

/•Sffly

/•'•J.tW^

fcx^

KIBS AND HE II dd/4A

BY

Edward H. Carlson

Department of Physics and Astronomy
Michigan State University

Illustrated by
Paul D. Trap

fflDATAMOSI
8943 Fullbright Avenue

Chatsworth, California 91311

H DATAMOST
ISBN 0-88190-000-1

COPYRIGHT © 1982 BY DATAMOST INC.

This manual is published and copyrighted by DATAMOST INC. Copying, duplicating, selling or
otherwise distributing this product is hereby expressly forbidden except by prior written consent of mm,
DATAMOST, INC.

The word TI and TI logo are registered trademarks of Texas Instruments Incorporated. m^

Texas Instruments Inc. was notin any way involved inthe writing orother preparation ofthis ^
manual, nor were the facts presented here reviewed for accuracyby that company. Use of the ^
term TI should not be construed to represent any endorsement, official or otherwise, by Texas
Instruments Incorporated.

/sappy

/fl^y

A»ftr^\

/TrWtl'ltirA.

TABLE OF CONTENTS

TO THE KIDS 5
TOTHEPARENTS 6
TO THETEACHER 7
ABOUT PROGRAMMING 8
ABOUT THEBOOK '..'. 9

INTRODUCTION

1 NEW, PRINT, REM, AND RUN 10
2 COLOR ANDSOUND " ' 17
3 CALL CLEAR, LIST ' 21
4 SPECIAL KEYS 28
5 THE INPUT STATEMENT, STRING VARIABLES 33
6 TRICKS WITH PRINT 37
7 THE LET STATEMENT 42
8 THE GOTO STATEMENT 46
9 TAB AND DELAY LOOPS 52

10 INTRODUCING NUMBERS 56
11 FOR-NEXT LOOPS 62
12 RANDOM NUMBERS AND THE INT FUNCTION 67
13 THE IF STATEMENT 72
14 SAVING TO TAPE 79

GRAPHICS, GAMES, AND ALL THAT

15 SHORTCUTS AND GRAPHICS 86
16 THE IF STATEMENT WITH NUMBERS, END 93
17 COLOR GRAPHICS 97
18 COMMAND AND RUN MODES 103
19 DATA, READ, AND RESTORE 107
20 SOUND -mA
21 HI-RES GRAPHICS H9
22 ASCII CODE, KEYBOARD, ON ... GOTO 197
23 SECRET WRITING AND CALL KEY 134
24 PRETTY PROGRAMS, GOSUB, RETURN .'.'!!!! "139

ADVANCED PROGRAMMING

25 LINE EDITING 144
26 SNIPPING STRINGS: SEG$, LEN, POS 149
27 SWITCHING NUMBERS WITH STRINGS 154
28 JOYSTICKS FOR GAMES 150
29 LONG PROGRAMS 163
30 ARRAYS AND THE DIM STATEMENT 16»
31 LOGIC: TRUE AND FALSE 17S
32 USER FRIENDLY PROGRAMS 178
°" DEBUGGING, STOP, CON 18433

ANSWERS TO ASSIGNMENTS 1Q1
GLOSSARY ™7
RESERVED WORDS £R
INDEX OF COMMANDS 997
ERROR MESSAGES 99c,
index ::g£

ACKNOWLEDGEMENTS

My sincere thanks go to Paul Sheldon Foote for suggesting I write this book.

I helped prepare and teach in "The Computer Camp" summer camp at Michigan State
University for these last two summers. I am deeply grateful to my fellow teachers and
board members at the summer camp: Mark Lardie, Mary Winter, and John Forsyth,
each of whom shared their teaching experiences with me and suggested techniques for
communicating the material in an effective way.

Mark Lardie has been especially generous in reading the typescript and offering
suggestions from his extensive experience in teaching computing to children under a
variety of formats.

Remembering the enthusiastic pleasure of the summer camp students has encouraged
me during the months spent in preparing this book.

Several families have used the first version of this book in their homes and offered

suggestions for improvement. I especially wish to thank Steve Peter and his girls
Karen and Kristy; George Campbell and his youngsters Andrew and Sarah; Beth
O'Malia and Scott, John and Matt; Chris Clark and Chris Jr., Tryn, Daniel, and Vicky; ^
and Paul Foote and David.

John Decarli of the Computer Mart in East Lansing has helped me cope with the ^
inevitable equipment breakdown crises. _^

My children offered ever present examples of juvenile taste and tested lessons up to **>
the tantrum limit. With my wife, they recognized my need for long periods in the ^
writing den and for quiet in the house. So my final and heartfelt thanks go to my wife
Louise and our children Karen, Brian and Minda. T

f^m:ji/i!\

^T\

/Wwfc.\

/jSBft:iv\

/£«apy

TO THE KIDS

This bookteaches you how to write programs for the TI 99/4A computer.

You will learn how to make your own action games, board games and word games. You
may entertain your friends with challenging games and provide some silly moments at
your parties with short games you invent. '"'

Perhaps your record collection or your paper route needs the organization your special
programs can provide. If you are working on the school yearbook, maybe a program to
handle the finances or records would be useful.

You may help your younger sisters and brothers by writing drill programs for
arithmetic facts or spelling. Even your own schoolwork in history or foreign language
may be made easier by programs you write.

How to Use This Book: Do all the examples. Try all the assignments. If you get stuck,
first go back and reread the lesson carefully from the top. You may have overlooked
some detail. After trying hard to get unstuck by yourself, you may go ask a parent or
teacher for help.

There are review questions for each lesson. Be sure you can answer them before
announcing that you have finished the lesson!

MAY THE BLUEBIRD OF HAPPINESS EAT ALL THE BUGS IN YOUR
PROGRAMS!

WFZEk
WFUtftf7$kra/

TO THE PARENTS

This book is designed to teach TI BASIC to youngsters in the range from 10 to 14
years old. It gives guidance, explanations, exercises, reviews and "quizzes." Some
exercises have room for the student to write in answers that you can check later.
Answers are provided in the back of the book for assignments. Your child will probably
need some help in getting started and a great deal of encouragement at the sticky
places.

Learning to program is not easy because it requires handling some sophisticated ^
concepts. It also requires accuracy and attention to detail which are not typical
childhood traits. For these very reasons it is a valuable experience for children. They
will be well rewarded if they can stick with the book long enough to reach the fun ^
projects whichare possibleonce a repertoire of commands is built up. ^

How to Use The Book: The book is divided into 33 lessons for the kids to do. Each /*rN
lesson is preceded by a NOTES section which you should read. It outlines the things to *m
be studied, gives some helpful hints, and provides questions which you can use verbally
(usually at the computer) to see if the skills and concepts have been mastered.

These notes are intended for the parents, but the older students may also profit by ^
reading them. The younger students will probably not read them, and can get all the
material they need from the lessons themselves. For the youngest children, it may be ^
advisable to read the lesson out loud with them and discuss it before they start work. «%

/K^\

6

TO THE TEACHER

This book is designed for students in about the 7th grade. It teaches TI BASIC on
cassette systems. The lessons contain explanations (including cartoons), examples,
exercises and review questions. Notes for the instructor which accompany each lesson
summarize the material, provide helpful hints and give good review questions.

The book is intended for self study, but may also be used in a classroom setting.

I view this book as teaching programming in the broadest sense, using the BASIC
language, rather than teaching "BASIC." Seymour Papert has pointed out in
MINDSTORMS that programming can teach powerful ideas. Among these is the idea
that procedures are entities in themselves. They can be named, broken down into
elementary parts, and debugged. Some other concepts include these: "chunking" ideas
into "mind sized bites," organizing such modules in a hierarchical system, looping to
repeat modules, and conditional testing (the IF...THEN statement).

Each concept is tied to everyday experiences of the student through choice of language
to express the idea, through choice of examples and through cartoons. Thus metaphor
is utilized in making the "new" material familiar to the student.

ABOUT PROGRAMMING

There is a common misconception that programming a computer must be very similar
to doing arithmetic. Not so. The childhood activities that computing most resembles
may be playing with building blocks and writing an English composition.

Like a set of blocks, BASIC uses many copies of a small number of elements
(commands) which are combined in rather standardized ways to achieve an original end
result. As familiarity with the system grows, a "bag of tricks" is collected by the
programmer which allows each command to serve a larger number of functions, just as
the child first uses the "triangle block" in making roofs but later finds that two of them
make a splendid fir tree.

Like an essay, a program is a finished product which fulfills a specified need. The child
writing to the theme "How I spent my summer," adopts one of several working styles.
The beginner may be hung up in how to hold the pencil and how to spell. The same
child a few grades later will just start writing, not spending much time in forming good
paragraphs, much less in planning the overall structure of the composition. With
maturity comes freedom to move back and forth among the levels of concern, now
thinking about the overall form, and a few moments later paying attention to word
choice or punctuation.

Computing does have some similarities to arithmetic as seen by most children. There
are rigid rules to learn: procedures in arithmetic but only syntax in programming.
Even the tiniest mistake makes the whole result "wrong." (A more effective attitude in
programming is that "wrong" results are partly right and need debugging, a normal
and expected activity.) However, the limited scope for creativity in arithmetic
contrasts sharply with the emphasis on creativity in program writing.

/•ffii&iKN

/tMS.'S

s!Bn\

8

Programming offers general educational advantages not easily found elsewhere in a
child's experiences. The plasticity of the form, words on a screen which are created and
destroyed by the touch of a key, allows effort to be concentrated on the central features
to be learned. These features are balanced between analysis (why doesn't it work as I
want) and synthesis (planning on several size scales, from the program as a whole
down through loops and subroutines to individual commands). Learning on the
computer is efficient of effort. Errors of syntax are automatically pointed out by the
computer.

