19 This is something like the forever-running
COUNTDOWN procedure on page 23, or even more like the chain of

MYSTERY procedures on page26, in that no procedure finishes until the last ^
one to be called has stopped. What you need is a stop rule to keep the

l^That is, until Logorunsout of storage.

ml

Programming with Procedures / 41

process from going on forever. You can make the process stop by having the
procedure just stop without drawing anything if LENGTH is very small:

TO TREE :LENGTH

IF:LENGTH < 2 THEN STOP

LEFT 45

FORWARD :LENGTH

TREE :LENGTH / 2

BACK :LENGTH

RIGHT 90

FORWARD :LENGTH

TREE :LENGTH / 2

BACK :LENGTH

LEFT 45

END

You can modify the TREE procedure to produce a procedure TREE1, in
_i which the subtree branches have the same length as the original branches,

rather than half the length. If you do this, however, then the branches of
successive subtrees will not get smaller and smaller, which means that you

ssi cannot use the same stop rule as in TREE. A different strategy for providing
a stop rule is to include for TREE1 an extra input, DEPTH, which
determines the "depth" to which the tree is drawn. Each tree of a given depth

^ spawns two subtrees of depth one less. When the TREE procedure is called
with DEPTH equal to 0, it just stops without drawing:

I TO TREE1 :LENGTH :DEPTH
IF :DEPTH = 0 THEN STOP

r LEFT 45
I FORWARD :LENGTH
"" TREE1 :LENGTH :DEPTH - 1

BACK :LENGTH

RIGHT 90

FORWARD :LENGTH

TREE1 :LENGTH :DEPTH - 1

BACK :LENGTH

LEFT 45

END

Thinking in terms of recursive descriptions can take a lot of getting used
to, and the programs can be subtle. One especially subtle point about the
TREE program is the final BACK and LEFT moves, which are needed to

restore the turtle to its initial heading so that the different calls to TREE will
fit together correctly. On the other hand, many seemingly complex designs

tea

42 / TI LOGO

have simple recursive descriptions and can be drawn by remarkably brief
programs. The design of recursive turtle programs for drawing complex
patterns is discussed extensively in Abelson and diSessa [1].

To illustrate the flavor of recursive designs, here is a modification to

TREE1, in which the left branch of each vee is twice as long as the right
branch. We'll also allow the angle of the vee to be varied as an input. Figure

2.16 shows some of the patterns that result.

TO NEW.TREE :LENGTH :ANGLE :DEPTH

IF :DEPTH = 0 THEN STOP

LEFT:ANGLE

FORWARD 2 * :LENGTH

NEW.TREE rLENGTH :ANGLE :DEPTH - 1

BACK 2 * :LENGTH

RIGHT 2 * :ANGLE

FORWARD :LENGTH

NEW.TREE rLENGTH :ANGLE :DEPTH - 1

BACK rLENGTH

LEFT:ANGLE

END

Figure 2.16: Some figures drawn by the
NEW.TREE procedure.

J

J

frsaii

J

J

]vyjg|

limit

mm

CHAPTER

Projects in Turtle Geometry

Here are some projects that use Turtle Geometry. Refer to other portions of
this text for help in defining or editing programs. Feelfree to change

programs that are offered and to design new programs. Be sure to type TELL
TURTLE before trying any of these projects.

Here is a square procedure.

Here are two square procedures

designed to allow variable size. The
triangles show the turtle's initial
position.

TO SQUARE

REPEAT 4 [FORWARD 60 RIGHT 90]
END

TO LSQUARE :SIZE

FORWARD rSIZE

LEFT 90

FORWARD rSIZE

LEFT 90

FORWARD rSIZE

LEFT 90

FORWARD rSIZE

LEFT 90

END

44 / TI LOGO

or

TO LSQUARE rSIZE

REPEAT 4 [FORWARD rSIZE LEFT 90]
END

TO RSQUARE rSIZE

FORWARD rSIZE

RIGHT 90

FORWARD rSIZE

RIGHT 90

FORWARD rSIZE

RIGHT 90

FORWARD rSIZE

RIGHT 90

END

or

TO RSQUARE rSIZE

REPEAT 4 [FORWARD rSIZE RIGHT 90]
END

Some procedures using RSQUARE and recursion.

Some ideas for using square procedures.

TO MOVE rSIZE

FORWARD rSIZE

RIGHT 90

FORWARD rSIZE

LEFT 90

END

TO STAIRS rSIZE

RSQUARE rSIZE

MOVE rSIZE

STAIRS rSIZE

END

ffimj

tffig'

r

I
paw

l*a

D

D D

• •
o

•

TO BOXES

RSQUARE 30

MOVE 30

RSQUARE 20

MOVE 20

RSQUARE 10

MOVE 10

RSQUARE 5

RIGHT 180

PENUP

MOVE 60

RIGHT 180

PENDOWN

END

Projects inTurtle Geometry / 45

TO MANYBOXES

BOXES

FORWARD 30

RIGHT 90

MANYBOXES

END

46 / T I LOGO

fl ft
D D

TO SPINSQUARES rSIZE

RSQUARE rSIZE

RIGHT 20

SPINSQUARES rSIZE

END

U

Jjiij^

JsggE

J

tsi

J

Jj&l

ts

lis)

Projects in TurtleGeometry 47

SPINSQUARES 40

TO GROWSQUARES rSIZE

RSQUARE rSIZE

RIGHT 20

GROWSQUARES :SIZE + 5
END

A rectangle procedure designed to allow variable sizeand someexamples thatuseit.

U

TO RECTANGLE rLENGTH rWIDTH

FORWARD rLENGTH

RIGHT 90

FORWARD rWIDTH

RIGHT 90

FORWARD rLENGTH

RIGHT 90

FORWARD rWIDTH

RIGHT 90

END

TO FLOWER

RECTANGLE 50 10
RIGHT 20

RECTANGLE 5 20

RIGHT 20

FLOWER

END

48 / TI LOGO

TO SPINRECS rSIZE

IF rSIZE < 10 STOP

RECTANGLE rSIZE 20

LEFT 30

SPINRECS rSIZE -5

END

Examples using RSQUARE and RECTANGLE.

TO HOP rSIZE

FORWARD rSIZE

RIGHT 90

FORWARD 3

LEFT 90

END

TO TELESCOPE rSIZE

IF rSIZE < 6 STOP

RSQUARE rSIZE

HOP rSIZE

TELESCOPE rSIZE - 6

END

TO ROCKTOP

LEFT 30

FORWARD 30

LEFT 120

FORWARD 30

END

TO ROCKET

RECTANGLE 80 30

LEFT 90

RECTANGLE 15 15

BACK 30

RIGHT 90

RECTANGLE 15 15

FORWARD 80

ROCKTOP

END

m

im

tiiii

fcjffij

L

Projects inTurtle Geortietry / 49

Here are some examples that use a triangle procedure.

TOTRI

REPEAT 3 [FORWARD 70 RIGHT 120]
END

50 / T I LOGO

A triangle procedure designed to allow variable sizeand an example that uses it.

TO TRIANGLE rSIZE

FORWARD rSIZE

RIGHT 120

FORWARD rSIZE

RIGHT 120

FORWARD rSIZE

RIGHT 120

END

This procedure is different in design but hasa similar result.

Some more triangle examples.

TO FLUFF rSIZE

IFrSIZE < 10 STOP

TRIANGLE rSIZE

FLUFF rSIZE - 10

TO NEWTRIANGLE rSIZE

LEFT 30

TRIANGLE rSIZE

RIGHT 30

END

TO CREEP rSIZE

PENUP

FORWARD rSIZE

PENDOWN

END

{«§

j

L

\>:mi)

tifel

And one more.

Hurt

ProjectsinTurtle Geometry / 51

TO LOOPS rSIZE

NEWTRIANGLE rSIZE

CREEP rSIZE

RIGHT 60

LOOPS rSIZE

END

TO NEWLOOP rSIZE

IF rSIZE < 20 STOP

NEWTRIANGLE rSIZE

CREEP :SIZE/2

RIGHT 60

NEWLOOP rSIZE-5

END

TO LEFTANT

LEFT 15

FORWARD 30

LEFT 120

FORWARD 15

BACK 15

RIGHT 120

BACK 30

RIGHT 15

END

52 / TI LOGO

TO RIGHTANT

RIGHT 15

FORWARD 30

RIGHT 120

FORWARD 15

BACK 15

LEFT 120

BACK 30

LEFT 15

END

TO ANTS

RIGHTANT

LEFTANT

END

TO BUTTERFLY

RIGHT 60

WING

RIGHT 180

WING

RIGHT 120

ANTS

RIGHT 150

TRIANGLE 30

END

TO WING

TRIANGLE 80

TRIANGLE 60

TRIANGLE 40

TRIANGLE 20

END

£21

l-ssa

turn

Projects inTurtle Geometry / 53

('l^

RCP and LCP are abbreviationsfor "Right Circle Piece" and "Left Circle
Piece" RARCand LARCstandfor "right arc"and "leftarc" A circlecan
be madefrom piecesofeither left or right arcs, leaving the turtle at the
left-most or right-mostpoint of the circle.

r
i

TO RCP :R

RIGHT 15

FORWARD :R/2

RIGHT 15

END

TO LCP :R

[LEFT 15
U FORWARD :R/2

LEFT 15

END

TO RARC :R

f REPEAT 3 [RCP :R]
L END

\ TO LARC :R
L REPEAT 3 [LCP rR]

END

IrWIt

TO RCIRCLE :R

REPEAT 12 [RCP :R]
END

TO LCIRCLE :R

REPEAT 12 [LCP rR]
END

54/Tl LOGO

Examples Using Circle Procedures.

TO SHRINKRCIRCLE rSIZE

IF rSIZE < 4 STOP

RCIRCLE rSIZE

SHRINKRCIRCLE rSIZE - 2

END

TORSLINKYrSIZE

RCIRCLE rSIZE

PURT90FD10LT90PD

RSLINKYrSIZE

END

TO SPINSLINK rSIZE

RCIRCLE rSIZE

RIGHT 20

SPINSLINK rSIZE

END

J

&d

j

f*is

{g£

L

L

tiw»

L
*

ftsu

Examples using RARC and LARC.

Projects in Turtle Geometry / 55

TO GROWCIRCLE rSIZE

REPEAT 4 [RCP rSIZE]
GROWCIRCLE rSIZE + 1

END

TORAYrSIZE

RARC rSIZE

LARC rSIZE

RARC rSIZE

LARC rSIZE

END

TO SUN rSIZE

RAYrSIZE

RIGHT 160

SUN rSIZE

END

56/T I LOGO

POLY procedures have variable size and angle. Here are some examples.

SIDE = 50 ANGLE =160

SIDE = 60 ANGLE = 80

SIDE = 20 ANGLE=40

TOPOLYrSIDErANGLE

FORWARD rSIDE

RIGHT rANGLE

POLYrSIDErANGLE

END

SIDE = 80 ANGLE=144

SIDE = 100 ANGLE = 156

J

J

(•m

j

l>*-%

1&M1

mn

|jmt

Projects in Turtle Geometry / 57

POLYSTEP is a piece of a POLY procedure. Here are some examples using it.

TO POLYSTEP rSIDE rANGLE

FORWARD rSIDE

RIGHT rANGLE

END

K
^

TOTWOPOLYrSIDEI :ANGLE1 rSIDE2 :ANGLE2

POLYSTEP :SIDE1 rANGLEI

POLYSTEP :SIDE2 :ANGLE2

TWOPOLYrSIDEI rANGLEI rSIDE2 :ANGLE2

END

\ SIDE1=30 ANGLE1 = 60 SIDE2 = 60 ANGLE2 = 210

SIDE1=30 ANGLE1 = 90 SIDE2 = 50 ANGLE2 = 135

SIDE1=25 ANGLE1 = 190 SIDE2 = 50 ANGLE2 = 200

58 / T I LOGO

TO POLYSTEP rSIDE rANGLE

FORWARD rSIDE

RIGHT rANGLE

END

TO POLYSPIRAL rSIDE rANGLE :INC

POLYSTEP rSIDE rANGLE

POLYSPIRAL (rSIDE + :INC) rANGLE rINC
END

SIDE = 1 ANGLE = 45 INCREMENT= 1

More programs using POLYSTEP. You may need to change the incrementing

value inside of the procedure, that is, the value being added to the side each
time the program recurses.

SIDE = 1 ANGLE=45 INCREMENT=3

j

J

tj&A

lK0

im

1

foul

-

L

Projects in TurtleGeometry / 59

SIDE = 5 ANGLE =120 INCREMENT=3

SIDE=5 ANGLE =144 INCREMENT=3

Here's an example that begins by defining a shape and uses it to make a
more interesting shape.

TO DESIGN

FORWARD 20

RIGHT 90

FORWARD 20

RIGHT 90

FORWARD 10

RIGHT 90

FORWARD 10

RIGHT 90

FORWARD 20

RIGHT 90

FORWARD 5

RIGHT 90

FORWARD 5

RIGHT 90

FORWARD 10

END

60 / T I LOGO J
TO DESIGN4

DESIGN 1
DESIGN

DESIGN

DESIGN

y

(S§END

or -.

TO DESIGN4

REPEAT 4[DESIGN]
END

m

And two more shapes.

_•

4

cr

h

TO CRYSTAL

DESIGN

LEFT 45

FORWARD 35

CRYSTAL

END

TO JENGU

DESIGN

DESIGN

LEFT 90

JENGU

END

J

J

Projects in Turtle Geometry / 61

Here are some programs using INSPI. Try various inputs.

TO INSPI :SIDE :ANGLE

POLYSTEP :SIDE :ANGLE

INSPI :SIDE (:ANGLE +10)
END

SIDE =10 ANGLE =1

SIDE= 10 ANGLE =10

SIDE =7 ANGLE = 3

62/TI LOGO

SIDE =7 ANGLE=5

Here is a sequence of procedures that start with a leaf (VEE) and end with a
forest (TREES).

V
TO VEE

LEFT 45

FORWARD 10

BACK 10

RIGHT 90

FORWARD 10

BACK 10

LEFT 45

END

TO BRANCH

FORWARD 15

VEE

FORWARD 15

VEE

FORWARD 10

BACK 40

END

TO BUSH

LEFT 60

REPEAT 6 [BRANCH RIGHT20]
BRANCH

LEFT 60

END

I^Hi

(^g

J

Ua

l-'^qi

t&n

Projects in TurtleGeometry / 63

TO GREENTREE

FORWARD 50

BUSH

BACK 50

END

TO MOVE

PENUP

RIGHT 90

FORWARD 80

LEFT 90

PENDOWN

END

TO TREES

REPEAT 3 [GREENTREE MOVE]

MOVE

GREENTREE

MOVE

GREENTREE

END

64 / T I LOGO

Here are some project ideas using the procedures you have already seen. Feel

free to make up your own projects.

oA o

1

las

J

tii

J

r

L
r

h^**

i^)

Projects in TurtleGeometry / 65

A A

o

0

0

0

n
Is

ot.gy';v]

|-a.i'l!-i|

r

CHAPTER

Animation

We've seen how to use Logo to draw with the turtle. In this chapter, we show
how to use sprites to make pictures that move. Sprites, like turtles, are
graphical objects. Like turtles, they respond to commands FORWARD and

RIGHT. But unlike turtles, sprites can change their color and their shape,
and, most importantly, sprites can be set in motion. We begin by introducing
the Logo commands for dealing with sprites, both one at a time and in

groups, and give some simple procedures that control sprites. In Section 4.2
we show how you can define your own shapes for sprites to supplement the
shapes that are built into Logo. Section 4.3 introduces tiles. Tiles, like

sprites, can be given various shapes and colors, but they cannot move. They
are useful for making elaborate backgrounds for screen graphics. In Section
4.4 we combine sprites, tiles, and Logo programming in the design of a
simple movie.

4.1. Sprites

A sprite, like a turtle, is an object that lives on the computer display

screen. Like a turtle, a sprite has a position and a heading, and responds to
the commands FORWARD, BACK, RIGHT, and LEFT. Unlike turtles, sprites

i can be given various colors and shapes. You control a sprite's color by means
«• of the SETCOLOR command (abbreviated SC), using any of the 16 color

names (or color numbers) given in the chart on page 14. You can also tell a
sprite to CARRY a given shape. Logo comes with five predefined shapes for
sprites, given in the following chart below. You can also define your own

shapes using the MAKESHAPE command as described in Section 4.2.

1 PLANE

2 TRUCK

3 ROCKET

4 BALL

5 BOX

4.1.1. Exploring with Sprites

To begin exploring with sprites, type

rL TELL SPRITE 1

(followed, as are all Logo command lines, by pressing ENTER). This indicates
to Logo that subsequent commands will be addressed to sprite number 1. If

68 / TI LOGO m

you have been using the turtle, clear it from the screen using the NOTURTLE
command. Next type
HOME

As with the turtle, HOME places a sprite at the center of the screen.1 At this
point you won't see anything on the screen, because you have not given the
sprite a color or a shape. Type

SETCOLOR :RED

CARRY :ROCKET

and you should see a red rocket at the center of the screen.2
The rocket responds to FORWARD and BACK commands. Typing

FORWARD 50

makes the rocket move up. If you type

RIGHT 90

you will not see any change on the screen. However, a subsequent

FORWARD 50

will make the rocket move sideways. As with the turtle, RIGHT and LEFT
change the direction of motion. But unlike turtles, the image of the sprite on
the screen does not rotate: a sprite shape always appears in the same i

orientation.

As with the turtle, you can change a sprite's heading by using the

SETHEADING command. For example, typing

SETHEADING 90

will set the sprite's heading towards the right, and the next move it makes will
be in that direction. TI Logo also includes the built-in names NORTH, EAST,
SOUTH, and WEST that you can use together with SETHEADING. For
instance,

SETHEADING :EAST

'HOME does not rcscl a sprite's heading as it does with the turtle.

2You canalso obtain thesame effect using thenumbers of thecolor andshape:

SETCOLOR 6

CARRY 3

As described in the note on page 14, the use of the name and the colon reflects the general way in which

names are used in Logo.

1

J

tig

IMi

fa»t

Animation / 69

will give the same result as SETHEADING 90.
The most important difference between sprites and turtles is that sprites

can be set in motion. This is done using the command SETSPEED

(abbreviated SS). Type

SETSPEED 10

and the rocket will move slowly across the screen. Giving the command

SETSPEED 100

will make the rocket go much faster. In general, the SETSPEED command
takes as input a number between - 127 and 127.3 Positive speeds make the
sprite move in the direction of its heading. Negative speeds make it move in
the opposite direction.

Now type

LEFT 90

This makes the rocket move vertically and illustrates that you can change a
sprite's direction while it is moving. Giving a SETCOLOR command will
change the rocket's color.

More Sprites

Now let's add another sprite to the picture:

TELL SPRITE 2

HOME

SETCOLOR :GRAY

CARRY :TRUCK

RIGHT 90

SETSPEED 5

makes a gray truck move slowly across the screen. Add another sprite:

TELL SPRITE 3

HOME

SETCOLOR :YELLOW

CARRY :BALL

RIGHT 45

SETSPEED 10

3A number outside this rangewillresultin the error message

SETSPEEDDOESN'TLIKE {number} AS INPUT

70/TI LOGO

Now you have a yellow ball moving diagonally. You can have more than one
sprite carry the same shape. For example, you can add ano* ter truck:

TELL SPRITE 4

HOME

SETCOLOR :BLACK

CARRY :TRUCK

RIGHT 90

SETSPEED 8

4.1.2. Practice with Sprites

At this point you should take some time to play with sprites. There are 32
sprites in all, numbered from 0 through 31. Use TELL to pick a sprite,
followed by CARRY, SETCOLOR, and HOME to give it a shape, a color, and

an initial position. Then move it using FORWARD, BACK, LEFT, RIGHT,
and SETSPEED. At any point, the sprite that responds to your command is
the one that you designated by the previous TELL instruction.

Here are some things to note in your exploring:

Overlapping Sprites

When two sprites overlap, the one with the smaller number will appear to
be on top.

Four Sprites on a Line

When you have many sprites on the screen, you will notice that some of
them will flicker or partly disappear. This reflects a restriction built into TI

Logo that at most 4 sprites may appear on a horizontal screen line. When
there are more than 4 sprites on a horizontal line, the portions of the fifth,
sixth, . . . , sprites on the same lines will be masked out. (The sprites that are
masked are the higher numbered sprites.)

FREEZE and THAW

At any point, you can stop all motion by typing the FREEZE command.
The THAW command restores the motion.

Making Sprites Disappear
The CLEARSCREEN will erase the text on the screen, but will not erase

the sprites. To make a sprite vanish, tell it to SETCOLOR 0.

No Pen

Unlike the turtle, sprites cannot carry a pen and cannot leave a trail on the
screen. Pen commands such as PENUP and PENDOWN are always ignored

by sprites.

j

j

(im

j

j

L

r

kfaj

|frfa*|

Animation / 71

BIG and SMALL

Typing the command BIG will make all sprites double in size. The SMALL
command restores sprites to their original size. (These commands are not
included in TI Logo I.)

Coordinates for Sprites

As with the turtle, you can position a sprite on the screen with x,y
coordinates using the SXY command. (See Figure 4.1) You can also obtain a
sprite's position and heading using XCOR, YCOR, HEADING, SHAPE, and
COLOR. In addition, XVEL and YVEL output the x and y components of the

sprite's velocity. The command SV takes two numbers as inputs and changes
the sprite's velocity by setting the x and y components of the velocity to these

inputs. In all cases, the coordinates in question are those of the sprite

specified by the most recent TELL command.

0,96

r
0,0

I J
127,0 127,0

Figure 4.1: The x,y coordinate system
0,-96 for sprites.

Wraparound

When sprites move beyond an edge of the screen, they wrap around to

reappear at the opposite edge. This wraparound behavior extends to other

sprite attributes besides position. For example, color numbers for sprites
"wrap around" after the maximum value of 15; thus SETCOLOR 16 is
equivalent to SETCOLOR 0, SETCOLOR 17 to SETCOLOR 1, and so on.

Shape numbers and sprite numbers behave similarly.

m 4.1.3. Talking to More Than One Sprite at a Time

iiii

So far we've seen how to control sprites using TELL, but only one sprite at
a time. You can also use TELL to talk to a group of sprites all at once.

TVping

TELL:ALL

directs subsequent commands to all 32 sprites. For instance, you can use the
following procedure to clear all sprites from the screen by setting their color
toO:

72 TI LOGO

TO CLEARSPRITES

TELL:ALL

SETCOLOR 0

END

You can also give TELL a list of sprite numbers, and subsequent
commands will be directed to those sprites. For instance,

TELL [1 2 3]

CARRY :BALL

TELL [4 5 6]
CARRY :TRUCK

will give a ball shape to sprites I, 2, and 3, and a truck shape to sprites 4, 5,

and 6. In fact, TELL :ALL is a special case of this, because ALL in TI Logo is
just a name for the list of numbers 0 through 31.

• • • • • r*^ •• •
• • • k k. •i •

•r ^ • • • k 4
v1 • r r. ^

•k ^ WW' A fck A
r ^ ^ Ik 4 • L

p1^ d k A • •
k • m r ^ m • •
* • m ^ n •

• • k 1 •
•

r

• r ^ ^
fc

^
W** V k At

r , ^k < m s •
r^r A • k ,4• U • • •
^ im • • • • • • • • •

y • • • • • • • • • •
Figure 4.2: A squadron of four planes flying

in formation.

Naming Groups of Sprites

It is often convenient to be able to refer to a group of sprites by name,

rather than by typing the list of numbers. For example, let's make a squadron

of four planes flying in formation, as shown in Figure 4.2.

We'll use sprites 1, 2, 3, and 4 to carry the planes, so we'll give the name

SQUADRON to the list [12 3 4]:

MAKE "SQUADRON [12 3 4]

This illustrates the general way in which the Logo command MAKE is used to

name things. Notice that the name SQUADRON is preceded by a quotation

mark. Once we've given the MAKE command, we can refer to the list [1 2 3 4]
as :SQUADRON. We'll discuss the use of MAKE more fully in Section 6.5.

J

J

ifijj'

flftg

is)

J

t,a;lii

Animation / 73

LHcreis a procedure that initializes the squadron of planes. It first stops all

four sprites (in case they had been moving) and sets them at the center of the

screen, pointing to the right (heading 90). Then it spreads sprites 1 and 2 a bit
r horizontally, sprites 3 and 4 a bit vertically, and puts the squadron in motion.

*" TO SQUAD
MAKE "SQUADRON [12 3 4]
TELL :SQUADRON

*™ SETSPEED 0
HOME

[SETHEADING 90
"* CARRY PLANE

SETCOLOR :BLACK

TELL 1 FORWARD 20

*» TELL 2 BACK 20

TELL 3 LEFT 90 FORWARD 10 RIGHT 90

F TELL 4 LEFT 90 BACK 10 RIGHT90
L TELL :SQUADRON SETSPEED 20

END

^ Notice how TELL is used to direct commands either to the individual sprites
or to the entire squadron. Once you have given the SQUAD command, you

can fly the squadron around using SETSPEED, RIGHT, and LEFT. (When
SQUAD terminates, the effect of its final command, TELL :SQUADRON,
will cause subsequent commands to still be directed to the entire
SQUADRON.)

EACH and YOURNUMBER

It is often useful to be able to talk to a group of sprites all at once, but to
have each sprite do a slightly different thing. The Logo command EACH
takes a list of commands as input and processes these commands for each

of the sprites you are currently talking to (as specified by the previous

TELL). EACH is most useful in conjunction with the Logo command
YOURNUMBER (abbreviated YN), which outputs the number of the current
sprite.

For example, set your squadron flying across the screen as above, and type

TELL :SQUADRON

EACH [SETSPEED 10 * YOURNUMBER]

The planes will break formation, because they are now going at different
speeds: sprite 1 at 10, sprite 2 at 20, sprite 3 at 30, and sprite 4 at 40. Notice
that the commands for EACH are enclosed in brackets as a list, just as with
REPEAT (Section 1.3.4).

fiaaa

• i^j

74/T I LOGO ™

EACH [SETCOLOR YOURNUMBER] j

will set the planes to different colors: sprite 1 to color 1 (black), sprite 2 to
color 2 (green), sprite 3 to color 3 (lime), and sprite 4 to color 4 (blue).

Combining EACH and REPEAT yields a clever little procedure to help you ^
explore with sprites:4

TO SPREAD COMMANDS

EACH [REPEAT YOURNUMBER COMMANDS]

END

Try the following

TELL :ALL

SETSPEED 0

HOME -,

SETHEADING 0

CARRY .BALL ^
SETCOLOR :RED

SPREAD [RIGHT 10]
SETSPEED 20 ^

The SPREAD points the sprites at 10-degree increments all along a circle.
When you start them all going, the effect is that of a circle of sprites tss

exploding outward from the center of the screen.5 Notice that the input to
SPREAD is a list of commands. The use of YOURNUMBER as the first

input to REPEAT in SPREAD means that SPRITE 0 will repeat the list of J
commands zero times, sprite 1 will repeat it one time, sprite 2, two times, etc.
Remember to type the input to SPREAD as a list, as in
SPREAD [RIGHT 10]. J

Here's another nice thing to do with SPREAD:

TELL [12 3 4 5 6] j
SETSPEED 0

SETHEADING 0 ,

HOME

CARRY :BALL y
SETCOLOR :RED

SPREAD [FORWARD 30 RIGHT 60] ,

''This example iscourtesy of A. diScssa.

^There's an interesting phenomenon lurking here: assoonasthe sprites begin to wrap around the borders of
the screen, the pattern starts to look random. But if you say SETSPEED -20, causing the sprites to reverse

direction, they will eventually all converge at the center of the screen.

tea

mi

IM

mm

lata*

L

Animation / 75

This positions the 6 sprites at the vertices of a regular hexagon. To see why,
as think about the relation between this and the POLY procedure (page 32). By

choosing different numbers of sprites and different angles, you can make

similar patterns based on other regular polygons.

To WHO(m) Are You Talking?

With all these possibilities for TELL, it is useful to be able to check which

sprite or group of sprites you are currently talking to. The Logo command
WHO indicates the sprite or list of sprites to which commands are currently
directed. For example:

TELL SPRITE 1

FORWARD 100

PRINT WHO

SPRITE 1

TELL :SQUADRON

SETSPEED 20

PRINT WHO

1 234

If you are talking to the turtle or the background, then WHO will output
TURTLE or BACKGROUND.

4.2. Defining Shapes

The shape carried by a sprite can be any of the five shapes built into Logo.
The Logo MAKESHAPE command (abbreviated MS) allows you to create
your own shapes or to modify any of the built-in shapes.

To define a new shape, first decide what number shape you are defining.

The built-in shapes have the numbers given in the table on page 51. In
general, you can have 26 different shapes, numbered 0 through 25.

Suppose you want to modify the PLANE shape (shape 1). Type

MAKESHAPE1

You will see on the screen a 16 x 16 grid of small squares with the plane

design blacked in on the grid, as shown in Figure 4.3. The background of the
screen has also changed color to indicate that you are now using the shape
editor.

To change the shape, you move the cursor around on the grid, blacking
in new squares and whiting out others. The keys that move the cursor are the

keys marked with arrows: S, D, E, and X. Pressing any of these keys moves
the cursor in the direction of the corresponding arrow. (The cursor wraps

around if you move it past the edge of the grid.) When you move the cursor

76 / T I LOGO

Figure 4.3: Appearance of the screen
in response to MAKESHAPE 1.

out of a square, it leaves that square blank. If you hold down the FCTN key
and move the cursor, then the square that the cursor leaves will be blacked
in.6 Try changing the shape of the plane's wings, as shown in Figure 4.4.

When you are finished changing the shape, press the BACK key. Logo exits
the shape editor, and the new shape will be installed as shape number 1

(PLANE). Any sprite you tell to CARRY :PLANE or CARRY 1 will now have
the new appearance.

Figure 4.4: A new PLANE shape.

4.2.1. Example: Birds Flying

As an example of defining new shapes, let's make some flying birds. Begin
by using the shape editor to define two shapes corresponding to birds with
wings up and wings down. For these, use two new shape numbers 6 and 7. It
is good practice to assign mnemonic names to the shapes you use and to
work with the names rather than with the numbers directly:

6Use fctn on the TI 99/4A. shift on ihe 99/4.

t&$a

tsi

tiiiii

isj

J

mbm

Vi-^t

i£)

Btel

MAKE"UPWING6

MAKE"DOWNWING7

Now use the shape editor:

MAKESHAPE :UPWING

and

MAKESHAPE :DOWNWING

to define the shapes shown in Figure 4.5.

Animation / 77

Figure 4*5: UPWING and DOWNWING shapes for flying birds.

Now set up a group of 6 sprites, called BIRDS, to carry these shapes:

TO SETBIRDS

MAKE "BIRDS [1 2 3 4 5 6]
TELL :BIRDS

SETSPEED 0

HOME

SETCOLOR :WHITE

CARRY :UPWING

SETHEADING 45

SPREAD [FORWARD 20]
SETHEADING 90

END

The SPREAD procedure (See Section 4.1.3) gives a useful way to spread the
sprites out along a diagonal. Now you can set the birds in motion:

78/T I LOGO

TELL :BIRDS

SETSPEED 20

SI
V

V-
v

x
m Figure 4.6: A line of birds created by SETBIRDS.

The result, shown in Figure 4.6, is a line of 6 birds drifting across the screen,
all with their wings up.

Typing

CARRY :DOWNWING

makes the birds put their wings down. Alternating this with

CARRY :UPWING

makes the wings flap. You can define a procedure that continues the
flapping:

TO FLAP

CARRY :UPWING

WAIT 30

CARRY :DOWNWING

WAIT 30

FLAP

END

The Logo command WAIT makes the computer wait for a given number of
sixtieths of a second. In this case the procedure is waiting 1/2 second between
wing beats.

You now have all the ingredients for a simple movie:

SETBIRDS

SETSPEED 20

FLAP

j

i»»

J

i*g

V.'n

L

Jltffl

(ifai-j

Animation / 79

The birds will continue flapping until you stop the procedure by pressing the
BACK key.

4.2.2. Two Notes on the Shape Editor

When you enter the shape editor using MAKESHAPE, the sprites will still
be visible on the screen. You can take advantage of this fact. Before typing
MAKESHAPE, tell one or moresprites to CARRY the shape you are
defining. Then, as you mark in the grid using the shapeeditor, you will see
the shape in its actual size carried by the sprite.

When the shapeeditor is in use, the only keys that haveany effect are the
arrow keys, BACK (to exit to Logo) and CLEAR, which clears all the squares on
the grid.

4.3. Tiles

The final kind of graphical object that you can address with TELL in Logo
is called a tile. A tile, like a sprite, can have a color and a shape. Unlike a

ka sprite, a tile cannot move. Tiles are useful in designing backgrounds for
graphics.

You can have 256 different tiles, numbered 0 through 255. In making
screen backgrounds, you should normally avoid using tiles 0 through 10 and
32 through 95, since these are used to create screen characters as described in
Section 4.3.3. In particular, tiles 0 and 1are used for the regular cursorand
the shapes editing cursor, and cannot be changed.

Todesign a tile, you use the Logo command MAKECHAR (abbreviated
MC). This works almost identically to MAKESHAPE (Section 4.2) except
that the grid for a tile is only 8 squares on a side—one quarter the size of the
grid for a sprite. For example, you can use MAKECHAR to design a tile that
looks like a small spiral. Let this be, say, tile 96:

MAKECHAR 96

You now obtain a grid on which you can draw the spiral, as shown in Figure
4.7.

Once you have defined a tile, you can give it a color using TELL and
SETCOLOR:

TELL TILE 96

SETCOLOR :RED

80 / T I LOGO

Figure 4.7: Using MAKECHAR to makea tile
in the shape of a spiral.

4.3.1 Positioning Tiles on the Screen

To place a tile on the screen you use the PUTTILE command (abbreviated
PT). This takes as input the number of the tile you wish to put on the screen,
followed by the screen position, specified as a column number and a row
number. Figure 4.8 shows how the screen can beviewed as a grid numbered
by columns and rows. There are 32 columns, numbered 0 through 31, and 24
rows, numbered 0 through 23.

Figure 4.8: The display screen asa grid of
columns and rows.

The center of the screen is column 16, row 12. Hence, with tile 96 defineu
as above, you can place a small red spiral at the center of thescreen with

PUTTILE 96 16 12

Figure 4.9 shows more spirals placed on the screen, via

PUTTILE 96 16 12

PUTTILE 96 10 10

PUTTILE 96 20 20

PUTTILE 96 10 20

PUTTILE 96 5 5

J

JSi

i»i

Ml

ts)

I

££11

;iijaj

Animation / 81

fD

G

Figure 4.9: Using PUTTILE to place spirals
on the screen.

Warning

Observe that the column and row numbers used with PUTTILE to place
a tile on the screen are not the same as the x,y coordinates used with SXY
to position sprites and turtles on the screen. You cannot use SXY (or
FORWARD, LEFT, and so on) when talking to tiles. Section 7.4.1 includes
some useful procedures that will aid you in dealing with this problem.