The analytical and synthetical skills learned in programming can be transferred to
more general situations and can help the child to a more mature style of thinking and
working.

ABOUT THE BOOK

The book is arranged in 33 lessons, each with notes to the instructor and each
containing assignments and review questions.

For instructors who feel themselves weak in BASIC or are beginners, the student's
lessons form a good introduction to BASIC. The lessons and notes differ in style. The
lessons are pragmatic and holistic, the notes and GLOSSARY are detailed and
explanatory.

The book starts with a bare bones introduction to programming, leading quickly to the
point where interesting programs can be written. See the notes for Lesson 5, THE
INPUT COMMAND, for an explanation. The central part of the book emphasizes more
advanced and powerful commands. The final part of the book continues this, but also
deals with broader aspects of the art of programming such as editing and debugging,
and user friendly programming.

The assignments involve writing programs, usually short ones. Of course, many
different programs are satisfactory "solutions" to these assignments. In the back of the
book I have included solutions for assignment problems, some of them written by
children who have used the book.

Lessons 14: SAVING TO TAPE and 18: COMMAND AND RUN MODES can be
studied anytime after the first lesson.

INTRODUCTION

INSTRUCTOR NOTES 1 NEW, PRINT, REM, AND RUN

This lesson is an introduction to the computer.

The contents of the lesson:

1. Turning on the computer.
2. Typing versus entering commands or lines. ENTER key. ^
3. The computer understands only a limited number of key words. ^
4. In this lesson, NEW, PRINT, REM, RUN.
5. What a program is. Numbered lines. ^
6. NEW clears the memory and the screen. ^
7. What is seen on the screen and what is in memory are different. This may be a hard

concept for the student to grasp at first. /"^
8. RUN makes the computer go to memory, look at the commands in the lines (in ^

order) and perform the commands. ^
9. One can skip numbers in choosing line numbers, and why one may want to do so.

Key words may be commands, statements, or functions. Most can be either a /—s
statement or a command, as the user wishes. I tend to call the latter "commands."
Later, after the student has seen many examples of each, the classification of keywords
is clarified. "n

QUESTIONS: ^

1. Write a program that will print your name.

2. RUN it.

3. Erase the program from memory (and the screen).

4. Try to RUNit. Whatdoes the computer say? Why? ^

5. Why do you usually skip numbers when numbering lines?

LESSON 1 NEW, PRINT, REM, AND RUN

GETTING STARTED

Turn on your computer. You will see:

READY--PRESS ANY KEY TO BEGIN

Press a key. You will see a menu that says:

PRESS

1 FOR TI BASIC

Press key "1." You will see:

TI BASIC READY

and a flashing square on a blue screen. This square is called the "cursor." When you see
it on the screen, the computer wants you to type something.

"Cursor" means "runner." The square runs along the screen showing where the next
letter you type will appear.

TYPING

Type some things. What you type shows on the TV screen.

COMMAND THE COMPUTER

Try this. Type: GIVE ME CANDY

and press the ENTER key. The computer says:

* INCORRECT STATEMENT

and sounds a tone from the TV.

(Be sure that you have the TV sound turned up.)

11

The computer understands only about 80 words. The words are called "key words."
You need to learn which words the computer understands.

Here are the first commands to learn:

NEW PRINT REM RUN

THE NEW COMMAND

Type: NEW

and press ENTER.

NEW empties the computer's memory so you can put your program in it. It also erases
the TV screen.

HOW TO ENTER A LINE

When we say "enter" we will always mean to do these two things:

1) type a line
2) then press the ENTER key.

Enter this line: 10 PRINT "HI"

The " marks are quotation marks.

To make quotation marks:

hold down the FCTN key and

press the key that has the P and the " on it.

(Did you remember to press the ENTER key at the end of the line?)

12

/So*rV

Now line number 10 is in the computer's memory.

It will stay in memory until:

you enter the NEW command

or you turn off the computer,

or you press FCTN QUIT (more in a later lesson)

Line 10 is a very short program

THE NUMBER ZERO AND THE LETTER "O"

It is easy to get zero and the letter "0" mixed up.

The computer always writes on the screen like this:

the zero is like this: zero Q

and the letter 0 like this: letter 0 0

This book writes zero like this: zero 0

Be careful to type zero, not "0," for numbers:

right 10 PRINT "HI"

wrong 10 PRINT "HI"

13

K»

WHAT IS A PROGRAM?

A program is a list of commands you wish the computer to do.

The commands are written in lines.

Each line starts with a number.

The program you entered above has only one line.

HOW TO RUN A PROGRAM

A moment ago you put this program in memory:

10 PRINT "HI"

Now enter: RUN

(Did you remember to press the ENTER key?)

The RUN command tells the computer to look into its memory for a program and then
to obey the commands it reads in the lines.

Did the computer obey the PRINT command? The PRINT command tells the
computer to print whatever is between the quotation marks.

The computer printed: HI

14

/Wffe^

/3SV

EXTRA STUFF WHILE THE COMPUTER RUNS

The screen turns green while the program is running

After the program is done, the computer prints

** DONE **

and then the screen turns blue again.

A LONGER PROGRAM

Clear the memory with NEW

(Did you remember to press ENTER afterward?)

Enter this program: 1 REM PROGRAM 2

2 PRINT "HI"

3 PRINT "FRIEND"

This program has 3 lines. Each line starts with a command.

Enter: RUN

What the program does:

Line 1 The computer skips this line because it is a REM.
Line 2 The computer prints "HI"
Line 3 The computer prints "FRIEND"

The REM command lets you put little notes to yourself in the program. REM means
"remark" or "reminder."

In line 1 we used REM to give a name to the program. The name is "PROGRAM 2."

The computer does the commands in the lines. It starts with the lowest line number
and goes down the list in order.

15

HOW TO NUMBER THE LINES IN A PROGRAM

Usually you will skip numbers when writing the program.

Like this: 10 REM PROGRAM 2

20 PRINT "HI"

30 PRINT "FRIEND"

It is the same program but has different numbers.

The numbers are in order, but some numbers are skipped.

You skip numbers so that you can put new lines in between the old lines later if the
program needs fixing.

Assignment 1:

1. Use the command NEW. Explain what it does.

2. Write a program that uses REM once and PRINT twice. Then use the command
RUN to make the program obey the commands.

3. What is the difference between "entering" a line and "typing" something?

16

INSTRUCTOR NOTES 2 COLOR AND SOUND

This lesson introduces the CALL SCREEN and CALL SOUND statements. We wish
to make plenty of "bells and whistles" available to the student to increase program
richness.

The idea of a "string constant," used in Lesson 1, is explained. The numbers appearing
in a string, for example the "19," cannot be used directly in arithmetic.

The CALL command calls a number of built-in subroutines:

CALL CLEAR erases the screen

CALL SCREEN colors the screen

CALL SOUND generates sounds
CALL HCHAR puts characters on screen
CALL VCHAR same, in vertical lines
CALL CHAR makes hi-res characters

CALL KEY gets char, from keyboard
CALL JOYST reads joystick position
CALL GCHAR reads char, from screen

The CALL subroutine commands are explained one by one as you go through the book.

The CALL SOUND command has 3 arguments.

CALL SOUND (length, pitch, loudness)

length 1 to 4250 is the duration of the sound in milliseconds

pitch 110 to 44732 is the pitch in hertz (cycles per second)

loudness 0 (loud) to 30 (off)

The CALL SOUND command is further explained in a later session.

QUESTIONS:

1. How do you do each of these things:
Make the computer "peep"?
Empty the memory and erase the screen?
Print your name?

2. What is a "string"?

3. What special key do you press to "enter" a line?

4. What is a command? Give some examples.

5. How do you make the screen change color?

6. Write a program to print "FIRE", make the screen turn red, and make the
computer peep.

17

LESSON 2 COLOR AND SOUND

tenter: NEW

NEWempties the memory and erases the screen. You are ready to start this lesson.

COLOR THE SCREEN

Enter: 10 REM COLOR THE SCREEN

20 CALL SCREEN*14)

RUN the program.

Line20tells the computer to change the screen color.

Rtile: The number in() after SCREEN tells what color the screen will be. Any
number from 1 to 16 is OK.

RUN it again trying different numbers.

The color changes back to blue as soon as the program is over.

THE COMPUTER PEEPS LIKE A BIRD

Add this line: 30 CALL SOUND<200»1500»10)

RUN it.

Did you hear it "peep"?

18

If you do not hear a tone, turn up the sound on your TV.

Put 500 in place of the 200. Now the peep lasts longer.

Put 800 in place of 1500. Now the sound is lower.

Try other numbers.

PRINTING AN EMPTY LINE

Run this: 10 REM SOME LINES

20 PRINT"HERE IS A LINE"

30 PRINT

40 PRINT"0NE LINE WAS SKIPPED"

Line 30 just prints a blank line.

STRING CONSTANTS

Look at these PRINT statements:

10 PRINT "JOE"

10 PRINT "«Da7ZX*X"

10 PRINT "IS"

10 PRINT "3.14159265"

10 PRINT "I 'M 14"

10 PRINT " "

19

Letters, numbers and punctuation marks are called"characters." Even a blank space is
a character. Look at this:

10 PRINT " "

Characters in a row make a "string."

The letters are stretched out like beads on a string.

A string between quotation marks is called a "string constant."

It is a string because it is made of letters, numbers and punctuation marks in a row.

It is a constant because it stays the same. It doesn't change as the program runs.

Assignment 2:

1. Write a program that prints your first, middle and last names.

2. Now add a "peep" before it prints each name. Make each "peep" a different tone,
deep for your first name, high for your last name.

3. Now make the screen change color for each name.

20

•/4m^i

fi&ty\tltb\

INSTRUCTOR NOTES 3 CALL CLEAR, LIST

In this lesson:

LIST, LIST 30
REM for titles, remarks
memory boxes holding lines
erase one line from memory
add a line between old lines

replace a line
drawings using PRINT commands

Your student needs to understand that the program is stored in memory even when it
is not visible on the screen, and that LIST just lists the program to the screen. The
special uses like LIST 100-300 and LIST -300will be taken up later.

The memory as a shelf of boxes is a key model of the computer that we will develop in
this book. It is an important tool in helping the student understand variables and the
detailed workings of complicated expressions in a statement.

REM as a remark command can be a little confusing to new students. It needs to be
distinguished both from PRINT and from just typing to the screen. Using print to
draw pictures is demonstrated. It is better to draw some at the end of each lesson than
to do a lot now. Drawing after lesson 4 helps develop line editing skills.

QUESTIONS:

1. How do you erase a line you no longer want?

2. Type CALL CLEAR. Now how do you show all of the program in memory on the
screen?

3. How can you replace a wrong line with a corrected one?

4. Suppose you want to put a line in between two lines you already have in memory.
How do you do this?

5. Explain how the computer puts program lines into "boxes" in memory. What does it
write on the front of the box?

21

LESSON 3 CALL CLEAR, LIST

Enter: NEW

Start each lesson with NEW to erase the memory and the screen.

PUT A PROGRAM INTO MEMORY

Now enter: 10 REM HOUSE

20 PRINT "LISTEN"

30 CALL SOUND(200*800»10)

40 CALL SOUND(300*600tl0)

50 PRINT "DID YOU HEAR THE DOORBELL?"

Run this 5 line program.

ERASING THE SCREEN

Now enter: CALL CLEAR

CALL CLEAR is a command to erase the screen. It doesn't erase the program in
memory. CLEAR means the same as "erase."

IS THE PROGRAM LOST FOREVER?

You can no longer see the program onthe screen. But the program is not lost. The
computer had stored the program in its memory. We can ask the computer to showus
the program again.

LISTING THE PROGRAM

Enter: LIST

and the computer will Ust the whole program on the screen. To see just one line of the
program, ask for it by number:

LIST 30

shows line 30 of the program.

22

^imfiS1"1 \

THE MEMORY

The computer's memory is like a shelf of boxes.

The name of the box goes on the front of each box.

At the start, all the boxes are empty and no box has a name.

When you entered: 10 REM HOUSE

the computer took the first empty box and wrote the name "Line 10" on the label.

Then it put the command REM HOUSE into the box and put the box back on the
shelf.

When you entered: 20 PRINT "LISTEN"

the computer took the second box and wrote "Line 20" on its label.

Then it put the statement PRINT "LISTEN" into the box and put that box into its
place on the shelf.

What did the computer do when you entered line 30?

23

ERASING A LINE FROM MEMORY

To erase one line of the program, enter the line number with nothing after it.

To erase line 20, enter:

20

You still see the line on the screen.

But do a LIST. You see that line 20 is gone from memory.

When you enter just a line number with nothingafter it, the computer

finds the box with that line number on it

empties the box

and erases the name off the iront of the box.

What does the computer do to the boxes when you give it the command NEW?

24

/ffr^

/fflttifN

^s^

/sS!n,,\

ADDING A LINE

You can add a new line anywhere in the program, even between two old lines. Just pick
a line number between any two existing hne numbers and type your line in. The
computer puts it into the correct place.

Enter NEW and this: 10 REM MORE AND MORE

12 PRINT

40 PRINT "MORE LINES WANTED"

List it and run it. Now add this line:

15 PRINT "STILL"

List and run it again.

FIXING A LINE

If a line is wrong, just type it over again.

For example, to change line number 40 in the above program:

Enter: 40 PRINT "NEEDS FIXING"

What did the computer do to the box named "Line 40" when you entered the line?

25

THE REM COMMAND

Use a REM command to put a title on your program.

Enter: NEW

10 REM REMARKS

20 CALL CLEAR

30 PRINT "LINE 10 DOES NOTHING"

*" 35 REM THIS LINE DOES NOTHING
RUN

What happens in each line of the program?

Line 10

Line 20

Line 30

Line 35

REM means "remark," or "reminder."

Use REM to give a title to the program

Use REM to write little notes in the program:

the notes are for you when you read the program

the notes are also for other readers.

Make the notes explain how the program works.

26

/ansa

PICTURE DRAWING

You can use the PRINT command to draw pictures.

Here is a picture of a car. Enter NEW then enter this program.

10 REM STANLEY STEAMER

15 CALL CLEAR

20 PRINT

30 PRINT" XXXXXX"

40 PRINT"XXXXXXXXXXXX"

50 PRINT" 0 0"

Don't forget to put the spaces in the PRINT lines! They are part of the drawing. Run
the program.

Assignment 3:

1. Add a line to the STANLEY STEAMER program to make the car honk its horn.

2. What command will Ust line 10 of the program?

3. How do you tell the computer to Ust the whole program on the screen?

4. What does the computer do (if anything) when it sees the REM command?

5. What is the REM command used for?

6. Use CALL CLEAR, CALL SOUND, REM, and PRINT to draw 3 flying birds on
the screen. Make each bird peep.

27

INSTRUCTOR NOTES 4 SPECIAL KEYS

This lesson concerns the arrow keys, the FCTN key, and the DEL key.

The strip overlay belongs in the slot over the "number" row of keys at the top of the
keyboard. It should be left there while the student is studying from this book.

The arrow keys are used with FCTN in moving the cursor around in the line currently
being worked on. Characters in the line are not affected by the cursor moving over
them. Wherever the cursor stops, you can type in new characters, replacing the old
ones. When all is satisfactory, the line can be entered in the computer by pressing
ENTER.

The deletion and insertion of characters in the current line are a little more tricky.
The DEL and FCTN keys are used for DELETE, and are explained in this lesson.
INS for INSERT is explained in the next lesson.

These methods work for the line you are currently typing. After you press ENTER,
the line is in memory. If you want to change a line already in memory, you must call it
up with the EDIT command. This is described in a later lesson.

QUESTIONS:

1. What is a "cursor"? What is it good for?

2. Have your student demonstrate how to edit a line. This includes using the arrow
keys to move the cursor to the interior of the line, modifying characters there, and
pressing the ENTER key.

3. Have your student demonstrate using the DEL key to delete a character from the
middle of a line.

4. Have your student demonstrate making a character repeat on the screen.

28

LESSON 4 SPECIAL KEYS

THE FCTN KEY

Find the FCTN key. "FCTN" means "function."

The FCTN key is a "helper" key. It helps other keys:

to fix errors in your typing
to stop a program that is running.

THE ARROW KEYS

Find these keys: FCTN

left arrow (on the S key)

right arrow (on the D key)

Now hold down the FCTN key and press the right arrow key.

The cursor moves right one space.

Now hold down both keys:

The cursor runs to the right.

Do the same with FCTN and the left arrow key.

FIXING ERRORS

The "arrow keys" help you fix errors in your typing.

Type: 10 REM ZRAGON (do not press RETURN)

29

Hold down the FCTN and left arrow keys to move the cursor (the flashing square)
over the "Z".

Type a "D" instead.

Now the line is correct, reading:

10 REM DRAGON

Press ENTER to store the correct line in the memory.

REPEATING A KEY

Hold down the H key. You get a row like this:

HHHHHHHHHHHHHHHHHHHHHHHHH

This works for most keys.

Try holding down: the space bar

the ENTER key

the period key.

Repeatinga key is useful when drawing pictures.

Assignment 4A:

1. Type aline with your name in it. Misspell your name on purpose. Then use FCTN
and the arrow keys to fix thehne. When you are done, press ENTER to enter the
line.

2. Draw a"smiley face." Use the FCTN and arrow keys. Hold down akey to make a
line.

30
/^?sp^

THE STRIP OVERLAY

A special strip of plastic came with your computer.

The strip has words printed along it.

DEL INS ERASE CLEAR BEGIN PROC'D AID REDO BACK QUIT

It belongs in the slot just above the number keys. Put it there now.

The words help to remind you of some special things the keys do.

What key is below DEL on the strip?

There is a red dot on the strip.

What key has a red dot?

There is a grey dot on the strip.

What key has a grey dot?

What key has a yellow dot?

In this book we will study three of these words: DEL, INS, and CLEAR.

THE DELETE KEY

The DEL key is used with the FCTN key to erase letters.

Type this: 10 REM CAAT (do not press ENTER yet)

Too many "As" in the CAT.

31

Move the cursor over the first "A".

Hold down FCTN and press DEL. (DEL is the "1" key.) The "A" disappears.

10 REM CAT

Press ENTER to enter the line in the program memory.

What happens if you hold down the FCTN and DEL keys?

Assignment 4B:

1. Practice using the FCTN, arrow keys, and DEL key. Type this:

10 REM WIZZZARD (fix it to "WIZARD")

Type and fix this:

10 REM TTIIGGEERR (make it "TIGER")

32

^SlipN

Smgh.

INSTRUCTOR NOTES 5 THE INPUT STATEMENT, STRING
VARIABLES

This lesson concerns the INPUT statement and the idea of a string variable.