4.3.2. Foreground and Background Colors

We saw just above that tilescan be givena color by using the SETCOLOR
command. Actually, each tile has two colors associated with it: a foreground
color and a background color. When you show a tile, the blacked-in squares
(on the MAKECHAR grid) will be shown in the foreground color, and the
other squares on the grid will be shown in the backgroundcolor. If you do
not specify a background color, as in

SETCOLOR :RED

then onlythe foreground colorwill be changed.7 To set a background color,
use SETCOLOR with a list of the two color numbers. For instance, to give
the spiral defined above (tile 96) a foreground color of RED (color 6) and a
background color of white (color 15), you type

TELL TILE 96

SETCOLOR [6 15]

If you give this command with the spirals on the screen, as in Figure 4.9,
each will appear as a red spiral within a white square.8

7The background color ofatile isinitially defined tobe CLEAR (color 0) so that you will not see the
background.

8You can accomplish the same color change using color names instead ofnumbers by typing
SETCOLOR SENTENCE :RED :WHITE

The Logo command SENTENCE, as we shall see in Section 6.4 is used to construct lists.

82/T I LOGO

Color Groups

One restriction on tile colors is that every group of 8 tiles must have the
same color. That is, tiles 0 through 7 must have the same color, tiles 8
through 15 musthave the same color, and so on. Changing the color of a tile
(either foreground or background color) changes the colorof every tile in the
group.

4.3.3. Characters as Tiles

The characters that Logo printson the screen are, in fact, defined as tiles,
using tile numbers 32 through 95. The following chart shows the
correspondence between tile numbers andcharacters, and how these tiles are
arranged in groups:

Group 1
Code Character

Number

32 (space)

33 !

34

35 »

36 S

37 °b

38

39

&

Group 5

Code

Number

64

65

66

67

68

69

70

71

Character

Group 2
Code Character

Number

40 (

41)

42

43 +

44

45

46

47 /

Group 6

Code

Number

72

73

74

75

76

77

78

79

Character

H

I

J

K

L

M

N

0

Group 3
Code Character

Number

48

49

50

51

52

53

54

55

Group 7

Code

Number

80

81

82

83

84

85

86

87

Character

P

Q

R

S

T

U

V

w

Group 4
Code Character

Number

56 8

57 9

58

59

60 <

61 =

62 >

63 ?

Group 8
Code Character

Number

88 X

89 Y

90 Z

91 I
92

93 I
94 A

95

You can take advantage of this to modify the way in which Logo prints
characters. For instance, typing

MAKECHAR 52

allows you to edit tile 52, which is the numeral 4. If you change it as shown
in Figure 4.10, then all the 4s printed by Logo from then on will have this
new shape. Tiles 2 through 10 are initially used for miscellaneous portions of
the TI master title screen.9

9For instance, tile number 4 is in ihe shape of West Texas.

Ifi*

(5§

ts)

L

IS3

t£S

L

(ifc'iuJ

Animation / 83

Another thing you can do is use SETCOLOR to change the color in which
characters are printed on the screen.

TELL TILE 48

SETCOLOR WHITE

TELL TILE 56

SETCOLOR WHITE

Figure 4.10: Using MAKECHAR 52 to define a new style for the numeral 4.

will cause all tiles in the same group as 48 and 56 (that is tiles 48 through 55
and 56 through 63, which includes all the numerals and :, ;, <, = , >, ?) to
be printed in white, while the other characters will be printed in black.

Turtle Lines as Tiles

Another way that tiles are used in Logo is to create the lines drawn bythe
turtle. Each time the turtle draws inside a small screen square, a tile is
created whose "shape" is the turtle line. As the turtle draws in more and
moresquares, it uses more and more tiles, using first tiles 0 through 32and
then tiles96 through 255. For this reason, if you have some tiles defined and
then use the turtl/% the tile shapes may bedestroyed. This also explains the
meaning of the OUT OF INK error message (page 6). The turtle is "out of
ink" when all available tiles have been used.

You can also set a background color when drawing with the turtle.
Typing

TELLTURTLE

SETCOLOR [{colorl} {color2}]

and drawing with the pen down will cause each square the turtle passes over
to be filled in with {color2}, with a thin line in {colorl} drawn through the
square.

84 / TI LOGO

4.4. Project: A Simple Movie

In this section, we'll combine what we've learned about sprites and tiles to
create a simple movie. The movie, shown in Color Plate I; shows an ocean
with waves and whitecaps. A boat sails along the ocean and birds fly
overhead. This project also illustrates how a substantial Logo program is
designed and implemented as a cluster of simple procedures.

If you look at Plate I, you'll see that there are five parts to the picture: the
sky, the ocean, the sun, the boat, and the birds.

The sky is simple. We'll simply use the screen background after changing
its color to SKY (color 5). The ocean and the sun will be assembled from
tiles, and the boat and the birds will be sprites.

The Ocean

Let's begin by drawing the ocean. There are two parts: the top row,
consisting of the waves, and the rest of the water. Start with the rest of the
water, using a tile that will give a square of blue water with a small whitecap.
Call this tile WATER and use tile 108:

MAKE "WATER 108

MAKECHAR :WATER

Figure 4.11 shows the water tile that you make with the MAKECHAR
command. The color should be a foreground color of WHITE for the
whitecap (color 15) and a background color of BLUE (color 4) for the water.

For the top row of waves, use three tiles: WAVE1, WAVE2, and WAVE3,
whose shapes are also shown in Figure 4.11. The color for these tiles is
foreground BLUE, background CLEAR. Since the color is different from the
color for the WATER tile, you must create the waves using tiles in a different
color group. (See Section4.3.2.) You can use tiles 100, 101, and 102 for the
waves:

Figure 4.11: Shapes forwater and wave tiles.

fc^|

tgjgj

ftl&v*

^3

wy*

tao

Animation / 85

Figure 4.11: (Continued)

MAKE"WAVE1 100

MAKE "WAVE2 101

MAKE "WAVE3 102

Now we'll draw the top row of waves on the screen. The idea is to start at
the leftmost column of the screen, placing a sequence of three tiles, WAVE1,
WAVE2, WAVE3, and repeat this over and over for as many columns as there
is room. A good position for the top row of the ocean is row 15, which we'll
call OCEANTOP:

MAKE"0CEANT0P15

The following procedure draws the top row of the ocean. It is called initially
with the starting column as input:

TO WAVETOPS :COL

IF:COL > 31 STOP

PUTTILE :WAVE1 :COL :OCEANTOP

PUTTILE :WAVE2 :COL +1 :OCEANTOP
PUTTILE :WAVE3 :COL + 2 :OCEANTOP
WAVETOPS :COL +3

END

You should compare this recursive "test and stop" procedure form with the
COUNTDOWN or TOWER procedures discussed inSection 2.2. To actually
draw the waves, you can now give the command:

WAVETOPS 0

86 / T I LOGO

The rest ofthe ocean is drawn by using PUTTILE with the WATER tile. -j
Here are two useful procedures that fill the screen with a given tile, starting j
from a specified top row:

TO MAKEROWS :TILE :TOPROW

IF :TOPROW > 22 STOP

MAKEROW :TILE 0 :TOPROW

MAKEROWS iTILE :TOPROW + 1

END

TO MAKEROW :TILE :COL :ROW

IF:COL > 31 STOP «*
PUTTILE :TILE :COL :ROW
MAKEROW :TILE:COL+1 :ROW

END tsi,

These also use a recursive scheme similar to COUNTDOWN (Section 2.2).
MAKEROW fills in a single row by placing tiles in successive columns until it
reaches column 31. MAKEROWS calls MAKEROW on successive rows until it
reaches the bottom of the screen at row 22. With these procedures, the body

of the ocean can now be drawn as

MAKEROWS :WATER :OCEANTOP +1

(The top ocean row is one below the wave tops.) »
Here, then, is a procedure that draws the complete ocean:10

TO MAKEOCEAN

TELL TILE :WATER

SETCOLOR [15 4]
TELLTILE :WAVE1 J
SETCOLOR [4 0]
WAVETOPS 0

MAKEROWS :WATER:OCEANTOP+ 1

END

The Sun

The sun in the picture is formed from 4 tiles, each a quarter circle:

MAKE"SUN1 113

MAKE "SUN2 114

MAKE"SUN3115

MAKE"SUN4116

10AU threetiles namesWAVE1, WAVE2, andWAVE3 havetheircolorsset to foreground BLUE, background
CLEAR, by telling anyoneof themto do so—this is because they areall partof the samecolorgroup. J

£3

Animation / 87

Since these are to be yellow, you must pick tiles in a different color group
than either the waves or the water. Figure 4.12 shows the four sun tiles
constructed using MAKECHAR.

The following procedure positions the tiles on the screen:

TO MAKESUN

TELL TILE :SUN1

SETCOLOR :YELLOW

PUTTILE :SUN1 25 7

PUTTILE :SUN2 26 7

PUTTILE :SUN3 25 8

PUTTILE :SUN4 26 8

END

Notice that setting the color of SUN1 sets all 4 sun tiles since they are in the
same color group.

Figure 4.12: The sun constructed from four tiles.

88 / TI LOGO

The Boat

The boat h a single sprite that moves horizontally across the screen. You
can define a BOATSHAPE as shape number 9:

MAKE"BOATSHAPE9

MAKESHAPE :BOATSHAPE

and construct the shape shown in Figure 4.13.
Use sprite 0 to carry the boat:

MAKE" BOAT 0

Here is the procedure that sets up the boat:

TO MAKEBOAT

TELL :BOAT

SETHEADING 90

SETCOLOR :BLACK

SXY (-50) (-50)
CARRY :BOATSHAPE

SETSPEED 5

END

Figure 4.13: The BOATSHAPE for the movie.

The Birds

Finally, we'll add birds flying across the screen. You do this by
incorporating the bird shapes and the SETBIRDS and FLAP procedures from
Section 4.2.1, with a few small changes.

As before we'll have 6 birds, using sprites l through 6:

MAKE "BIRDS [1 2 3 4 5 6]

ffiffi

J

j

J

|gai

1**^

Animation / 89

The bird shapes will be UPWING and DOWNWING as shown in Figure 4.5:

MAKE "UPWING 6

MAKE "DOWNWING 7

The FLAP procedure is the same as before:

TO FLAP

CARRY :UPWING

WAIT 30

CARRY :DOWNWING

WAIT 30

FLAP

END

Setting up the birds will be similar to the SETBIRDS procedure on page
58, with a few changes to make the movie more interesting. First of all,

you can make the birds be different colors. Colors 8 through 15 give a

good set of colors, so we can set each sprite 1 through 8 to the color
7 +YOURNUMBER. You can also have the birds travel at slightly different

speeds and at slightly different headings. This latter is conveniently done

using the SPREAD procedure (page 56).

TO MAKEBIRDS

TELL :BIRDS

r CARRY :UPWING
EACH [SETCOLOR 7 +YOURNUMBER]

** SETSPEED 0
HOME

SETHEADING 90

•*• SPREAD [LEFT 1]
SPREAD [FORWARD 10]
EACH [SETSPEED 5 +YOURNUMBER]

\m END

Putting It AH Together
The only thing that remains is to write a procedure that puts all the parts

together. This clears the screen, sets up the sky by changing the
BACKGROUND color to SKY (color 5), draws all the parts of the picture,
and sets the birds flapping:

90/T I LOGO
tag

TO MOVIE

CLEARSCREENANDSPRITES

MAKESKY

MAKEOCEAN

MAKESUN

MAKEBOAT

MAKEBIRDS

TELL :BIRDS FLAP

END IfliSil

TO CLEARSCREENANDSPRITES

CLEARSCREEN J

TELL :ALL CARRY 0

END

TO MAKESKY

TELL BACKGROUND

SETCOLOR :SKY

END

This completes the movie, as well as a substantial Logo project. Notice
how we were able to isolate the different parts of the project by using m
separate procedures. Even though the program as a whole is long, the
individual procedures are rather short and could be designed and tested
separately. This is one of the important advantages of Logo's procedural
organization.

To save these procedures and shapes on a cassette tape or floppy disk, see
Section 5.2, "Saving and Retrieving Information." To save both your
procedures and your tile and sprite shapes, be sure to choose option 3.

M'i

L CHAPTER

[^ Workspace, Filing, and Debugging
When you use the Logo system, you can think of the computer as having two

memories. The first memory, called workspace, is where Logo keeps track of
the procedures and variables you have defined. Each time you define a

procedure or assign a value to a name, that information becomes part of the
workspace. When you leave Logo by pressing QUIT or by turning off the
computer, the information in the workspace is destroyed. The second and

more permanent memory consists of files that you save on diskette or on

cassette tape. Each file contains a complete workspace.1 The normal way to
use the Logo file system is to work for a while on a project and then, when

you are finished for the day, to save your workspace in a file. The next time
you use Logo, you can read in your saved workspace and continue where you

left off. You can also maintain a number of different files containing the

workspaces for different projects you are working on.

5.1. Managing Workspace

The Logo system includes commands for examining and deleting various
parts of the workspace. These are useful for keeping track of what
procedures are currently defined and for getting rid of unwanted definitions.

5.1.1. PO

The basic command for examining workspace is PO. If you type PO
followed by the name of a procedure, Logo prints the definition of the

procedure. PO also has a few variants:

PP Prints out the titles of all procedures in workspace.

PN Prints out the names and associated values in the global library.
PA Prints out all the procedures and names in the workspace.

5.1.2. ERASE

The ERASE command is used to get rid of parts of the workspace.
ERASE followed by a procedure title name removes the definition of the
procedure. ERASE followed by a variable name, as in

ERASE "X

'You can alsoelectto saveonly the procedures or only the spriteand tile shapescontained in the workspace.

92 / T I LOGO

will erase a variable name from the global library. (In this example, the
variable name X.)

5.2. Saving and Retrieving Information

The Logo system allows you to save procedure definitions on diskette or
on cassette tape, or to print them on a printer. The Logo commands SAVE
and RECALL are used for storing and retrieving.

When you give the SAVE command, Logo first displays a menu, as shown
in Figure 5.1, asking you to indicate whether you wish to save (1) only your
procedures and names, (2) only your shapes, or (3) both of these. Press 1, 2,
or 3 to indicate your choice. (You ordinarily choose 3 when saving new
shapes—otherwise choose 1.) Next, Logo asks you to indicate the device used
to save information, as shown in Figure 5.2.

^^M •
DEVICE

PRESS FDR ^^M
1 PROCEDURES ^^M 1 CASSETTE

2 SHAPES AND TILES ^^M • DISKETTE

3 BOTH 1 HND 2 ^^H |
BESS ' BUCK" FOR TI L06D ^^H •

^
^^fl OHVING •ILL

Figure 5.1: Screen display menu offering
SAVE options.

5.2.1. Using Cassette Tape

Figure 5.2: Screen display menu offering
SAVE device options.

Pages 1-8 through 1-12 of the User's Reference Guide that comes with your

TI 99/4 or 99/4A contain detailed information about setting up and using a

cassette recorder to save and recall information. It is particularly important

that you adjust the volume and tone control settings properly the first time
you save or recall procedures, and then mark those settings so that they can

be used again the next time you want to save or recall. If you are using your

cassette recorder only for saving and recalling with your computer, you might

want to tape the volume and tone adjustment wheels ir position so that they
do not change accidentally between uses.

To save or recall information using a cassette recorder, first give the SAVE
or RECALL command. Then choose whether to save or recall (1) procedures
only, (2) shapes only, or (3) both shapes and procedures. Then choose (1)

from the device menu (see Figure 5.2) to choose the cassette recorder as the

device for saving or recalling.

1*4

tsa

j
turn

J

(tf*

I&&

i&&

L

ym^

Workspace, Filing, and Debugging / 93

Once you choose to use a cassette, the computer will give exact instructions
for using the cassette, telling you which cassette buttons and computer keys
to press, and when. The process is quite straightforward. You use the cassette
recorder's playback mode to recall information, and its record mode to save
information. The computer will tell you whether an error has occurred in
saving or recalling. In case of error, you may have to repeat the entire process

of saving or recalling. The User's Reference Guide that comes with your
computer offers suggestions about what to check in case of errors in saving
or recalling.

5.2.2. Using Diskette

In contrast to cassette tape, a single diskette may contain many different

files, and the files are distinguished by the fact that they are named.2
When you type SAVE and indicate "(2) diskette" in response to Logo's

query, Logo will next ask you for a file name under which the information

should be stored. This is shown in Figure 5.3. You may use file names up to 8

characters long. If you use the same names as a file that is already on the

disk, the information in the old file will be replaced by the new information
being written.

Figure 5.3: Screen display asking for
file name.

If you press the space bar in response to Logo's request for a file name,

then Logo will review the file names on the disk in alphabetical order,
printing another name each time the space bar is pressed. To replace a file,
press ENTER when the file name appears on the screen.3

^Before using a blankdiskette for the first timeto save files, the diskette mustbe initialized with theTI Disk
Manager cartridge, which is packaged with the disk controller. Place the blank diskette in the drive and

follow the instructions provided with (he Disk Manager.

^When reviewing file names like this, youcannot typea new file name.To type a new file name, press backto
return to Logo and begin again with SAVE.

94 / TI LOGO

Keep in mind that the name you give your file has no relation to the names
of the procedures that will be saved in the file. Each time you save a file, all
procedures in the workspace are included.4

When working on large projects, it is a good idea to save your workspace
periodically in a file. Also, as you continue to make modifications, you
should keep on disk the last two or three versions of your project. A

technique for doing this is to include a version number as part of the file
name. For example, if you are working on a project called CIRCLES, save
the information the first time as CIRCLES1. After you have made

modifications, save the updated version as CIRCLES2. You can use the
utilities provided with the Disk Manager to get rid of unneeded versions. As
you work on the project, it's a good idea to always keep around the previous

two or three versions, just in case you mistakenly save a bad version on disk.

Recalling Files From Diskette

If you give the RECALL command and specify "(2) diskette," Logo will
ask you for the name of the file to recall. You may either type in a file name,

or press the space bar to ask Logo to review the names of the files currently

on the diskette. Each time you press the space bar, a new file name appears.

When you reach the file you want, press ENTER. The information will be

read, and Logo will return to command level.

5.2.3. Saving and Recalling Using Other

The third option, (3) other on the device menu, allows you to use a second
or third disk drive.5 If you choose option (3), you will be prompted for
device and file names (Figure 5.4):

Figure 5.4: After choosing option (3), other
on the device menu, you will be prompted
for device and file name.

f&i&K>

l

ban

tei

tjflj^

4This sometimes causesconfusion with beginners. Forexample, if someone has procedures BOX and HOUSE,
they write both files BOX and HOUSE, thinking that a separate file is needed for each procedure. The result

is that they end up with two files, each containing both procedures. In general, you should name your files

with a name that describes the group of procedures being saved. ™

5This optionwill allow access to other types of memory devices asthey become available.

• ifflflrt

Workspace, Filing,and Debugging / 95

Your response must include the letters DSK (meaning "disk"), a number (2
or 3), a period (.), and a file name. It must be typed on one line with no
spaces, as shown in the example.

Repeat the same process when you recall information saved using option

(3). You can recall it from a different disk drive if you wish. For example,
you can recall a file saved on disk 2, from disk 1, but you must recall it using
option (3).

5.2.4. Other Uses of the File System

Although SAVE and RECALL are almost always used to save and restore
complete workspaces, it is also convenient to be able to manipulate files in
other ways. For example, suppose you want to merge the procedure

definitions in two files to create a larger file. You can do this as follows:

1. Starting with an empty workspace, RECALL the first file.

j 2. RECALL the second file. Now your workspace contains the definitions in
\m both files.

3. SAVE your workspace as the new, combined file.

""• As another example, suppose you want to delete a few procedure
definitions from a file. One way to do this is to RECALL the file, ERASE the

r

unwanted definitions, and SAVE the new workspace using the same file

name.

5.2.5. Obtaining Hard Copy: the^RINTOUT Command

The PRINTOUT command allows you to print all the procedures in your
workspace using a TI Thermal Printer or an RS232 printer. To use an RS232
printer you must have an RS232 card in your Peripheral Expansion Box or
an RS232 Expansion unit attached to your computer. When you type

PRINTOUT, you will first be prompted for the name of the device you are
using.

If you are using a TI Thermal Printer, just type TP, and the printer will
begin printing the contents of your workspace. If you have an RS232 printer,
the device name must include the symbols "RS232.BA = " and a baud rate,
all typed without any spaces. For example,

RS232.BA = 9600

9600 is the baud rate in this example — the rate at which information can be
sent to the printer. This will depend on the capabilities of your particular
printer, so you will have to consult your printer manual for this information.

Next, you will be asked for a line length, which must be less than the
longest line length your printer can handle. Again, this will vary from printer

96 / T I LOGO

to printer. After you specify the device name and line length, your printer
will begin printing.

5.3. Aids for Debugging

One of the main features of Logo as a computer language for education is
that students designand write programs as well as use them. Debugging a
program is a crucial part of the programming process. This section describes
features included in the Logo system to aid in debugging programs.

5.3.1. Pausing Execution with the aid Key

When Logo is running a procedure, pressing the AID key works somewhat
like pressing the BACK key—it stops procedure execution. The difference is
that AID stops the procedure "in the context where it is executing" and allows
you to examine the values of local names.

As a simple example, consider the FLAG and RECTANGLE procedures
that we introduced in Section 2.1.2. Suppose that RECTANGLE had a I
bug—an extra last line that calls RECTANGLE recursively, so that the *»
procedure keeps running forever:

TO RECTANGLE :HEIGHT rLENGTH m
FORWARD :HEIGHT

RIGHT 90

FORWARD :LENGTH M
RIGHT 90

FORWARD :HEIGHT i

RIGHT 90 m
FORWARD rLENGTH

RIGHT 90

RECTANGLE :HEIGHT rLENGTH

END

Now suppose you inadvertently use this procedure as part of FLAG:
lag

TO FLAG :HEIGHT

FORWARD :HEIGHT

RECTANGLE (:HEIGHT/ 2) :HEIGHT m
BACK .HEIGHT

END

If you run FLAG 50 you will see the turtle draw part of the flag and then get
"stuck" tracing the same rectangle over and over. If you now press AID, you
will see a message like this:

PAUSE AT LEVEL 10 LINE 8 OF RECTANGLE
L10? j

Workspace, Filing, and Debugging / 97

This message tells you that Logo was executing the RECTANGLE procedure,
line 8, when you pressed aid. The meaning of level here is the same as that
typed by error messages and described on page 23: you are 10 levels away

r from the typed-in command—your typed command called FLAG which
[^ called RECTANGLE, which called RECTANGLE again, which called

RECTANGLE again, and so on.

The prompt L10? indicates that you are now typing commands within the
context of RECTANGLE at level 10. You are free to type and execute any
Logo command just as if you were at top level. The big difference is that
now the variable names you use will refer to names in the private library of

the procedure in which you paused. In the current example, the private

libraries for FLAG and RECTANGLE are as shown in Figure 2.5 on page 20,
so that we could examine RECTANGLE'S private variables:

L10? PRINTrHEIGHT

25

L10? PRINT rLENGTH

50

This ability to examine local variables can be useful when you are trying to

track down bugs.

Pressing BACK from within such a "pause break" causes Logo to return to

r top level and wait for a new command. Also, executing a command that

I causes an error will return Logo to top level.6

5.3.2. TRACEBACK

When you are within a pause, you can use the TRACEBACK command to

find out "where you are." For instance, typing TRACEBACK in the example
above yields:

L10?TRACEBACK

WE'RE NOW INSIDE RECTANGLE, FLAG

In general, TRACEBACK indicates the chain of procedures from where you
are currently back to the top level. In this case, the pause happens inside
RECTANGLE, which was called by FLAG, which was called at command

level.

^Unless the DEBUG option hasbeen set. SeeSection 5.3.3below.

98 / T I LOGO

5.3.3. The DEBUG Option :

Normally, when Logo encounters an error, it halts execution, types an error
message, and returns to command level. Alternatively, you can direct Logo to
enter a pause when an error is encountered, so that you can examine the
values of local variables, as with AID. The DEBUG command acts as an "•
"on-off" switch that controls this option. Turn on the option by typing
DEBUG:

DEBUG

ON

Logo's response indicates that the debug option is now on.
With the option turned on, suppose the RECTANGLE had another bug—a

misspelling in the second line:

TO RECTANGLE rHEIGHT rLENGTH

FORWARD rHEIGHT

RIGXT 90 rf

FORWARD rLENGTH

RIGHT 90

FORWARD rHEIGHT

RIGHT 90

FORWARD rLENGTH

RIGHT 90

RECTANGLE rHEIGHT rLENGTH

END

Executing FLAG 20 now results in the following error:

TELL ME HOW TO RIGXT

AT LEVEL 2 LINE 2 OF RECTANGLE

L2?

As with using AID, we can now type commands at level 2, for example, to ^
print the values of local variables (although examining local variables isn't
much help in dealing with this particular bug).

Typing DEBUG when the debug option is on', turns the option off:

DEBUG

OFF ^

CHAPTER

L Numbers, Words, and Lists

Linthe previous chapters, we used turtle geometry to introduce the basic
techniques for writing Logo procedures. We now move away from graphics
to discuss Logo programs that work with "data." Like most computer

languages, Logo provides operations for manipulating numbers and
character strings, which in Logo are called words. One significant difference
between Logo and other simple programming languages is that Logo also

provides the ability to combine data into structures called lists. This chapter
^ introduces these three kinds of data objects—numbers, words, and

lists—together with simple programs that manipulate them. The most

important concept in working with Logo data is the notion of a procedure
that outputs a value. This is introduced in Section 6.2 below. We also discuss
the use of Logo variables for naming data and give a more complete

explanation of testing and conditionals than the one provided in Section
2.2.2. The material presented here provides enough background to complete

many programming projects such as the ones described in Chapter 7.

|M*<

6.1. Numbers and Arithmetic

We have already seen examples of using numbers in turtle programs.

Logo provides the basic arithmetic operations of addition, subtraction,
multiplication, and division, denoted by +, -, *, and /, respectively. In
combined arithmetic operations, multiplications and divisions are performed
before additions and subtractions, unless you use parentheses to make the

grouping explicit:

PRINT 3 + 2*5

13

PRINT (3 + 2) * 5
25

TI Logo deals with integers only. The division operation / truncates its
quotient to be an integer:

PRINT5/2

2

100 / TI LOGO jj

Warning }
TI Logo can only handle integers in the range ±32767 (that is, in the range J

between - 215 and 215). If you do a computation that exceeds this range (e.g.,
adding 32767 plus 1), the answer returned will be incorrect but there will be "j
no error message: I

PRINT 32767 + 1

-32767

6.2. Outputs

Using the arithmetic operations presented above, you can write procedures
that manipulate numbers. For example,

TO PSQUARE :X

PRINT :X* :X

END

prints the square of its input, and

TO PAVERAGE :X :Y

PRINT (rX + rY) / 2
END

prints the average of its two inputs: m

PSQUARE 100

10000

PAVERAGE 1 3

2

These procedures may be instructive, but they are not very useful.
PSQUARE, for example, just prints the square of its input. Having
computed the square, there is nothing more you can do with it. Yet the whole
power of the procedure concept is that you should be able to use procedures
as building blocks in defining more complex procedures. You can make
complex turtle programs by combining the designs drawn by simple
procedures. But there is no way to combine PSQUARE and PAVERAGE
to obtain, for instance, the square of the average of two numbers.

What is needed is some way for a procedure not only to compute some
result, but also to make that result accessible to other procedures. In Logo,
this is accomplished by the OUTPUT command. To see how it works,
compare the PSQUARE procedure above with the following:

hawi

Numbers, Words, and Lists / 101

TO SQUARE :X

OUTPUT:X*:X

END

When SQUARE runs, it returns its result as an output that is to be used as an

input to whatever command called SQUARE. For example, you can type

PRINT SQUARE 3

9

in which case the output of SQUARE is passed to PRINT to be printed. More
significantly, you could type

PRINT (SQUARE 3) + (SQUARE 4)
25

Here SQUARE is called twice, and the results are combined by + before

being passed to PRINT. You can do the same thing with computing averages
by defining a procedure:

TO AVERAGE :X :Y

OUTPUT (:X + :Y) / 2
END

6.2.1. Combining Operations

The OUTPUT command is just what is needed to combine operations. For
instance, you can find the square of the average of two numbers:

PRINT SQUARE (AVERAGE 4 6)
25

or the average of the squares:

PRINT AVERAGE (SQUARE 4) (SQUARE 6)
26

Alternatively, you can define a procedure to return this value to be used in
further processing:

TO AVERAGE.ORSQUARES :X :Y

OUTPUT AVERAGE (SQUARE :X) (SQUARE :Y)
END

102 / T I LOGO

As with any procedure, once you have defined a procedure that outputs
some result, that procedure becomes part of Logo's working vocabulary and
can be used just as if it were a primitive command. For instance, Logo has
no primitive absolute value function. But if you define one:

TO ABS :X

IF:X < 0 THEN OUTPUT (
OUTPUT :X

END

:X)

then you can use this ABS operation in performing further computations.
When a procedure executes an OUTPUT instruction, it returns the

indicated output to the procedure that called it, and no further commands
within the procedure are executed. Thus, for example, only one of the two
OUTPUT instructions in ABS will be executed each time ABS is called.

-••AVERAGE

Figure 6.1: Procedure calls in executing

PRINT SQUARE (AVERAGE4 6).

To help you visualize outputs, Figure 6.1 shows a diagram, similar to the
diagrams in Section 2.1.2, for the procedure calls involved in executing the

command line

PRINT SQUARE (AVERAGE 4 6)

SQUARE and AVERAGE each have a private variable X, but since these are

in different private libraries, there is no conflict.
As shown in the diagram, you can regard inputs and outputs as

communication channels between procedures. If procedure A calls procedure

B then A can use inputs to communicate values to B. B's output enables it to
communicate values back to A.

A very common error in Logo programming is to attempt to make a
procedure output without using the OUTPUT instruction. For example, you
might attempt to define AVERAGE as

TO AVERAGE :X :Y

(:X + :Y) / 2
END

(liiii

L

lift&ij

L

Numbers, Words, and Lists / 103

Calling this procedure, say

AVERAGE 4 6

would result in the error message

TELL ME WHAT TO DO WITH 5

AT LEVEL 1 LINE 1 OFAVERAGE

when the procedure was executed. In general, you should say what Logo is
supposed to do with generated values—print them, output them, or whatever.

6.2.2. Example: Remainders and Random Numbers

One useful operation you can create with OUTPUT is a REMAINDER
procedure, which outputs the remainder of its two arguments:

[TO REMAINDER :NUM :DIV
L OUTPUT :NUM - (:NUM / :DIV) *:DIV

END

The procedure works by taking advantage of the fact that division in Logo
truncates the quotient. Therefore, when you take :NUM / :DIVand multiply
the result by :DIV, you obtain the largest multiple of :DIV that is less than
:NUM. Subtracting this from :NUM yields the remainder.

You can use REMAINDER to implement another useful procedure called
RAND, which takes a positive number n as input and outputs a random
number between 0 and n - 1. RAND uses the Logo built-in operation
RANDOM, which returns a single digit (0-9) selected at random:

PRINT RANDOM

5

PRINT RANDOM

2

To implement RAND, you can begin by writing a procedure RANDOM4,
f which outputs a four-digit random number. (We'll only worry about using
L RAND with inputs less than 10,000.)

[jJj.Tfft

TO RANDOM4

OUTPUT RANDOM + 10 * RANDOM + 100 * RANDOM

+ 1000* RANDOM

END

104 / TI LOGO

Now, to obtain a random number less than some number n, you simply need
to take the remainder by n of the number returned by RANDOM4:

TO RAND :N

OUTPUT REMAINDER RANDOM4 :N

END

6.3. Words

In Logo, strings of characters are called words. Logo provides operations
for manipulating words: combining words into longer words and breaking
words into parts. As with numbers, words may be passed among procedures
as inputs and outputs.

To indicate a word in Logo, you type the character string prefixed by a
quotation mark, as in:

PRINT "WHOOPIE

WHOOPIE

rtsl

j

urn

JUSi!

Notice that (unlike the rule in English) the quotation mark goes only at the
beginning of the word. The word itself is taken to be all of the characters
between the quotation mark and the following space or the end of the line.
Beware that if you put a quotation mark at the end of a word, that quotation
mark will be taken to be part of the word:

PRINT "A"

A"

Logo provides the following operations for extracting parts of words:

FIRST Outputs the first character of its word input. Abbreviated F.]
LAST Outputs the last character. J
BUTFIRST Outputs a word containing all but the first character.

Abbreviated BF.

BUTLAST Outputs a word containing all but the last character.
Abbreviated BL.

Here are some examples:

PRINT FIRST "ABCD ^
A

PRINT BUTFIRST "ABCD

BCD

PRINT LAST BUTLAST "ABCD

C

In the third example, the thing that is printed is the LAST of the BUTLASTof
ABCD which is the LAST of ABC which is C.

L

[

^rt

1m»h

Numbers, Words, and Lists / 105

For constructing larger words from smaller ones, Logo provides the
WORD operation. This takes two words as inputs and combines them to
form a single word:

PRINT WORD "NOW "HERE

NOWHERE

Sample Procedures That Use Words
The following recursive procedure is a word analogue of the

COUNTDOWN procedure on page 24:

TO TRIANGLE :WORD

PRINT :WORD

IF:WORD = FIRST :WORD THEN STOP

TRIANGLE BUTFIRST :WORD

END

TRIANGLE "LOLLIPOP

LOLLIPOP

OLLIPOP

LLIPOP

LIPOP

IPOP

POP

OP

P

Whereas COUNTDOWN reduced a number to smaller numbers by

successively subtracting 1, TRIANGLE reduces a word to smaller words by
successively removing the first character. The process stops when the word
has been reduced to a single character, that is, to a word that is equal to its
own first character.

TRIANGLE illustrates the use of words as inputs to procedures. As an

example of words as outputs, consider the simple procedure DOUBLE,
which takes a word as input and outputs the word concatenated with itself:

^ TO DOUBLE :X
OUTPUT WORD :X:X

END

<&&}

PRINT DOUBLE "BOOM

BOOMBOOM

Observe the importance of using OUTPUT: you can operate on a word using
DOUBLE and use the result as an input to other operations:

106 / TI LOGO

PRINT DOUBLE DOUBLE "BOOM

BOOMBOOMBOOMBOOM

TRIANGLE DOUBLE "ABC

ABCABC

BCABC

CABC

ABC

BC

C

Warning: Words and Numbers

In TI Logo, you can form words whose characters are all digits. But
these are not treated as numbers, even though they look like numbers. For
example, the arithmetic operations will not accept something like "25 as
an input. Conversely, the word-manipulating operations do not work on
numbers. This distinction between words and numbers can be confusing,
because error messages that result from inappropriate inputs do not
distinguish between numbers and words:1

PRINT FIRST "25 ad
2

PRINT FIRST 25 id

FIRST DOESN'T LIKE 25 AS INPUT

PRINT "25 + 5

+ DOESN'T LIKE 25 AS INPUT

PRINT 25 + 5

30

6.4. Lists

Many languages force the programmer to work with text in terms of
character strings. A long text must be viewed as a long character string that
is manipulated on a character-by-character basis. One of the advantages
of Logo is that it allows you to manipulate sequences of words on a
word-by-wordbasis. In Logo, a sequence of words is called a list. A list may

'To add to theconfusion, thebuilt-in operation WORD?, which tests whether its inputisa word, returns
TRUE for numbers.

u

J

r
y, Numbers, Words, and Lists /107

Li3H

li^*t

'ffi/strj

be indicated by separating the words in the list by spaces and enclosing them
in square brackets:2

PRINT [THIS IS A LIST]
THIS IS A LIST

Notice that the words in the list are not quoted and that the surrounding
brackets are not printed. The spaces between the words serve only to delimit
the words. Extra spaces are ignored:

PRINT [EXTRA SPACES]
EXTRA SPACES

The Logo operations FIRST, LAST, BUTFIRST, and BUTLAST that we
introduced for use with words also operate on lists. When used with lists,
these operations pick out the first or last word of the list, rather than the first
or last character, as they do with words.

PRINT FIRST [THIS IS A LIST]
THIS

PRINT FIRST BUTFIRST [THIS IS A LIST]
IS

PRINT BUTLAST [THIS IS STILL A LIST]
THIS IS STILL A

PRINT BUTFIRST [THIS]
(blank line)

Note that in the last example, taking all but the first word of a list that has
only one word produces a list containing no words, called the empty list. It
can be typed into Logo as [].3

In Logo, a list is never considered to be equal to a word. For example, a
word is not considered equal to a list that contains that single word, even
though Logo prints these in the same way:

PRINT "BUBBLE

BUBBLE

2Logo lists areusednot only formaking sequences of words, but also forcreating datastructures in general.
See Section 11.1. Remember to delimit lists with square brackets |]and not parentheses ().

3In the current implementation of TI Logo,takingthe BUTFIRST or BUTLASTof a single character word
(i.e., removing all characters from a word) results in the empty list.

108 TI LOGO

PRINT [BUBBLE]
BUBBLE

PRINT "BUBBLE = [BUBBLE]
FALSE

mi

SENTENCE is the operation for putting lists together, analogous to
WORD for words. SENTENCE (abbreviated SE) takes words or lists as
inputs and assembles these into one list:

PRINT SENTENCE [THIS IS] [HOW SENTENCE WORKS]]
THIS IS HOW SENTENCE WORKS «*

PRINT SENTENCE "THIS [IS TOO]
THIS IS TOO m

PRINT SENTENCE "THIS "ALSO

THIS ALSO ^

Sample Procedures That Use Lists

Here are the list procedures analogous to the word procedures TRIANGLE

and DOUBLE of Section 6.3. Notice that we have changed the stop rule for
TRIANGLE to test for an empty input.

is

TOTRIANGLE.LIST:X

IF:X = []STOP
PRINT :X J
TRIANGLE.LIST BUTFIRST:X

END

TODOUBLE.LIST:X

OUTPUT SENTENCE :X :X

END

TRIANGLE.LIST [THIS IS A LIST]
THIS IS A LIST

IS A LIST

A LIST

LIST

PRINT DOUBLE.LIST[HUP 2 3 4]
HUP 234 HUP 2 34

L

jam

F(Sa)

tiftn

Numbers, Words, and Lists / 109

TRIANGLE.LIST DOUBLE.LIST [DING DONG]
DING DONG DING DONG

DONG DING DONG

DING DONG

DONG

The main thing to observe in these examples is that lists, like numbers and

words, can be passed between procedures as inputs and outputs.
The following list procedures make use of the Logo command READLINE

(abbreviated RL), which makes it easy to write interactive programs using

lists. READLINE waits for you to type in a line (terminated by ENTER) and

outputs the typed-in line as a list.

TO BOAST

PRINT [WHO'S THE GREATEST?]
IF READLINE = [ME] THEN PRINT [OF COURSE!] STOP
PRINT [NO, TRY AGAIN]
BOAST

END

BOAST

WHO'S THE GREATEST?

> MIGHTY MOUSE

NO, TRYAGAIN
WHO'S THE GREATEST?

>ME

OF COURSE!

Note the prompt > printed in the example above. Logo prints this prompt to
remind you that it is waiting for you to respond to a READLINE. Bear in
mind that READLINE always outputs a list. If you type a single word, the
output of READLINE will be a list containing that one word.

Here's another example:

TO CHAT

PRINT [WHAT'S YOUR NAME?]
PRINT SENTENCE [HELLO] READLINE
PRINT [TYPE SOMETHING YOU LIKE]
PRINT SENTENCE [I'M GLAD YOU LIKE] READLINE
END

Notice how the second line of the procedure is constructed: the list being

PRINTed is a SENTENCE of two things—the list [HELLO] and the list
output by READLINE.

110/ T I LOGO

CHAT

WHAT'S YOUR NAME?

>LUCY

HELLO LUCY

TYPE SOMETHING YOU LIKE

> PICKLE JELLO

I'M GLAD YOU LIKE PICKLE JELLO

6.5. Naming

We have seen different kinds of naming in Logo programs: the use of

names to refer to inputs to procedures and the idea of naming procedures is*

themselves. In Chapter 4, we also saw that the Logo command MAKE can be

used to give names to things.

Consider the following example:

MAKE"NUMBER 5

PRINTrNUMBER

5

In the first line you tell Logo that you are going to call the number 5 by the

name NUMBER. The first input to MAKE is the name and the second input
is the thing you are naming. The effect of the command is to establish a

relationship between the word NUMBER and the number 5. We express this
by saying that "5 is the thing associated with NUMBER." In the line

PRINT:NUMBER

you can see how : recovers the thing associated with the name, just as it
recovers the value associated with an input to a procedure. Here are more

examples:

MAKE "COLR "YELLOW

PRINT "COLR

COLR

PRINT :COLR

YELLOW &

MAKE "SLOGAN [I LOVE BANANAS]
PRINT :SLOGAN

I LOVE BANANAS

PRINT SENTENCE (BUTLAST :SLOGAN) :COLR
I LOVE YELLOW

(fig

t*j

j

lJ

L

frfefo

r

L

Numbers, Words, and Lists / 111

In these examples, and in most programs, the name is specified as a literal,
quoted word. This is not the only possibility:

MAKE (WORD "PART "1) [DO Ml SOL]
PRINT :PART1

DO Ml SOL

Here is a tricky example:

MAKE "FLOWER "ROSE

PRINT :FLOWER

ROSE

MAKE :FLOWER [IS A ROSE IS A ROSE]
PRINT :FLOWER

ROSE

PRINT :ROSE

IS A ROSE IS A ROSE

In the third command line, the name associated with [IS A ROSE IS A
ROSE] is not the literal word FLOWER, but rather the thing associated with
FLOWER, that is, the word ROSE. Therefore,

MAKE :FLOWER < something>

has the same effect as

MAKE "ROSE <something>

The Logo function THING returns the thing associated with its input. The
use of: is actually an abbreviation for THING in the case where the input to
THING is a quoted literal word. But THING can be used in more general
circumstances.

MAKE "NAME1 [JOHN Q. CITIZEN]
PRINT :NAME1

JOHN Q. CITIZEN

PRINT THING "NAME1

JOHN Q. CITIZEN

PRINT THING (WORD "NA"ME1)
JOHN Q. CITIZEN

PRINT THING (FIRST [NAME1 PLACE1])
JOHN Q. CITIZEN

112 T I LOGO

There is also the Logo predicate THING?, which takes a word as input and
outputs TRUE if the word has something associated with it.

PRINT THING? "NAME1

TRUE

PRINT THING? "NAME2

FALSE

6.5.1. Local and Global Names

In Section 2.1.2 we saw that the names of inputs are private to the
procedures using them. Different procedures reference names indifferent
private libraries, and two procedures may use the same names for different
purposes without any conflict. The same holds true if the procedure uses the
MAKE command to change the value associated with some input name. This
is illustrated in the following example.

TO DEMO :X

PRINT :X

CHANGE :X

PRINT :X

END

TO CHANGE :X \d
MAKE "X :X + 1

PRINT :X

END

DEM0 1

1 (printed in DEMO)
2 (printed in CHANGE)
1 (printed in DEMO)

nCUn - CHANGE !«4

X

Figure6.2: Private libraries for DEMO and CHANGE.

(tf&yj

l*i

Mi

taj

The important point to notice is that when the value of Xis printed in
DEMO the second time, it is still 1, even though CHANGE "changed" X to 2.
The reason is that DEMO and CHANGE each have their own meaning for X
in different private libraries, as shown in Figure 6.2. When CHANGE uses
the MAKE statement it changes its X, but not DEMO's. id

J

L

i££3

Numbers, Words, and Lists / 113

When you use a MAKE statement at command level, you are also
associating a value with a name in some library. But this is not a library
associated with any procedure. Rather it is a library associated with the
command level. Definitions in this library are sometimes called global
variables. Just as the private libraries of two procedures are distinct, names
in procedure libraries will not conflict with names in the global library.
Compare the following example to the one above.

MAKE"X 1

CHANGE :X

2

PRINT :X

1

6.5.2. Free Variables

One of the reasons that procedures are so important is that they provide a
way to design complex programs in small pieces. But whenever you design
something by breaking it into pieces, you eventually have to deal with the
issue of how these pieces can interact. The importance of the private library
mechanism is that it guarantees that the names used by different procedures
will refer to different things and hence that the only way procedures can
interact is through inputs and outputs. This guarantee provides a good
handle on controlling the complexity of the entire program.

Sometimes, however, it is convenient for procedures to interact other than
through inputs and outputs. For example, if the computation performed by a
procedure depends on a large number of parameters, it may be cumbersome
to specify them all as inputs each time the procedure is called. Again, using
only inputs and outputs to pass information may require passing
"superfluous" inputs through many levels of nested procedures until they
reach the procedure that actually needs them. For these reasons it is useful to

be able to have the computation performed by a procedure depend not only
on the information provided explicitly by the inputs, but also on information
that is implicit in the context in which the procedure is used.

Consider the following procedure:

TO NEW.PRICE :P

OUTPUT :P + :OVERHEAD

END

Suppose you would like to be able to use this procedure in such a way that
the price computed depends on some OVERHEAD that is obtained from the
context in which the procedure is used. For example:

114/T I LOGO

MAKE"OVERHEAD 50

PRINT NEW.PRICE 100

150

MAKE "OVERHEAD 25

PRINT NEW.PRICE 100

725

You might also want to have the context determined by a procedure, as in
m

TO TRY OVERHEAD

PRINT NEW.PRICE 100

PRINT NEW.PRICE 200 m

END

TRY 100 m,
200

300 t

TRY 50

150

250

The name OVERHEAD in the NEW.PRICE procedure is what is technically
known as afree variable. A free variable is a name that is used in a
procedure, but not as a name for an input. As the NEW.PRICE example ••
shows, Logo procedures can have free variables. The presence of free
variables leads to the following rule for finding the value associated with
a name in a Logo procedure: ^

• If the name is one of the names of the inputs to the procedure, the value j
can be found in the procedure's private library. tat

• Otherwise, see if the name is in the library of the procedure that called the
current procedure.

• Otherwise, see if the name is one of the names in the procedure that called
that procedure, and so on, all the way through to the global library.

Free variables provide a powerful mechanism for passing information »
between procedures. But their indiscriminate use leads to obscure programs
and may result in intractable program bugs. This is especially true if you use i
MAKE to change the value of a free variable, since the actual variable d
affected may appear arbitrarily far back in the nest of procedure calls.

J

J

J

t£"«i

t}M

Numbers, Words, and Lists /115

6.6. Conditional Expressions and Predicates

We saw in Section 2.2.2 the use of conditional expressions IF. . . THEN . . .
in Logo programs. This section provides more information about conditional
expressions.

IF and THEN can be augmented by the Logo primitive ELSE. For
example, the following procedure tells whether a number is positive or
negative:

TO SIGN :N

IF :N < 0 THEN OUTPUT "NEGATIVE ELSE OUTPUT "POSITIVE

END

PRINT SIGN 57

POSITIVE

PRINT SIGN (10 - 20)
NEGATIVE

IF. . . THEN . . . ELSE expressions are often confusing for beginning
programmers, due to the need to work with a single statement that specifies
both a test and the actions to be taken depending on the outcome of the test.
Logo therefore includes another form of conditional that separates the
testing from the actions. This form is TEST. . . IFT. . . IFF. The TEST used

in a procedure checks some condition. Subsequent procedure lines that begin
with IFT and IFF are executed or not, depending on the result of the TEST.
Here's another way to write the SIGN procedure using TEST:

TO SIGN :N

TEST:N < 0

IFT OUTPUT "NEGATIVE

IFF OUTPUT "POSITIVE

END

A procedure can include more than one TEST, and any IFT or IFF
statements always refer to the most recent TEST. Also, the result of a TEST
is kept private within a procedure, so the use of IFT and IFF within a

procedure is not affected by any TESTs performed in a subprocedure.

Predicates; TRUE and FALSE

The conditions checked by IF and TEST are known as predicates. We
already introduced the Logo predicates >, <, and = for working with
numbers. Section 12.6 gives a complete list of the predicates built into Logo.
It is also easy to define new predicates, because a predicate in Logo is
nothing more than a procedure that outputs either the word TRUE or the

116/T I LOGO

word FALSE. For instance, you can transform the SIGN procedure given
above into a predicate that outputs FALSE if the input is less than 0 and
TRUE otherwise:4

TO POSITIVE? :X I
IF :X < 0 OUTPUT "FALSE ELSE OUTPUT "TRUE &

END

As another example, the following predicate takes a word as input and tests &
whether it begins with a vowel:

TO BEGINS.WITH.VOWEL? :X

IF (FIRST :X) = "A OUTPUT "TRUE
IF (FIRST :X) = "E OUTPUT "TRUE
IF (FIRST:X) = "I OUTPUT "TRUE
IF (FIRST :X) = "O OUTPUT "TRUE **
IF (FIRST:X) = "U OUTPUT "TRUE

OUTPUT "FALSE

END

Oncea predicate has been defined, it can be used with IFor TESTjust as
if it were one of the predicates built into Logo. Here is a procedure that adds **"
"a" or "an" to a word, as appropriate:5

TO ADD.A.OR.AN :X ^

TEST BEGINS.WITH.VOWEL? :X

IFT OUTPUT SENTENCE "AN :X

IFF OUTPUT SENTENCE "A :X

END

PRINT ADD.A.OR.AN "COMPUTER

A COMPUTER

PRINT ADD.A.OR.AN "ELEPHANT

AN ELEPHANT

4It is a good programming habit to namepredicates with namesthat end with a questionmark. As far as the
Logosystem isconcerned, though, thequestion markhasno special significance. It is treated asan ordinary
character.

5Lateron, when we seehow to take advantage of Logo listsas data structures, we will learnmore flexible
waysof computing functions like BEGINS.WITH.VOWEL. Compare the alternative version of the
ADD.A.OR.AN procedure that is used in the ANIMAL program of Section 11.3.2.

j

l*&£

Igl

Numbers, Words, and Lists / 117

You can regard IF and TEST as operations that take an input that must be
either TRUE or FALSE. In fact, the primitive predicates built into Logo are
themselves operations that output TRUE or FALSE:6

PRINT 3 > 5

FALSE

PRINT "XYZ = "XYZ

TRUE

For combining predicates, Logo includes the operation BOTH, which takes
two inputs that must be either TRUE or FALSE and outputs TRUE if both
inputs are TRUE and FALSE otherwise. There is also EITHER, which
outputs TRUEif at least one of its inputs is TRUE, and NOT, which outputs
TRUE if its input is FALSE, and FALSE if its input is TRUE.

PRINT BOTH (1 < 2) (2 > 3)
FALSE

PRINT EITHER (1 < 2) (2 > 3)
TRUE

PRINT NOT (2 + 2 = 4)
FALSE

For example, here are three equivalent ways to write a predicate
BETWEEN?, which tests whether a specified number is in a given range:

TO BETWEEN? :X :LOW:HIGH

IF :X < :LOW OUTPUT "FALSE

IF :X > :HIGH OUTPUT "FALSE

OUTPUT"TRUE

END

TO BETWEEN? :X :LOW :HIGH

IF EITHER (:X < :LOW) (:X > :HIGH) OUTPUT "FALSE
OUTPUT"TRUE

END

Sti Logo II includes special TRUE and FALSE which output the words TRUE and FALSE, respectively. Thus,
inTl Logo II youcanuseTRUE and FALSE withor without quotes, as you prefer; forexample,

IF :X = 5 OUTPUT "TRUE

and

IF:X =5 OUTPUT TRUE

are both valid. In the first release of TI Logo, only the first form will work.

118/T I LOGO

TO BETWEEN? :X :LOW :HIGH

IF BOTH (NOT (:X < :LOW)) (NOT (:X > :HIGH)) OUTPUT "TRUE
OUTPUT "FALSE

END

BOTH and EITHER are themselves predicates that output TRUE or
FALSE. This means that the second two versions of BETWEEN? can also
be written in another way, in which the TRUE or FALSE output by BOTH
and EITHER is output directly to the procedure that calls BETWEEN?:

TO BETWEEN? :X :LOW :HIGH

OUTPUT BOTH (NOT(:X < :LOW)) (NOT(:X > :HIGH))
END

TO BETWEEN? :X:LOW:HIGH

OUTPUT NOT EITHER (:X < :LOW) (:X > :HIGH)
END j

6.7. Details on Logo Syntax

This section collects some information about how Logo interprets the
command lines that you type to it. This includes such information as where m
to include spaces and parentheses in command lines and how Logo groups
sequences of commands.

6.7.1. How Logo Separates Lines into Words

Any Logo line is interpreted as a sequence of words. In general, you must
separate words by spaces. For example, if you mean to type us

FORWARD 100

and instead type
•••

FORWARD100 .

Logo will respond with the error message

TELL ME HOW TO FORWARD100 «*

because it will interpret FORWARD100 as a single word and look for a
procedure with that name.7 As a general rule, it is a good idea to type each J
line with spaces between the different elements. For example:

7Ofcourse, you may have actually defined a procedure whose name was FORWARD100, in which caseLogo
would run that procedure.

j

m

lump

l.tiSfrl

I&yw

r

(&STTt

Numbers, Words, and Lists /119

PRINT (3 + 4)*5
35

Logo does, however, understand that parentheses and arithmetic operators

are normally meant to break words, so

PRINT(3 + 4)*5
35

works, too. In fact, if you define a procedure that includes a line such as the

previous one, and later print out the procedure, you will find that Logo has

inserted spaces into the line.

6.7.2. Using Parentheses

We have already seen some complex Logo expressions; for example, the

following line is from the AVERAGE.OF.SQUARES procedure in Section
6.2.1.:

OUTPUT AVERAGE (SQUARE :X) (SQUARE :Y)

In this line, the OUTPUT command takes one input, which is the result of
AVERAGE. AVERAGE in turn takes two inputs:

(SQUARE :X)

and

(SQUARE :Y)

r Notice that parentheses perform grouping by enclosing the operation
together with its inputs. That is, you should write

(SQUARE :X)

1
km and not

j SQUARE (:X)

to indicate that :X is the input to SQUARE.8
r In fact, this expression would work perfectly well if you wrote it without
Lanyparentheses at all,

OUTPUTAVERAGE SQUARE :X SQUARE :Y

ma 8Tnjs rule canbeconfusing, since the latter expression is morelikeSQUARE(X), which iswhat isusedin
mathematics or in languages like BASIC or Pascal. Keep in mind that parentheses in Logo are used to

r indicate grouping, not as special symbols for delimiting thelist of inputs to functions.

120/Tl LOGO

because when Logo interprets the line, it breaks things up according to the
following method. The first word it sees is OUTPUT, and this requires one
input. So Logo scans the line trying to find that input. The next thing it runs
into, though, is AVERAGE, which requires two inputs of its own. So Logo
now scans to find two inputs for AVERAGE and runs into SQUARE, which
requires one input which Logo finds as :X. This completes the input to h"
SQUARE and also completes the first input to AVERAGE. Logo now looks
for the second input to AVERAGE, and the next thing it sees is another I
SQUARE, which requires one input. Logo finds this as :Y. Now SQUARE m
has its input. This completes both inputs to AVERAGE, which completes the
entire input to OUTPUT.

Generalizing this method, you can see that as long as Logo knows how m
many inputs each procedure needs, and as long as each procedure name is a
prefix operator (i.e., it is written to the left of its inputs), then you don't
need parentheses at all in writing Logo commands. On the other hand,
parentheses help considerably in enabling the human eye to see the pattern.
So unless you are very practiced, you should not write a complex expression
without parentheses for fear of not being able to read it the next day.

The above rule for parsing expressions is modified for infix operators (i.e.,
operators that are written between their inputs, rather than to the left of
them). In a line such as

AVERAGE 3 + 27

the 3 is combined with the 2 by + before any unit is assigned as an input to
AVERAGE, so the line gets broken up as:

AVERAGE (3 + 2) 7

tew

mm

i'M

J
which gives 6. The general rule is that the infix arithmetic operators + , -, *,
and / have higher priority than prefix operators. m

The infix predicates >, <, and = have lower priority than prefix
operators. So

AVERAGE 3 5 > AVERAGE 2 4

must be combined as

(AVERAGE 3 5) > (AVERAGE 2 4)

or you will get an error message.
Logo's rules for parentheses are designed to enable you to write simple

expressions without worrying about parentheses. For complex expressions, it
is better to use parentheses to avoid confusion.

mi

fr#^J

LbW

rSflrA

la^t

£0

ii^

jijfcj

Numbers, Words, and Lists /121

SENTENCE with a Variable Number of Inputs

Although we haven't mentioned it yet, the SENTENCE operation can take
a variable number of inputs, as in the following example,

PRINT (SENTENCE [THE BIG] [BAD] [WOLF])
THE BIG BAD WOLF

which uses one SENTENCE operation to combine three things into a list.
The fact that SENTENCE is combining three things rather than its usual two
is indicated by the parentheses grouping SENTENCE together with its inputs.
In this way, SENTENCE can take any number of inputs.

Examples

Here are a few examples illustrating the rules discussed above, including

some common errors and their explanations:

PRINT SENTENCE "A "B "C

AB

TELL ME WHAT TO DO WITH C

The default number of inputs to SENTENCE is 2, so SENTENCE combines
A and B, and the result is printed by PRINT. Now Logo is faced with the rest

of the line, and it runs across the symbol "C. Since there are no outstanding
operations that need inputs, Logo complains that there is nothing to do with
the "C.

PRINT (SENTENCE "A "B "C)
ABC

Here parentheses are correctly used to group the three inputs to SENTENCE.

PRINT (SENTENCE "A "B "C)
TELL ME MORE

The problem here is that there is no space separating the "C from the closing

parentheses. Logo therefore interprets "C) as a two-character word which is
the third input to SENTENCE and goes on to search for more inputs.
Remember that when you indicate a word with a quotation mark, you must

use a space to separate it from the rest of the line.

PRINT SENTENCE ("A "B "C)
TELL ME WHAT TO DO WITH "B

The problem here is that when you use parentheses to indicate grouping, you

should group an operation together with its inputs. The parentheses are being
used in this example as they would be used in BASIC, to surround the inputs

122 / T I LOGO

alone. But Logo always tries to interpret a parenthesized expression as a
complete unit, which does not make sense in this case.

6.7.3. The Minus Sign

If the minus sign is preceded by a space and followed by a number, then TI
Logo tries to interpret it as a negation sign. Otherwise, minus is interpreted ^
as subtraction, in the context where that makes sense. Here are some

examples:

PRINT 1-2

-1 (infix subtraction)

PRINT 1 - 2

-1 (infix subtraction)

PRINT 1 -2

1

TELL ME WHAT TO DO WITH -2 «*

(Logo interpreted the — as negation, and got stuck.)

PRINT -2

- 2 (negation)

PRINT - 2

- 2 (negation)

In the last example, even though there is a space after the - , no value was
pending that could be regarded as an input to - on the left, so Logo
interpreted the - as negation.

When used in lists, the minus sign written before a number is regarded as
signaling a negative number. Otherwise - is regarded as a separate word in
the list:9

PRINT FIRST [-2 3]
-2

PRINT FIRST [-2 3] ^

PRINT FIRST [2-3]
2

PRINT FIRST [-X 3]

<^l

In the third example, the list has three words: 2, -, and 3. In the fourth
example, the list also has three words: -, X, and 3.

j

9In the first release of TI Logo, theminus sign isalways interpreted asa separate word in a list.This makes it
impossible to directlytype in listscontainingnegativenumbers. Such lists must be constructed using
SENTENCE.

J

•%*>

129

^*q

CHAPTER

More Logo Projects

This chapter presents four open-ended projects, suitable for beginning

students. The first project is a simple arithmetic quiz program similar to the
drill and practice computer systems used in some schools. The next project
shows how to use lists to write programs that generate "random" sentences.
We then reprint a paper by Papert and Solomon [11] that describes a simple
game-playing program and discusses ideas about how to involve students in
planning and carrying out complex projects. Finally, we use sprites and tiles

to design a movie more elaborate than the one discussed in Section 4.4.

7.1. Arithmetic Quiz Program

Here's a simple arithmetic drill and practice program:

QUIZ

HOW MUCH IS 37 + 64

>101

GOOD

HOW MUCH IS 29 + 46

>87

THE ANSWER IS 75

HOW MUCH IS 21 + 11

>32

GOOD

and so on.

Designing a quiz program that works like this is a good programming
project for elementary school students.' Here is one of many possible
versions. It uses the RAND procedure discussed on page 80.

'And designing such a program is probably a better educational experience thanusing such a program, which
is unfortunately much more typical of how computers arc currently used in schools.

124/TI LOGO

TO QUIZ

MAKE "NUM1 RAND 100

MAKE "NUM2 RAND 100

MAKE "ANSWER :NUM1 + :NUM2

PRINT (SENTENCE [HOW MUCH IS] :NUM1 [+] :NUM2)
MAKE "REPLY READNUMBER

TEST:REPLY = :ANSWER

IFT PRINT [GOOD] j
IFF PRINT SENTENCE [THE ANSWER IS] :ANSWER <J
QUIZ

END

TO READNUMBER

OUTPUT FIRST READLINE

END

You use READNUMBER rather than READLINE directly because

READLINE outputs a list. If the user types in a single number, READLINE
outputs a list containing that number as its only item.2 To obtain the number
itself, you extract the first item from the list returned by READLINE.

You can also modify READNUMBER to check that the response is actually
a number:

TO READNUMBER

MAKE "IN FIRST READLINE

TEST NUMBER? :IN

IFT OUTPUT :IN

IFF PRINT [PLEASEANSWER WITH A NUMBER] m,
IFF OUTPUT READNUMBER

END

Hiijii

The behavior of QUIZ is now:

QUIZ

HOW MUCH IS 6 + 14

>B0

PLEASE ANSWER WITH A NUMBER

>20

GOOD

etc.

2Thus, if you set ANSWER tobe the list returned byREADLINE, ANSWER would never be equal tothe sum
of NUM1 and NUM2, which is a number. For example, if the user types 7 followed by enter, the value

returned by READLINE will be the list [7], not the number 7.

(si

frt&S

urn

iJ-iiP*!

More Logo Projects / 125

Observe that the recursive call in the final line of the procedure makes the
procedure keep asking until the user responds with a number.

QUIZ is a good programming project because it has a simple core, yet there
are so many extensions and variations. Some of these are as follows:

• Allowing the user to keep trying a question until getting the correct answer

• Keeping score

•iJsa • Progressing to harder and harder problems when the score is good

• Giving advice

7.2. Random-Sentence Generators

You can have lots of fun with programs that print random sentences. In
designing such programs, it is very useful to have as a building block a
procedure PICKRANDOM that takes a list as input and outputs an item
selected at random from a list; for example:

PRINT PICKRANDOM [EENEY MEENEY MINEY MO]
MEENEY

PRINT PICKRANDOM [EENEY MEENEY MINEY MO]
MO

PICKRANDOM is not built into Logo as a primitive, but it can be
implemented by using lists and recursion, an aspect of Logo programming
that we have not yet discussed. PICKRANDOM is implemented in terms of a
procedure PICK, which outputs the «th item in a given list:3

TO PICKRANDOM :X

OUTPUT PICK (1 + RAND (LENGTH :X)) :X
END

PICK is defined as follows:

TO PICK :N :X

IF :N = 1 OUTPUT FIRST :X

OUTPUT PICK (:N - 1)(BUTFIRST:X)
END

^ln the first release of TI Logo, LENGTH must alsobe implemented as a procedure:

TO LENGTH :X

IF :X = []OUTPUT 0
OUTPUT 1 + LENGTH BUTFIRST:X

END

126/T I LOGO

We will study programs such as these in Chapter 10, and we will explain how
PICK and PICKRANDOM work in Section 10.2.1. In the meantime you can

regard PICKRANDOM (and give it to beginning students) as a black box.
Once you have PICKRANDOM, it is easy to generate simple random

sentences of the form {noun} {verb} by picking words at random from lists
of nouns and verbs:

TO CHATTER

MAKE "NOUNS [DOGS CATS CHILDREN TIGERS]
MAKE "VERBS [RUN BITE TALK LAUGH]
BABBLE

END

TO BABBLE |
PRINT SENTENCE (PICKRANDOM :NOUNS) J

(PICKRANDOM :VERBS)
BABBLE i

END

CHATTER

CATS LAUGH

TIGERS TALK

CHILDREN BITE

TIGERS BITE

DOGS TALK

You can make the sentence generator more interesting by occasionally
telling the computer to ask for a new noun or verb to be typed in and added m
to the corresponding list. For nouns this can be done with

TO LEARN.NOUN

PRINT [TEACH ME A NEW NOUN] m
MAKE "NOUNS SENTENCE :NOUNS READLINE

END

Observe that this uses the SENTENCE operation to combine the typed-in
word with the list of current nouns. There is a similar LEARN.VERB

procedure for verbs.
Now you can modify BABBLE to ask for a new noun or verb every so

often (1 chance in 10):

J

TO BABBLE

IF(RAND 10) = 0 LEARN.NOUN
IF(RAND 10) = 0 LEARN.VERB
PRINT SENTENCE (PICKRANDOM ^NOUNS)

(PICKRANDOM :VERBS)
BABBLE

END

The behavior of the program is now

CHATTER

CHILDREN TALK

TIGERS RUN

TEACH ME A NEW VERB

>WALK

DOGS RUN

CATS BITE

TEACH ME A NEW NOUN

>BANANAS

DOGS WALK

BANANAS BITE

More Logo Projects /127

There are many extensions to this project, including making more complex
sentences by adding other parts of speech such as adjectives and adverbs,
matching singular verbs with singular nouns and plural with plural, and
generating random "poetry." Papert [15] describes the experience of one
13-year-old while engaged in such a project:

One day Jenny came in very excited. She had made a discovery. "Now I know
why we have nouns and verbs," she said. For many years in school Jenny had
been drilled in grammatical categories. She had never understood the differences
between nouns and verbs and adverbs. But now it was apparent that her
difficulty with grammar was not due to an inability to work with logical
categories. It wassomething else. She had not been able to make any senseof
what grammar was about in the sense of what it might befor. . . But now,
as she tried to get the computer to generate poetry, something remarkable
happened. She found herselfclassifying words into categories, not because she
had been told she had to but because she needed to. In order to "teach" her
computer to make strings of words that would look like English, she had to
"teach" it to choose words of an appropriate class. What she learned about
grammar from thisexperience with a machine was anything but mechanical
or routine. Her learning was deep and meaningful. Jenny did more than learn

128 / TI LOGO (S

definitions for particular grammatical classes. She understood the general idea

that words (like things) can be placed in different groups or sets, and that doing

so could work for her. She not only "understood" grammar, she changed her

relationship to it. ,

7.3. Nim: A Game-Playing Program

This section is a slightly modified version of a paper written by Seymour

Papert and Cynthia Solomon, which was originally published as an MIT

Artificial Intelligence Laboratory Memo [14]. It illustrates some ideas about
how to initiate beginning students into the art of planning and writing a
program complex enough to be considered a project rather than an exercise

on using the language or simple programming ideas.
The project is to write a program to play a simple game ("one-pile Nim"

or "21") as invincibly as possible. The project was developed by Papert and

Solomon for a class of seventh-grade students taught during 1968-69 at the

Muzzey Junior High School in Lexington, Mass. This was the longest
programming project these students had encountered, and the intention was

to give them a model of how to go about working under these conditions. To

achieve this, the teachers worked very hard to develop a clear organization of

sub-goals, which they explained to the class at the beginning of the
three-week period devoted to this particular program. You would not expect

beginners to find as clear a sub-goal structure as this one; but once they have ,
seen a good example, they are more likely to find clear sub-goals in the

future for other problems. Thus the primary teaching purpose was to develop

the idea of splitting a task into sub-goals. The intent was to provide the
students with good models of various ways in which this can be done and

to have them experience the heuristic power of this kind of planning (as ^
opposed to jumping straight into writing programs).

A sub-goal structure can be imposed on a problem in several ways. One

way is by "chopping," that is, by recognizing that the final program has te

distinct functions that can be performed by separate subprocedures. But this

is not the only way. Many heuristic programs can be simplified rather than

chopped. We illustrate this by first writing a procedure to play the entire es
game of Nim, but in a "dumb way." Once we have done so, we can study its

performance, decide why it plays badly and strengthen its play. Thus the

successive partial solutions to the problem appear as making a procedure i**
progressively "smarter."

Describing the evolution of the program in this way has the additional

benefit of allowing one to make an analogy valuable in two senses: by using ^
themselves as models, students acquire a fertile source of ideas about
programming; on the other hand, the experience of debugging programs l
can have a therapeutic effect in leading them to see their own mistakes as J
emotionally neutral bugs rather than as emotionally charged errors.

up;

J

(£3

L

K*9

More Logo Projects / 129

7.3.1. The Sub-Goal Plan

The key idea for subdivision of the problem is to write a series of
programs, each of which is "smarter" than the previous one. The first
program knows nothing about the strategy of play. It does not generate
moves, but asks each of two human players in turn what move to make. For
example, it may act as a scorekeeper, just keeping track of the number of
sticks without bothering about whether the move is legal. From scorekeeper
the machine can advance to referee. This means that it checks the move for

legality and eventually declares the game over and announces the winner.

After we have a working mechanical referee, we start making a mechanical
player. The first version of a player chooses legal, but not necessarily good
moves. Indeed, it generates a move randomly, uses its ability as a referee to

decide if it is legal, and then either accepts it or generates another random

move.

When this works, the child may make the program smarter and smarter by

adding features or by writing a completely new version until finally—if all
goes well—a player with an infallible strategy is evolved.