We teach INPUT in its pure form in this lesson: no message in front. In a later lesson
we will return to the INPUT statement.

We are quickly outlining the essentials of programming so that the student "sees the
forest" and is able to write meaningful programs. The statements required for
interesting programs are:

PRINT allows output
INPUT input
GOTO infinite looping
FOR...NEXT finite looping, time delays
IF branching and decisions
RND random numbers for games

On the second pass, we will elaborate on the basic statements and teach further
statements.

Back to this lesson. String variables are introduced using the "box" concept again.
Variable names are restricted to one letter for the time being. This avoids confusion in
short programs and allows faster typing.

We will work with stringsand ignore numbers for as long as possible because strings
make for more interestingprograms and offer a less confusing entry into the logical
concepts of programming.

QUESTIONS:

1. What two different things does the computer put into boxes?

2. How does the program ask a person to type in something?

3. How do you know the computer is waiting for an answer?

4. A letter with a dollar sign after it is called what?

5. Write a short program which uses CALL CLEAR, PRINT and INPUT.

6. What happens if the answer you give to an INPUT has a comma in it?

7. How do you use the DEL key?

33

LESSON 5 THE INPUT STATEMENT, STRING VARIABLES

Use INPUT to make the computer ask for something.

Enter: 10 REM :::: TALKY-TALK ::::
15 CALL CLEAR

20 PRINT "SAY SOMETHING"

25 INPUT A$

30 PRINT

35 PRINT "DID YOU SAY "

40 PRINT A$

Run it. When you see a question mark, type "HI" and press the ENTER key.

The questionmark was written by INPUT in line25. The flashing cursor means the
computer is waiting for you to type something in.

When you type "HI", the computer stores this word in a box named A$.

Later, in line 40, the program asks the computer to print whatever is in the box named
A$.

Run the program again and this time say something funny.

STRING VARIABLES

A$ is the name of a "string variable." The name is written on the front of a box and the
string is put inside the box.

Rule: A string variable name always ends in a dollar sign,"$". You can use any letter
you like for the name and then put a dollar sign after it.

34

/OSS

«^

/^fc]S\

/jBP\

A$ is calleda variable becauseyou can put different strings into the box at different
times in the program. The box can hold onlyone string at a time.

ERROR MESSAGES FROM INPUT

Run the program again and answer the question with:

HI» THERE

The computer answered:

* WARNING:

INPUT ERROR IN XX

TRY AGAIN:

You should type your answer again, but not have any commas in it.

Rule: Do not put any commas into the string you type in answer to INPUT, unless

YOU REALLY WANT TO USE COMMAS!

35

Run the program again and answer the question with:

"HIt THERE"

This time the computer works OK, no nasty messages.

Rule: Put quotation marks around the answer if it has commas in it.

Assignment 5:

1. Write a program which asks for a person's name and then says something silly to the
person by name.

2. Write a program which asks you to INPUT your favorite color and put it into a box
called C$. Now the program asks you to INPUT your favorite animal and also puts
this into box C$. Now tell the program to print C$. What will be printed? Run the
program and see if you are right.

36

/(sA»»i'.':\

*^\

^\

MW$$\

INSTRUCTOR NOTES 6 TRICKS WITH PRINT

In this lesson:

PRINT with a semicolon at the end
PRINT with semicolons between items
the "invisible" PRINT cursor
the INS key

The use of commas in PRINT is ignored as it is of little use on a 32 column screen.

The lesson introduces the output cursor which is invisible on the screen. It marks the
place where the next character will be placed on the screen by a PRINT command.
(The input cursor is the flashing square. It is familiar from the command mode and the
INPUT command.)

When a PRINT statement ends with a semicolon, the output cursor remains in place
and the next PRINT willput its first character exactlyin the spot following the last
character printed by the current PRINT command.

Withouta semicolon at the end, the PRINT command will advance the output cursor
to the beginning of the next line as its last official act.

A PRINT command can print several items, a mixture of string and numerical
constants, variables, and expressions. Numerical constants and variables have not yet
been introduced. The items are separated by semicolons.

The series of printed items will have their characters in contact. If spaces are desired,
as in the "HAM AND EGGS" example, the spaces have to be put into the strings
explicitly.

QUESTIONS:

1. Which cursor is a little flashing square? What command puts it on the screen?

2. Which cursor is invisible? What command uses it?

3. Howdo youmake two PRINT statements print on the same line?

4. Will these two words have a space between them when run?

10 PRINT "HI"5"THERE!"

If not, how do you put a space between them?

37

LESSON 6 TRICKS WITH PRINT

ONE LINE OR MANY?

Enter this program: 10 REM FOOD

20 PRINT

30 PRINT "HAM"

40 PRINT "AND"

50 PRINT "EGGS"

and run it. Each PRINT command prints a separate line.

Now enter: 30 PRINT "HAM "5

(Don't change or erase the other lines.)

Be careful to put the space at the end of "HAM" and at the end of "AND" and the
semicolon at the end of each line.

Run it.

What was different from the first time?

38

^^

THE HIDDEN CURSOR

Remember the flashing square? It is the INPUT cursor. It shows where the next
letter will appear on the screen when you type.

The PRINT command also has a cursor, but it is invisible. It marks where the next
letter will appear when the computer is PRINTing.

Rule: The semicolon makes the invisible PRINT cursor wait in place on the screen.
The next PRINT command adds on to the same line.

FAMOUS PAIRS

Enter: 10 CALL CLEAR

20 PRINT "ENTER A NAME"

30 ENTER A$

40 PRINT "ENTER ANOTHER"

50 ENTER B$

B0 CALL CLEAR

70 PRINT"PRESENTING THAT FAMOUS TWOSOME"

75 PRINT

80 PRINT A*?" AND "5B*

Be sure to put a space before and after the "AND".

39

SQUASHED TOGETHER OR SPREAD OUT?

Enter NEW then try this:

10 PRINT "ROCK"5"AND"i"ROLL"

after you have run it, try also:

10 PRINT "ROCK "5"AND "5 "ROLL"

don't forget the spaces after ROCK and AND.

THE INSERT KEY

Type this:

10 REM MAGIC KY (do not press ENTER yet)

We left the "E" out of KEY!

Use the FCTN and arrow keys to put the cursor over the "Y".

Hold the FCTN key down and press the INS key.

(INS stands for INSERT. "Insert" means "stick in.")

Now press the "E" key. An "E" pops in front of the "Y". Press ENTER.

Rule: The letter is inserted to the left of the flashing cursor.

40

am

/.W»\

You can insert more than one letter at the same spot if you want.

Fix this: 10 REM DRON (make it "DRAGON")

To stop inserting, just use the FCTN and an arrow key to move the cursor somewhere.
After that, any letter you type will erase the letter the cursor is on.

Assignment 6:

1. Type these lines and then fix them using the INS key.

10 REM

10 REM

10 REM

WIZRD

TAS

CMPTR

(WIZARD)

(TEXAS)

(COMPUTER)

2. Write a program which asks for the name of a musical group and one of their tunes.
Then using just one PRINT command, print the group name and the tune name,
with the word "plays" in between.

3. Do the same, but use 3 print commands to print on one line.

41

INSTRUCTOR NOTES 7 THE LET STATEMENT

The LET statement is introduced using the concept of memory boxes. Concatenation
using the "&" symbol is called "gluing the strings."

The box model is used to emphasize that LET is a replacement command, not an
"equal" relationship in the sense used in arithmetic.

The box idea nicely separates the concepts "name of the variable" and "value of the
variable." The name is on the label of the box, the value is inside. The contents of the ^
box may be removed for use and new contents inserted.

More exactly, a copy of the contents is made and used when a variable is used; the
original contents remain intact. This point is explained. /HBBS

Used so far: ^

NEW, PRINT, REM, RUN, CALL SOUND, CALL SCREEN, CALL CLEAR,
LIST, INPUT, LET

Specialkeys discussed so far: ^

ENTER, SHIFT, FCTN, two arrow keys, DEL, INS. ^

QUESTIONS: •"*

1. LET puts things in boxes. So does INPUT. How are they different?

2. In this program:

/AM,

^affiftflX

fi^\

/flB£j;*s

^)B^

$Kf\

fTW'J'hi

10 Q»="Morr ^

what is "MOM" called? What is the nameof the string variable in this program? ^
What is the value of the string variable after the program runs?

3. If you run this little program:

10 LET H*="FAT"

20 LET K$=" SAUSAGE" ^
30 LET P*=A$ & K* «

what is in eachboxafter the program runs? /X^

42

/"i*^

/^

/•"•'•'•'•'P^

/'•'SUB^

LESSON 7 THE LET STATEMENT

The LET command puts things into boxes. Enter and run:

10 CALL CLEAR

20 LET 0$=,,TRUCKM

40 PRINT 0*

Here is what the computer does:

Line 10 The computer clears the screen.

Line 20 It sees that a box named "Q$" is needed. It looks in its memory for it. It
doesn't find one because "Q$" has not been used in this program before. So it
takes an empty box and writes "Q$" on the front, and then puts the string
"TRUCK" into it.

Line 40 The computer sees that it must print whatever is in box "Q$". It goes to the
box and makes a copy of the string "TRUCK" that it finds there. It puts the
copy on the TV screen. The string "TRUCK" is still in box "Q$".