A natural form for programs of intermediate smartness is the following:

the program has a list of simple situations in which it knows how to play; in
other situations it plays randomly. In other words, it plays by the form of
strategy used by most children in most strategic games.

In working with a class, a good moment should be seized to prod the
students into noting and discussing the analogy between this very simple
heuristic program and themselves—particularly, how the program gets to be
smarter through more or better knowledge. Seeing the program as a cognitive

model is a valuable and exciting experience for the students. They can easily
be drawn into discussion about how meaningful such models are. To keep the

discussion alive, the teacher should be equipped with arguments and
examples to counteract extremist, and so sterile, positions. For example, if
the students feel that the program is too simple to be a model of human

thi liking, the teacher might discuss whether a toy airplane is a useful model

of a jet-airplane. Does it work by the same principles? Can you learn about

airliners by studying toy models? On the other hand, if a class swings over to
the position that there really is no difference, the teacher can ask questions
about whether the program could learn by itself without a programmer. If
this is too enthusiastically accepted it is well for the teacher to ask: "How

much do you learn without being told?" Ideally, the teacher should merely
guide the discussion without having to say any of this. But awareness of such
argument will permit more sensitive guiding. An interesting exercise and base
for discussion is to have the students study various programs of intermediate

smartness, classify their bad moves by degrees of stupidity, and give the
program grades (or say why they think doing so is silly!).

130 / TI LOGO

The stratification of the project has the good feature of allowing students

to find their own levels. A slower child who gets only as far as the random
player, nevertheless has the taste of success if his program does what it does
well. Tendencies to feel inferior should be counteracted by the teacher's

attitude and by the teacher's encouraging individual variations so that no
child's final program is a mere subset of a more advanced one. The teacher's
computer culture can be very relevant in this delicate kind of situation.
Although the richness of programming permits students to generate many
fertile ideas, sensitive filtering by the teacher can enormously improve the
achievement-to-frustration ratio.

First Steps with the Students
A move in Nim consists of taking one, two, or three matchsticks from a

given pile. Two players move alternately. The player who takes the last stick
wins.

The first step is to see that everyone knows the rules and understands what
the first program does, for example, by imitating its function or by writing
imaginary scripts. In the course of discussingthis the teacher introduces some
names so the class can talk about what the program is doing.

Here is an example of a script:

THE NUMBER OF STICKS IS 8

JOAN TO PLAY. WHAT'S YOUR MOVE?

2

THE NUMBER OF STICKS IS 6

BILL TO PLAY WHAT'S YOUR MOVE?

3

THE NUMBER OF STICKS IS 3

JOAN TO PLAY. WHAT'S YOUR MOVE?

3

JOAN IS THE WINNER!

Later in the project the teacher can insist that the students consider what
happens when a player replies to WHAT'S YOUR MOVE? by 5 or COW. In the
beginnning the teacher should discourage all but the most competent students
from worrying about "funny" answers before getting the program to work
with normal answers.

Examining the script you see that there must be names for:

• The current number of sticks—say STICKS

• The move—say MOVE

• The next player—say PLAYER

• And, a little more subtle, the other player—say OPPONENT

is

Km

J

trft&j

u

L

tssa

iiM

More Logo Projects /131

To be sure that everyone understands, they are asked to fill in these "Logo
things" for successive rounds, following the previous script.

Round No. :STICKS PLAYER :OPPONENT :MOVE

1 8 JOAN BILL 2

2 ? ? JOAN 3

3 3 ? ? ?

7.3.2. A Simple Scorekeeper

If this is the first game-playing program, the teacher builds up to it by
asking some standard questions:

• What shall we call the procedure? (Let's say NIMPLAY)

• What must NIMPLAY do?

• What must NIMPLAY know?

Possible answers are

• Announce the remaining number of sticks.

• Announce the player to move.

• Get the move and make all the modifications.

• Recurse.

To do this, NIMPLAY must remember :STICKS, PLAYERS, and
•.OPPONENT from the previous round and get :MOVE by asking for it. The
first three things must be passed from one call to NIMPLAY to the next, so

they should be inputs. On the other hand, :MOVE comes from the human
player, so it does not need to be an input. If you look ahead, you may notice
that later on :MOVE will sometimes come from a procedure—that is, when
the machine gets to be smart enough to make its own moves. So to keep the
door open for changes, the problems of getting :MOVE and using it are
separated. The standard way to do this is to plan on a subprocedure—say,
called GETMOVE.

Now students can write NIMPLAY:

TO NIMPLAY :STICKS PLAYER :OPPONENT

When in doubt, have lots of inputs.

PRINT SENTENCE [THE NUMBER OF STICKS IS] :STICKS
Announce the number of sticks.

132 / TI LOGO

PRINT SENTENCE PLAYER [TO PLAY. WHAT'S YOUR MOVE?]
MAKE "NEWSTICKS :STICKS - GETMOVE

Pretend GETMOVE has already been written.

NIMPLAY :NEWSTICKS :OPPONENT PLAYER j
Recursion line. Notice how PLAYER J
and :OPPONENTare reversed.

END

TO GETMOVE

MAKE "MOVE READNUMBER

See READNUMBER procedure on page 97.
OUTPUT :MOVE

END

From Scorekeeper to Referee

As referee the program has some new tasks:]

• To decide whether the game is over

• To declare the winner if it is over

• To make sure that PLAYER takes 1, 2, or 3 sticks each time

The first two tasks are achieved by adding a test and a stop line to
NIMPLAY. For example, <**

TEST:NEWSTICKS = 0

IFT PRINT SENTENCE PLAYER [IS THE WINNER!]
IFT STOP

The third task can be accomplished by giving GETMOVE a "try-again"
form, using the MEMBER? predicate which takes an item and a list as inputs
and checks whether the item is in the list. MEMBER? can be given to

students as a black box. The implementation of MEMBER? is explained on

page 143.

TO GETMOVE

PRINT [YOU MAY TAKE 1, 2, OR 3 STICKS]
MAKE "MOVE READNUMBER

TEST MEMBER? :MOVE [1 2 3]
IFF OUTPUT GETMOVE If the TEST is FALSE, try again.
OUTPUT :MOVE

END

M

L

More Logo Projects / 133

With these changes, NIMPLAY is certainly a referee—but still has some
rough edges. For example, when :STICKS is 2, GETMOVE gives permission
to take 1, 2, or 3 sticks! And if PLAYER takes 3 sticks, :STICKS becomes
negative, and the game will go on forever, because of a "slip-by" bug.
However, we shall leave it as an exercise to remedy these minor failings.

In presenting this section to students, the teacher may want to work
through one of the two major modifications with the class and let the
students struggle with the other. The slip-by bug we would leave to the class
to discover and cure. Those who miss it at this stage will find its presence

r more obtrusive later. If so, a profitable discussion may develop on the
i question of why the bug was not found—perhaps because the human player

always makes reasonable moves so that :STICKS never becomes negative
even though the machine allows it. Later we shall see that when the machine

makes its own moves, it is not to be so cooperative unless it is told to be.
Examples of individual frills to a referee program are: timing moves,

declaring the winner a move or two ahead (!), allowing a player to take a
move back, printing a score sheet, giving advice (!), establishing and

imposing handicaps (!), and changing the rules.

7.3.3. A Mechanical Player

How can the machine choose a move? The simplest way is by using
r PICKRANDOM.4 For example, you could allow GETMOVE to make the
I choice:5 if a person is to play, use READNUMBER; if the machine is to play,

use PICKRANDOM. But it has to be told whether the player is human or the
computer. So it must have an input.

TO GETMOVE PLAYER

TEST PLAYER = [COMPUTER]
IFT MAKE "MOVE PICKRANDOM [1 2 3]
IFF PRINT [YOU MAYTAKE 1, 2, OR 3 STICKS]
IFF MAKE "MOVE READNUMBER

as before

At this stage the slip-by bug may become serious. One way to kill it is to tell
GETMOVE about:STICKS and have it try again if :MOVE comes up greater
than :STICKS. To do this you change the title line to:

4The PICKRANDOM procedure (page 142) can bewritten by theteacher and given to students asa
"primitive."

^Notice this anthropomorphism. We find it useful to talk of procedures asagents, of their "state of
knowledge," of "telling them," of having them "talk to" one another. And we present this to students as a

deliberate metaphor that they may find useful.

134/TI LOGO

TO GETMOVE PLAYER :STICKS

and add a pair of lines after the two MAKEs.

TEST:MOVE > :STICKS

IFT OUTPUT GETMOVE PLAYER :STICKS

Strategic Play

The plan for writing the Nim-playing program in many strata now calls for
it to recognize a few special numbers and know what to do in those cases, but
continue to play stupidly in other cases. However, by this time it is likely that
the class has already discovered the full strategy. It may still be worthwhile to
encourage at least some member to follow the original plan as an instructive
joke. In this section we illustrate a general question-answer technique for
classroom discussion to encourage habits of heuristic neatness in the

students' own thinking.

A good exercise is to observe NIMPLAY in its present condition and to
collect and classify its mistakes. An example of a classification made by a

student is:

• DUMB MISTAKES

• There were 5 sticks and the machine took 2. (If the machine had any

sense, it would leave the opponent with 4.)

• There were 6 or 7 sticks and the machine did not leave 4.

• SUPER DUMB MISTAKES

• There were 2 or 3 sticks and the machine did not take all!

We shall write a procedure to avoid first "super dumb mistakes" and then
"dumb mistakes".

• Question: What program form? Answer: TEST.

• Question: What do we test for? English answer: Whether there are 1, 2, or
3 sticks. Logo answer: TEST MEMBER? :STICKS [1 2 3].

• Question: What is the action if the test is passed? English answer: Take all 1
the sticks. Logo answer: OUTPUT :STICKS. J

• Question: What if it is not passed? English answer: Move just like before.
Logo answer: MAKE "MOVE PICKRANDOM [1 2 3].

Now put this together to make a procedure to make the move:

• Question: What must the procedure know? Answer: :STICKS—so it needs &
an input.

j

{ffifijl

tsj

J

L*g

t&^i

More Logo Projects / 135

TO MAKEMOVE :STICKS

TEST MEMBER? :STICKS [1 2 3]
IFT OUTPUT :STICKS

IFF OUTPUT PICKRANDOM [1 2 3]
END

The procedure is used in place of PICKRANDOM in GETMOVE. So don't
forget to change GETMOVE!

Now extra lines can be added. For example:

TEST:STICKS = 5

IFT OUTPUT 1

The Smart Player

By this time everyone should be very close to understanding the strategy,
for example, in the following form:

• Question: How does the game end? Answer: When a player leaves 0 sticks.

So let's try making the main actor be the number of sticks we leave. If we can

leave 0 that's great. But if we have more than 3 we can't. So we must think

ahead.

• Question: What can we leave to help us leave 0 next time? Answer: 4.
Because the opponent will leave 1, 2, or 3.

• Question: What can we leave so as to be able to leave 4 next time?
Answer: 8.

• Question: So 0, 4, 8 are good numbers to shoot at for leaving. What
others? Answer: 12, 16, . . .

• Question: How could you describe the numbers 0, 4, 8, 12, 16, . . .
Answer: They are all divisible by 4. REMAINDER :NUMBER 4 is 0.

• $64 Question: If I give you :NUMBER, how can you use it to find the
next number down divisible by 4? Answer: Subtract
REMAINDER :NUMBER 4.

So there we are! The smart invincible Nim player is made by replacing
MAKEMOVE by SMARTMOVE:6

TO SMARTMOVE :STICKS

MAKE "REM REMAINDER :STICKS 4

IF :REM = 0 OUTPUT 1 It really doesn't matter in this case.
OUTPUT :REM

END

6Use the REMAINDER procedure from page 80.

136 / T1 LOGO

7.3.4. Frills and Modifications

Write superprocedures or make additions to the present procedure to
produce transcripts such as the one following.

NIM

DO YOU KNOW HOW TO PLAY NIM?

NO

HERE ARE THE RULES: YOU WILL BE SHOWN A COLLECTION OF X'S.

YOUMAY REMOVE 1, 2, OR 3. THE PLAYER WHO TAKES THELAST X
WINS. THIS IS PROBABLY TOO VAGUEFOR YOU TO UNDERSTAND, BUT
TRY PLAYING AND I'LL CORRECT YOUR MISTAKES. J

ARE YOU READY?

IAM]
PLEASE SAY "YES" OR "NO" J
YES

OK. NOW TELL ME THE NAME OF THE FIRST PLAYER.]
JOAN J
NOW THE NAME OF THE OTHER PLAYER.

COMPUTER

HOW MANY STICKS DO YOU WANT TO START WITH?

THIRTY-ONE

I'M A DUMB COMPUTER. TYPE A PROPER NUMERAL

31

JOAN TO PLAY

THERE ARE 31 STICKS.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

JOAN, TAKE 1, 2, OR 3.
3

COMPUTER TO PLAY.

THERE ARE 28 STICKS.

XXXXXXXXXXXXXXXXXXXXXXXXXXXX

I TAKE 1

JOAN TO PLAY.

THERE ARE 27 STICKS.

XXXXXXXXXXXXXXXXXXXXXXXXXXX

TAKE 1, 2, OR3. «!
3

Lam

j

ijif

L

L

More Logo Projects / 137

In addition to such frills, there are unlimited possibilities to play with the
ideas in the procedure after it has been made to work. Here are three
examples to illustrate the idea that the project has not necessarily run out
when the procedure is debugged:

• An interesting simple modification to the rule of the game is to change the
1-2-3 rule to a 1-2 rule or a 1-2-3-4-5 rule. Write a procedure that asks what
rule is to be used and then plays by that rule.

• Our stop rule was: the player who takes the last stick wins. Change this to:
whoever takes the last stick loses. (The latter is the traditional form.)

• The game can be embedded in a more complex one, such as moving
counters along marked paths on a board. If there is just one linear path,
the problem is identical, but if branches are allowed, interesting
complexities arise.

7.3.5. A Listing of the NIMPLAY Procedures

Here is a listing of the final form of the NIMPLAY procedures. Besides the
three procedures listed below, the project also makes use of the REMAINDER

procedure on page 80, the READNUMBER procedure on page 98, and the
MEMBER? procedure on page 143.

TO NIMPLAY :STICKS PLAYER :OPPONENT

PRINT SENTENCE [THE NUMBER OF STICKS IS] :STICKS
PRINT SENTENCE PLAYER [TO PLAY. WHAT'S YOUR MOVE?]
MAKE "NEWSTICKS :STICKS - (GETMOVE PLAYER :STICKS)
TEST:NEWSTICKS = 0

IFT PRINT SENTENCE PLAYER [IS THE WINNER!]
IFT STOP

NIMPLAY :NEWSTICKS :OPPONENT PLAYER

END

TO GETMOVE PLAYER :STICKS

TEST PLAYER = [COMPUTER]
IFT MAKE "MOVE SMARTMOVE

IFF PRINT [YOU MAY TAKE 1, 2, OR 3 STICKS]
IFF MAKE "MOVE READNUMBER

TEST MEMBER? :MOVE [1 2 3]
IFF OUTPUT GETMOVE PLAYER rSTICKS

TEST:MOVE > :STICKS

IFT OUTPUT GETMOVE PLAYER :STICKS

OUTPUT :MOVE

END

138/TI LOGO

TO SMARTMOVE

MAKE "REM REMAINDER :STICKS 4

IF :REM = 0 OUTPUT 1

OUTPUT :REM

END

7.4. Growing Flowers

In this section we'll design a movie, shown in Color Plate II. The scene

starts at night, with some bulbs planted in a lawn. The sun rises and the sky
grows light. Then the flowers begin to grow. As the flowers grow, they sprout
leaves and buds. Finally they burst into color and bloom.

This movie is more complex than the one in Section 4.4, because it requires
tighter coordination between sprites and tiles. The grass is made up of tiles,
and the sun is a sprite. The flowers are made up of both tiles and sprites,
which will require some subtlety in the implementation.

7.4.1. Coordinates for Sprites and Tiles

(a)

0,0
.31,0

0,23

(b)
0,96

-127,0
0,0

0,-96

Figure 7.1: Comparison of tile coordinates (a) with sprite coordinates (b).

127,0

The problem with making shapes by combining tiles and sprites is that the
x, y coordinates used to position sprites on the screen are not the same as the
row and column numbers used to position tiles. Row and column numbers
are interpreted as character positions, shown in Figure 7.1a. Columns are
numbered from left to right, 0 through 31, and rows are numbered from top
to bottom, 0 through 23. On the other hand, sprite and turtle coordinates are
specified in terms of an x coordinate between - 127 and 127, and a y
coordinate between -96 and 96, as shown in Figure 7.1b.

It will be useful, therefore, to have some procedures that convert from one
coordinate system to the other. Here is a procedure that returns the x
coordinate corresponding to a given column:

TO COLX :COL

OUTPUT (8 * :COL) - 128
END

laifj

isi

r

More Logo Projects / 139

Similarly, we can convert a row number to a y coordinate:

TOROWYPOW

OUTPUT(-8*:ROW) - 96
END

Using these two procedures, we can write a procedure PUTSPRITE, similar
to PUTTILE, which positions a sprite at a given column and row:

TO PUTSPRITE :SPRITE :COLUMN :ROW

TELL :SPRITE

SXY (COLX :COLUMN)(ROWYPOW)
END

Converting coordinates the other way, it is also useful to be able to find the
row and column position of a sprite. The following procedures return the
column number corresponding to the XCOR of the current object and the
row number corresponding to YCOR:

TO XCOLUMN

OUTPUT (XCOR + 128)/8
END

TOYROW

OUTPUT (-YCOR + 96)/8
END

7.4.2. Defining the Shapes

To make the movie, you will need some shapes, both for tiles and sprites.
The grass will be a regular pattern, consisting of a background with a small

"blade" in it, as shown in Figure 7.2. We'll use tile number 8 for this pattern

MAKE"GRASS 8

and give it a foreground color OLIVE and a background color GREEN,
which will color the blade slightly darker than the rest.

We'll also use the tiles for the stems and leaves of the flowers. There are

four different tiles: ordinary left and right halves of a stem, and left and

right halves with leaves on them:

MAKE "LEFTSTEM 100

MAKE "RIGHTSTEM 101

MAKE "LEFTSTEM198

MAKE "RIGHTSTEM1 99

140 / TI LOGO

LEFTSTEM

RIGHTSTEM

LEFTSTEM 1

RIGHTSTEM1

Figure 7.2: Shape for GRASS tile.

These will all be colored OLIVE with a CLEAR background color, so we can
put them all in the same color group. (See page 61.) Figure 7.3 shows the
shapes for these tiles:

As the flowers grow, they evolve through three different shapes—bulbs,
buds, and blooms:

MAKE"BULB 6

MAKE "BUD 7

MAKE "BLOOM 8

Figure 7.3: Tile shapes flower stems. (a) (b)

J

j

lig

laliii

Itff&il

iai«

j

i'iM

&

L More Logo Projects / 141

Figure 7.3: (Continued)

BULB

BUD

BLOOM

<c)

Use MAKESHAPE to define these three shapes as shown in Figure 7.4.
Finally, you need a shape for the sun. The simplest thing to do here is to

use the BALL shape built into Logo.

Figure 7.4: Sprite shapes for the flowers.

(d)

142 / TI LOGO

Figure 7.4: (Continued)

7.4.3. The Grass

To make the grass, you need to lay down a solid block of tiles, starting
from some row on the screen and working downwards. This is exactly the

way that the WATER was handled in the movie in Section 4.4, and you can
use the same MAKEROWS procedure that we used there. For MAKEROWS,
you must specify the tile number and the top of the block. Row 14 is a good

position at which to start:

MAKE "GRASSTOPROW 14

TO MAKEGRASS

TELL TILE :GRASS

SETCOLOR SENTENCE :OLIVE :GREEN

MAKEROWS :GRASS :GRASSTOPROW

END

7.4.4. Planting the Bulbs

Planting a bulb is simply a matter of positioning a sprite that is carrying
the BULB shape. The following procedure positions a given sprite at a given
column and row. Notice how the PUTSPRITE procedure (page 109) comes in

handy.

TO PLANTBULB :SPRITE :COLUMN :ROW

PUTSPRITE :SPRITE :COLUMN :ROW

TELL SPRITE :SPRITE

SETCOLOR :GREEN

CARRY :BULB

END

(gjg

l£i

lid

I tri:i

jiffij

More Logo Projects /143

r Now you can plant all the bulbs. Usesprites 0 through 5 to make six
[flowers. Choose column numbers to spread the flowers out on the screen,

and position the bulbstwo rows above the top grass row.7

| TO PLANTBULBS
L- MAKE "BULBROW:GRASSTOPROW - 2

PLANTBULB 0 5 :BULBROW

PLANTBULB 1 8 :BULBROW

PLANTBULB 2 12 :BULBROW

PLANTBULB 3 20 :BULBROW

PLANTBULB 4 16 :BULBROW

PLANTBULB 5 24 :BULBROW
END

7.4.5. Sunrise

To make the sunrise, you need only have a sprite move upwards carrying
the BALLshape, while the sky changes color: from BLACK to BLUE to SKY
to CYAN. You can use sprite number 10 for the sun, starting it near the top
row of grass towards the right of the screen.

MAKE"SUN 10

TO SUNRISE

COLORBACKGROUND :BLUE
TELL SPRITE :SUN

SXY 75 20

CARRY :BALL

SETCOLOR :YELLOW

REPEAT 30 [FORWARD 1 WAIT 10]
COLORBACKGROUND :SKY

REPEAT 30 [FORWARD 1 WAIT 10]
COLORBACKGROUND :CYAN
END

7.4.6. Growing the Flowers

Now you must grow the bulbs into flowers. The first step is to set the color
of the tiles for the stem:

TO MAKESTEM

TELL TILE :LEFTSTEM

SETCOLOR (SENTENCE :OLIVE :CLEAR)
END

'This is because asprite is 2character positions high, and the inputs supplied to PUTSPRITE specify the
position of the top-left cornerof the shape.

feat*

144 / TI LOGO

The color of the stems is OLIVE, slightly darker than the GREEN of the ,
grass and the bulbs. Note that since all the stem pieces are in the same color J
group, you need only set the color of one of the pieces. (See Section 4.3.2.)

To make the flower grow, you want to make it appear that a stem is
growing, pushingup the flower shape carried by a sprite. In order to i
accomplish this, you can use a trick: lay down a section of thestem in the m
same position as the sprite shape. Sincesprites cover tiles, you will not see
the stem at this point. Now move the sprite slowly upwards 8 units (the
height of a tile). As the sprite moves, more and more of the stem will be ™
uncovered. Every time the STEM procedure is repeated, the tiles will be
placed in a higher position and the flower will growby an amount equal to
one tile unit. Here is the procedure that accomplishes this: «

TO STEM

PUTTILE .LEFTSTEM XCOLUMN YROW +1

PUTTILE :RIGHTSTEM XCOLUMN +1 YROW +1

REPEAT 8 [FORWARD 1]
END

The procedures for finding the row and column of a sprite (Section 7.4.1)
come in handy here in positioning the tiles. The extra unit added to the row
coordinate is because sprites are 2 tile spaces high, and you should place the
tile under the lower half of the sprite. The right half of the stem also needs
an extra unit added to its column coordinate.

To make the flower sprout leaves, you simply need to replace an ordinary
stem shape by one of the stem shapeswith leaves on it. Pick a height on the
stem a little below the top. Here are procedures that sprout a leaf to the left:

TO LEFTLEAF

PUTTILE :LEFTSTEM1 XCOLUMN YROW + 2

END tst

and a leaf to the right:

TO RIGHTLEAF

PUTTILE :RIGHTSTEM1 XCOLUMN+ 1 YROW + 3 .
END ,

The + 2 and + 3 added to the row determine how far below the current sprite
position the leaf will sprout. j

Now you can growa complete flower. Start with a sprite shaped like a m
BULB, growsome stem, change the spriteshape to a BUD, sprout a leaf,
grow more stem, sprout another leaf, change the bud's color, and change the 1
shape to a BLOOM. The procedure that does this takes as inputs the sprite d
number, the number of stem segments to grow, and the flower's color:

fas%

{k£&|

li<™l

1

L

Wi

^j

. ••o»

» "0»

More Logo Projects /145

TO GROW:S rLENGTH :COLOR
TELL SPRITE :S

REPEAT :LENGTH [STEM]
CARRY :BUD

LEFTLEAF

REPEAT :LENGTH [STEM]
RIGHTLEAF

WAIT 30

SETCOLOR :COLOR

WAIT 30

CARRY :BLOOM

END

Bycallingthis procedure repeatedly, you can grow all the flowers:

TO GROWFLOWERS

MAKESTEM

GROW 0 3 :WHITE

GROW 4 4 rYELLOW

GROW 5 3 :RUST

GROW 1 4 :RED

GROW 3 2 :ORANGE

GROW 2 3 PURPLE
END

The action of GROWFLOWERS is illustrated in Figure 7.5.

I I I 1 • • • • • • • • • • • 1 • ! •
•• 1 1 1 1 • 1 i • • I • 1 1 1 I 1

• I 1 I 1 l • 1 I 1 1 I 1 ! S
1

•
•• 1 1 I ! • 1 l g 1 •

1 I I I i • I 1 I 1 I •
I I I i i • I I I 1 •
1 • • i • I • I •
• I • • 1 j • [•

•• I i • • 1 1
1 I • • • I 1 • • [• • • i • I 1 1 j 1
1 H • • H I H 1 1

• •
m
m1 I J • J • • I i • I I

a -

o

II

GMSSTOP *OW|4

}2

••••••• aar «•' !••' !••: >•••••••••

(a)

Figure 7.5: Illustrations of the
GROWFLOWERS procedure.
The "X" marks in each figure
show the coordinate locations of
each sprite as the movie
develops.

(b)

146 / TI LOGO

• • • • • • •• 1 i! • • • i • • • • •
I • • I • • •• • ii • i i • i • • • •
1 I 1 1 • • •• 1 •j • i ! • • • • •
1 I 1 I • • •• 1 i • i i • • • ••
1 I 1 • • • •• 1 s 1 j j i i • ii
•• • E

• a8• •• 1 1 I j ! • ••
1 n 1

J
• ••• !•' • 1 11 • ••

L i • • • ••• i • • i i ••
I III • • • • W'% i ii • i i i I • !S
I 1 'J • • • • • I i i • i ! • ! Bs! •• 1 I • • • • I'll • •i • i i i
I ' • • • • • •III • I1 • i i i • • •• •
I 1 I k • • i i •111 i It ii k • a • • •• •

(C)

Figure 7.5: (Continued)

. ••o« ••••I ||i •••! !•••• P»r' !•••< !••••••
••••I III •••! !•••! !•••! !•••! !••••••

(d)

7.4.7. Combining All the Pieces

Now it only remains to put everything together. Begin by clearing the
screen and setting up a BLACK background.

TO FLOWERMOVIE

CLEARSCREENANDSPRITES

COLORBACKGROUND :BLACK

MAKEGRASS

PLANTBULBS

SUNRISE

WAIT 30

GROWFLOWERS

The CLEARSCREENANDSPRITES procedure, which clears the screen

and makes the sprites invisible, is given on page 68.

7.4.8. Elaborations

With this as a beginning, you can extend the movie in all sorts of ways.
Make a better sunrise, in which the sky changes through all sorts of beautiful
colors at dawn. Add a nightfall, in which the sun sets, the sky darkens, and
the flowers close. Add some clouds that drift by overhead or a bee that flits
from flower to flower. Movies like this are good projects because you can

add parts little by little until you end up with something quite elaborate.

imi

tag

J

\0i.

tJ£3>

iMM

i

{&"•»

r

'i&j

CHAPTER 8

Writing Interactive Programs

We've already seen examples of Logo programs that use PRINT to print
information on the display screen and programs that use READLINE to input
information from the keyboard. This chapter reviews these commands and
describes more elaborate ways of handlinginput and output. As an example,
we show how to create "instant response" Logo systems for very young
children. Wealso show how a Logo-based "dynaturtle" can be used to
introduce elementary schoolchildren to computer projects involving motion
and simple physics.

8.1. Controlling Screen Output

The Logo PRINT command, as used throughout the preceding chapters, is
the main command for showing information on the display screen. PRINT
takes a word or a list as an input, types it on the screen, and moves the

to cursor to the next line. Remember that lists are printed without the outer
brackets.

The command TYPE is just like PRINT, except that it does not move the
cursor to a new line after printing. Compare

TO COUNT :X

PRINT :X

COUNT :X + 1

END

COUNT 1

1

2

3

TO COUNT1 :X

TYPE :X

TYPE",

COUNT1 :X + 1

END

COUNT1 1

1,2,3,...

148 / TI LOGO

The PRINTCHAR (abbreviated PC) takes a number 0 through 255 as input
and prints the character corresponding to that number. Recall (from Section
4.3.3) that these 255 characters include Logo's printingcharactersplus any
tiles you have defined. Here's a way to use PRINTCHAR to see all of the
characters that are currently defined:

TO SHOWCHARS :N

IF :N > 255 STOP

PRINTCHAR :N

SHOWCHARS :N + 1

END

SHOWCHARS 0

8.2. Keyboard Input

The READLINE command is used to read input from the keyboard, as
shown in Section 6.4. READLINE causes the computer to wait for you to
type in a line (terminated by ENTER) and then outputs that line as a list.
Remember that what you type in will always be interpreted as a list. For
example, if you type in a single word, READLINE returns a list containing
that word:

MAKE "ANS READLINE

>100

IF :ANS = 100 PRINT "YES ELSE PRINT "NO

NO

IF :ANS = [100] PRINT "YES ELSE PRINT "NO
YES

Using READLINE, you can implement a useful procedure that returns a word
typed at the keyboard, obtained asthe first element of thelist returned by
READLINE:

TO READWORD d

OUTPUT FIRST READLINE

END

Compare the use of READLINE in the READNUMBER procedure on
page 98.

In addition to the "line at a time" input from READLINE, Logo also
provides "character at a time" input through the command READCHAR
(abbreviated RC). READCHAR causes thecomputer to pause and wait for
youto typein a single character (without ENTER) and then outputs the
character that was typed:

gi

Jiji

lea

llSMil

k&ji

\m\

Writing Interactive Programs /149

MAKE "ANS READCHAR

X

IF :ANS = "X PRINT "YES ELSE PRINT "NO
YES

8.2.1. Example: Instant Response for Very Young Children

The following program uses READCHAR to provide "instant response"
control of the turtle for drawing:

TO INSTANT

COMMAND

INSTANT

END

TO COMMAND

MAKE "COM READCHAR

IF:COM = "F FORWARD 10

IF:COM = "R RIGHT 30

IF:COM = "L LEFT 30

IF :COM = "C CLEARSCREEN
END

This programcauses the turtle to move in response to individual
keystrokes: F for go forward, Lfor left, Rfor right, and C for clearing the
screen and starting over. It can form a good tool for using computer graphics
with very young children. This same instant-response mechanism is also
useful in designing languages for use by thephysically handicapped, for
which it is important to minimize the number of keystrokes required.

It is easy to increase the repertoire of this INSTANT language by adding
additional lines to the COMMAND procedure. Forexample, if you want the
S key to make the turtle draw a small square, you define a procedure called
SQUARE (say, that draws a square of side 20) and add to COMMAND the
line

IF :COM = "S SQUARE

Section 11.2.1 discusses more elaborate extensions to INSTANT.

8.2.2. Keyboard Control of an Ongoing Process

Notice that READLINE and READCHAR both make the computer stop
r and wait for something to be typed. Logo also allows you towrite programs

in which the keyboard is used to control an ongoing process. That is, if a
character is typed at the keyboard, theprogram is able to respond to the
character; but if nothing is typed, the program isable to keep running

150 / TI LOGO

anyway. Such programs are implemented in Logo using the RC? command.
RC? outputs TRUE or FALSE depending on whether a characterhas been
typed at the keyboard. When RC? isTRUE, the next READCHAR command
returns the character that was typed, otherwise READCHAR has to wait until
a character is typed.1 For example, you can modifythe INSTANT program so
that it makes the turtle move forward continually, turning right or left in
response to the letters R and Ltyped at the keyboard. We'll call the resulting
program DRIVE:

TO DRIVE

FORWARD 1

COMMAND "

DRIVE

END

TO COMMAND

MAKE "COM READKEY

IF:COM = "R RIGHT 30

IF:COM = "L LEFT 30

END

The difference between this program and INSTANT is that the turtle goes
forward each time, rather than when an F is typed. Whereas the COMMAND
program used by INSTANT calls READCHAR, the COMMAND program used
in DRIVE calls READKEY. READKEY is a procedure that, if a character has
been typed, outputs that character, and otherwise outputs the empty list.
READKEY is implemented using RC?:

TO READKEY

IFRC? OUTPUT READCHAR

OUTPUT[]

END

READKEY is a good example of a useful "primitive" that can be supplied by
the teacher to students working on interactive programming projects.

'More specifically, characters lyped at the keyboard arc saved ina input buffer. READCHAR reads characters
from thebuffer onebyone. RC? outputs TRUE if thebuffer isnot empty. If Logo isdoing a lotof
processing in between characters, and ifone types characters very fast, a sequence orcharacters may build up
in thebuffer, andtheprogram may seem to "fallbehind" in its responses to the typed characters.

t^g

id

j

Ifilrt

Writing Interactive Programs/ 151

8.2.3. Instant Response with Sprites

You can make all sorts of computer programs for very young children by

installing an INSTANT-style controller for the sprites. The possibilities here
are virtually unlimited. One simple example is to begin with a cluster of balls
that "explodes" from the center of the screen. To do this, put all the sprites

at home, with their headings set at 10-degree intervals, and start them
moving:

TO BEGIN

TELL :ALL

SETSPEED 0

HOME

CARRY :BALL

SETCOLOR :RED

EACH [SETHEADING 10 * YOURNUMBER]
SETSPEED 10

END

Now put the balls under keyboard control, using commands that make
them move slowly or quickly, reverse direction, change color, or change
shape. The following COMMAND selection is only a sample:

TO ACTION

BEGIN

LOOP

END

TO LOOP

COMMAND

LOOP

END

TO COMMAND

MAKE "COM READCHAR

IF:COM = "S SETSPEED 5

IF :COM = "Q SETSPEED 100

IF:COM = "R SETSPEED -SPEED

IF :COM = "M EACH [SETCOLOR RANDOM]
IF:COM = "4 CARRY 4

IF:COM = "5 CARRY 5

IF:COM = "B BEGIN

END

152/Tl LOGO {&\

8.3. Example: The Dynaturtle Program

DYNATURTLE is an extension of the Logo turtle, developed by Andy •*
deSessa as a computer-based physics environment for elementary school
students. It has also been used as an experimental setting for investigating the

role of intuition in learning physics. See A. diSessa [6] for details. This ^
section, based on a paper by Dan Watt, is a description of DYNATURTLE
that can be used by students and teachers.

8.3.1. What is a Dynamic Turtle?

A dynamic turtle or dynaturtle behaves as though it were a rocket ship in
outer space. To make it move you have to give it a kick by "firing a rocket."
It then keeps moving in the same direction until you give it another kick.
When you change its direction, it does not move in the new direction until
you give it a new kick. Its new motion isa combination of the old motion ^
and the motion caused by the new kick. You may need to experiment with
dynamic commands for a while before you understand how the dynaturtle
works. «s

To use the dynaturtle, you will need the procedures in this section. Here is
the main procedure:

J
TODT

MOVETURTLE

COMMAND

DT

END

The procedure DT moves the turtle (if you have given it a kick), checks to
see if you've typed a command, and then starts doing DTall over again. It
keeps running until you stop the procedure by pressing BACK.

In addition to the SIN and COS procedures discussed in Section 8.3.4, and
the READKEY procedure on page 119, here are three other procedures you
will need.2

TO MOVETURTLE

SXY (XCOR + :VX) (YCOR + :VY)
END

t&&'

W,

liiiiii

2The KICK procedure uses the trigonometric functions SIN and COS inorder tochange theturtle's velocity, ^
which can be thought of as a vector (VX, VY). KICK together with the SIN and COS procedures would

normally be used by elementary school children as a black box.

La

bet

IT

Writing Interactive Programs/153

TO COMMAND

MAKE "COM READKEY

IF:COM = "R RIGHT 30

IF:COM = "L LEFT 30

IF:COM = "KKICK

END

TO KICK

MAKE "VX :VX + SIN HEADING

MAKE "VY:VY + COS HEADING

END

To start the dynaturtle, you need a procedure to initialize the dynaturtle's
position and velocity:

TO STARTUP

TELLTURTLE

CLEARSCREEN

MAKE"VX 0

MAKE"VY 0

[END

8.3.2. Activities with a Dynaturtle

To try out the dynaturtle, type

STARTUP

DT

At first the turtle will stay at the center of the screen. The COMMAND

procedure allows three different commands at present. Later you can change
them in any way you like.

• If you type R the turtle will turn right 30 degrees.

• If you type L the turtle will turn left 30 degrees.

• If you type K you will give the turtle a kick in the direction it is heading.

The turtle will now keep moving in the direction it started until you give it
another kick in some direction.

Start the dynaturtle moving by typing

STARTUP

DT

and then typing the K key for "kick."

154 / T I LOGO

• Make the dynaturtle move in a different direction by typing the R or L key.

• Make the dynaturtle move horizontally across the screen.

• Make the dynaturtle go faster.

• Make the dynaturtle go slower without changing direction.

• Before you start the dynaturtle, place a marker somewhere on the screen.
(You can use a tile to form the marker.) Then start the dynaturtle and see if
you can move the turtle to the marker. If the marker is easy for the
dynaturtle to get to, move it over a little and try again.

• Start the dynaturtle from the center of the screen. Can you make it stop?

• Draw a circular "racetrack" on the screen and see if you can "drive" the

dynaturtle around a track.

• Move the dynaturtle to the marker, and make it stop there.

When you try these activities you may find that some of them are harder
than you thought. The problems you have making the dynaturtle do what
you want it to do are similar to the problems astronauts would have moving
around in outer space or maneuvering a rocket to connect up with a space
platform or land on the moon.

(*g

id

fti&&

J

8.3.3. Changing the Dynaturtle's Behavior

After some experimentation with the dynaturtle, you may want to make
changes in the dynaturtle procedures. Since changes in the dynaturtle's
behavior are controlled by the COMMAND procedure, you can start by
changing that procedure as follows:

TO COMMAND

MAKE "COM READKEY I
IF:COM = "R RIGHT 30 w

IF :COM = "L LEFT 30

IF:COM = "KKICK

END *d

If you like, you can change the angle the dynaturtle rotates when you type
R or Lbychanging the30 in COMMAND to another number. ^

j

LaH

Writing Interactive Programs/155

Your COMMAND procedure would now look like this:

TO COMMAND

MAKE "COM READKEY

IF:COM = "R RIGHT 30

IF:COM = "L LEFT 30

IF :COM = "K KICK

IF:COM = "UPENUP

IF:COM = "DPENDOWN

END

Of course, you can change the key names for carrying out the commands
by changing the letters on the keyboard. Some people like to have the right
and left keys next to each other on the keyboard. If you choose S for "left"
and D for "right," then the COMMAND procedure becomes:

TO COMMAND

MAKE "COM READKEY

IF:COM = "D RIGHT 30

IF :COM = "S LEFT 30

IF:COM = "KKICK

IF:COM = "UPENUP

IF :COM = "D PENDOWN

END

Another possible change is to make the force of the kick a variable. If you
did this, you would have to change the KICK procedure and the STARTUP
procedure as well as COMMAND.

TO KICK :FORCE

MAKE "VX :VX + :FORCE *(SIN HEADING)
MAKE "VY:VY + :FORCE *(COS HEADING)

END

You would also have to add a line to STARTUP to set the starting value for

the force:

TO STARTUP

TELLTURTLE

CLEARSCREEN

MAKE"VX 0

MAKE"VY 0

MAKE"FORCE 1

END

You can choose any value you want for the starting force.

156 / TI LOGO

You would now have to change the KICK line in the COMMAND procedure -,
to read !

IF :COM = "K KICK :FORCE

Also, you could add two more commands (say, H and S for "harder" and t»<

"softer") that increased and decreased the force. The COMMAND procedure
would now be

TO COMMAND

MAKE "COM READKEY

IF:COM = "RRT30 &
IF:COM = "LLT30

IF :COM = "K KICK :FORCE j
IF:COM = "UPENUP J
IF:COM = "DPENDOWN

IF :COM = "H MAKE "FORCE :FORCE + 1

IF :COM = "S MAKE "FORCE :FORCE - 1

END

Now try out the dynaturtle with some of these changes, and see what can

happen.

Some other possible changes:

• Add a "reverse kick" command that makes the dynaturtle move more •*
slowly.

Add commands that make the turtle print its speed, heading, and kick

force.

8.3.4. Sines and Cosines

The dynaturtle program makes use of procedures SIN and COS that

output the sine and cosine of a given angle. Since numbers in TI Logo must
be integers, sines and cosines cannot be computed in any straightforward
way.

The SIN and COS procedures used by the dynaturtle program take an
angle as input and return integer approximations to 3 times the sine of the
angle and 3 times the cosine of the angle. The scale factor 3 was chosen to

allow for enough different values for kicks: -3, -2, -1,0, 1, 2, 3, and at

the same time be a good scale for working with the dynaturtle.

lJ

Jag

KB l

i&&

Writing Interactive Programs /157

The implementation of these procedures is based on a clever trick.3 Choose

a sprite, say, sprite 0, and move it invisibly on the screen. If the sprite is
moving with speed S at heading H, then the x component of its velocity will
be S times the sine of H, and the y component of its velocity will be S times

the cosine of H. Since Logo includes built-in operations for retrieving the x
and y components of a sprite's velocity, you can use this "invisible sprite"
technique to compute sines and cosines:

•"• TO SIN :H
MAKE "ACTIVE WHO

TELL SPRITE 0

**" SETSPEED 3
SETHEADING :H

MAKE "ANS XVEL

*• TELL :ACTIVE

OUTPUT :ANS

END

mi

TO COS :H

j MAKE "ACTIVE WHO
L TELL SPRITE 0

SETSPEED 3

SETHEADING :H

^ MAKE "ANS YVEL
TELL :ACTIVE

OUTPUT :ANS

END

The use of ACTIVE here is to allow the procedures to be used without
fouling up any TELLs that are used outside the procedure. We use WHO to
find the current active graphics object and then restore this with TELL before
leaving the SIN and COS procedures. This is really more general than you
need for dynaturtle, because ACTIVE will always be the turtle. It is also not

necessary to set sprite O's speed to 3 each time. The procedures are shown
here in general form so that you can use them in other applications as well.

^Tricks suchas thesearesometimes referred to ascomputer "hacks" because they take advantage of special
properties of a particular implementation and usually do not generalize in any meaningful way. This hack is

due to Roger Kirchner of Carleton College.

i]

0

0IJtitf

0(Ms)

y

«

CHAPTER

Logo Music

In addition to working with numbers, words, and lists and creating animated

graphics, you can use TI Logo II to generate music from notes over a range
of three octaves. You can play one, two, or three voices simultaneously and

also make sound effects with a noise generator and a drum.You can execute

other Logo commands while music is playing, thus providing musical
accompaniment for programs. You can also synchronize music playing

with other Logo commands.1

9.1. Playing Melodies

The Logo music system has the following basic organization: you first set
up the entire piece to be played, using commands that store information in
an area of computer memory called the music buffer. Afterwards, you play
the music that has been stored in the buffer. Thus, there are two kinds of

commands in the music system: commands that enter music information in
the buffer and commands that play the music. When you are entering music
(using the first kind of command) you willnot hear any notes being played.

The MUSIC command is used to enter notes in the music buffer. MUSIC

takes as inputs two lists: a list of pitches and a list of durations. The pitches
are numbered chromatically, with 0 as middle C. For example, in the
command

MUSIC (0 2 4 0] [4 4 4 4]

the first list of four numbers enters pitches for the four notes C, D, E, C.
The second lists gives each note a duration of 4 time units. This is the first
measure of the tune Frere Jacques.

To actually hear the music played, give the command PLAYMUSIC
(abbreviated PM). PLAYMUSIC plays the notes that have been entered in the
buffer. Every time you execute PLAYMUSIC, the notes in the music buffer

^ will be played again.
Each time you use the MUSIC command, additional notes are appended to

the end of the buffer. So if you again execute

MUSIC [0 2 4 0] [4 4 4 4]

•Musiccommands arenot a partof the first release of TI Logo.

160 / TI LOGO

and then PM, you will hear the set of four notes played twice—the first two
measures of Frere Jacques.

When you enter notes using the MUSIC command, the notes are
designated to be played in one of four voices. The voice designation is
controlled by the SETVOICE command. If you do not specify any voice,
music will go to voice 1. SETVOICE 0 clears the music buffer. Section 9.2
below shows how to use SETVOICE to play notes in harmony. You may also
want to make use of the following CM procedure (abbreviation for
"clearmusic") that clears out the music and sets the voice to voice 1:

TO CM

SETVOICE 0

SETVOICE 1

END

Logo has a range of slightly over 3 octaves. Pitch 0 is middle C. The

highest defined pitch is 24 (C two octaves above middle C). The lowest
defined pitch is - 15 (the pitch A one octave plus one third below middle
C).2 Figure 9.1 shows the correspondence between Logo pitch numbers and
conventional music notation:

A A# B C

-15 -14 -13 -12

c# D D# E F F# G G# A A# B C

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

c# D D# E F F# G G# A A# B C

1 2 3 4 5 6 7 8 9 10 11 12

c# D D# E F F# G G# A A# B C

13 14 15 16 17 18 19 20 21 22 23 24

Figure 9.1: Correspondence between Logo chromatic pitch numbers and conventional

music notation. Middle C is assigned to pitch number 0.

2The valid pitch range isdifferent when using theMAJOR mode. See Section 9.1.3 below.

(gs

liiii;

(itrf

fcj£3

&gf

g«»J

Logo Music/161

9.1.1. A Simple Tune

Now you can complete Frere Jacques, writing separate procedures for the

different phrases:

TOF1

MUSIC [0 2 4 0] [4 4 4 4]
END

TOF2

MUSIC [4 5 7] [4 4 8]
END

TOF3

MUSIC [7 9 7 5 4 0] [3 1 2 2 4 4]

END

TOF4

MUSIC [0 -5 0] [4 4 8]
END

.^JUji Figure 9.2: The music for Frere Jacques.

Observe how the duration numbers specify time units, so that in this piece
a duration of 4 corresponds to a quarter note, 8 to a half note, 2 to an eighth
note, 1 to a sixteenth note, and 3 to a dotted eighth note.

The complete tune is formed by playing each phrase twice:

TO FRERE

F1

F1

F2

F2

F3

F3

F4

F4

END

162 / TI LOGO fcg

To play the piece, you use the CM procedure and type:

CM

FRERE

PM

9.1.2. Tuneblocks

The technique of writing each phrase as a separate procedure leads to
tuneblocks, a musical game invented at MIT by Jeanne Bamberger.

One way to play tuneblocks is to create new tunes by rearranging the parts
of a given tune. Here is a new tune assembled from the same blocks used in
Frere Jacques:

F1 F4 F1 F4 F3 F2 F3 F2 F4 F4

To experiment with forming new tunes from a given set of blocks, you clear
the buffer with CM, execute the sequence of procedures for the blocks you
want to play, then follow with PM. Since each tuneblock is a separate Logo
procedure, you can break the sequence of procedures into as many Logo
command lines as you wish. For instance, the commands

CM F1 F4 F1 F4 F3 F2 F3 F2 F4 F4 PM

and

CM

F1 F4 F1 F4

F3 F2 F3 F2

F4F4

PM

both play the same tune.

Another way to use tuneblocks is as a musical jigsaw puzzle—you supply
someone with the blocks for a tune, presented in some arbitrary order, and

ask him to reconstruct the tune. Here, for instance, is a set of blocks:

TOB1

MUSIC [2 7] [4 4]
END

TOB2

MUSIC [2 4 5] [2 2 4]
END

j

nta-i

Ifltol

M«

Logo Music / 163

TOB3

MUSIC [7 9 7 5] [3 1 2 2]
END

TOB4

MUSIC [4 5 7] [2 2 4]
END

TOB5

MUSIC [4 0] [2 6]
END

See if you can guess (and reconstruct) the tune from which these blocks were
taken. Remember that a given block may be used in the tune more than once.

Here is a set of blocks for a much more difficult tuneblocks puzzle. See if
you can construct a tune using these:

TOC1

MUSIC [5 4 2] [2 2 4]
END

TOC2

MUSIC [0 -2] [4 4]
END

TOC3

MUSIC [-2 -3 -5] [2 2 4]
END

TOC4

MUSIC [5 2] [4 4]
END

TOC5

MUSIC [-2 0 2] [2 2 4]
END

TOC6

MUSIC [-3 -2 0] [2 2 4]
END

TOC7

MUSIC [2 5 3 2] [2 2 2 2]
END

164/T I LOGO te

TOC8

MUSIC [7 6 7 9] [2 2 2 2]
END

Answers to the two tuneblocks puzzles appear at the end of this chapter.
In her work at MIT, Bamberger has used tuneblocks and other Logo-based

music programs to teach music as well as to study people's intuitive notions
about music and tonality and to track the development of musical
intelligence. See her papers [2, 3, 4] for details.

9.1.3. Specifying Notes

The MUSIC command allows you to create simple melodies by specifying
lists of pitches and durations. You can also control the loudness, articulation,
and tempo of the notes with additional commands included in the Logo
system.

REST

The REST command is used to insert rests (silences) into the music. REST
takes a single number as input and inserts a rest of that duration into the
music buffer.

STACCATO vs. LEGATO

STACCATO and LEGATO are used to control the amount of "dead time"

that Logo inserts between successive notes. Logo normally plays notes with a
legato articulation, that is, with only a small separation between successive
notes. To change this, give the STACCATO command. This will cause all
subsequent notes to be played detached. The LEGATO command restores the
slurred articulation.3

Controlling Volume

The SETVOLUME command takes a numeric input that controls the
volume of subsequent notes entered with the MUSIC command. Volume 0 is

the softest and 15 is the loudest. Each unit from 0 to 15 represents a 2-decibel
increase in volume.

Controlling Tempo

The SETTEMPO command controls the tempo at which music is played.
SETTEMPO takes as input a number that determines the actual durations of
subsequent notes as specified in the MUSIC command. When the tempo is set
to T, a note of duration D will last for (60 / T) x D seconds. When you
execute the command

•'More precisely, when notes are played staccato, they sound for 5/60 of a second, with the remainder of the

note's duration as dead time. When notes are played legato, ihey sound for all but the final 5/60 of a second.

J

tej

tsj

J

im.

L&mJ

Logo Music/165

SETTEMPO 100

each subsequent duration lasts 60/100 or 6/10 second.

SETTEMPO 300

reduces the duration to 60/300 or 2/10 second. When Logo is started, the

default tempo setting is 300.
Here is an example of tempo change using SETTEMPO to produce an

accelerating trill:

TO TRILL TEMPO

IF :TEMPO > 3000 STOP

SETTEMPO :TEMPO

MUSIC [0 2] [1 1]
TRILL :TEMPO + 20

END

CM

TRILL 10

PM

MAJOR vs. CHROMATIC

These two commands (which take no inputs) control the meaning of
the pitch numbers used with the MUSIC command. When you specify
CHROMATIC, pitch numbers designate half steps: 0 is C, 1 is C-sharp, 2 is
D, and so on. With MAJOR, successive numbers designate notes on the C
major scale: 0 is C, 1 is D, 2 is E, and so on. For example, here are the
MUSIC commands for the first phrase of Frere Jacques using

CHROMATIC:

MUSIC [0 2 4 0] [4 4 4 4]

and using MAJOR:

MUSIC [0 1 2 0] [4 4 4 4]

With CHROMATIC, the range of defined pitch numbers is - 15 through
24. With MAJOR, the range is -9 through 14. When "Logo is started,

166 / TI LOGO

CHROMATIC is the default. Figure 9.3 shows the correspondence between
Logo pitch numbers and conventional music notation for the MAJOR mode:

A B C

-9 -8 -7

D E F G A B C

-6 -5 -4 -3 -2 -1 0

D E F G A B c

1 2 3 4 5 6 7

D E F G A B c

8 9 10 11 12 13 14

Figure 9.3: Correspondence between Logo pitch numbers and conventional music notation

for the MAJOR mode. Middle C is again assigned to pitch number 0.

MAJOR is useful for playing simple tunes in the key of C that require no
sharps or flats. CHROMATIC is required for more complicated tunes or for
tunes in other keys.

The NOTE Command

You can use NOTE as an alternative to MUSIC to enter notes in the music

buffer. NOTE takes three numbers as inputs: a duration, a pitch, and a
volume. For example,

NOTE 5 4 10

enters into the music buffer a note with duration 5, pitch 4, and volume 10.

Unlike MUSIC, NOTE is used to enter a single note at a time rather than a
list of notes. Also, the volume is specified explicitly for each note rather than
taken from the default volume (as determined by SETVOLUME).

Comments on Specifying Notes
The commands listed in this section, such as SETTEMPO, SETVOLUME,

and so on, have no effect on notes that are already in the music buffer. For
instance, suppose you create some notes using MUSIC or NOTE, play the
music with PM, then change the tempo using SETTEMPO and do PM again.
The second PM will sound the same as the first, because SETTEMPO
changes the tempo only for notes that will be added to the music buffer after
the SETTEMPO command.

The music buffer can hold only a fixed number of notes. If you try to add
notes when the buffer is full, Logo signals the error

OUT OF NOTES

IMS

tixd

(Sjjj

f&rt

Il0

r

.ia

Logo Music/ 167

After issuing the PM command, you can execute other commands while
the music is playing. Note that pressing the BACK key does not stop the
music. To stop music while it is playing you can reset the buffer with
SETVOICE 0 or use the CM (clear music) procedure on page 128. Entering
the editor by defining or editing a procedure (or a shape or tile) will also stop
playing and clear the music buffer.

9.2. Multiple Voices

So far, we have been generating music for a single voice only. Logo allows
you to play music using up to three voices plus a noise generator. To do this,
simply use SETVOICE to designate the voice for subsequent notes specified
with MUSIC or NOTE.

For example, you can make a three-part round of Frere Jacques using

the basic procedure from page 129. A good tempo setting for this is 400.

TO FRERE

F1 F1

F2F2

F3F3

F4F4

END

Voice 1 should do FRERE:

SETTEMPO 400

SETVOICE 1

FRERE

Voice 2 should rest for two repeats of F1 (a total of 32 duration units) and
then do FRERE:

SETVOICE 2

REST 32

FRERE

Voice 3 should rest for 64 units and then do FRERE:

SETVOICE 3

REST 64

FRERE

Now when you type PM you will hear all three voices playing together.

168/T I LOGO

Rhythm Accompaniment

In the Logo music system, voices 1, 2, and 3 play tones. Voice 4 is a noise
generator that can be used to supply rhythm accompaniment. One easy way
to do this is with the DRUM command. DRUM takes a list of durations

(similar to MUSIC) and plays a corresponding "drumbeat." For example,

TO BOOMCHACHA

DRUM [4 2 2]
END «s

will play a "quarter-eighth-eighth" drum beat.
You can add this to the Frere Jacques round by using voice 4 for the m

drum. Then the entire round is

TO FRERE.JACQUES.ROUND

SETTEMPO 400

CM -.

SETVOICE 1

FRERE Mi
SETVOICE 2

REST 32

FRERE

SETVOICE 3

REST 64

FRERE

SETVOICE 4

REPEAT 24 [BOOMCHACHA]
END

PM

You need not use DRUM only with voice 4. When set to one of the other
voices, DRUM uses a short, low tone to make the beat. Conversely, you can
specify "pitches" for voice 4 using MUSIC or NOTE. Depending on which
"pitch" you choose, voice 4 will generate one of four different sounds.

9.3. Musical Accompaniment to Logo Procedures

We already mentioned that you can continue toexecute Logo commands
while music is playing. In this way you can provide musical accompaniment
to other Logo procedures. Simply generate some music, start it playing

with PM, and then start up your other procedures. You can also use the
LOOPMUSIC command in place of PM. LOOPMUSIC is almost like PM
except that it plays the music in the music buffer over and over. If you start

music playing with LOOPMUSIC, the only way to stop it is by resetting the
buffer with SETVOICE 0 or by entering edit mode.

{•£&&

j

J

L Logo Music / 169

[Synchronizing Music to Logo Procedures
l^ In addition to playing music and executing procedures at the same time,

you can also synchronize music to Logo procedures; for example, you can
synchronize music to the motion of sprites on the screen. This is done using
the PLAYNOTE command. When you issue a PLAYNOTE command, Logo
will play the next note from the music buffer, and then wait for the duration
of the note.

To illustrate how to use PLAYNOTE for synchronizing music and graphics,
let's return to the birds movie developed in Section 4.4. Recall that this was

Lamovie in which a flock of birds moved across the screen, flapping their

wings. The flapping was accomplished by changing the shapes of the sprites
that represented the birds:

iVufo-l

TO FLAP

CARRY :UPWING

WAIT 30

CARRY :DOWNWING

WAIT 30

FLAP

END

To synchronize the flapping to music, the only change you need make is to
the FLAP procedure, replacing WAIT by PLAYNOTE:

TO FLAP

CARRY :UPWING

PLAYNOTE

CARRY :DOWNWING

PLAYNOTE

FLAP

END

Now enter some music in the buffer and run the entire movie as before. The

result is that the birds beat their wings with each new note.
PLAYNOTE works with only one voice at a time. If there is more than one

voice entered in the music buffer, PLAYNOTE will use the current voice

specified by SETVOICE.

Answers to the Tuneblocks Puzzles

The first set of blocks can be assembled to form London Bridge is Falling

Down. To play the tune, type

CM

B3 B4 B2 B4

B3 B4 B1 B5

PM

170 / TI LOGO isi

The second set of blocks is taken from a piece by Bela Bartok, based on a
Slovakian folk tune (Bartok's For Children, Sz. 42): m

CM

C3 C5 C8 C8

C3 C5 C8 C8

C2 C7 C6 C4

C2 C7 C6 C8

PM

This puzzle is more difficult than the preceding one not only because there
are more blocks and the tune is less familiar, but also because the harmonic ^
structure is not typical of the modalities found in western music. For this
reason it is correspondingly more difficult for people accustomed to western
music to assemble the blocks into patterns that "make sense." In solving tat
either puzzle, you may be able to create a tune that is as interesting to you as
the original. Either solving the puzzle or inventing your own tune opens the
door to exciting musical explorations.

L

UEI

CHAPTER 10

Inputs, Outputs, and Recursion

One important difference between Logo and other common programming
languages is that, in Logo, words and lists can be used as inputs and outputs
to procedures. Therefore, when you program in Logo, you can work in terms
of operations that act on entire words and lists, rather than only on
individual numbers and characters. Consider the DOUBLE.LIST procedure

that was introduced on page 84:

TODOUBLE.LIST:X

OUTPUT SENTENCE :X :X

END

PRINT DOUBLE.LIST [DO RE Ml]
DO RE Ml DO RE Ml

The importance of making this procedure OUTPUT its result is not merely so
that you can PRINT the result, but so that you can use the result as an input
to another procedure that can perform further operations. For instance, if
you have an operation REVERSE that reverses a list (as we shall discuss in
Section 10.1 below), then you can produce the reverse of the double of a list

Xby

REVERSE DOUBLE.LIST :X

More generally, you can construct complex operations on words and lists as
successions of procedures, each of which performs a simple operation and
passes the result to the next procedure. To obtain an operation that removes
the last word from a list, reverses what is left, and doubles the result, you can

write:

DOUBLE.LIST (REVERSE (BUTLAST:X))

as in the command

PRINT DOUBLE.LIST (REVERSE (BUTLAST [ABC D]))
CBACBA

which produces the chain of operations shown in Figure 10.1. Building up
complex operations by combining simpler operations is common
programming practice in working with numbers. For example, it is natural to

172/ Tl LOGO

think of computing (x - l)2 + 1in terms of the simpler operations of]
subtracting 1 from a number, squaring the result, and adding 1. Logo enables ,J
you to use the same kind of strategy in dealing with words and lists.

The ability to construct complex operations as combinations of simpler i
ones is particularly powerful when combined with another problem-solving j
strategy: One can often solve a problem by first solving a simpler problem of
the same sort and then making a simple modification to the answer. For
example, suppose you want to write a procedure that counts the number of

words in a list. Imagine that you already know how many words are in the

BUTFIRSTof the list. Then you could solve your original problem by simply
taking the number of words in the BUTFIRSTand adding 1.

DOUBLE.LIST REVERSE BUTLAST

[CBACBA] [CBA] CA B C] [A B C 0]

Figure 10.1: Chain of inputs and outputs in a sequence of list operations.

Recursive procedures, in general, are the computational analogues of
strategies that attack problems by reducing them to simpler problems of the

same sort. Given the ability of Logo procedures to manipulate words and
lists, this implies that many useful word and list operations can be

implemented as surprisingly simple recursive procedures. This chapter
examines a few of them. We consider first a number of procedures involved

with reversing words and lists. Then we discuss operations that select words

from lists and test whether a word is a member of a list. Finally, we show

how the problem of converting numbers from one base to another can be

solved by a simple recursive strategy.

10.1. REVERSE

TI Logo II includes a built-in operation called REVERSE that reverses

words or lists.1 If the input to REVERSE is a word, then REVERSE returns
the word with the characters reversed:

PRINT REVERSE"STRESSED

DESSERTS

'For the first release of TI Logo, useoneof the procedures, REVLISTor REVWORD, given in Sections 10.1.1
and 10.1.2, instead of REVERSE.

ji-^ftj

<_J

j

L Inputs, Outputs, and Recursion /173

PRINT REVERSE "RUMPLESTILTSKIN

NIKSTLITSELPMUR

PRINT REVERSE REVERSE "RUMPLESTILTSKIN

RUMPLESTILTSKIN

If the input to REVERSE is a list, then REVERSE returns a list of the
elements in reverse order:

PRINT REVERSE [I AM WHAT I AM]
AM I WHATAM I

PRINT REVERSE [HELLO]
HELLO

Even though REVERSE is included as a primitive operation in TI Logo II,
we'll show how you can write such a procedure, since reversing is a good
illustration of recursive programming. In order not to conflict with the
built-in REVERSE, we'll write separate procedures for reversing words and
lists, called REVWORD and REVLIST.

10.1.1. Reversing Words

Consider the problem of writing a procedure REVWORD that reverses a
word:

PRINT REVWORD "HELLO

OLLEH

Logo's LAST and BUTLASToperations, which encourage thinking about a
word in terms of its last character and the rest of the word, suggest a

recursive strategy for implementing the REVWORD procedure. It is based on
the following idea: suppose you are given a word, say BIRD, and you are
asked to reverse it. Now imagine that you have somehow managed to
generate the reverse of all but the last character of the word—RIB. Then all
you have to do to reverse the original word is to take the last character, D,

and place it at the front of what you already have—DRIB. This reduces the
problem of reversing a word to the problem of reversing a shorter word,

namely, the BUTLASTof the word. That problem reduces in turn to reversing
a still shorter word, namely, the BUTLASTof the BUTLAST, and so on, with
shorter and shorter words. You can diagram this process as follows:

REVWORD "BIRD is D «— RIB

174/TI LOGO te

or the last character of BIRD added in front of RIB. But

RIB is REVWORD "BIR which is R <—• IB

or the last character of BIR added in front of IB. But

IB is REVWORD "Bl which is I ^—> B

or the last character of Bl added in front of B. Now put all these together:

REVWORD "BIRD = D «—• (REVWORD "BIR)
= D «— R <—> (REVWORD "Bl)
= D «— R «-> I <—> (REVWORD "B)
= D~ R<-+ l<—B

This strategy, reducing the problem of reversing a word to the problem of
reversing BUTLASTofthe word, leads to the following recursive procedure:

TO REVWORD :X

OUTPUT WORD (LAST:X) (REVWORD BUTLAST :X)
END

However, if you execute this procedure, it will not work. Instead Logo runs
out of space. The problem is that there is no stop rule. Nothing tells
REVWORD to stop taking LASTs and BUTLASTs of its input, and the
procedure runs until Logo runs out of storage. At some point, REVWORD
should simply output an answer directlywithout reducing the problem to one
of reversing a still shorter word. For example, if the word to be reversed is a
single character, then REVWORD of the word is the word itself, so you can
add to REVWORD the stop rule: t

IF FIRST :X = :X THEN OUTPUT :X "*

where FIRST :X being equal to :X signals that :X consists of a single
character. So here is the complete procedure: m

TO REVWORD :X

IF FIRST :X = :X OUTPUT :X m
OUTPUT WORD (LAST:X) (REVWORD BUTLAST :X)
END 1

(id

ytik.

I

L

t

Inputs, Outputs, and Recursion /175

10.1.2. Reversing Lists

Similar reasoningcan be applied to produce a procedure REVLIST that
takes a list as input and returns the list of words in reverse order, as in

PRINT REVLIST [OH SAY CAN YOU SEE]
SEE YOU CAN SAY OH

As before, the problem reduces to combining the LAST of the input list with
REVLISTof the BUTLAST; however, since you will be combining lists rather

r than words, you should use SENTENCE rather than WORD to form the
[^ combination. The stoprule checks for thelist being reduced to theempty list,

in which case the procedure returns the empty list.

TO REVLIST :X

^ IF :X =[]THEN OUTPUT []
OUTPUT SENTENCE (LAST :X) (REVLIST BUTLAST :X)
END

You can combine REVWORD and REVLIST to obtain a procedure
REVALL that takes a list as input and returns a list of the words in reverse

ej order, with each word reversed, as well:

[PRINT REVALL [OH SAY CAN YOU SEE]
L EES UOY NAC YAS HO

r All you need to do to implement REVALL is to modify REVLIST so that it
^ REVWORDs the LAST word of its input before combining that with the

result of reversing the BUTLAST:

TO REVALL :X

IF :X = []THEN OUTPUT []
OUTPUT SENTENCE (REVWORD LAST:X) (REVALL BUTLAST :X)
END

ad

10.1.3. Designing Recursive Procedures
r

The reasoning that led to these procedures is typical of most recursive
procedures that involve words and lists:

• There is a reduction step that reduces the problem to a similar problem on
m a shorter word or list (usually the BUTFIRSTor BUTLAST of the input).

• There is a stop rule that checks for some simple case (usually the input
being reduced to a single element, or to the empty word or theempty list).2

2Notice that in the actual procedure, the stop rule is written before the reduction step. But when you
formulate a recursive solution, you most likely discover thereduction step first andthen design an
appropriate stop rule.

176 / TI LOGO

REVWORD

IF FIRST :X >

I 1
OUTPUT WORD LAST :X JREVWORO BUTLAST :X j

-outputs DRIB

:X THEN OUTPUT

X BIR

IF FIRST :X» :X THEN OUTPUT : X

OUTPUT WORD LAST :X I REVWORD BUTLAST :XI

-output* RIB

Bl

IF FIRST :X' :X THEN OUTPUT :X

OUTPUT WORD LAST :X | REVWORD BUTLAST :X I
l_.

-outputs IB

IF FIRST :X* :X THEN OUTPUT :X

•outputs B

Figure 10.2: Procedure calls in executing REVWORD "BIRD.

Note the use of recursion and the fact that each procedure must explicitly
OUTPUT its result to the procedure that calls it, as noted on page 79. Figure
10.2 shows the pattern of inputs and outputs that results from executing

REVWORD "BIRD

10.2. Recursive Procedures that Manipulate Lists

Logo's list operations FIRST, LAST, BUTFIRST, and BUTLAST are the
basic ways to reduce lists to simpler lists. List operations can often be
implemented by means of recursive strategies that reduce the problem of
performing some operation on a list to the problem of performing a similar
operation on the BUTFIRST (or BUTLAST) of the list. This section presents
two operations that can be implemented in this way.

10.2.1. The PICK Procedure

One of the most useful operations to have in working with lists is the
ability to select an item from a list. Consider the problem of writing a
procedure PICK that takes a number and a list as inputs and outputs the
designated item from the list: if the number is 1, PICK outputs the first
item in the list; if the number is 2, PICK outputs the second item in the list;
and so on.

l£S

|:gi|

t&m

Inputs, Outputs, and Recursion / 177

There is a recursivestrategy for computing PICKin terms of the operations
FIRSTand BUTFIRST. You can reduce the problem of picking an item from
a list to the problem of picking an item from the BUTFIRSTof the list: the
nth item of a list is the same at the (n - l)st item of the BUTFIRSTof the
list. The recursive plan is:

• Reduction Step: to PICKthe nth item from a list, PICK the (n - l)st item
from the BUTFIRSTof the list.

• Stop Rule: if n = 1, then output the FIRST item in the list.

This strategy can be expressed as the following Logo procedure:

TO PICK :N :X

IF:N = 1 OUTPUT FIRST :X

ib OUTPUT PICK(:N - 1) (BUTFIRST :X)
END

Figure 10.3 shows the chain of procedure calls and the inputs and outputs in
executing:

PICK 3 [A B C D]

where picking the 3rd item of [A B C D] reduces to the picking the 2nd item
of [B C D] which reduces to picking the 1st item of [C D], which is C.3

By combining PICK with RAND (page 80) you get a useful operation that
selects an item at random from a list of possibilities.

TO PICKRANDOM :X

OUTPUT PICK (1 + RAND (LENGTH :X)) :X
END

This procedure uses the LENGTH operation that is included in TI Logo II.
LENGTH takes a list as input and returns the number of items in the list.4

3Ifyou call PICK with Nlarger than the length of the list, then the procedure will return the empty list. For
example, tryingto pickthe5th itemof (AB C D) reduces to the4th itemof [B C D], the 3rditemof |C D],
the 2nditem of |D], and finally PICK iscalled with N equal to 1and X equalto the empty list. At this point
PICK tries to compute FIRSTofX. Inthe first release of TI Logo FIRSTof theemptylist returns theempty
list.