V
43

NAMES AND VALUES

This line makes a string variable:

30 W$="MOPSEY"

The name of the variable is W$. The value of the variable is put into the box. In this
line the value of W$ is "MOPSEY"

ANOTHER EXAMPLE:

Enter and run: 10 LET D*="PICKLES"

20 LET A$=" AND "

30 PRINT "WHAT GOES WITH PICKLES?"

35 INPUT Z$

40 call clear

50 print d*;a$;z*

Explain what the computer does in each line.

10

20.

30.

40.

50.

44
/®mfm?\

GLUING THE STRINGS

Here is how to stick two strings together to make a longer string. Enter:

10 CALL CLEAR

20 LET W*="HAR DE "

25 LET X$="HAR "

30 L*=W* & X$

40 PRINT L$

50 PRINT

60 LET L*=L* & X$

70 PRINT L$

Before you RUN this program, try to guess what will be printed at line 40 and at
line 70:

40

70

Now run the program to see if you were right.

Rule: The "&" sign sticks two strings together.

The "&" sign is called "Ampersand." It means the "and" sign of Mr. Amper.

Assignment 7

1. Write your ownprogram which uses the LET command and explain howit stores
things in "boxes."

2. Write a program which inputs two strings, glues them together and then prints
them.

45

INSTRUCTOR NOTES 8 THE GOTO STATEMENT

The GOTO command allows a "dumb" loop that goes on forever. It also helps in flow of
command in later programs, after the IF is introduced. It provides a slow and easy
entrance into the idea that the flow of command need not just go down the list of
numbered lines.

For now its main use is to let programs run on for a reasonable length of time. In each
loop through, something can be modified.

In particular, a last statement like:

90 GOTO 90

keeps the program in the RUN mode (with the screen color specified by the CALL
SCREEN() command) rather than falling back into the command mode.

The problem is how to stop it. The FCTN CLEAR keys do this.

The GOTO statement is like a knife in the hands of your student. If she does not learn
to control its use, it can slice up her programs into spaghetti. Later lessons will show
how to write program control structures like DO UNTIL and DO WHILE that make
proper use of the GOTO.

We now have three of the four major elements that lead to "real" programming. They
are PRINT, INPUT and GOTO. Lackingis the IF, which willchange the computer from
some sort of a record player into a machine which can evaluate situations and make
decisions accordingly.

QUESTIONS:

1. Look at this little program:

10 PRINT "HI"

20 GOTO 40

30 PRINT "BIG"

40 PRINT "DADDY"

What will you see on the screen when it is run?

2. And this one:

10 PRINT "DRAGON " !

20 PRINT "DU9T "5

25 CALL 8DUND(100»110tl0)

30 GOTO 20

3. How do you stop the program in question 2?

4. Write a short program which "peeps," asks you your favorite movie star's name, and
then does it over and over again.

46

LESSON 8 THE GOTO STATEMENT

THE KEYBOARD OVERLAY STRIP

The strip overlay is a narrow piece of plasticwhich has words written along it:

DEL INS ERASE CLEAR BEGIN PROC'D AID REDO BACK QUIT

It belongs in the slot above the top row of keys.

We show how to use these words on the strip:
word key where explained

DEL1.... lesson 4

INS lesson 6
CLEAR this lesson
QUIT this lesson

Fill in which key is below each word.

The rest of the words are not used in TI BASIC.

JUMPING AROUND INYOUR PROGRAM

Try this program: 10 CALL CLEAR
20 PRINT"YOUR NAME?"

25 INPUT N$

30 PRINT N$

35 PRINT

40 GOTO 30

RUN this program. It never stops by itself! To stop yourname from whizzing past
your eyes:

hold down the FCTN key

and press the 4 key.

FCTN 4 means FCTN CLEAR. It stops the program and clears the screen.

Line 40 uses the GOTO command. It is like "GO TO JAIL" in a game of Monopoly.
Every time the computerreaches line40, it has to go back to line 30 and print your
name again.

We will use GOTO in a lot of programs.

47

Warning!

It looks Uke FCTN QUIT (holding the FCTN keydown and pressing the "equal sign"
key) would stop the program from running.

It does, BUT...

It also ERASES THE PROGRAM!

Always use FCTN CLEAR to stopthe program from running.

MORE JUMPING

Enter: 20 PRINT "SAY SOMETHING"
.30 INPUT S$

35 PRINT

40 PRINT "DID YOU SAY /";S$>",?"
45 PRINT

50 GOTO 30

Runthe program. Type an answer every time you see the "?" and the flashing cursor.
Press the FCTN CLEAR keys to end the program.

Notice the arrow from line 50 to line 30. It shows what the GOTO does. You may want
to draw such arrows in your programlistings.

48

£PW.*Yv\

KINDS OF JUMPS

There are only two ways to jump: ahead or back.

Jumping back gives a LOOP.

•M0 PRINT "HI"

^-20 GOTO 10

The path through the program is like this:

^10 PRINT "HI";

\~2_0 GOTO10>

The computergoes around and around in this loop. Press the FCTN CLEAR keys to
stop.

Jumping ahead lets you skip part of the program. It is not done as often as jumping
back.

49

A CAN OF SPAGHETTI

Look at this: START

10 REM ::: SPAGHETTI

20 GOTO 70

,25 PRINT "A"

,26 GOTO 50

30 PRINT "S"

31 GOTO 25

40 PRINT "C"

,41 GOTO 90

50 PRINT "U"

51 GOTO 40

70 PRINT "SPAGHETTI"

71 GOTO 30

90 PRINT "E"

99 REM ::: END :::

WHEW!

50

This is NOT a good, clear program!

It is a "spaghetti program."

Don't write spaghetti programs! Don't jump around too much in your programs.

Assignment 8:

1. Just for practice in understanding the GOTO statement, draw the road map for this
spaghetti program:

10 REM ::: FORKED TONGUE :::

20 GOTO 40

30 PRINT "N"

31 GOTO 60

40 PRINT "S"

41 GOTO 30

50 PRINT "E"

51 GOTO 99

B0 PRINT "A"

61 GOTO 90

90 PRINT "K"

91 GOTO 50

99 PRINT "B I T E"

2. Write a program which prints "TEEN POWER" over and over.

3. How do you stop your program?

4. Write another which prints your name on one line, then a friend's on the next, over
and over. Sound a tone as each name is printed. Stop the program with the FCTN
CLEAR keys.

5. Write a program whichuses each of these commands: CALL CLEAR, PRINT,
INPUT, LET, GOTO. It also should glue two strings together.

51

INSTRUCTOR NOTES 9 TAB AND DELAY LOOPS

In this lesson: TAB, function arguments, delayloops.

Delay loops slow the program down so that its operation can be more easily observed.
They also are used for portions of the program which must run at certain speeds, and
should then be called "timing loops."

The TAB command adds flexibility to the screen display.

TAB isused inaPRINT command and islike thetabon atypewriter. It allows interesting
displays of verbal information.

Students who arenotveryfamiliar with a typewriter may need extrahelp inseeing what
a TAB is good for.

Several TAB commands canbe used in one PRINT statement, but the arguments in the
() must increase each time. That is, TAB cannot be used to move the cursor back to the
left.

This lesson introduces loops in a painless way.

The delay loop is ontwoadjacent lines. The amount ofdelay is determined by the size of
the loop variable. A value of350 gives about a one second delay.

Afterseeing that the primary work ofthe loop is simply to count until a particular value
is reached before going on to the next instruction, it will be easier for the student to
handle loops in which things are going on inside.

QUESTIONS:

1. Show how to write a delay loop which lasts for about 2 seconds.

2. Will this work for a delay loop?

120 FOR 0=300 TO 500

122 NEXT Q

3. Tell what the computer will do in each case:

10 PRINT "HI"5TAB(20)5"G00D LOOKING!"
10 TAB(5)5PRINT "OH-OH!"

10 PRINT TAB(15) i-NOPE" !TAB(1) ;nN0T HERE"

Run each and see if you are right.

52

LESSON 9 TAB AND DELAY LOOPS

THE TAB COMMAND

TAB in a PRINT command is like the TAB on a typewriter. It moves the printing
cursor to a new spot to the right.

(The printing cursor is invisible.)

The next thing to be printed goes where the cursor is.

Trythis: 10 PRINT "12345G789ABCDEF"
20 PRINT "Y" !TAB<5) !"Z"

Rule: After TAB(N), the next character will be printed in column N.

CAREFUL!

Run this:

You see

5 TAB<5)

INCORRECT STATEMENT

IN 5

TAB() has to be in a PRINT command. Youcannot use TAB() by itself.

YOU CANNOT TAB BACKWARDS

Try this: 10 PRINT "123456789ABCDEF"
20 PRINT "1" ITABO) 5"9" 5TAB(3) ?"3"

The TAB() command can move the printing only to the right.

If youtry to move back to the left, the computer moves down one line first.

YOUR NAME IS FALLING!

10 CALL CLEAR

15 LET N=l

20 PRINT"YOUR FIRST NAME"

30 INPUT W*

40 PRINT TAB(N)5W*

50 LET N=N+1

60 GO TO 40

Press FCTN CLEAR to stop the run.

53

This program prints your namein a diagonal down the screen, top left to bottom right.
Try other values of N. Try changing lines:

15 LET N = 25

50 LET N=N-1

HOW BIG A SPACE CAN TAB() MAKE?

There are 28 spaces across the screen. You can use any number 1 through 28 inside the
TAB() parentheses. Larger numbers make the computer skip lines.

FUNCTIONS DON'T FIGHT BUT THEY HAVE ARGUMENTS

TAB() is a command which is like a "function."

We will study other functions like RND(), INT(), SEG$(), etc.

The number inside the () is called "the argumentof the function." TAB() says"move the
cursor over" and the argument tells "where to move it."

Assignment 9A:

1. Write a program which asks for last names andnicknames. Then print the last name
starting at column 5 and the nickname at column 15. Use a GOTO so the program is
ready for another nick-name pair.

2. Write an "insult" program. It asks your name. Then it peeps and writes your name.
Then it TABS over in the line and prints an insult.

V.
54

INSTRUCTOR NOTES 10 INTRODUCING NUMBERS

Numerical variables and operations are introduced. The LET, INPUT and PRINT
commands are revisited.

The idea of memory as a shelf of "boxes" is extended to numbers. Again, variable names
are limited to one letter for the time being.

The arithmetic operations are illustrated. The "*" symbol for multiplication will probably
be unfamiliar to the student. Division will give decimal numbers, so it is nice if your
student is familiar with them. But most arithmetic will be addition and subtraction, with
a little multiplication, and a student unfamiliar with decimal numbers will not experience
any disadvantage.

It may seem strange to the student that the numbers in string constants are not
"numbers" which can be used directly in arithmetic. The VAL and STR$ functions will
be introduced later in the book and allow interconversion of numbers and strings.

A mixture of string and numerical values can be printed by PRINT.

The non-standard use of " = " in BASIC, that it means "replace" and not "equal," shows
up strongly in the statement:

LET N=N+1

The cartoon uses the box idea to illustrate this meaning of " = ".

QUESTIONS:

1. What are the three kinds of "boxes" in memory? (That is, named by the kinds of
things stored in the boxes.)

2. Explain why "N = N +1" for a computer is not like "4 = 4 +1" in arithmetic.

3. Give another example of "bad arithmetic" in a LET command. Use the *, or /
symbols.

4. What does the computer mean by "STRING-NUMBER MISMATCH"?

5. Give an example of a program line which would have a STRING-NUMBER
MISMATCH.

6. Explain what is meant by the "name of a variable" and the "value of a variable" for
numerical variables. For string variables.

55

LESSON 10 INTRODUCING NUMBERS

INPUT, LET AND PRINT

So far we have used only strings. Numbers can be used too. Enter and run this
program:

10 REM BIGGER

15 CALL CLEAR

20 PRINT"GIVE ME A NUMBER"

30 INPUT N

40 LET A=N+1

50 PRINT"HERE IS A BIGGER ONE"

B0 PRINT A

ARITHMETIC

symbol key

addition + SHIFT =

subtraction SHIFT /

multiplication * SHIFT 8

division / /

Computers use "*" instead of " x " for a multiplication sign.

Try this. Change line 40 so that N is multiplied by 5.

Computers use "/" for a division sign. Answers are given as decimals.

Try this: Change line 40 so that A is N divided by 5. What do you say in line 50?

\ju#

56

/8Pi?>\

/:*tc"."/\

/««

/^

DELAY LOOPS

Here is a way to slow down the program. It is a "delay loop.'

Run this program: 10 REM HIDE AND SEEK

20 CALL CLEAR

30 PRINT "YOU ARE IT"

40 FOR T=l TO 1000

41 NEXT T

50 PRINT "COMING READY OR NOT"

Lines 40 and 41 are the delay loop. The computer counts from 1 to 1000 before going on
to the next line. It is like counting when you are "it" in a game of hide and seek.

Try changing the number "1000" in line 40 to some other number.

Each 350 in the delay loop is worth about 1 second of time. Try this:

10 REM TICK T0CK

20 CALL CLEAR

30 PRINT "NAIT HOW LONG? "5

31 INPUT S

3B T=S*350

40 FOR 1=1 TO T

41 NEXT I

45 PRINT

46 SOUND(500>300>10)

50 PRINT S!" SECONDS ARE UP"

Line 36 has a multiplication in it. We will study this in Lesson 10.

Assignment 9B:

1. Write a "slow poke" program. Make it print "STEP BY STEP" with several seconds
between each word. Have the computer peep before each word.

57

VARIABLES

The name of a box that contains a string must end with a dollar sign. Examples: N$,

The name of a box that contains a number doesn't have a dollar sign. Examples: N, A,
Z.

The thing which is put into the box is called the "value" of the variable.

ARITHMETIC IN THE LET COMMAND

10 LET A = 2

20 LET B=3

30 LET C=B-A

40 PRINT A5B5C

Some more examples:

10 LET B=15

20 LET A=B/5

30 LET X=A*4+2

40 PRINT X5A

58

fwm'"- \

ff3?"\

,(sssn^

CAREFUL!

Numbers and strings are different. Example: "1984" is not a number. It is a string
constant because it is in quotes.

Rule: Even if a string is made up of number characters it is still not a number.

Some numeric constants: 5 # 22* 3.14 > -50

Some string constants: " HI" ♦ " 7" ♦ " TWO" » "3.14"

Rule: You cannot do arithmetic with the numbers in strings.

Correct: 10 LET A = 7 + 3

Wrong: 10 LET A* = 7 + 3

Wrong: 10 LET A = "7" + "3"

If you run either of these wrong lines, the computer will print:

STRING-NUMBER MISMATCH

IN 10

59

The two types of variables are "string" and "numeric." You cannot mix them.

Enter: 10 LET A=5

20 LET B$="10"

30 LET C=A+B$

Lines 10 and 20 are OK, line 30 is wrong. What will the computer do when you run this
little program? Try it.

Try to guess what each of these statements will print, then enter the line to see what
happens:

PRINT 5 ♦

PRINT "5"

PRINT "5+3"

PRINT "5"+"3"

PRINT 5 + 3

MIXTURES IN PRINT

You can print numbers and strings in the same PRINT command. (Just remember that
you cannot do arithmetic with the mixture.)

Correct: PRINT A 5"SEVEN" » " 7"

PRINT A5B*

Runthisline. 10 PRINT 5/25" IS EQUAL TO 5/2"

A FUNNY THING ABOUT THE EQUAL SIGN

The " =" sign in computing does not mean "equals" exactly. Look at this program:

10 LET N=N+1

This does not make sense in arithmetic. Suppose N is 7. This would say that:

7 = 7+1

which is not correct.

60

But it is OK in computing to say N = N +1 because the " = " sign really means
"replace." Here is what happens:

10 LET N=N+1

The computer goes to the box with N written on the front.

It takes the number 7 from the box.

It adds 1 to the 7 to get 8.

Then it puts the 8 in the box.

%hrt%p

Another way to say the same thing is:

10 LET N = N+l means

Let (old N) equal (new N) plus 1

NOT BACKWARDS

In arithmetic, these two equations mean the same thing:

N = 6

6 = N

But in computing you cannot put the LET statement backwards!

right:
wrong:

30 LET N = B

30 LET B = N

Assignment 10:

1. Write a program which asks for your age and the current year. Then subtract and
print out the year of your birth. Be sure to use PRINT statements to tell what is
wanted and what the final number means.

2. Write a program which asks for two numbers and then prints out their product.
(Multiplies them.)

61

INSTRUCTOR NOTES 11 FOR-NEXT LOOPS

FOR, NEXT and STEP key words which make loops are described in this lesson.
Nested loops are explained.

The loop is made of two statements, one starting with FOR and the other with NEXT.
These commands may be separated by several lines and yet are strongly
interdependent. The delay loop in a previous lesson helps form the notion that the
FOR... and the NEXT are coupled. It remains then to show the utility of repeating a
set of commands in the middle of the loop.

Before the program starts to run, BASIC checks to see if the number of FOR
statements matches the number of NEXT statements. If not, a FOR-NEXT ERROR
message is printed.

Unlike most dialects of BASIC, TI BASIC checks whether the condition for exit is
already satisfied before entering the loop. If it is satisfied, the loop is skipped.

The FOR statement is evaluated just once at the time the loop is entered. It puts the
starting value of the loop variable into variable storage where it is treated just as any ^
other numerical variable. (For example, the loop variable can be changed in the body of ^
the loop.) The STEP value, the ending value, and the address of the first statement
after the FOR are put on a stack. ^

From then on, all the looping action takes place at the NEXT command. Upon
reaching NEXT, the loop variable is incremented by the value of the STEP and -
compared with the end value. If the loop variable is larger than the end value (or ***
smaller in the case of negative STEPs) NEXT passes control to the statement after ^
itself. Otherwise, it gives control to the statement after the FOR command.

Jumping into the middle of a loop is usually a disaster. Jumping out of a loop before <**\
reaching NEXT is commonly done, but in some cases (especially where subroutines are ^
involved) may make hard to find bugs.

QUESTIONS: ^

1. Write a loop which prints the numbers from 0 to 20 by two's. ^

2. Write a "Ten Little Indians" program loop which prints from 10 down to zero ^
Indians.

3. Write a pair of nested loops to print "MINI" in the outside loop and "HA" in the
inside loop. Print 3 of the MINIs and for each of them print 2 of the HAs.

/JSififflML

62

LESSON 11 FOR-NEXT LOOPS

Remember the delay loop? The computer counted from 1 to 1000 and then went on.

30 FOR T=l TO 1000

31 NEXT T

The computer is smarter than that. It can do other things while it is counting.

Run this: 10 REM COUNTING

20 CALL CLEAR

30 FOR 1=5 TO 20

40 PRINT I

50 NEXT I

The loop can start on any number and end on any higher number. Try changing line 30
in these ways:

30 FOR 1=100 TO 101

30 FOR I=-7 TO 13

30 FOR 1=1.3 TO 5.7

MARK UP YOUR LISTINGS

Show where the loops are by arrows:

10 REM ROBIN HOOD

20 CALL CLEAR

30 FOR 1=0 TO 7

40 PRINT I

50 NEXT I

63

THE STEP COMMAND

The computer was counting by one's in the above programs. To make it count by two's,
change line 30 to this:

30 FOR 1=10 TO 30 STEP 2

Assignment 11 A:

1. Have the computer count by five's from zero to 100.

COUNT DOWN LOOPS

You can make the computer count down by using a negative STEP.