4LENGTH can also take aword as input, inwhich case it returns thenumber of characters intheword.
LENGTH is not included in the first release of TI Logo, but it canbe implemented asa recursive Logo
procedure (see note in Section 7.2).

178 / TI LOGO

PICK

IF:N»1 OUTPUT FIRST :X

I 1
OUTPUT I PICK (:N-1) (BUTFIRST :X) I

PICK

IF:N-1 OUTPUT FIRST :X

I 7
OUTPUT I PICK (:N-1) (BUTFIRST :X)

l_

•outputs C

N 3

X [A B C D]

''

N 2

X Cb C Dj

N

PICK

Cc o3

IF:N-1 OUTPUT FIRST :X

outputs C

Figure 10.3: Procedure calls in
executing PICK 3

[ABC D].

Observe the inputs to PICK and RAND: if the length of the list is n, then
RAND (LENGTH :L) returns a number selected at random between 0 and
n - 1. You should add 1 to this to produce a random number between 1 and
n, which becomes the input to PICK.

10.2.2. The MEMBER? Predicate

The MEMBER? predicate takes a word and a list as inputs and checks
whether the word is a member of the list, outputting TRUE or FALSE
accordingly. The recursive strategy here is that it is easy to check if the
desired word is the FIRST item in the list. If it is, then MEMBER? should
output TRUE. If not, you check to see if the word is in the BUTFIRSTof the
list, and so on. If the list ever becomes empty, you have run out of elements
to check the word against, so MEMBER? should output FALSE. The
resulting procedure is

TO MEMBER? :WORD :LIST

IF:LIST.= [] OUTPUT "FALSE
IF:WORD = (FIRST :LIST)OUTPUT "TRUE
OUTPUT MEMBER? :WORD (BUTFIRST :LIST)
END

vm

f^l

Aayfe

r

f

tM/H

L

\tnrt

.1H*I

ligj

Inputs. Outputs, and Recursion /179

Converting to Pig Latin

As an example of using MEMBER? and recursion, you can write a
program that converts a sentence to pig latin. For each word in the sentence,
you must move the leading consonants to the end of the word and add "ay"
as in

Isthay entencesay isay inay igpay atinlay.

Since you need to strip off consonants, it is useful to have a predicate that
checks whether a word begins with a vowel. That's easily done:

TO BEGINS.WITH.VOWEL? :W

OUTPUT MEMBER? (FIRST:W) [A E I O U]
END

Notice that this outputs TRUE or FALSE because MEMBER? outputs TRUE
or FALSE.

Here's a program that converts a single word to pig latin:

TO PIG :W

TEST BEGINS.WITH.VOWEL? :W

IFT OUTPUT WORD :W "AY

IFF OUTPUT PIG WORD (BUTFIRST :W) (FIRST :W)
END

The cleverness in PIG is the recursive call that ensures that PIG will keep
stripping letters off the front of the word until it reaches a vowel. To better
understand this point, you should draw a diagram that gives the sequence of
recursive calls in computing

PRINT PIG "STRING

INGSTRAY

Now, if you work word by word, you can convert an entire sentence. The
trick is to think recursively again:

TO PIGL :S

IF:S = [] OUTPUT []
OUTPUT SENTENCE (PIG FIRST:S) (PIGL BUTFIRST:S)
END

PRINT PIGL [THIS IS ANOTHER RECURSIVE PROCEDURE]
ISTHAY ISAYANOTHERAY ECURSIVERAY OCEDUREPRAY

The strategy used in PIGL is a standard way to "do something to every
item in a list." The idea is to reason as follows. Suppose you have already
converted the words in the BUTFIRSTof the list. Then you need only

180 / TI LOGO ,«

SENTENCE this with the result of converting the first word in the list, and
you are done. In this way, the problem of converting the entire list reduces to
converting BUTFIRSTof the list, which reduces to BUTFIRSTof that list,
and so on, and so on. Finally the problem is reduced to that of converting
the empty list, for which the answer is empty.

10.3. Radix Conversion

trnk

J

As a final example of a problemthat seems difficult but has a simple M
recursive solution, we consider the problem of converting an integer written
in base 10 notation to some other base, say, base 8. For instance, we would
like to find that 65 base 10 is written as 101 in base 8, 100 base 10 is 144 base ^
8, 1000 base 10 is 1750 base 8, and so on.

There is a clever recursive strategy for solving this problem. Suppose that n
is some integer and that you want to find the string of digits that represents n ^
in base 8. Think about what such a representation means. For example, to
say that 100base 10is written as 144 base 8 means that .,

100 = 1 x 8 x 8 + 4 x 8 + 4 = 144 base 8 J

The key insight is that it is easy to find the last digit of the string of digits
that represents n: this is just the remainder when n is divided by 8:

REMAINDER 100 8 is 4

Now suppose you take the string of digits that represents nand strip off the J
last digit. In terms of base 8 representation, that corresponds to shifting
everything one place to the right and dropping the last digit. But this
corresponds precisely to dividing the number by 8 and dropping the j
remainder. That is to say, if you take the string of digits that represents n in
base 8 and leaveoff the last digit, what you are left with is the string of digits
that represents the integer quotient ofnby 8, written in base 8: I

QUOTIENT 100 8 is 12, and 12 represented in base 8 is 14

So now you have a simple description of the string of digits that represents ^
n in base 8

• The LAST digit is the remainder of n by 8. <

• The BUTLASTof the string is the base 8 representation of integer quotient
of/? by 8. 1

I

So the problem ofrepresenting nin base 8reduces to representing the \d
quotient of n by 8 in base8, which reduces further, and so on. The
reductions stop when you reach aquotient that is less than 8, which is j
represented in base 8as a single digit. id

j

as Inputs, Outputs, and Recursion / 181

Here is how to generate n in base 8:

• If a?<8, the result is the digit for n.5

• Otherwise

• Find the digits that represent the quotient of n by 8, and

• Append to these the remainder of n divided by 8.

Using the Logo WORD operation to glue numbers together, this strategy
r translates into the procedure:

*• TO BASE8 :N

IF:N < 8 OUTPUT DIGIT :N

OUTPUT WORD BASE8 (:N/ 8)
*» DIGIT REMAINDER :N 8

END

Li The DIGIT procedure is used to take a single-digit number and convert it to
the corresponding character. If you start with a list of these characters:6

MAKE "DIGITLIST (SE "0 "1 "2 "3 "4
"5 "6 "7 "8 "9)

L

then you can implement DIGIT as:

TO DIGIT :N

OUTPUT PICK :N +1 :DIGITLIST

END

(Note the 1 added to N: thefirst digit in the list, for example, is the digit 0.)
Of course, there is nothing special about base 8. You can convert to any

base less than 10 in the same way:

TO BASE :N :B

IF:N < :B OUTPUT DIGIT:N

OUTPUT WORD BASE (:N/:B) :B
DIGIT REMAINDER :N :B

END

^Remember that in TI Logo, you must distinguish between anumber, say 5, and acharacter, say "5. For doing
arithmetic, you use numbers, and for doing word operations, you use characters. In this case we are

assembling the converted number using word operations, so the digit used must be the character"5 rather
than the number 5.

6This is the "hexadecimal" notation commonly used for specifying computer memory addresses.

182 / T I LOGO

For example

PRINT BASE 1000 2

1111101000

For bases larger than 10, youcan use the samestrategy, except that you »
will need "digits" representing the single-digit numbers larger than 10. For
instance, in base 16you can represent 10by the letter A and 11 by the letter
B, and so on.5 All you need to do is add more items to DIGITLIST: ui

MAKE "DIGITLIST (SE "0 "1 "2 "3 "4
"5 "6 "7 "8 "9

"A"B "C "D "E "F)

PRINT BASE 20000 16

4E20

PRINT BASE 20000 12

B6A8

!&£

Jssij

MA]

(*

J

r

CHAPTER 11

Advanced Use of Lists

We've seen how words can be grouped together into Logo lists. But lists in
Logo can be used for more than just collecting words. For example, the
random-sentence generator of Section 7.2 picked its nouns from a list:

MAKE "NOUNS [DOGS CATS CHILDREN TIGERS]

Suppose, however, you want to make sentences using "nouns" that aren't
single words. For example, you may want to make sentences about dogs,
cats, children, tigers, and pack rats. You can't do this by adding the two
words PACK RATS to the above lists as in

MAKE "NOUNS [DOGS CATS CHILDREN TIGERS PACK RATS]

because making a sentence whose nouns are words picked at random from
this list of six items would give results including things like

PACK LAUGH

RATS RUN

What you need to do is to take the two words PACK RATS and group these
together as a single item within the list of nouns. You can do this in Logo by

MAKE "NOUNS [DOGS CATS CHILDREN TIGERS [PACK RATS]]

What you have now is a list of five items. The first four items in the list are

words: DOGS, CATS, CHILDREN, TIGERS. The fifth item in the list is itself
a list [PACK RATS] consisting of two words, PACK and RATS. When you
pick items from the list NOUNS, you may get a single word like DOGS, or
you may get the two-word list [PACK RATS]. This new value of NOUNS
gives the desired results in the sentence generating program of Section 7.2:

*- DOGS BITE
PACK RATS LAUGH

184 / T I LOGO

The general point here is that in Logo the items in a list can be, not only
words, but also other lists.

11.1. Hierarchical Structures

If you think of a list of words as a simple list (or one-level list), then the
NOUNS list above can be considered to be a two-level list, that is, a list with

an element that is itself a list. But there is no reason to stop there. In general,
you can have lists whose items are themselves lists whose items are lists, and
so on. This general notion of a list in Logo provides lots of power and
flexibility in dealing with complex structures. For example, Figure 11.1

EXECUTIVE

PRESIDENT

SENATE HOUSE

Figure 11.1: Hierarchical Organization of U.S. Government.

JUDICIAL

COURT

shows a tree structure that represents part of the organization of the U.S.
government.

From our point of view, the important thing about this structure is that it
is a hierarchy; that is, it consists of parts that themselves consist of parts,
and so on. You can represent the tree structure in Figure 11.1 as the Logo list

[[EXECUTIVE [PRESIDENT VICE-PRESIDENT]]
[LEGISLATIVE [SENATE HOUSE]]
[JUDICIAL [COURT]]]

This is a list of three items.1 The first item, which is the list

[EXECUTIVE [PRESIDENT VICE-PRESIDENT]]

is itself a list of two items, of which the first is the word EXECUTIVE and

the second is a list of two words, and so on.

Logo's use of lists is adapted from the programming language Lisp, which
was developed for research in artificial intelligence. Lists have proved to be
indispensable in programs that deal with symbol manipulation and complex

'Note how the list is printed, lining up its threeelements in orderto make its structure morereadable.

tm

ks

Ltsr%

(jjH

ifei

Advanced Use of Lists / 185

r data structures, and their presence in Logo and Lisp is largely responsible for
I the fact that programming in these languages is very different from working

in languages like BASIC and Fortran. In those languages, complex data
structures must be encoded in terms of numbers, character strings, and
arrays. Lists, however, allow many kinds of complex hierarchical structures
to be represented directly, and therefore lists play a major role in computer
applications dealing with complex data structures. In particular, they are the
workhorse of most programs that are heavily involved with symbolic
expressions, rather than just numerical data. The projects in Section 11.3
illustrate how lists are used in this way. However, this hardly scratches the
surface of what can be done. The book by Winston and Horn [19] provides
many examples of the uses of lists in symbol manipulation in the context of
the language Lisp.

11.1.1. List Operations

We've already seen how to use the Logo operations FIRST, LAST,
BUTFIRST, BUTLAST, and SENTENCE for working with "simple" lists of
words. These same operations extend to work with complex lists, as well. For
example, suppose you create a complicated list:

MAKE "TRY [[A B C] D [E F]]

TRY is a list of three items, the list [A B C], the word D, and the list [E F].

PRINT :TRY

[ABC]D[EF]

Note how TRY is printed. Logo always prints lists without the outermost pair
of brackets.

The operations FIRST and LAST output, as usual, the first and last items
in a list. In a complex list these items may themselves be lists:

PRINT FIRST TRY

ABC

PRINT LAST: TRY

EF

BUTFIRST outputs the list consisting of all elements by the first, and
BUTLAST outputs the list consisting of all elements but the last:

PRINT BUTFIRST :TRY

D[EF]
PRINT BUTLAST :TRY

[ABC]D

186/TI LOGO

Keep in mind that the operations output, in general, new lists, to which

you can apply further operations. For example,

FIRST FIRST TRY

is the first item of the first item of TRY, which is the first item of [A B C], is.
which is A.

FIRST LAST TRY m

is the first item of the last item of TRY, which is the first item of [E F], which i
isE.

FIRST BUTFIRST TRY

is the first item of the butfirst of TRY, which is the first item of [D [E F]],
which is D. (In general, FIRST of BUTFIRST of any list is the second item of
the list.)

FIRST BUTFIRST LAST TRY

is the FIRST of the BUTFIRST of the LAST of TRY, which is the FIRST of

the BUTFIRSTof [E F], which is F.
The four operations FIRST, LAST, BUTFIRST, and BUTLAST are used for

extracting pieces of lists. To combine lists into more complex lists, we have
the Logo operation FPUT. FPUT takes two inputs, of which the second must
be a list. It puts its first input at the beginning of its second input; that is, it
outputs a list whose FIRST is the first input and whose BUTFIRST is the
second input:

m

fam

\^m

\m*i

PRINT FPUT "A [D E F]
A DEF vi
PRINT FPUT [A] [D E F]
[AJDEF
PRINT FPUT[A B C] [D E F] d
[ABCJDEF

LPUT is similar to FPUT, except that it installs its first input as the last
item in the list:

PRINT LPUT "A [D E F]
DEFA

PRINT LPUT [A] [D E F]
DEF[A]
PRINT LPUT [A B C] [D E F]
DEF[ABC]

{M

j

mp

x£3

L

Advanced Use of Lists /187

The Logo operation SENTENCE, which we previously used to combine
words into lists, can also be used with more complex lists, if SENTENCE is
given a number of lists as inputs, it combines all of the elements of the lists
into a single list:

PRINT SENTENCE [A [B C]] [D E F]
A[BC]DEF

This description of SENTENCE makes sense only when all of the inputs to
SENTENCE are themselves lists. In order to make this consistent with our

previous definition of SENTENCE for combining words into lists we extend
the definition as follows: if one of the inputs to SENTENCE is a word, then
you replace that word by the one-item list containing that word, and then
apply the definition of SENTENCE given above. For example:

(SENTENCE "A "B"C)

gives the same result as

(SENTENCE [A] [B] [C])

which is the list [A B C].

SENTENCE "A [B [C D]]

gives the same result as

SENTENCE [A] [B [C D]]

which is the list [A B [C D]]. In general, SENTENCE :X :Y gives the same
result as FPUT :X :Y if :X is a word and :Y is a list.2

Using FPUT, you can construct a useful operation called LIST that takes
two inputs and combines them into a list of two items. LISTworks by first
combining its second input with the empty list using FPUT. This creates a one
element list whose only element is the original second input. Next, the first
input of LIST is combined with this one-element list to produce a
two-element list.

2Ifyou are interested only incombining words into lists tobeprinted (as inmost elementary Logo programs),
then SENTENCE is the only operation you need for constructing lists. However, when you are interested in

using lists as hierarchical data structures, you need the finer control provided by FPUT and LPUT. For

example, it is always true that :X if the first item of FPUT:X :Y. But this is not the case with SENTENCE.

For instance, if :X is [A B C] and :Y is [D E], then the first item of SENTENCE :X :Y is the word A.

188/TI LOGO

TOLIST:A:B

OUTPUT FPUT :A (FPUT :B [])
END

PRINT LIST [A B] [C D]
[AB][CD]

11.1.2. Example: Association Lists

One particularly simple form of list is a list of pairs, which can be used to
represent simple tables in which values are associated to things: j

MAKE "TABLE1 [[COLOR PURPLE]
[SIZE HUGE]
[WEIGHT [1 TON]]]

Such a list of pairs is called an association list. The first item in each pair is
referred to as the key, and second item is the corresponding value. The most
important function for operating on tables represented as association lists is
LOOKUP, which outputs the value corresponding to a given key:

PRINT LOOKUP "SIZE TABLE1 d
HUGE

LOOKUP is implemented by means of an auxiliary function called ENTRY,
which outputs the pair in which the key occurs, or outputs the empty list if
there is no such pair in the table. LOOKUP then outputs the second item in
the ENTRY, or signals an error if the key was not found. ENTRY is
implemented by scanning down the list in the usual fashion:3

TO ENTRY :KEY TABLE

IF TABLE = [] OUTPUT []
IF:KEY = (FIRST FIRST TABLE) OUTPUT (FIRST TABLE)
OUTPUT ENTRY :KEY (BUTFIRST TABLE)
END <M

LOOKUP is implemented as

TO LOOKUP :KEY TABLE

MAKE "PAIR ENTRY:KEYTABLE

IF :PAIR = [] PRINT [ERROR: KEY NOT IN TABLE]
OUTPUT LAST :PAIR

END

^This is very similar to the MEMBER? procedure on page 143.

J

^o

Iffiq^

Advanced Use of Lists /189

Another use for association lists that arises in symbol manipulation is for
substituting values from a table. The following SUBST procedure takes a list
and a table as inputs. For each item in the list that is a key in the table, it
replaces the key by the corresponding value. For example, with TABLE1 as
above, you would have:

PRINT SUBST [HE IS COLOR AND WEIGHS WEIGHT] TABLE1
HE IS PURPLEAND WEIGHS [1 TON]

To define SUBST, we'll begin by writing a procedure SUBST.ITEM that
takes an item and a table as input. If the item is a key in the table, then

SUBST.ITEM outputs the associated value. Otherwise it outputs the original
item. Notice that this is almost the same as LOOKUP except that it returns
the original item instead of signaling an error if the item is not in the table.

TO SUBST.ITEM :ITEM TABLE

MAKE "SUBSTPAIR (ENTRY:ITEM TABLE)
IF :SUBST.PAIR = [] OUTPUT:ITEM
OUTPUT LAST:SUBST.PAIR

END

The SUBST procedure itself is implemented by performing SUBST.ITEM
on each item in the list, and outputting the list of the results:

TO SUBST :LIST TABLE

IF:LIST = [] OUTPUT []
OUTPUT FPUT (SUBST.ITEM (FIRST :LIST) TABLE)

(SUBST (BUTFIRST :LIST) TABLE)
END

Properties

One way to think of an association list is as a collection of the attributes,
or "properties," of some object:

MAKE"SUPERGRAPE

[[COLOR PURPLE] [SIZE HUGE] [WEIGHT [1 TON]]]

These attributes can be recovered by using the LOOKUP procedure given
above. More abstractly, we can forget about the list of pairs, and imagine

that we have a procedure PUTPROP, which associates a given property value
to a given symbol. For example,

PUTPROP "SUPER.GRAPE "COLOR "PURPLE

190/TI LOGO m

would associate to the symbol SUPER.GRAPE a COLOR property whose
value is PURPLE. A corresponding procedure GETPROP would be used to

retrieve a property value, so that, for example,

GETPROP "SUPER.GRAPE "COLOR

would return PURPLE. A typical program that uses properties to manage
information might contain a line such as

PRINT (SENTENCE [THE COLOR OF]
:ITEM

[IS]
(GETPROP :ITEM "COLOR))

PUTPROP and GETPROP are readily implemented in terms of
association lists, but in some applications, it is better to use other methods

for representing properties. In particular, if there are many attributes in a

table, performing a LOOKUP will be slow, due to the need to scan a long list.
An alternative way to implement properties in Logo, which allows fast access
to large tables, is as follows. To associate a property to a symbol, you

combine the symbol, the property, and a separator character (e.g., #) to form
a new word. Then assign to this word the designated property value. For
example, to perform the association

PUTPROP "SUPER.GRAPE "COLOR "PURPLE

you execute the MAKE command:

MAKE "SUPER.GRAPE#COLOR "PURPLE

In general, PUTPROP is implemented using this scheme as:

TO PUTPROP :SYMBOL PROPERTY:VALUE

MAKE WORD :SYMBOL

(WORD"# PROPERTY)
:VALUE

END csl

and the corresponding GETPROP procedure is:

TO GETPROP :SYMBOL PROPERTY

OUTPUT THING WORD :SYMBOL

WORD"# PROPERTY

END

1*2

Itt&i

l£iS'

l$M&,

\m

j

(^3

(trip

Advanced Use of Lists /191

Note that these procedures rely on Logo's ability to assign a value to a
symbol that is the result of some computation, rather than typed in literally
as is almost always the case with MAKE. Compare the "tricky use of MAKE"

shown on page 86.

11.2. Programs as Data

One important kind of hierarchical structure that arises in programming is
the structure of a program itself. A Logo procedure can be thought of as a
list of lines each of which is a list of words. Using Logo lists, you can write
programs that manipulate other programs. The basic Logo primitives that
enable you to do this are RUN, which executes a list as a Logo command
line; DEFINE, which constructs a procedure from list data: and TEXT, which
outputs the representation of a procedure. This section explains how these
operations work in the context of an extended example—increasing the
capabilities of the simple INSTANT program that was introduced in Section
8.2.1.

11.2.1. The RUN Command

The Logo command RUN takes a Logo list as input and executes the list as
if the list were a command line typed at the keyboard. For example:

RUN [PRINT [HELLO THERE]
HELLO THERE

RUN LIST "PRINT [HELLO THERE]
HELLO THERE

MAKE "COMMAND "PRINT

MAKE "INPUT [HELLO THERE]
RUN LIST:COMMAND :INPUT

HELLO THERE

Example: Extending the INSTANT Program
Another situation in which RUN is useful is where you want to build up a

list of commands to be executed later. As an example, consider the INSTANT
program of Section 8.2.1:

TO INSTANT

COMMAND

INSTANT

END

192 / TI LOGO

TO COMMAND

MAKE "COM READCHAR m
IF :COM = "F FORWARD 10

IF :COM = "R RIGHT 30 i

IF:COM = "L LEFT 30
I'M

IF :COM = "C CLEARSCREEN

END

Suppose you want to add an "undo" feature to the system. That is, typing
F, L, and R at the keyboard will cause the turtle to move forward, left, and
right as before. In addition, typing U will cause the turtle to undo its
previous move. ^

You can implement the undo operation as follows. As the user of the
INSTANT system gives commands, the INSTANT program will not only move
the turtle, but will also remember the turtle motions that were done by saving **
them in a list. Then, when the user wishes to undo the last command,

INSTANT will clear the screen, remove the last command from the list, and
reprocess the remaining commands.4 «

To implement this strategy let's assume you store the turtle commands in a
list called HISTORY. For example, if the user types F and then R, HISTORY
will be ts>

[[FORWARD 10][RIGHT 30]]

to

Notice that HISTORY is a list of lists, in which each entry is the Logo
command that should be run to causethe appropriate turtle motion. 1

The main operation needed now is to take a turtle command and not only

do it, but also add it to the HISTORY list. This can be accomplished by

TO RUN.AND.RECORD :ACTION

RUN :ACTION taf

MAKE "HISTORY (LPUT:ACTION :HISTORY)
END

LPUT is used to add the new command as the last item in HISTORY.

Now change the COMMAND procedure to RUN.AND.RECORD the
appropriate response to each key: y

^There are, of course, many other ways to implement the undo operation. One advantage of theway chosen ^
here is that it extends nicely to allowing the user of the INSTANT system to define programs, as we shall see

in Section 11.2.2.

J

ijust Advanced Use of Lists / 193

TO COMMAND

m MAKE "COM READCHAR
IF :COM = "F RUN.AND.RECORD [FORWARD 10]

r IF :COM = "R RUN.AND.RECORD [RIGHT 30]
L IF :COM ="L RUN.AND.RECORD [LEFT 30]

IF :COM = "C RUN.AND.RECORD [CLEARSCREEN]
r END

Now, to undo the last command, you remove the last item from HISTORY,
r clear the screen, and run the rest of the commands:

*» TO UNDO

IF:HISTORY = []STOP
MAKE "HISTORY BUTLAST:HISTORY

CLEARSCREEN

RUN.ALL :HISTORY

END

Note the first line of UNDO, which says that if the HISTORY list is empty,
there is nothing to undo. Also note that with this implementation, repeatedly
executing UNDO keeps removing more and more items from HISTORY,
starting with the last one, the one before that, and so on.

The subprocedure RUN.ALL takes a list of commands as input and runs all
the commands in the list in sequence. (Each command in the list must itself
be a list.) RUN.ALL uses a recursive strategy. It RUNs the first command in
the list and then processes the BUTFIRST of the list.

TO RUN.ALL COMMANDS

IF COMMANDS = [] STOP
RUN FIRST COMMANDS

RUN.ALL (BUTFIRSTCOMMANDS)
END

Now all you need to do is add a line to the COMMAND procedure so that
pressing U causes an UNDO operation:

TO COMMAND

MAKE "COM READCHAR

IF :COM = "F RUN.AND.RECORD [FORWARD 10]
IF :COM = "R RUN.AND.RECORD [RIGHT 30]
IF:COM = "LRUN.AND.RECORD[LEFT30]
IF :COM = "C SETUP

IF :COM = "U UNDO

END

liifel

194 / T I LOGO (g

The complete INSTANT program now simply clears the screen and
repeatedly calls COMMAND. You also need to initialize HISTORY to be
empty:

TO SETUP

MAKE "HISTORY [] "*
TELLTURTLE

CLEARSCREEN

INSTANT

END

TO INSTANT

COMMAND

INSTANT

END ts£

SETUP has been added to COMMAND in place of RUN.AND.RECORD
[CLEARSCREEN]; now when you clear the screen by typing C, HISTORY is
reinitialized as well.

11.2.2. The DEFINE Command
{«}

In addition to using Logo list operations to generate individual command
lines that can be RUN, you can also write procedures that define other
procedures. This is done with the DEFINE command. DEFINE (short form is
DE) takes two inputs. This first is the name of the procedure to be defined.
The second input is a list of lists organized as follows. The first sublist gives
the inputs to the new procedure, and there is one additional sublist for each ^
procedure line. For example,

DEFINE "TRY [[:X :Y][PRINT:X][PRINT:Y]]
POTRY

TOTRY:X:Y

PRINT.X

PRINT:Y

END

DEFINE "GREET [[] [PRINT [HELLO]]] «*
PO GREET

70 GREET

PRINT[HELLO]
END

Lsa

Advanced Use of Lists / 195

Observe that if the procedure is to have no inputs (as in GREET above),
the DEFINE list must include an initial empty list for the input specification.

Note also that there is no END included in the list of procedure lines.

Example: Another Extension to INSTANT
Most of the time, of course, you use TO rather than DEFINE to create

Logo procedures. DEFINE is reserved for those situations in which you want
procedure definition to happen within a program. As an example of this,
we'll consider another extension to the INSTANT system of Section 11.2.1.
This time, we'll allow the user of INSTANT to name drawings and to recall

them by name. For example, we may use the letter S for saving drawings.

TVping S (for "save") will cause the program to ask the user for a name
for the drawing. Later on, the user can ask for a previous drawing to be
reshown, say by typing P for "picture." More than one drawing can be saved
at once, each with its own name.

You can implement this by having the INSTANT system save a drawing by
defining the drawing as a procedure, using the name chosen by the user. The

list of lines in the procedure is precisely the HISTORY list that you have been
using to keep track of what is on the screen. Here is the procedure that

implements this "learning" process:

TO LEARN

r PRINT [WHAT DO YOU WANT TO CALL]
L PRINT [THIS PICTURE?]

MAKE "NAME (FIRST READLINE)
r DEFINE :NAME (FPUT [] :HISTORY)

END

[fn

fal

The reason for taking the NAME of the procedure to be FIRST of
READLINE is that READLINE always outputs the typed line as a list, and
DEFINE needs the procedure name to be specified as a word. Also, note that
the second input given to DEFINE is FPUT [] :HISTORY, since you need to
include an empty input list for the procedure being defined. Also, you should

make LEARN clear the screen and reinitialize HISTORY to prepare for a new
drawing.

The behavior of LEARN is now:

WHAT DO YOU WANT TO CALL

THIS PICTURE?

>BOX

There is now a procedure called BOX, which, when run, draws the picture
that currently appears on the screen.

196 / TI LOGO tg

Now you must add a command that asks for an input line and runs it. This
is accomplished by m

TO ASK

PRINT [WHAT PICTURE DO YOU WANT]
PRINT [TO SHOW?]
RUN.AND.RECORD READLINE

END

Notice that the input READLINE line is both run and recorded. Note also
that any Logo command could be input and executed, not just a call to a

procedure created by LEARN.

Finally, you need only add the appropriate lines to the COMMAND
procedure so that it will recognize the characters S (for save) and P (for
picture) and run the appropriate procedures. m

The Complete INSTANT System

Here isa complete listing of the INSTANT system developed in the ^
preceding sections:

TO SETUP

MAKE "HISTORY []
TELLTURTLE

CLEARSCREEN

INSTANT •*
END

TO INSTANT

COMMAND

INSTANT

END

TO COMMAND

MAKE "COM READCHAR

IF :COM = "F RUN.AND.RECORD [FORWARD 10]
IF:COM = "RRUN.AND.RECORD [RIGHT 30]
IF :COM = "L RUN.AND.RECORD [LEFT 30]
IF :COM = "C SETUP

IF :COM = "U UNDO

IF :COM = "S LEARN

IF:COM = "PASK

END

l^n

<wn

Ifc'l

Advanced Use of Lists /197

TO RUN.AND.RECORD :ACTION

RUN :ACTION

MAKE "HISTORY (LPUT:ACTION :HISTORY)
END

TO UNDO

IF :HISTORY = [] STOP
MAKE "HISTORY BUTLAST:HISTORY

CLEARSCREEN

RUN.ALL :HISTORY

END

TO RUN.ALL COMMANDS

IF COMMANDS = [] STOP
RUN FIRST COMMANDS

RUN.ALL (BUTFIRST COMMANDS)
END

TO LEARN

PRINT [WHAT DO YOU WANT TO CALL]
PRINT [THIS PICTURE?]
MAKE "NAME (FIRST READLINE)
DEFINE .NAME (FPUT [] :HISTORY)
SETUP

END

TO ASK

PRINT [WHAT PICTURE DO YOU WANT]
PRINT [TO SHOW?]
RUN.AND.RECORD READLINE

END

There are many possible modifications and improvements to this system.
For a good exercise in manipulating lists, consider the following problem. A
typical HISTORY list to be assembled into a procedure might look like:

FORWARD 10

RIGHT 30

LEFT 30

FORWARD 10

RIGHT 30

RIGHT 30

RIGHT 30

FORWARD 10

FORWARD 10

198 / TI LOGO

It would be nice if, before the HISTORY list is made into a procedure, it -i
could be "compressed" so that the procedure that is defined would consist of J
the command sequence

FORWARD 20

RIGHT 90 ™

FORWARD 20

Write a procedure COMPRESS that will perform this kind of transformation tm
on a list of turtle commands. Once you have COMPRESS, the LEARN

procedure can be rewritten as:
(Mi:ij

TO LEARN

PRINT [WHAT DO YOU WANTTO CALL]
PRINT [THIS PICTURE?] «-,
MAKE "NAME (FIRST READLINE)
DEFINE :NAME (FPUT [] (COMPRESS :HISTORY))
SETUP J
END

11.2.3. The TEXT Command

In some instances, it is useful to have an "inverse operation" to DEFINE,

that is, to be able to take a procedure that is already defined and to extract

the text of the procedure so that it can be manipulated as a list. This is done \g&
with the Logo command TEXT, which takes a procedure name as input and

outputs the text of the procedure in the same format as is used in DEFINE.

For example, assume that CORNER is defined as u

TO CORNER :A :B

FORWARD :A

RIGHT :B

END -,

Then TEXT "CORNER is the list «*

[[:A :B] iFORWARD :A] [RIGHT :B]]

Using TEXT, you can write procedures that examine and manipulate other
procedures.

j
torn

L

Advanced Use of Lists / 199

11.2.4. Adding New Programming Constructs

The ability to use list operations to construct lists, and then to RUN these
lists as commands, allows you to add new programming constructs to the

basic Logo language. For instance, suppose you would like to have a WHILE
command that can be used to keep repeating something over and over as long

as some condition is true, as in:

WHILE [XCOR < 20] [FORWARD 1]

Logo does not include WHILE as a primitive command. But you can use
RUN to define your own WHILE command as a procedure that takes two
lists as inputs. The first list specifies a condition to be tested, and the second
list specifies an action to be repeated over and over as long as the condition
remains true. The WHILE procedure first tests if the condition is true by
RUNning the condition list. If the result is true, the WHILE procedure RUNs
the action list. This sequence is repeated over and over:

TO WHILE CONDITION :ACTION

IF NOT (RUN CONDITION) STOP
RUN :ACTION

WHILE CONDITION :ACTION

END

As a more complex example, you can implement a FOR procedure that

works as follows:

FOR [COUNT 1 5] [PRINT:COUNT * :COUNT]
1

4

9

16

25

The FOR procedure takes two lists as inputs. The first list is a "FOR list"
that specifies a loop variable together with its initial and final values. The
second input specifies an action that should be executed for all values of the
loop variable between the initial and final values. To implement FOR, you
extract from the FOR list the name of the variable and the initial and final

values, and pass these on to a subprocedure FOR.LOOP, which does the
actual work of looping. It is convenient to write separate, short procedures

to extract the parts of the FOR list:

200/TI LOGO

TO VAR :FLIST

OUTPUT FIRST :FLIST

END

TO INITIAL :FLIST

OUTPUT FIRST BUTFIRST :FLIST

END

TO FINAL :FLIST

OUTPUT LAST :FLIST

END

Then the FOR procedure is written as:

TO FOR :FLIST :ACTION ^
FOR.LOOP (VAR :FLIST)

(INITIAL :FLIST)
(FINAL :FLIST)
:ACTION

END

The FOR.LOOP procedure takes as inputs the variable, the initial and
final values, and the action to be RUN. It uses MAKE to set the variable to

the initial value and RUNs the action. Then it repeats the sequence, with the
initial value incremented by 1. As a stop rule, FOR.LOOP tests to see
whether the initial value has become greater than the final value. Here is the
procedure:

TO FOR.LOOP :VAR :INITIAL :FINAL :ACTION

IF:INITIAL> :FINALSTOP

MAKE :VAR :INITIAL

RUN :ACTION

FOR.LOOP :VAR (:INITIAL + 1) :FINAL :ACTION
END

Note that in the second line of FOR.LOOP, you say MAKE :VAR, rather than
MAKE "VAR, because the name of the variable being set is the value
associated with VAR, rather than the literal word VAR. For example, in
executing the command

FOR [COUNT 1 5] [PRINT :COUNT * :COUNT]

the value of VAR is the word COUNT, and COUNT is the variable you want
to set using the MAKE command. Compare the "tricky use of MAKE"shown <d
on page 86.

J

Mil

(aa Advanced UseofLists / 201

r 11.3. More Projects Using Lists

^ This section presents two open-ended projects that make use of Logo's
capability to manipulate lists. The first project is a highly simplified version

Lofa famous program called DOCTOR that was developed in the early 1960s
by Joseph Weizenbaum. The Logo implementation here uses the association

list mechanism that was explained in Section 11.1.2. The second program is a
Logo version of a well-known computer "learning" program called ANIMAL,
which demonstrates how to use hierarchical list structures to keep track of
information.

L

•la

11.3.1. Example: The DOCTOR Program

The DOCTOR program engages in a "conversation" with the computer
user, in which it mimics a nondirective style of psychotherapy. Here is a
sample conversation:5

DOCTOR

WHAT SEEMS TO BE THE PROBLEM

> EVERYONE HATES ME

YOU SAY EVERYONE HATES YOU

> WHEN I ENTER A ROOM NO ONE WILL LOOK ME IN THE EYE

MANY PEOPLE HAVE THE SAME SORTS OF FEELINGS

>THEY LAUGH AT ME BEHIND MY BACK

YOU SEEM TO THINK THEY LAUGH AT YOU BEHIND YOUR BACK

>EVEN MY MOTHER HATES ME

YOU FEEL THAT EVEN YOUR MOTHER HATES YOU

>EVEN WHEN I WAS A BABY SHE SAID I WAS ALWAYS BAD

PLEASE CONTINUE

How the DOCTOR Program Works
Although at first glance, the DOCTOR program seems to understand and

reply to the user's remarks, in reality it is doing nothing of the sort. In fact,
the program has two simple methods for generating a response. The first
method is to ignore what the user types and simply respond with some sort of

hedge like PLEASE CONTINUE or MANY PEOPLE HAVE THE SAME

^In orderto simplifythe program, all punctuation hasbeenomitted. As usual, the computer's typeout has
been italicized to distinguish it from the user's responses.

202 / TI LOGO (*g

SORTS OF FEELINGS. The second method involves taking the user's reply,
changing some common words like "I," "me," and "am" to the

corresponding second-person words and appending the transformed response
to some qualifying phrase such as YOU SAYor YOU SEEM TO THINK. The

program chooses one of these methods at random for each response. ^
We'll examine these two methods in turn. The first is very simple. What

the program prints is just a phrase picked at random from a suitable list of
hedges such as

MAKE"HEDGES

[[PLEASE GO ON]
[PLEASE CONTINUE] m
[MANY PEOPLE HAVE THE SAME SORTS OF FEELINGS]]

The part of the program that implements the first method is just6

TO HEDGE

PRINT PICKRANDOM :HEDGES

END

The second method is more complicated. You must take the user's typed-in
response, change the "I" words to the corresponding "you" words, and
append this to a randomly selected qualifier. To perform the "I-you" change,
you can use the SUBST procedure in Section 11.1.2, where the substitution
TABLE of pairs is made up of first-person pronouns and their second-person
counterparts:

tmi

MAKE "PRONOUNS [[I YOU] [ME YOU] [MY YOUR] [AM ARE]]

ftaiil

TO CHANGE.PERSON :PHRASE

OUTPUT SUBST .PHRASE PRONOUNS

END

So if the collection of qualifiers is given by J
MAK€ "QUALIFY [[YOU SEEM TO THINK]

[YOU FEEL THAT]
[YOU SAY]] m

then the second type of response to the user's input is generated by

6We use here thePICKRANDOM procedure (page 143). Notice thatalthough wedesigned PICKRANDOM to
pick a random word from a list of words, the generality of the Logo list operations FIRST and BUTFIRST

ensures that the same procedure also works to pick a random element from any list.

J

L

Advanced Use of Lists / 203

TO RESPOND :USER.INPUT

PRINT SE (PICKRANDOM :QUALIFY)
(CHANGE.PERSON :USER.INPUT)

END

Now you can put both methods together. You can select between the
methods at random, using the test IF (RAND 2) = 0 to generate TRUE or
FALSE with equal chances.7 You can also terminate the conversation if the
user types GOODBYE:

TO DOCTOR.LOOP

MAKE "USER.INPUT READLINE

IF :USER.INPUT = [GOODBYE]
PRINT [COME SEE ME AGAIN] STOP

IF (RAND 2) = 0 HEDGE ELSE RESPOND :USER.INPUT
DOCTOR.LOOP

END

All that is missing now is a procedure DOCTOR to start things going. This
should initialize the lists QUALIFY, HEDGES, and PRONOUNS used above,

print an opening remark, and call DOCTOR.LOOP:

TO DOCTOR

MAKE "QUALIFY [[YOU SEEM TO THINK]
[YOU FEEL THAT]
[YOU SAY]]

MAKE "HEDGES [[PLEASE GO ON]
[PLEASE CONTINUE]
[MANY PEOPLE HAVE THE SAME SORTS OF
FEELINGS]]

MAKE "PRONOUNS [[I YOU] [ME YOU] [MY YOUR] [AM ARE]]
PRINT [WHAT SEEMS TO BE THE PROBLEM]
DOCTOR.LOOP

END

Extending the Program
The previous program is only a simple sketch. One immediate extension

you'll want to make is to increase its repertoire of HEDGES and QUALIFY,
so that the responses are more varied. Another idea is to upgrade the
RESPOND procedure not only to change first person words to second
person, but also second person to first. For instance, if the user types

7l)se the RANDprocedure fromSection 6.2.2.

204/Tl LOGO

YOU ARE NOT BEING VERY HELPFUL TO ME

the program should respond with something like

YOU FEEL THATI AM NOT BEING VERY HELPFUL TO YOU

Another idea is this. Every so often, the program should save away the user's
response. Then, a few exchanges later, the program could say something like
"Earlier you said that . . ." Still other ideas are to have the program select wl
special responses, when the user mentions certain words, like "computer."

By including more and more of these features, you can make the program's
conversations quite elaborate. The responses of Weizenbaum's original
DOCTOR program have been occasionally mistaken for those of a real
person, and this has led some people to advocate using such programs in the
treatment of psychiatric patients. Others, including Weizenbaum, maintain
that this would be extremely unethical. For a further discussion of these
points see Weizenbaum's book [18].

11.3.2. The ANIMAL Program

ANIMAL is a well-known computer program that asks the user to think of
an animal and then tries to guess what animal it is by asking yes-or-no
questions. Here is a sample session with the program:

ANIMAL

THINK OFAN ANIMAL I WILL

TRY TO GUESS IT

DOES IT HAVE LEGS?

>YES

IS IT A CAT?

>YES

LOOK HOW SMART I AM!

LET'S TRYAGAIN...

THINK OFAN ANIMAL I WILL

TRY TQGUESS IT 1
DOES IT HAVE LEGS? J
>NO

DOES IT CRAWL?

>YES

IS ITA SNAKE?

>YES

i*a

MiiH

last

f

LOOK HOW SMART I AM!

LET'S TRYAGAIN.. .

Advanced Use of Lists / 205

The cleverness of the program is that it learns from its mistakes. Here is
what happens when it guesses incorrectly:

DOES IT HAVE LEGS?

>NO

DOES IT CRAWL?

>YES

IS ITA SNAKE?

>NO

OH WELL, I WAS WRONG.
WHAT WAS IT?

> EARTHWORM

PLEASE TYPE IN A QUESTION

WHOSE ANSWER

IS YES FOR AN EARTHWORM AND

NO FOR A SNAKE

>DOES IT LIVE UNDERGROUND?

LET'S TRY AGAIN.. .

The next time the program runs across this situation it will behave like this:

DOES IT HAVE LEGS?

>NO

DOES IT CRAWL?

>YES

DOES IT LIVE UNDERGROUND?

So the program becomes smarter and smarter as it is used more and more.

206 / TI LOGO

How the ANIMAL Program Works
The key to the program is its knowledge structure. This can be thought of

as a tree, as shown in Figure 11.2. The tree is made up of "nodes," where
each node consists of a QUESTION to ask, a YES.BRANCH to follow if the
answer to the question is yes, and a NO.BRANCHjo follow if the answer is

no.

DOES IT HAVE LEGS?

CAT

SNAKE FISH

Figure 11.2: Knowledge tree for the ANIMAL program.

The basic operation of the program is to begin at the top node of the tree
and work its way down, following the YES.BRANCH or the NO.BRANCH i*
according to the answer to the QUESTION. If the program reaches a node
that consists of only a single item, it guesses that as the animal.

When the program guesses incorrectly, it "gets smarter" by expanding the <sa

tree. It asks the user for the correct response and a question that
distinguishes the correct response from the incorrect response. It then

replaces the old single-item node by a new node made up of the user's ad
question, the correct response as the YES.BRANCH and the old incorrect

response as the NO.BRANCH. For example, to learn the difference between
a snake and an earthworm, the program expands the tree, replacing the ^
SNAKE node by a node whose QUESTION is DOES IT LIVE
UNDERGROUND?, whose YES.BRANCH is EARTHWORM, and whose i

NO.BRANCH is SNAKE.8 J
That's all there is to it.

Using Lists

The ANIMAL program can be conveniently written in Logo, because lists
are just the right tool for representing the knowledge tree. You can think of
the tree as a list called KNOWLEGE that has three elements: a QUESTION, a

YES.BRANCH, and a NO.BRANCH. Of course YES.BRANCH and

8of course, if the usertypes in wrong information, then the program willget stupider instead of smarter.
Also, the program we shall describe below does not check for inconsistent responses on the part of the user.

Extending the program to do so is a good project.

J

}

!

L

L

Advanced Use of Lists / 207

NO.BRANCH may themselves be lists that have the same structure. And so
you have sublists and sublists, until you finally reach branches that are
words, which give the actual animals to be guessed.

Here is a Logo list that represents the tree shown in Figure 11.2:

[[DOES IT HAVE LEGS?]
CAT

I [[DOES IT CRAWL?]
^ SNAKE

FISH]]

1
kaj When snake is distinguished from earthworm, the list becomes

[[DOES IT HAVE LEGS?]
CAT

[[DOES IT CRAWL?]
[[DOES IT LIVE UNDERGROUND?]

EARTHWORM

SNAKE]
FISH]]

With the program's knowledge structured in this way, you can extract the
QUESTION, YES.BRANCH, and NO.BRANCH parts of a given node by
using the following procedures:

TO QUESTIONrNODE

OUTPUT FIRST :NODE

END

TO YES.BRANCH :NODE

OUTPUT FIRST (BUTFIRST :NODE)
END

TO NO.BRANCH :NODE

OUTPUT LAST :NODE

END

To construct a node from the three constituent parts, we can use the LIST
procedure given in section 11.1.1, as follows:

TO MAKE.NODE :QUESTION :YES.BRANCH :NO.BRANCH

OUTPUT FPUT:QUESTION (UST:YES.BRANCH -.NO.BRANCH)

208 / TI LOGO m

The Main Procedure -,

Here is theprocedure thatstarts the program: 1

TO ANIMAL

PRINT [THINK OF AN ANIMAL. I WILL]
PRINT [TRYTO GUESS IT]
CHOOSE.BRANCH KNOWLEDGE

PRINT [LET'S TRYAGAIN. . .]
ANIMAL

END

It prints the instructions, does the guessing, and continues this overand over.
The real work is done by the CHOOSE.BRANCH procedure, which is meant
to be called with a node as input. It is initially called with the node that is the
entire KNOWLEDGE list of the program:

TO CHOOSE.BRANCH :NODE

IF (WORD? .NODE) GUESS :NODE STOP
MAKE "RESPONSE ASK.YES.OR.NO (QUESTION :NODE)
IF RESPONSE = [YES]

CHOOSE.BRANCH (YES.BRANCH :NODE) STOP
CHOOSE.BRANCH (NO.BRANCH :NODE)
END

CHOOSE.BRANCH implements precisely the technique explained above. It
asks the question associated with the node and then continues with the
YES.BRANCH or the NO.BRANCH according to the result of the question.
When it reaches a node that is a single word, it uses that as its guess. (The
GUESS procedure, which actually makes the guess, is discussed below.)
Notice how the "continues with . . ." part of the strategy is implemented by a
CHOOSE.BRANCH calling itself recursively using the appropriate branch as
the new node.

Asking Questions
The following procedure is used to ask a yes-or-no question. It takes the

question as input and returns either [YES] or [NO].

TO ASK.YES.OR.NO :QUESTION m
PRINT :QUESTION

MAKE "INPUT READLINE

IF :INPUT = [YES] OUTPUT [YES]
IF :INPUT = [NO] OUTPUT [NO]
PRINT [PLEASE TYPE "YES" OR "NO"]
OUTPUTASK.YES.OR.NO :QUESTION M

END

/SIS

L
r

I

L

l*""f

Advanced Use of Lists / 209

If the user responds with something other than YES or NO, the procedure
repeats the question, using the same "try again" method as with the
READNUMBER procedure on page 98.

"A" or "An"

One nicety that the program must handle when making guesses is to
distinguish betweenanimal names that begin with vowels and those that do
not. If the guess if "snake," the program should ask "Is it a snake?" while, if
the guess is "earthworm," the program should ask "Is it an earthworm?"
The following procedure helps to do this. It takes a word as input and
outputs a sentence consisting of the word preceded by "a" or "an" as
appropriate:

TO ADD.A.OR.AN :WORD

TEST MEMBER? (FIRST :WORD) [A E IO U]
IFT OUTPUT SENTENCE "AN :WORD

IFF OUTPUT SENTENCE "A :WORD
END

The program uses the MEMBER? procedure described on page 143.
Comparethe BEGINS.WITH.VOWEL? procedureon page 143.

Making a Guess

When CHOOSE.BRANCH reaches a node with only a single animal, it
calls the GUESS procedure with that animal as input.

TO GUESS :ANIMAL

[MAKE " FINALQUESTION
L (SE [IS IT] (ADD.A.OR.AN :ANIMAL) [?])

MAKE "RESPONSE ASK.YES.OR.NO :FINAL.QUESTION
r IF RESPONSE = [YES]
L PRINT [LOOK HOW SMART IAM!] STOP

GET.SMARTER :ANIMAL

END

L

L

GUESS first formulates the appropriate "Is it (a or an). . . ?" question and
gets the response. If the guess is correct, the program bragsabout how smart
it is and stops, returning eventually to the ANIMAL procedure, which starts
the next round. If the guess is wrong, the program must growsmarter.

Getting Smarter

Getting smarter consists, first of all, of asking the user for the right animal
and for a question that distinguishes the right animal from the wrong one.
Observe how the "a or an" choice is needed to construct the request for a
question.

210/Tl LOGO

TO GET.SMARTER :WRONG.ANSWER

PRINT [OH WELL, I WAS WRONG.]
PRINT [WHAT WAS IT?]
MAKE "RIGHT.ANSWER (LAST READLINE) -.
PRINT [PLEASE TYPE IN AQUESTION] J
PRINT [WHOSE ANSWER] ™
PRINT (SENTENCE [IS YES FOR]

(ADD.A.OR.AN :RIGHT.ANSWER) [AND])
PRINT (SENTENCE [NO FOR]

(ADD.A.OR.AN :WRONG.ANSWER))
MAKE "QUESTION READLINE

EXTEND.KNOWLEDGE :QUESTION

RIGHT.ANSWER

WRONG.ANSWER

END

Once the new question and the two answers are in hand, the program
proceeds to extend its knowledge. The KNOWLEDGE list is extended by
replacing the old node—consisting of just the old answer—by a branching
node consisting of a new question with the new animal as the YES.BRANCH
and the old question as the NO.BRANCH.

TO EXTEND.KNOWLEDGE :NEW.QUESTION :YES.ANSWER :NO.ANSWER

MAKE "KNOWLEDGE

REPLACE :KNOWLEDGE

:NO.ANSWER

(MAKE.NODE :NEWQUESTION
rYES.ANSWER

:NO.ANSWER)

END

Finally, there is the procedure that does the actual replacement. This takes
as inputs:

|.iaj

• A list that represents a tree of
QUESTION—YES.BRANCH—NO.BRANCH nodes

• A node to be replaced i*

• The thing to replace it with

The output of REPLACE is a copy of the tree with the old node replaced by
the designated replacement.

L
r

r

r

L

Advanced Use of Lists / 211

TO REPLACE :TREE :NODE REPLACEMENT

IF:TREE = :NODE OUTPUT [REPLACEMENT

IF WORD? :TREE OUTPUT :TREE

OUTPUT (MAKE.NODE QUESTION TREE
REPLACE (YES.BRANCH :TREE)

•.NODE

[REPLACEMENT

REPLACE (NO.BRANCH :TREE)
:NODE

[REPLACEMENT)
END

REPLACE is the most difficult procedure in the ANIMAL program. It uses a
recursive strategy somewhat as in the SUBST procedure (Section 11.1.2), but
more complicated. The idea is that if the tree itself is the node to replace, you
output the replacement. Otherwise, the new tree should be formed from the

original tree's QUESTION, together with the result of performing the
replacement recursively in the YES.BRANCH and the NO.BRANCH. This

reduces the substitution to operations on smaller and smaller subtrees of the
original. Finally, when you reduce to nodes that are individual words, you
should output the words themselves.

Running the Program

Figure 11.3 shows the structure of procedure calls for the entire ANIMAL
program.

ANIMAL

CHOOSE.BRANCH

ASK.YES.OR.NO
EXTEND.KNOWLEDGE

REPLACE

QUESTION

YES.BRANCH

NO.BRANCH

ADD.A.OR.AN

Figure 11.3: Structure of procedure calls in the ANIMAL program.

212/TI LOGO

To run the program, you initialize the KNOWLEDGE list to any animal -,
you like, and run the ANIMAL procedure. For example,

MAKE "KNOWLEDGE "FISH

ANIMAL

When you are done with your session, you can save your workspace, which
will include the final value of the KNOWLEDGE tree. Thus when you read in
the program to play with it the next time, the wisdom gained during previous m
sessions will not be lost.

Modifications

ANIMAL is a lot of fun to use as it is, especially as you begin to input
funny animals and outrageous questions. There are also many good projects -,
that arise from extending the program's capabilities. One idea is to vary the I
responses that the program gives. Another is to have the program request not
a literal yes-or-no question, but rather a fact that distinguishes between the -.
two animals. Then theprogram can use this fact to generate itsown I
question. This requires that you build in some knowledge about grammar,
somewhat like the capabilities in the DOCTOR program. Finally—and this is
really open-ended—you can try to make the program smart enough to
distinguish legitimate responses from wisecracks. Here is a sample dialogue B"
with a more sophisticated animal program:9

DOES IT HAVE HORNS? m

YES

IS ITA BUFFALO? y
NO

WELL, I'M NOT TOOSHARP TODAY. I GIVE UP :
JUST WHAT KIND OF BEAST DID YOU HAVE IN MIND?

A GAZELLE

TELL MESOMETHING ABOUTA GAZELLE THAT IS NOT TRUE ABOUTA &
BUFFALO

A GAZELLE IS GRACEFUL

THAT WAS FUN. WANT TO TRYAGAIN?

MAYBE 1

HEY, CAN YOU GIVE ME AYES OR NO ANSWER J
YES

til

9Thedialogue given here iswitha program by B.Greenberg [II].

E&&

li»»*«

Advanced Use of Lists / 213

DOES IT HAVE HORNS?

NO

IS IT A BUTTERFLY?

NO

WELL, I'M NOT TOO SHARP TODAY I GIVE UP. JUST WHAT KIND OF
BEAST DID YOU HAVE IN MIND?

A PIG

TELL ME SOMETHING ABOUTA PIG THAT IS NOT TRUE ABOUTA

BUTTERFLY

A PIG IS SLOVENLY

THAT WAS FUN. WANT TO TRYAGAIN?

YES

DOES IT HAVE HORNS?

NO

IS THIS ANIMAL SLOVENLY?

YES

IS IT A PIG?

YES

HEY, HEY, I SURE AM CLEVER, HUH?
THAT WAS FUN. WANT TO TRYAGAIN?

YES

DOES IT HAVE HORNS

YES

IS THIS ANIMAL GRACEFUL?

YOU ARE NOT GRACEFUL

HEY CAN YOU GIVE ME A YES OR NO ANSWER?

NO

IS IT A BUFFALO?

NO

WELL, I'M NOT TOO SHARP TODAY. I GIVE UP.
JUST WHAT KIND OF BEAST DID YOU HAVE IN MIND?

BULL

214/T I LOGO 0J.

TELL ME SOMETHING ABOUTA BULL THAT IS NOT TRUE ABOUTA -•

BUFFALO ^
WHY DON'T YOU TELL ME SOMETHING, YOU ELECTRONIC MORON?
AW, BE SERIOUS. IASKED YOU A REAL QUESTION .
IT WOULD MARRY A COW

J

til

(i&*i

(&$

[M

Ui

a*<

CHAPTER 12

Glossary of Logo Primitive Commands

This chapter lists the primitive commands included in the TI Logo system
together with their abbreviations and examples of how many of them are
used. As in the rest of this book, when we wish to emphasize the distinction
between what the user types and what the computer responds, we have

printed the latter in italics.

12.1. Graphics Commands

These are Logo's commands for controlling the graphics screen using the
turtle, sprites, and tiles.

BACK

BACKGROUND

BIG

CARRY

CLEARSCREEN

Abbreviated BK

Example:

BACK 100

{turtle moves backward 100units}

Takes one number as input and moves the active turtle or sprite that many
units in the opposite direction from which it is facing.

Abbreviated BG

Example:

TELL BACKGROUND

SETCOLOR :RED

{screen background will now be red}

Used with TELL to direct graphics commands to the background.

Takes no input. Changes all sprite 32 x 32 units on a side, rather than their

usual 16 x 16 size. See SMALL and SIZE. (Not included in the first release
of TI Logo.)
Example:

CARRY TRUCK

{active sprite now has the TRUCK shape (number 2)}

Takes one numeric input in the range 0 through 25. (Numbers outside this
range will be reduced modulo 26, that is, reduced to the remainder after

dividing by 26.) Tells the active sprite to "carry" the corresponding shape.

Abbreviated CS

Takes no inputs. Clears the screen.

216 / T I LOGO

COLOR

COLORBACKGROUND

Takes no inputs. Outputs the color number of the active sprite or tile. If the

turtle is active, outputs the turtle's pen color.

Abbreviated CB

Example:

COLORBACKGROUND :BLUE

is equivalent to

TELL BACKGROUND SETCOLOR :BLUE

except that it does not alter the active sprite, as does using TELL.
COLORBACKGROUND takes one numeric input in the range 0 through 15.

(Numbers outside this range will be reduced modulo 16, that is, reduced to
the remainder after dividing by 16.) It sets the screen background to the
corresponding color.

DOT Example:

DOT 30 30

Takes two numeric inputs, x and y coordinates, and places a dot at the
designated point on the turtle screen.

EACH Example:

TELL :ALL

EACH [SETHEADING 10 * YOURNUMBER]

Takes a list of commands as inputs, and runs the list for each active sprite.
The operation YOURNUMBER when used within the list returns the number
of the sprite.

FORWARD Abbreviated FD

Example:

FORWARD 50

{turtle or sprite moves forward 50 units}

Takes one numeric input. Moves the currently active turtle or sprite the
designated number of units in the direction in which it is facing. Draws a line
if the turtle's pen is down.

FREEZE Takes no inputs. Stops motion of all sprites on the screen. Motion is resumed
with THAW.

HEADING Example:

SETHEADING HEADING + 10

{rotates the turtle 10degrees clockwise}

Takes no inputs. Outputs heading of the currently active turtle or sprite as a
number between 0 and 360.

Mi

IfiSl

\±ii

t«;iii

t&m

«a

{ml!.

US

id.

\mi\

jjj±gj

r

l&s»l

Glossary of Logo Primitive Commands / 217

HIDETURTLE Abbreviated HT

Takes no inputs. Makes the turtle pointer disappear.

HOME Takes no inputs. Moves the turtle to the center of the screen, pointing
straight up. Moves the active sprite to the center of the screen without
changing the heading.

LEFT Abbreviated LT

Example:

LEFT 90

{turtle rotates 90 degrees counterclockwise}

Takes one numeric input. Rotates the currently active turtle or sprite that
many degrees counterclockwise.

LOOKLIKE Takes one numeric input. Synonym for CARRY.

MAKECHAR Abbreviated MC

Takes one numeric input in the range 0 through 255. (Numbers outside this
range will be reduced modulo 256, that is, reduced to the remainder after
dividing by 256.) Enables you to define or edit the corresponding character
shape. See Section 4.3.

MAKESHAPE Abbreviated MS

Takes one numeric input in the range 0 through 25. (Numbers outside this
range will be reduced modulo 26, that is, reduced by the remainder after
dividing by 26.) Enables you to define or edit the corresponding sprite shape.
See Section 4.2.

NOTURTLE Takes no inputs. Exits turtle mode.

NUMBEROF Example:

PRINT NUMBEROF WHO

Takes one input. Usually used in conjunction with WHO to return the
number of the active sprite.

PENDOWN Abbreviated PD

Takes no inputs. Causes the turtle to leave a trail when it moves.

PENERASE Abbreviated PE

Takes no inputs. Causes the turtle to erase (that is, change to the background
color) any points that it passes over.

PENREVERSE Abbreviated PR

Takes no inputs. Causes the turtle to reverse any point it passes over. The

218 / T I LOGO

effect is that the turtle will draw, unless it is retracing a line, in which case the
line will be erased.

PEN UP Abbreviated PU

Takes no inputs. Causes the turtle to move without leaving a trail.

PUTTILE

RIGHT

SETCOLOR

Abbreviated PT

Example:

PUTTILE 100 16 12

{tile number 100appears at the center of the screen}

Takes a tile number and row and column numbers as inputs. Places the tile at
the designated row and column.

Abbreviated RT

Example:

RIGHT 45

{turtle rotates 45 degrees clockwise}

Takes one numeric input. Rotates the active turtle or sprite that many degrees
clockwise.

Abbreviated SC

Example:

TELL SPRITE 5

SETCOLOR :RED

{sprite 5 is now red}
TELL TILE 100

SETCOLOR [6 15]

{tile 100 now has foreground color red
and background color white}

For sprites, takes as input a number in the range0 through 15. (Numbers
outside this range will be reduced modulo 16, that is, reduced to the
remainder after dividing by 16.) Changes the active sprite to that color. The
COLdR of the turtle is the color in which it draws. With tiles or the turtle
SETCOLOR can also take as input a list of two color numbers, which specify
the foreground and background colors.

Abbreviated SH

Example:

SETHEADING 180

{turtle now faces straight down}

Takes one numeric input. Rotates the active sprite or turtle to point in the
direction specified. The input is interpreted as a number in degrees. Zero is
straight up, with heading increasing clockwise.

SETHEADING

|«|

\0f |

ijj^i

i^.

jfftjg

is

y&

fm

[fit***

SETSPEED Abbreviated SS

Example:

TELL SPRITE 10

SETSPEED 100

Glossary of Logo Primitive Commands / 219

Takes as input a number in the range - 127 through 127. Sets the speed of
the active sprite.

SHAPE Takes no input. Returns the shape number of the active sprite.

SHOWTURTLE Abbreviated ST

Takes no inputs. Makes the turtle pointer appear.

SIZE Takes no inputs. Outputs 16if sprites are currently SMALL and 32 if they are
BIG. (Not included in the first release of TI Logo.)

sa

ks

La

SMALL Takes no inputs. Makes sprites 16 x 16 units in size. See BIG. (Not included
in the first release of TI Logo.)

SPEED Takes no inputs. Outputs the speed of the currently active sprite.

SPRITE Example:

TELL SPRITE 5

SETSPEED 100

Takes one numeric input in the range 0 through 31. Used with TELL in order
to direct graphics commands to a sprite.

ea SV Example:

TELL SPRITE 5

fiiMI

SV 30 30

Takes two numeric inputs, which are used to set the x and y velocity
components of the active sprite.

SX Takesone numeric input. Moves the currently active sprite or turtle
horizontally to the specified coordinate.

SXV Takes onenumeric input. Sets thex velocity component of the active sprite.

SXY Example:

SXY 80 50

{turtle moves to position (80,50)}

Takes two numeric inputs. Moves the currently active sprite or turtle to the
specified point, where (0,0) is center of screen.

220/T I LOGO

SY Takes one numeric input and moves the currently active sprite or turtle
vertically to the specified coordinate.

SYV Takes one numeric input. Sets the y velocity component of the active sprite.

TELL Examples: ^
TELL SPRITE 1

TELL TILE 50

TELLTURTLE

TELL BACKGROUND

TELL [1 5 8]
TELL 10

Used to direct subsequent graphics commands to an object, which becomes
the "active object." If used with a list of numbers, commands are directed to

all sprites in the list. TELL used with a number (as in the final example
above) designates a sprite.

THAW Takes no inputs. Restores motion that was stopped by FREEZE.

TILE Example:

TELL TILE 100

SETCOLOR :RED

Used with TELL in order to designate an active tile.

TURTLE Takes no inputs. Used with tell in order to specify the turtle.

WHERE Takes no inputs. If the turtle is the currently active object, outputs a list of
three numbers: the jr-coordinate, ^-coordinate, and heading.

WHO Takes no inputs. Outputs the currently active graphics object (as specified by
the previous TELL).

XCOR Example:

SETXXCOR + 10

{moves the turtle 10 units to the right}

Takes no inputs. Outputs the x coordinate of the turtle or currently active

sprite.

XVEL Takes no inputs. Outputs the x velocity component of the currently active
sprite.

YCOR Takes no inputs. Outputs the y coordinate of the turtle or currently active
sprite.

Hiis

(i&it

{&

tM

j

Glossary of Logo Primitive Commands / 221

r YOURNUMBER Abbreviated YN

Takes no inputs. Outputs the number of the currently active sprite. Normally
used inside a command list with EACH.

LYVEL Takes no inputs. Outputs the y velocity component of the currently active
sprite.

12.2. Numeric Operations

These are Logo's built-in facilities for performing operations with
numbers. Numbers handled by Logo must be integers in the range - 32767

through 32767.
ma

+ Example:

PRINT 5 + 2

7

L Takes two numbers as inputs, and outputs their sum.

- Example:

f PRINT 5-2

PRINT 1 + (-2)
-1

With two numeric inputs, outputs their difference. With one numeric input,
outputs its negative.

•«*» * Example:

PRINT 5*2

10

Takes two numeric inputs, and outputs their product.

LI Example:

PRINT 5 / 2

2

PRINT 6/2

3

Outputs its first input divided by its second. Truncates any fractional part.

DIFFERENCE Example:

PRINT DIFFERENCE 10 6

r Takes two numeric inputs. A prefix operation equivalent to -.

222 / TI LOGO

PRODUCT Takes two inputs. A prefix operation equivalent to *.

QUOTIENT Takes two inputs. A prefix operation equivalent to /.

RANDOM Takes no input. Outputs a random number in the range 0 through 9.

SUM Takes two inputs. A prefix operation equivalent to + .

12.3. Word and List Operations

In addition to numbers, Logo also includes operations for dealing with
words (strings of characters) and lists (structured collections of data).

BUTFIRST Abbreviated BF

Example:

PRINT BUTFIRST [THIS IS A LIST]
IS A LIST

PRINT BUTFIRST "ABRACADABRA

BRACADABRA

If input is a list, outputs a list containing all but the first element. If input is
a word, outputs a word containing all but the first character. BUTFIRST of

the empty list returns the empty list. BUTFIRST of a single-character word
returns the empty list.

BUTLAST Abbreviated BL

Example:

PRINT BUTLAST [THIS IS A LIST]
THIS IS A

PRINT BUTLAST "ABRACADABRA

ABRACADABR

If input is a list, outputs a list containing all but the last element. If input is a
word, outputs a word containing all but the last character. BUTLAST of the

empty list returns the empty list. BUTFIRST of a single-character word
returns the empty list.

FIRST Abbreviated F

Example:

PRINT FIRST [THIS IS A LIST]
THIS

PRINT FIRST "ABRACADABRA

A

If input is a list, outputs the first element. If input is a word, outputs the
first character. FIRST of the empty list returns the empty list.

tag

i»^

is

1*%,

t'lviii

t*j

i$&.

[g&

(«g.

fjrWl

Glossary of Logo Primitive Commands / 223

FPUT Example:

PRINT FPUT [A B] [C D]
[AB]CD

The second input must be a list. Outputs a list consisting of the first input
followed by the elements of the second input.

LAST Example:

PRINT LAST [THIS IS A LIST]
LIST

PRINT LAST"ABRACADABRAX

X

If input is a list, outputs the last element. If input is a word, outputs the last
character. LAST of the empty list returns the empty list.

LENGTH Example:

PRINT LENGTH "ELEPHANT

8

PRINT LENGTH [ALPHA BETA GAMMA]
3

PRINT LENGTH [A [B C D] [E F]]
3

If input is a word, outputs the number of characters in the word. If input is a
list, outputs the number of items in the list. (Not included in the first release
of TI Logo.)

LPUT Example:

PRINT LPUT"Z[WXY]
WXYZ

PRINT LPUT [A B] [C D]
CD[AB]

Second input must be a list. Outputs a list consisting of the elements of the
second input followed by the first input.

REVERSE Example:

PRINT REVERSE "APPLESAUCE

ECUASELPPA

PRINT REVERSE [ALPHA BETA GAMMA]
GAMMA BETA ALPHA

PRINT REVERSE [A [B C] [D E]]
[DE][BC]A

If input is a word, outputs the characters of the word in reverse order. If

input is a list, outputs a list of the items in reverse order. (Not included in the
first release of TI Logo.)

224/TI LOGO

ROTATE Example:

PRINT ROTATE "APPLESAUCE

PPLESAUCEA

PRINT ROTATE [ALPHA BETA GAMMA]
BETA GAMMA ALPHA

PRINT ROTATE [A [B C] [D E]]
[BC][DE]A

If input is a word, outputs the word with the first character moved to the
end; that is, outputs

WORD (BUTFIRST :X) (FIRST :X)

If input is a list, outputs the list with the first item moved to the end; that is,
outputs

LPUT (FIRST:X) (BUTFIRST :X)

(Not included in the first. vloase of TI Logo.)

SENTENCE Abbreviated SE

Example:

PRINT SENTENCE "HELLO "THERE

HELLO THERE

PRINT SENTENCE [THIS IS] [A LIST]
THIS IS A LIST

PRINT (SENTENCE "THIS [IS] [A LIST])
THIS IS A LIST

PRINT SENTENCE [[HERE IS] A] [NESTED LIST]
[HERE IS] A NESTED LIST

Takes a variable number of inputs. (The default is two.) If inputs are all lists,
combines all their elements into a single list. If any inputs are words, they are
regarded as one-word lists in performing operation.