Try this: 10 REM *** APOLLO 11 ***

20 CALL CLEAR

30 PRINT "T MINUS 12 SECONDS AND COUNTING"

40 FOR 1=11 TO 0 STEP -1

50 PRINT I

51 CALL SOUND(100»900»10)

B0 REM TIMING LOOP

61 FOR J=l TO 350

G2 NEXT J

70 NEXT I

71 CALL SOUND(1000»110»30)

75 PRINT "ALL ENGINES RUNNING. LIFT OFF,"

76 CALL S0UND(1000,110,30)

80 PRINT "WE HAVE A LIFT OFF."

81 CALL SOUND(1000 ,110 ,30)

85 PRINT "32 MINUTES PAST THE HOUR."

86 CALL S0UND(1000,110,30)

90 PRINT "LIFT OFF ON APOLLO 11."

Lines 61 and 62 are the timing loop.

Lines 71, 76, 81, 86 use the SOUND command to make a delay too. The sound is
turned off by making the "loudness" equal to 30.

64

^wpiPX

/SBP\

NESTED LOOPS

In this program, we have one loop inside another.

The outside loop starts in line 40 and ends in line 70.

The inside loop starts in line 61 and ends in line 62.

These are "nested loops." It is like the baby's set of toy boxes which fit inside each other.

,-^r

LOOP VARIABLES

To make sure that each FOR command knows which NEXT command belongs to it, the
NEXT command ends in the "loop variable" name. Look at lines 61 and 62:

61 FOR J=l TO 350

62 NEXT J

J is the loop variable. And for the loop starting in line 40:

40 FOR 1=12 TO 0 STEP -1

♦ ♦ ♦

70 NEXT I

I is the loop variable.

65

BADLY NESTED LOOPS

The inside loop must be all the way inside:

Right: 25 FOR X=3 TO 7
//30 FOR Y=3 TO 7
(40 PRINT X*Y
*50 NEXT Y

60 NEXT X

Wrong: ^25 FOR X=3 TO 7
,30 FOR Y=3 TO 7

40 PRINT X*Y

'50 NEXT X

•60 NEXT Y

Assignment 11B:

1. Write a program which prints your name 15 times.

2. Now make it indent each time by 2 spaces more. It will go diagonally up the screen.
Use TAB in a loop.

3. Now make it write your name on one line, your friend's name on the next and keep
switching until each name is written 5 times.

4. Write a program with loops nested three deep. Do the outer loopthree times and
have it print "SING". Make it change the screencolor on each pass through the
loop. The next loop prints "TRA" three times and sings a note. The innermost loop
prints "LA" three times and sings a different note.

66

/Pipy

/ISBN

INSTRUCTOR NOTES 12 RANDOM NUMBERS AND THE
INT FUNCTION

This lesson introduces two functions: RND and INT. These are very important in
games and also handy in making interesting displays like kaleidoscopes.

The RND function produces psuedo-random decimal numbers between 0.0 and 1.0.
Such numbers are directly usable as probabilities, but integers over some range such
as 1 to 6 for a die, or 1 to 13 for a suit of cards are often more to the point.

Your student may be shaky in decimal arithmetic, but all that is required here is
multiplication of the random number by an integer, and perhaps also addition to an
integer. The computer does the multiplication, of course, so only a rough idea of the
desired result is necessary.

After extending the random number to a larger range than 0 to 1, conversion to an
integer is desired. The INT function does this simply by truncating the number,
"throwing away the decimal part." (For negative numbers the situation is a little more
complicated, and that rare case is not treated here.)

The concept of functions is again used in this lesson and is further clarified.

The nesting of one function inside the parentheses of another is illustrated by using
RND in the argument of an INT function.

QUESTIONS:

1. Tell what the computer will print for each case:

10 PRINT INT(G)

and the box G contains:

2f 2*1* 2*95* 3*001* 67* 0* 0*2

2. Tell how the INT() function is different from "rounding off" numbers. Which is
easier for you to do?

3. Tell how to change a number so that the INT() function will round it off.

4. What does the RND function do?

5. How can you get random integers (whole numbers) from 0 through 10? (Hint:
INT(RND*10) is not quite right.)

6. How can you get random integers from 5 through 8?

67

LESSON 12 RANDOM NUMBERS AND THE INT FUNCTION

THE RND FUNCTION

When you throw dice, you can't predict what numbers will come up.

When dealing cards, you can't predict what cards each person will get.

The computer needs some way to let you "roll dice" and "deal cards" and do many other
unpredictable things.

Use the RND function to do this. RND stands for "random."

Run this program: 10 REM RANDOM NUMBERS
15 CALL CLEAR

20 FOR I = 1 TO 20

25 LET N=RND

30 PRINT N

40 NEXT I

You see a lot of decimal numbers on the screen. The RND function in line 25 made

them.

RND gives numbers which are decimals larger than 0 but smaller than 1. To make num
bers larger than one, you just multiply.

Change the program above to:

25 LET N=RND*52

and run it again.

V.
68

/•WW IV

^"WI'..V

Now the numbers are between 0 and 52 in size. They could be used for choosing the 52
cards in a deck.

But:

We usually want whole numbers like 7 and 23 rather than decimal numbers like 7.03 and
23.62. Do this by using the INT function.

THE INT FUNCTION

"INT" stands for 'Integer" which means "whole number."

The INT function takes the number in its parentheses and throws away the decimal
part, leaving an integer.
Try the INT function in this little program:

;x;tab<10);"int(X)=".intcx)

10 LET I=INT (6.3)

20 PRINT I

And in this: 10 LET X=0.3

20 PRINT "X = ";x;t

And this: 10 LET X=.3

20 LET Y = 2.5

30 LET P=X+Y

40 LET 0=INT(X+Y)

50 PRINT PiO

Look at the answers to see that the decimal part was thrown away.

69

Try this:

ROLLING THE BONES

10 REM INT

20 CALL CLEAR

30 PRINT"GIVE ME A DECIMAL NUMBER "

32 INPUT D

35 LET I=INT(D)

36 PRINT

40 PRINT "DECIMAL "5D!TAB<15)!"INTEGER " ;I

41 PRINT

42 PRINT

50 GOTO 30

Usually dice games use two dice. One of them is called a "die." Here is a program
which rolls a single die:

10 REM ////// ONE DIE //////

20 CALL CLEAR

30 LET R=RND

40 PRINT "RANDOM NUMBER"5TAB(15) !R

50 LET 5=R*6

55 PRINT "TIME3 6";TAB(15)5S

60 LET I=INT(S)

65 PRINT "INTEGER PART"5TAB(15)51

70 LET D=I+1

75 PRINT "DIE 5H0WS"5TAB(15)5D

77 PRINT

80 PRINT

82 FOR T=l TO 2000

83 NEXT I

85 GOTO 20

WHAT GOES INSIDE THE () ?

Numbers: 10 LET X= I NT (34.7)

Variables: 10 LET X=INT(J)

Expressions: 10 LET X=INT(3*Y+2)

Functions: 10 LET X = INT (RND)

Here is how to save a lot of room.

Instead of:

Use just:

30 LET R=RND

50 LET S=R*6

60 LET I=INT(3)70

70 LET D=1+INT(RND*6)

70
(CWHp^

EVERY PROGRAM RUN IS DIFFERENT

Each time you run a program, you want different cards or dice to show. Suppose your
die rolls 5 on the first roll after starting the program. If you stop the program with
FCTN CLEAR keys and then start it again, you want a different number than 5 to
show (usually).

But you will always get the same number unless you do something about it! Command
RANDOMIZE early in the program to make the computer choose a different random
number than on the last run. Example:

10 REM MIXED UP

20 RANDOMIZE

30 PRINT INT(RND*100)

Run the program several times without line 20, then several times with line 20

Assignment 12:

1. Write a program which "rolls" two dice, called Dl and D2. Show the number on Dl
and on D2 and the sum of the dice. You do not need the variables R, S, and I in the
program above. They were used to show how the final answer was found.

2. Write a "paper, scissors, and rock" game - you against the computer. (Paper wraps
rock, rock breaks scissors, scissors cut paper.) The computer chooses a number 1, 2
or 3 using the RND() function: 1 is paper, 2 is rock, 3 is scissors. You INPUT your
choice as P, R, or S and the computer figures out who won and keeps score.

71

INSTRUCTOR NOTES 13 THE IF STATEMENT

The IF statement is a powerful but intricate command which is at the very heart of the
computer as a logic machine.

The IF statement appeals both to our verbal and our visual imagination. The "cake"
cartoon and the "fork in the road" cartoon illustrate these ideas. The GOTO command

has already introduced the idea that the flow of control down the program may be altered.
To that idea is now added the conditional test: if an "assertion" is true, a branch occurs;
if it is false, program control continues to flow down the line list.

The assertion being tested for truth is called "phrase A." A jump to a new line number
is made if the assertion is true.

Two levels of abstraction occur in the assertions. On the literal level we have "equal and
not equal."

A$ = B*

C* <> D$

The next level up we have the TRUTH or FALSITY of the assertion.

A two step process is needed to use the assertion properly:

1) What does the assertion say?