WORD Example:

PRINT WORD "MISH "MASH

MISHMASH

Takes two inputs. Outputs a word that is the concatenation of the characters
of its inputs (which must be words).

iffi.

tr$&.

ill

j
Ias)

' jtfEl

Glossary of Logo PrimitiveCommands / 225

12.4. Defining and Editing Procedures

TO and EDIT are the most commonly used operations for creating and
changing procedures. But Logo includes some other operations that allow
more advanced manipulation of procedure definitions.

DEFINE Abbreviated DE

Example:

DEFINE "PTSUM [[:X :Y] [PRINT:X] [PRINT:X + :Y]]

defines the procedure

TO PTSUM :X :Y

PRINT :X

PRINT :X + :Y

END

Takes two inputs. First is a name, and second is a list whose elements are a
list of inputs and a list for each line, and defines a procedure accordingly.
Note that you normally use TO rather than DEFINE in order to define
procedures. DEFINE is useful for writing procedures that define other
procedures, as in the extended INSTANT system described in Section 11.2.1.

EDIT Example:

EDIT SQUARE

{sets up procedure SQUARE for editing}

Enters the procedure editor with a given procedure. If no input is specified,

enters the editor with a blank screen.

END Terminates a procedure definition that is typed into the editor. It is not
necessary to type END at the end of the final definition, but if you are
defining more than one procedure at a time, the separate procedure
definitions must be separated by END statements.

TEXT Example:

TO PTSUM :X :Y

PRINT :X

PRINT :X + :Y

END

PRINT TEXT "PTSUM

[:X:Y][PRINT:X][PRINT:X + :Y]

Takes a procedure name as input and outputs procedure text as a list, whose
format is as described under DEFINE.

TO Begins procedure definition. Enters edit mode.

226 / TI LOGO

12.5. Conditional Expressions

Logo includes two basic facilities for allowing the user to write programs
that perform tests and do different things depending on the outcomes. One is
the IF. . . THEN . . . ELSE construct that is common to many computer
languages. The other, TEST. . . IFT. . . IFF, is less common but often
simpler to use.

BOTH Example:

PRINT BOTH (1 + 1 = 2) (5 = 4)
FALSE

Takes two inputs. Each input should be either TRUE or FALSE. Outputs
TRUE if both are TRUE; otherwise outputs FALSE.

EITHER Example:

PRINT EITHER (1 + 1 = 2) (5 = 4)
TRUE

Takes two inputs and outputs TRUE if at least one is TRUE; otherwise
outputs FALSE.

ELSE Used in IF. . . THEN . . . ELSE.

IF Example:

IF :X = 5 THEN STOP ELSE PRINT "HELLO

Used in the basicconditional form IF {condition} THEN {actionl} ELSE
{action2}. The {condition} is tested. If it is true, {actionl} is performed. If
it is false, {action2} is performed. The word THEN is optional. The ELSE
{action2} part need not be present.

IFF Executes rest of line only if result of preceding TEST was false. See TEST.

IFT Executes rest of line only if result of preceding TEST was true. See TEST.

NOT Example:

IF NOT (1 = 2) PRINT "HELP
HELP

Outputs TRUE if its input is FALSE, FALSE if its input is TRUE.

l&nti

i&fel

(*i

g§

l*g

r

fail

Glossary of Logo Primitive Commands / 227

TEST Example:

TEST"AB = WORD "A "B

IFF PRINT "NO

IFT PRINT "YES

YES

Tests a condition to be used in conjunction with IFT and IFF.

THEN Used with IF. . . THEN . . . ELSE . . .

12.6. Predicates Used with Conditional Expressions

The conditional expressions of the previous section make use of predicates,

or operations that output either TRUE or FALSE. A predicate can be any
procedure that outputs the word TRUE or the word FALSE. Here are the

predicates that are built into Logo.

> Example:

IF :X > :Y STOP

Outputs TRUE if its first input is greater than its second, FALSE otherwise.

< Outputs TRUE if its first input is less than its second, FALSE otherwise.

= Example:

PRINT 20 = 10+10

TRUE

PRINT "A = [A]

FALSE

PRINT [A B] = SENTENCE "A "B
TRUE

If both inputs are numbers, compares them to see if they are numerically
equal. If both inputs are words, compares them to see if they are identical
character strings. If both inputs are lists, compares them to see if their

corresponding elements are equal. Outputs TRUE or FALSE accordingly.

FALSE Outputs the word "FALSE. (Not included in the first release of TI Logo.)

GREATER Prefix form of >.

IS Example:

IF IS 7 3 + 4 PRINT [YES]

Takes two inputs. A prefix operation equivalent to = .

228/T I LOGO

LESS Prefix form of <.

NUMBER? Outputs TRUE if its input is a number, FALSE otherwise.

THING? Outputs TRUE if its input has a value associated with it.

TRUE Outputs the word "TRUE. (Not included in the first release of TI Logo.)

WORD? Outputs TRUE if its input is a word, FALSE otherwise.

12.7. Controlling Procedure Execution

GO Example:

TO TRIANGLE :STRING

IF FIRST :STRING = :STRING THEN STOP

LOOP: PRINT :STRING

MAKE "STRING BUTFIRST :STRING

GO "LOOP

END

Compare this example with the TRIANGLE procedure of Section 6.3. GO
takes a word as input and transfers to the line with that label. You can only

GO to a label within the same procedure. Labels are defined by typing them
at the beginning of the indicated line followed by a colon. GO is very rarely
used in Logo programming.1

OUTPUT Abbreviated OP

Takes one input. Causes the current procedure to stop and output the result
to the calling procedure.

REPEAT Example:

REPEAT 3 [PRINT "HELLO]
HELLO

HELLO

HELLO

Takes a number and a list as input. RUNs the list the designated number of

times.

'GO is occasionally useful, but is easily abused and can leadto obscureprograms. In Logo, you can almost
always avoid the need to use GO by taking advantage of REPEAT and/or procedure calls. Iteration

constructs WHILE, FOR, and so on, can also be implemented by using RUN, as illustrated in Section 11.2.4.

As the TRIANGLE procedure above shows, one can, in fact, use Logo to program in a style that is typical of

most BASIC programs. That would be like pouring ketchup over caviar.

Jig

(igfi

Iail

m

£££)

ifffip

u£J

Glossary of Logo PrimitiveCommands / 229

RUN Example:

MAKE "X [PRINT]
RUN SENTENCE :X 5

5

Takes a list as input. Executes the list as if it were a typed-in command line.
The number of characters in the list (i.e., the number of characters you

would get if you printed it) given to RUN must not exceed the maximum

number of characters allowed in a top-level command line, which is 255
characters in the current implementation.

STOP Causes the current procedure to stop and return control to the calling
procedure.

12.8. Input and Output

BEEP Takes no input. Starts the computer playing a tone. (Turn the tone off with
NOBEEP.)

CHARNUM Abbreviated CN

Takes a character as input and outputs the code number of that character, as

defined in the table in Section 4.3.3.

JOY Example:

PRINT JOY 1

9

Takes one input number, specifying joystick 1 or 2. Outputs a number which
depends on the joystick position as shown:

!•*- -*9

230 / TI LOGO

If the joystick's button is pressed when the command JOY 1 or JOY 2 is

executed, the number output will be the indicated number plus 16. You can
use this to create the effect of an on-off button with the joystick. For
example,

IF (JOY 1 > 10) CLEARSCREEN

will clear the screen whenever this command is given with joystick l's button

pressed down. (The button effect is not included in the original TI Logo.)

Warning: JOY 1 and JOY 2 will output incorrect values if the ALPHA LOCK
key is down..

NOBEEP Takes no inputs. Stops the tone started by BEEP.

PRINT Example:

PRINT "HI

HI

PRINT [HELLO OUT THERE]

HELLO OUT THERE

-

fig

Prints its input and moves cursor to the next screen line. When PRINT prints
lists, the outermost pairof brackets is not printed. ^

PRINTCHAR Abbreviated PC -,

Takes a tile number as input, and prints the corresponding tile (character) at
the current cursor position.

-

RC? Takes no inputs. Outputs TRUE if a keyboard character is pending (i.e., the \
character input buffer is not empty); otherwise outputs FALSE. ^

READCHAR Abbreviated RC j
Takes no inputs. Outputs the least recent character in the character buffer, or ^
if empty, waits for an input character.

READLINE Abbreviated RL

Takes no inputs. Waits for an input line to be typed, terminated with ENTER.
Outputs the line (as a list).

TYPE Like PRINT, but does not move cursor to the next line after printing.

WAIT Takes one numeric input and pauses the computer for that many sixtieths of
a second.

(gjiij

i&&

(ji

Glossary of Logo Primitive Commands / 231

12.9. Naming

CALL Example:

CALL7"LUCKYNUMBER

CALL [ALPHA BETA GAMMA] "TESTWORDS

Equivalent to MAKE with the order of the inputs reversed.

MAKE Example:

MAKE "APPLE 50

PRINT :APPLE

50

Takes two inputs, the first of which must be a word. Assigns the second input
to be the value associated with the first input.

THING Example:

MAKE "APPLE 50

PRINT THING "APPLE

50

Outputs the value of its input (which must be a word). THING "XXX can be
abbreviated as :XXX.

12.10. Filing and Managing Workspace

Workspace consists of all currently defined procedures and all names and
their associated values. Workspaces can be stored in files on disk or on
cassette tape.

ERASE Example:

ERASE SQUARE or ERASE "SQUARE

{gets rid of the procedure named SQUARE}
ERASE :X or ERASE "X

{gets rid of the variable named X}

Warning: ERASE "X erases both a variable and a procedure named X.

PA Prints all procedures and names.

PN Prints all currently defined names.

PO Example:

PO SQUARE

TO SQUARE

REPEAT 4 [FORWARD 50 RIGHT 90]
END

232 / TI LOGO

Takes a procedure name as input and prints the definition of the procedure.

PP Prints the tile lines of all currently defined procedures.

PRINTOUT Takes no inputs. Prints all your procedures on a thermal printer or RS232
printer. See Section 5.2. (Not included in the first release of TI Logo.)

RECALL Takes no inputs. Reads information from the cassette tape or the disk. See
Section 5.2.

SAVE Takes no inputs. Transmits information to cassette tape or disk. See
Section 5.2.

12.11. Music Primitives

TI Logo II includes the ability to generate music in up to three-voice
harmony. You construct music by using commands, such as NOTE, and place
the notes in a music buffer. Afterwards, you use the command PLAYMUSIC

to play the notes that have been placed in the buffer.

CHROMATIC Changes meaning of pitch designations. See MAJOR.

DRUM Example:

DRUM [3 4 6 8]

Takes a list of numbers as input, and signals a "drumbeat" with the
designated durations between beats. "Beats" are placed in the music buffer
to be played by PLAYMUSIC.

LEGATO Controls "dead time" inserted between notes. See STACCATO.

LOOPMUSIC Plays the music in the buffer repeatedly. You can continue to execute Logo
commands while music is playing. To stop music, use SETVOICE 0.

MAJOR As opposed to CHROMATIC. Changes the meanings of the pitch
designations. In MAJOR mode, 0 is middle C and each unit is a note on the
C scale. In CHROMATIC mode, each unit is a half-step. CHROMATIC is the
default.

MUSIC Example:

MUSIC [0 3 5 7] [4 2 2 8]
or

MUSIC [0 3 5 7] 4

Takes as input two lists: a list of pitches and a list of durations, and places
these in the music buffer. If the lists are not of the same length, the longer
one is truncated. If a single number is specified as the duration, that duration

Lii&.

jfl&j

&

Lm

nifiM

Glossary of Logo Primitive Commands / 233

is used for each of the pitches. Volume is taken as the value specified by the
previous SETVOLUME command.

NOTE Example:

NOTE 3 8 7

Takes three numbers as inputs, specifying the duration, pitch, and volume
for a note, and places that note in the music buffer.

PLAYNOTE This is equivalent to playing a note from the music buffer, and then WAITing
for the duration of the note. Consecutive PLAYNOTE commands will play
consecutive notes. This command can function with only one voice at a time.

If the music buffer contains notes for more than one voice, PLAYNOTE will

use the notes for the current voice as designated by SETVOICE. PLAYNOTE
can be used to synchronize music playing with other Logo commands, as is

illustrated in Section 9.3.

PLAYMUSIC Abbreviated PM

Plays the music in the buffer. Logo music plays simultaneously while
commands are executed, so that after giving the PLAYMUSIC command, you

can proceed to execute other Logo commands while the music is playing.

REST Takes a number as input and inserts a rest of that duration in the music

buffer.

SETTEMPO Takes a number as input and sets the tempo in counts per minute. With a

tempo of T, a note of duration D will last (60/T) *D seconds. The default
value of T is 300.

SETVOICE Takes a number 0 through 4 as input. 1, 2, or 3 select one of the three voices.
Subsequent note commands will be directed to that voice. An input of 4
selects the noise generator. An input of 0 clears the music buffer.

SETVOLUME Takes a number 0 through 15 as input and sets the volume. 0, the default
volume, is the softest, 15 the loudest.

STACCATO In contrast to LEGATO, the default condition. Controls "dead time" inserted

between notes. For LEGATO, a dead time of 5/60 second will be used. For

STACCATO, the note will sound for 5/60 second and the remainder will be

dead time. For notes of duration less than 6/60 second, (n - l)/60 will be
used in place of 5/60.

234 / TI LOGO td

12.12. Debugging Aids l

CONTINUE Takes no inputs. Can sometimes be used to resume execution from a paused »
state (entered via AID or DEBUG).

DEBUG Takes no inputs. Controls an option whereby errors will enter a pause state,
rather than return to top command level. See Section 5.3.

TRACEBACK Takes no inputs. When called within a procedure, prints the chain of
procedure calls from the current procedure back to top level.

12.13. Editing Commands

This section describes the special keys that are used with the procedure
editor. Each key is used while simultaneously pressing the FCTN key.

arrow keys Move the cursor one space up, down, right, or left.

BACK Exits the editor and processes definitions.

BEGIN Moves the cursor to the beginning of the current line.

CLEAR Deletes all characters on the current line, from the cursor rightwards.

DEL Deletes the character at the current cursor position.

ERASE Deletes the character to the left of the cursor, and moves the cursor one space

to the left.

PROC'D Moves the cursor to the right end of the current line.

12.14. Other Special Keys

This section describes special keys used in Logo other than for editing.

AID Stops procedure execution and enters a pause break. See Section 5.3.

BACK Stops, execution and returns control to top level. Also used to exit shape
editors.

QUIT Resets the computer, destroying all programs and data in memory. Don't
press QUIT unless you are finished using Logo.

ERASE Deletes the character to the left of the cursor and moves the cursor one space

to the left.

J

(a&tf

(jflj

•HOjljgJ

t#tafl

Glossary of Logo PrimitiveCommands / 235

12.15. Miscellaneous Commands

BYE Leaves TI Logo.

CONTENTS

.HELP

.GC

.NODES

Outputsa list of all words currently being used in the workspace. (Not
included in the first release of TI Logo.)
Prints a list of all the keywords in TI Logo. (Not included in the first release
of TI Logo.)
Forces a garbage collection, reclaiming unused storage. (Not included in the
first release of TI Logo.)
Outputs the number of currently free nodes. This is a measure of how much
storage is available in workspace. (Not included in the first release of TI
Logo.)
Causes the rest of the line not to be evaluated. (Can be used to include
comments in procedures.)

12.16. Error Messages

• TELL ME HOW TO

{something}

• {something}
HAS NO VALUE

When Logo encounters an error, it signals that fact by halting program
execution and printing a message of the form:

{message}
AT LEVEL {level}LINE {line} of {procedure}

For example:

TELL ME HOW TO FORWAXD

AT LEVEL 1 LINE 2 OF BOX

In general, {message} is a description of the error, {line} is the linenumber
at which the error occurred, {procedure} is the name of the procedure
containingthat line, and {level} tells "how many levels away from top level"
Logo was running when the error occurred. That is to say, level 0 means that
Logo was executing a line directly typed in, level 1 means executinga line in a
procedure that wascalled at level 0, level 2 means executing a line in a
procedure that was called at level 1, and so on.

This happens when Logo does not recognize the name of the procedure you
are trying to run. Common causes are that you forgot to define the
procedure in question, or that you used the wrong name. Typingerrors also
commonly cause this. For example, if you type FORWAXD 100 instead of
FORWARD 100, you will get the error TELL MEHOWTO FORWAXD.

This happens when you refer to the value of a name, but there is no such
name in the environment. The causes are similar to those for the "no
procedure" error message. Another cause is confusion between the local

variables in a procedureand the global variables. For example, defining and
running the procedure

236/TI LOGO id

TO INC :X

OUTPUT :X + 1

END

creates a variable X that is local to INC, but this does not mean that there is a

global variable named X.

• TELL ME MORE A procedure was called with too few inputs.

• NOTHING BEFORE THE

{infix-operator} This happens when an infix operator is called with nothing before it. For
example,

PRINT * 3

will give the error NOTHING BEFORE THE *.

• {primitive}
DOESN'T LIKE {data} This happens whenyou try to use an operation with a kind of data that it

AS INPUT cannot handle. For example,

PRINT 1 + "X

results in + DOESN'T LIKE X AS INPUT

• TELL ME WHAT TO j
DO WITH {data} This occurs in procedures when you generate some data and then don't say I

what to do with it. (In most cases, you probably meant to OUTPUT it.) For

example: -,

TO SQUARE :X <J
:X*:X

END j

SQUARE 5 «*
TELL ME WHAT TO DO WITH 25

AT LEVEL 1 LINE 1 OF SQUARE

People often make this error in writing recursive procedures:

TO FACTORIAL :N

IF :N = 0 OUTPUT 1

:N * (FACTORIAL :N - 1)

END

PRINT FACTORIAL 1

TELL ME WHAT TO DO WITH 1

AT LEVEL 2 LINE 1 OF FACTORIAL

The problem here is that FACTORIAL should have an OUTPUTat the
beginning of its second line.

(jj»

mil

^g GlossaryofLogo Primitive Commands / 237

r • {procedure}
i DIDN'T OUTPUT This happens when you try to use the value returned by a procedure, but the

procedure didn't output anything. For example,

I" TO PRINT.SQUARE :X

L PRINT* *:X
END

[FORWARD PRINT.SQUARE 4

PRINT.SQUARE DIDN'T OUTPUT

sa • OUT OF SPACE This happens when you have used up all available storage.

• YOU TRIED TO

DIVIDE BY ZERO This happens when the QUOTIENT or / operation is called with zero as the
divisor.

ifoitfl

L

• {object}
CAN'T{something} This happens when you try to perform a graphic operation when the current

object is not of the type that can do that operation. For example,

j TELLTURTLE
SETSPEED 100

r TURTLE CAN'T SETSPEED

k*3 • OUT OF INK The turtle has used up all available tiles for drawing. To continue drawing,
you must first clear the screen.

La • STOPPED Occurs when you have pressed the BACK key to stop a procedure.

r • PAUSED Occurs when you have pressed the AID key to temporarily halt a procedure.

• A LABEL IS

r OUT OF PLACE

^ • THEN IS
OUT OF PLACE

r
L •ELSE IS

OUT OF PLACE These three messages all mean that you used the indicated primitive in a
f" context in which it doesn't make sense. (A label is signaled by the :.) Some
la, lines that would generate such messages are

PRINT 5 + X:

FORWARD 100 THEN PRINT 5

238; T I LOGO

• {something} WAS GIVEN
INSTEAD OF

TRUE OR FALSE A command which needs TRUE or FALSE as input was given another value
instead. This can occur if you forget to include an = in the input to IF or

TEST as in this example:

IF HEADING 0 STOP

• {primitive} MUST BE IN A
PROCEDURE This happens, for example, if you use the OUTPUT,' STOP, or GO commands

directly at top level rather than in a procedure.

• PROCEDURE NOT BEING

DEFINED This means you tried to use END as a command in a procedure line. (You
most likely meant to use STOP instead.) Another way to get this error is to

explicitly include an END command in the list of lines given to DEFINE.

• WHERE IS THE LABEL This happens if you try to GO to a label that was not defined in the

procedure.

• UNEXPECTED ")" Logo has run across a close parentheses for which there was no
corresponding open parentheses.

MISMATCHED BRACKETS Logo has run across a close bracket for which there was no corresponding

open bracket.

TOO MANYSUBLISTS You tried to type in a list that was too deep (i.e., too many levels of open

brackets). In the current implementation, the maximum is 14.

OUT OF NOTES The music buffer is full. You must reset it (using SETVOICE 0) before

adding more notes.

• SENTENCEIS TOO LONG Occurs when the output of a SENTENCE command results in a list that has

too many elements.

M«M

(Sj

1*

l»

J

j

r References

f
i

[iagi

1. Abelson, H. and diSessa, A. Turtle Geometry: The Computer as a
Medium for Exploring Mathematics. MIT Press, Cambridge, MA, 1981.

2. Bamberger, J. "The Development of Musical Intelligence I: Strategies for
Representing Simple Rhythms." Memo 342, MIT Artificial Intelligence
Laboratory, 1975.

3. Bamberger, J. "The Development of Musical Intelligence II: Children's
Representation of Pitch Relations." Memo 401, MIT Artificial Intelligence
Laboratory, 1976.

4. Bamberger, J. "Logo Music Projects: Experiments in Musical Perception
and Design." Memo 523, MIT Artificial Intelligence Laboratory, 1979.

5. Bowles, K. Problem Solving Using Pascal. Springer-Verlag, New York,
1977.

6. diSessa, A. "Unlearning Aristotelian Physics: A Study of
Knowledge-Based Learning." Cognitive Science (in press).

7. Feurzeig, W, Papert, S., Bloom, M., Grant, R., and Solomon, C.
"Programming Languages as a Conceptual Framework for Teaching
Mathematics." Report 1889, Bolt, Beranek and Newman, Inc., November,
1969.

8. Feurzeig, W, Goldenberg, E. P., Lukas, G., Manis, V., Rubenstein, R.,
and Stachel, R. "The Logo-S Language and the Portable Logo System."
Bolt, Beranek and Newman, Inc., 1980.

9. Goldberg, A., Robson, D., and Ingalls, D.H.H. Smalltalk-80: The
Language and ItsImplementation. Addison-Wesley, Reading, MA, 1982.

10. Goldenberg, P. Special Technologyfor Special Children. University Park
Press, Baltimore, 1979.

11. Greenberg, B. "Notes on the Programming Language Lisp." MIT
Student Information Processing Board, 1978.

12. Howe, J.A.M., O'Shea, T., and Lane, F. "Teaching Mathematics
through Logo Programming: An Evaluation Study." Department of
Artificial Intelligence, University of Edinburgh, 1977.

240 TI LOGO

13. Kay, A. "Microelectronics and the Personal Computer." Scientific
American (September 1977).

14. Papert, S. and C. Solomon. "NIM: A Game-Playing Program." Memo
254, MIT Artificial Intelligence Laboratory, 1970.

15. Papert, S. Mindstorms: Children, Computers, andPowerful Ideas. Basic
Books, New York, 1980.

16. Papert, S., diSessa, A., Watt, D., and Weir, S. "Final Technical Report
to the National Science Foundation: Documentation and Assessment of a
Children's Computer Laboratory." Memos 52, 53, MIT Logo Project, 1980.

17. Weir, S. "Logo and the Exceptional Child." Kilobaud Microcomputing 5,
9 (September 1981).

18. Weizenbaum, J. Computer Power andHuman Reason. W. A. Freeman &
Co., San Francisco, 1976.

19. Winston, P. and Horn, B. Lisp. Addison-Wesley, Reading, MA, 1981.

J

j

IM

jm

£ti$

t*m

IfAfgp

L

lfe*n

lim\

KEYBOARD REFERENCE GUIDE
Note that the key sequences required toaccess special functions depend onthe type of
computer console you have.

TT-99/4 TI-99/4A

Causes the computer to pause.AID AID

(SHIFT A) (FCTN 7)

BACK BACK

(SHIFT Z) (FCTN 9)

BEGIN BEGIN

(SHIFT W) (FCTN 5)

CLEAR CLEAR

(SHIFT C) (FCTN 4)

DELETE DELETE

(SHIFT F) (FCTN1)

ERASE ERASE

(SHIFT T) (FCTN 3)

PROC'D PROC'D

(SHIFT V) (FCTN 6)

T T

(SHIFT E) (FCTN E)

(SHIFT S)

(SHIFT D)

I

(SHIFT X)

SPACE

(FCTN S)

(FCTN D)

i

(FCTN X)

SPACE

• Leaves the Save and Recall Modes and returns the
computer to the mode it was in.

• Stops a procedure.
• Leaves the Edit Mode, MAKESHAPE and

MAKECHAR.

Moves thecursorto the beginning of the line in the
Edit Mode.

• Clears theMAKESHAPE andMAKECHAR grids.
• Eraseswhat is aboveand to the right of the cursor in

the Edit Mode.

• Erases what is above the cursor.

• Moves a line up one line if the cursor is at the end of
the line in the Edit Mode.

• Erases what is one space to the left of the cursor.
• Moves a line up one line if the cursor is under the first

character of a line in the Edit Mode.

Moves the cursor to the end of the line in the Edit Mode.

• Movesthe cursor up one line in the Edit Mode.
• Blackens a square on the MAKESHAPE and

MAKECHAR grids as thecursor moves upone
square.

• Moves the cursorleft one spacein the EditMode.
• Blackens a square on the MAKESHAPE and

MAKECHAR grids as the cursor moves left
one square.

• Moves the cursor rightone spacein the EditMode.
• Blackens a square on the MAKESHAPE and

MAKECHAR grids as the cursor moves right
one square.

• Moves the cursor down one line in the Edit Mode.
• Blackensa square on the MAKESHAPEand

MAKECHAR grids as the cursor moves down
one square.

• Leaves a blank space in thetype in theSprite and
Turtle Modes.

• Reviews file names in the Save and Recall Modes.

[] Types a left
(SHIFT 4) (FCTN R

OR SHIFT 4)

(Continued)

241

242/TI LOGO

[
(SHIFTS)

QUIT

(SHIFT Q)

]
(FCTN T

OR SHIFT 5)

QUIT

(FCTN =)

Types a right bracket.

Stops TI LOGO and returns to the master title screen.

i

3

o

la

is

a

jl

'1

a

Q

o

i

lii*f|

L

INDEX

*, 99, 221

+ , 99,221

-, 99, 221

/, 99, 221

:. 111,231

;, 235

<, 35, 227

=, 35, 227

>, 35,227

AID key, 1,96, 234
ALL, 71

ANIMAL program, 204

BACK, 6,215

BACKGROUND, 215

BACK key, I, 12, 15,22, 31,76,
97, 234

BEEP, 229

BEGIN key, 1, 15, 234
BF, 104, 222

BG, 215

BIG, 71,215, 219
BK, 215

BL, 104, 222

BOTH, 117,226

BUTFIRST, 104, 107, 172, 222
BUTLAST, 104, 107, 171,222
BYE. 235

CALL, 231

CARRY, 67, 215, 217
CB, 21, 216

CHARNUM, 229

CHROMATIC, 165, 232
CLEAR key, 1, 15, 234
CLEAR key in shape editor, 79
CLEARSCREEN, 7,70. 215

CLEARSCREENANDSPRITES, 90
CM, 160

CN, 229

COLOR. 21.71. 216

COLORBACKGROUND, 21,216
CONTENTS, 235

CONTINUE, 234
COS, 156

CS, 215

DEBUG, 98. 234

DEFINE, 194,225
DEL key, I, 15, 234
DIFFERENCE, 221
DOCTOR program, 201
DOT, 216

DRUM, 168, 232

EACH, 73, 216

EDIT, 17, 225

EITHER, 117, 226

ELSE, 115, 226

END, 13, 18,225

ENTER key, 1,4

ENTER key, in file system, 94
ERASE, 91, 231

ERASE key, 1, 8, 15,234

F, 104

FALSE, 117, 227

FCTN key, 1, 76
FD, 216

FIRST, 104, 107, 177, 222
FOR, 199

FORWARD. 6, 216

FPUT, 186, 223

FREEZE, 70, 216, 220

GC, 235

GO, 228

GREATER, 227

HEADING, 20, 71.216

HELP, 235

HIDETURTLE, 7. 217

HOME. 20, 70, 217

244 Index

IF, 35, 115,226

IFF. 115,226

IFT. 115,226

INSTANT. 191, 194

IS, 227

JOY, 229

LAST, 104, 106, 174, 222
LEFT. 6,217

LEFT, for sprites, 70
LEGATO, 164, 232, 233

LENGTH, 177, 223

LESS, 228
LIST operation, 187
LOOKLIKE, 217

LOOKUP, 189

LOOPMUSIC, 168,232

LPUT, 186, 223

LT, 217

MAJOR, 160, 165. 232
MAKE, 72, 110,231

MAKECHAR, 79, 217

MAKEROWS, 86, 142

MAKESHAPE, 67, 75, 217

MC, 79,217

MEMBER?, 178

MS. 217

MUSIC, 159,232

NOBEEP, 229

NODES, 235

NOT, 117, 226

NOTE, 166, 233

NOTURTLE, 6,22, 217

NUMBER?, 228

NUMBEROF, 217

OP, 228

OUTPUT, 100, 228

PA, 91,231

PC. 148, 230

PD. 217

PE, 20,217

PENDOWN, 7, 217

PENERASE, 20, 217

PENREVERSE. 20. 217

PENUP, 10, 218

PICK, 176

PICKRANDOM, 177

PLAYMUSIC, 159,233

PLAYNOTE. 169, 233

PM, 159,233

PN, 91, 231

PO, 17,91,231

POLY, 33,75

PP, 17,91,232

PR, 20,217

PRINT, 4, 147, 230

PRINTCHAR, 148, 230

PRINTOUT, 232

PROC'D key, 1, 15,234
PRODUCT, 222

PT, 80,218

PU, 218

PUTSPRITE, 139

PUTTILE, 10, 218

QUIT key, 1,234
QUOTIENT, 222

RAND, 103

RANDOM. 103, 222

RC?. 150,230

RC, 148,230

READCHAR, 148,230

READLINE, 109, 148,230
READNUMBER, 98, 124

RECALL, 92, 232

REMAINDER, 103

REPEAT, 228

REPEAT command, 11

REST, 164,233

REVERSE, 172,223

RIGHT, 10,218

RIGHT, for sprites, 70
RL, 109,230

ROTATE, 224

RT, 218

RUN, 191, 229

SAVE, 92,232

SC, 20,67,218

SE, 108,224
SENTENCE, 81, 108, 121, 175, 187
SETCOLOR, 20,67,81,218
SETCOLOR, for tiles, 83
SETHEADING, 20, 216, 218

SETSPEED, 69, 219

SETTEMPO, 164, 233

SETVOICE, 160, 167, 233

SETVOLUME, 164, 233

SH, 218

bM

ti$

SHAPE, 71,219

SHIFT key, 1
SHOWTURTLE. 7, 219
SIN, 156

SIZE. 215, 219

SMALL, 71,215,219
SPEED, 219

SPRITE command, 219
SS, 69,219

ST, 219

STACCATO, 164, 233
STOP. 34,229
SUBST, 189

SUM, 222

SV, 71, 219

SX, 219

SXV, 219

SXY, 20,71, 219
SY, 220

SYV. 220

TELL, 5,21,67,71,79,215,220
TEST, 115,227

TEXT, 198,225

THAW, 70,216, 220
THEN, 35, 227

THING?, 112, 228
THING. Ill, 231
TILE, 220

TO, 13,225

TRACEBACK, 97, 234
TRUE, 117, 228

TURTLE primitive, 220
TYPE. 147, 230

WAIT, 78, 230

WHERE, 220

WHILE, 199

WHO, 75, 217, 220

WORD ?, 106, 228
WORD, 104, 105, 224

XCOLUMN, 139

XCOR, 20,71, 220
XVEL, 220

YCOR, 20, 71,220
YN, 73

Y0URNUMBER, 73,216,221
YROW, 139

YVEL, 221

Index 245

Abbreviations, 10
Absolute value, 102

Activation, 37, 39
Addition, 99
Arcs, 29

Arithmetic, 99
Arrow keys, 15, 234
Arrow keys in shape editor, 75
Association list. 188

Background color, 81
Bamberger, Jeanne, 162
Binary tree, 39
Body, 13
Bowles, K.. viii

Brackets, II

Cartesian coordinates, 20
Cassette tape, 92
Character input, 148
Characters, as tiles, 82
Circles, 29
Color, 20
Color groups for tiles, 81
Colors, for tjles, 81
Conditional, 34, 115
Coordinates, for tiles and sprites, 138
Cursor. 4

Debugging, 96, 234
DiSessa, Andy, viii. x, 152
Disk files, 93
Diskettes, initializing, 93
Division, 99
Dots, 24

Drescher, Gary, ix
Dynaturtle, 152

Edit mode, 22

Editing commands, summary, 234
Empty list, 107
Error messages, 8, 18, 235
Errors, 235

Errors, typing, 8

Feurzeig, W., ix
Filing, 231
Foreground color. 81
Free variables, 114

246 Index

Gargarian, Greg, x
Global variables. 113

Goldberg. A., viii
Graphical objects. 21. 67
Graphics commands. 215
Gross. Mark, ix

Hard copy, 95
Hardebeck, Edward, ix

Hierarchical structure. 184

How. J., ix

Infix operators. 120
Input. 7. 23
Integers. 99

Kay. A., viii
Keyboard, 1

Level. 18. 97

List operations. 222
Lists, vii, II. 106. 183

Local variables. 114

Modes. 22

Multiplication. 99
Music. 159

Music buffer. 159

Names. 26. 110

Nim. 128

Noturtle mode. 22

Number. 99

Numbers are not words. 106

Numeric Operations. 221

Papert. Seymour, ix. x. 28. 127. 128
Parentheses. 119

Pause. 96

Pause break. 97

Physics. 152
Pig Latin, 179
Plavnote. 233

Predicate. 35. 115. 227

Prefix operators. 120
Primitive, vii. 12

Printer, 95

Private library. 26, 37
Procedure, 12. 100

Procedure, body. 13
Procedure, title. 13

Procedure editor. 14

Prompt, 3. 97. 109

Quiz program. 123
Radix conversion, 180

Random numbers. 103

Recursion. 32. 36. 39. 175

Recursive designs. 42
Reduction step. 175

Sentence generator. 125
Shape editor. 75
Shapes, predefined. 67
Solomon. Cynthia, x. 128
Spaces in Logo lines. 118
Sprite, 67
Stop rule. 40. 175
Subprocedure. 14
Subtraction. 99

Syntax. 118

Tail recursion. 36

Thermal printer. 95
Tile, 67, 79

Title, 13

Title line. 13

Tree, 39

Tree structure. 184

Tuneblocks, 162

Turtle, 5, 6

Turtle mode, 22

Watt. Dan. x. 152

Weizenbaum, J.. 201

Word operations. 222
Workspace. 91.231
Wraparound. 9

ta

ia£

i«i

t<8J

{d

ittitj

Ls

La

(gj

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012
	content013
	content014

	back-cover