2) Is the assertion true?

The larger set of relations:

< > = =< => <>

will be treated later.

QUESTIONS:

1. How do you make this program print "THAT'S FINE"?

15 PRINT "DOES YOUR TOE HURT?"

17 INPUT T$

20 IF T*="NAH" THEN 90

40 GOTO 15

90 PRINT "THAT'S FINE"

2. Write a short program which asks if you like chocolate or vanilla ice cream. Answers
to be "C" or "V". For the "C" print "Yummy!" For the "V" answer, print
"Mmmmmm!"

72

/!H$S!S

LESSON 13 THE IF STATEMENT

Clear the memory and enter

10 CALL CLEAR

15 PRINT "HOLD YOUR BREATH "

20 PRINT "STILL HOLDING? (YES OR NO)"

30 INPUT A$

40 IF A*="YES" THEN 15

50 PRINT "WHY ARE YOU WHEEZING? "

Run the program. Try answering "YES", "NO" or "MAYBE". What happens?

YES

NO

MAYBE

THE IF STATEMENT

The IF statement has two parts:

40 IF phrase A THEN number N

It means: 40 IF phrase A is true THEN go to line number N

Example: 40 IF A$="YES" THEN 15

If A*="YES" is true, jump to line 15.

If A* =" YES" is false, go to the next line.

CAREFUL! The "number N" must be a number. It cannot be a variable.

Right: 30 IF B*="HI" THEN 25

Wrong: 30 IF B*="HI" THEN N

Assignment 13A:

1. Write a program which asks if you are HAPPY. If you answer NO, it asks again. If
you answer YES, it says GOOD.

73

THE "IF" IN ENGLISH AND IN BASIC

In English:

IF your homework is done, THEN you may have some cake.

In BASIC:

10 IF W$="DONE" THEN 30

20 PRINT "NOT DONE?"

25 PRINT "DO IT! THEN* "

30 PRINT "YOU MAY HAVE SOME CAKE"

The computer looks in box W$.

It sees if the string in the box is the same as "DONE". If it is, the program goes to line
30. If it is not, the program goes to the next line (20).

DRAWING MAPS IN YOUR PROGRAM

IF makes a fork in the road.

When it sees "IF" the computer must choose which road to take.

If "phrase A" is true, it must go to a new line number.

If "phrase A" is false, it goes down to the next line right away.

74

Here is the road map.

^30- PRINT "EAT"

*40- •IF R$="HUNGRY"

•50 PRINT "WALK AWAY"

75

fork in the road

>THEN 30

3

SKIPPING LINES

The IF command can skip ahead too.

Enter: 10 REM SKIP LINES

20 PRINT "ARE YOU HAPPY? <Y OR N>"

25 INPUT A$

30 REM - -- is PHRASE A TRUE?
31 IF A$="Y" THEN G0

40 REM THE ANSWER WAS "N"
45 PRINT "TOO BAD!"

47 GOTO 30

60 REM - THE ANSWER WAS "Y"

B5 PRINT "I'M GLAD"

30 REM THAT'S ALL FOLKS!

Assignment 13B:

1. Write a boy-girl program. Ask if the user is a "BOY" or a "GIRL". If the answer is
"BOY" print "SNIPS AND SNAILS". If the answer is "GIRL", print "SUGAR
AND SPICE".

THE "NOT EQUAL" SIGN

Two signs:

= means "equal"

<> means "not equal"

To make the "<>" sign:

hold down the SHIFT key
then press the "<" key, then the ">" key.

Look: 40 IF phrase A THEN 60

"Phrase A" is a phrase that is TRUE or FALSE.

Pick B*<>" COL D" for "phrase A" and put it into:

40 IF B*<>"FIRE" THEN 60

Look: If the B$ box contains "FIRE"
then B$ is not equal to "COLD"
so the phrase B$<> "COLD" is TRUE.

76

fmftfTA

pmr:r-\

Or

The computer will go to line 60.

If

then

so

the B$ box contains "COLD"
B$ is equal to "COLD"
the phrase B$<> "COLD" is FALSE.

The computer will go to the next line.

Here is how it looks in a program:

10 PRINT "WITH DOGS IT'S A COLD NOSE"

11 PRINT

12 PRINT "WITH DRAGONS» IT'S ..."

13 PRINT

15 PRINT "HOW'S YOUR DRAGON'S BREATH?"

16 PRINT

20 PRINT "(ENTER 'FIRE' OR 'COLD')"

30 INPUT B$

35 PRINT

40 IF B*O"C0LD" THEN 60

50 rem THE DRAGON NEEDS HELP!
55 PRINT "FEED HIM SOME HOT CHILI» THEN ..."

56 PRINT

60 REM THE DRAGON IS FINE"
65 PRINT "PAT HIM ON THE HEAD ♦ BUT WATCH OUT!"

80 PRINT

85 PRINT "'NICE DRAGON'"

77

Assignment 13C:

1. Write a "pizza" program. Ask what topping is wanted. Make the computeranswer
something silly for each different choice. You can choose mushrooms, pepperoni,
anchovies, green peppers, etc. You can also ask what size.

2. Write a color guessinggame. One player INPUTs a color in string C$and the other
keeps INPUTing guesses in stringG$. Use two IF lines, one with a"something A"

GtOC$

for whenthe guess is wrong, and the otherwith an" =" sign for whenthe guess is
right.

78

ems

/^

INSTRUCTOR NOTES 14 SAVING TO TAPE

This lesson shows how to save programs to tape and how to load them again.

The commands SAVE and OLD are introduced.

The only other commands used are:

NEW REM

LIST PRINT

This lesson can be used anytime after Lesson 3.

We put it this late in the book because most programs up to this point are relatively
short and uninteresting, not worth saving. The process of programming was being
emphasized, not the end result of useful programs.

However, your own judgement should prevail. You can insert this chapter at an earlier
point in the flow of lessons so that your student can save some programs she is
particularly proud of.

Ordinary audio tape is usually satisfactory for computer use. However, remember
that a tiny imperfection can cause the tape to "drop a bit" and this makes the program
wrong, or worse, unloadable!

You will not need long tapes. In fact, the special 10 minute data tapes you can buy at
computer stores are inexpensive and convenient.

The TI 99/4A computer supports use of named files but this is not discussed in this
book. Please refer to the TI USER'S REFERENCE GUIDE.

QUESTIONS:

1. What command tells the computer to save a program on tape?

2. What command tells the computer to load a program from tape into the computer?

3. About how long does it take to save a short program?

4. If a program is put onto tape, is it still in the computer's memory?

79

LESSON 14 SAVING TO TAPE

CONNECTING THE RECORDER

Follow the directions in your Texas Instruments TI-99/4A COMPUTER USER'S
REFERENCE GUIDE.

The first time you use the recorder, someone must find the correct adjustment of its
volume and treble controls. If this has already been done, the instructor will write the
settings down on the lines below.

Otherwise, the instructor will follow the directions in the TI USER'S REFERENCE
GUIDE for finding the correct settings and thenwrite them down here.

ENTERING A PROGRAM

If you have a program you wantto save at this moment, skip to SAVING A
PROGRAM.

If not, enter: NEW

10 REM :siHIiis

20 PRINT "HI"

80

SAVING A PROGRAM AND CHECKING THAT IT IS ON TAPE

Turn up the sound on your TV so you canhear the program going onto the tape and
the "peeps" that the computer makes.

Put a brand new tape into the recorder and rewind the tape.

If your recorder has a little "speedometer" dialto measure how much tape has been used,
press the little button beside the dial. This resets it to zero. (More exactly to "000")

Enter: SAVE CS1

You will hear a peep and see the message:

* REWIND CASSETTE TAPE CS1

THEN PRESS ENTER

Do it. The computer will peep and say:

* PRESS CASSETTE RECORD CS1

THEN PRESS ENTER

Press the REC and the PLAY keys together, then press the ENTER key.

The computer now peeps and says:

* RECORDING

81

There are a few seconds of quiet. Then you hear a steady tone and then a strange
twittering like a lovesick gorilla.

The twittering will last a few seconds (for a short program).

Then the computer peeps and prints:

* PRESS CASSETTE STOP CS1

THEN PRESS ENTER

Do it. Now the computer peeps and asks:

* CHECK TAPE (Y OR N)?

It is a good idea to check to see if the program on the tape is OK.
The computer looks to see if the "checksum" on the end of the recorded program
agrees with the sum calculated as the program is read by the computer.

Press the Y key. The computer peeps and prints:

* REWIND CASSETTE TAPE CS1

THEN PRESS ENTER

Do it. The computer peeps and prints:

* PRESS CASSETTE PLAY CS1

THEN PRESS ENTER

Do it. The computer peeps and prints:

* CHECKING

82

/!^rS\

After a short pause, you should hear the same steady tone and the twittering that you
heard when the program was saved.

If everything went well, the computer peeps twice and prints:

* DATA OK

* PRESS CASSETTE STOP

THEN PRESS ENTER

CSl

The computer prints the > prompt and the flashing cursor.

BAD LUCK, IT DIDN'T GET SAVED

If the program didn't check out during the

CHECKING

of your program on tape, the computer will print

either * ERROR - NO DATA FOUND

or * ERROR IN DATA DETECTED

Then it prints a menu:

PRESS R TO RECORD

PRESS C TO CHECK

PRESS E TO EXIT

(again)
(again)
(quit)

You can check the program again, record it again, or just give up the whole thing.

MAKE A LITTLE LIST

You should write the name of the program on the front of the tape cassette. If your
recorder has a little "speedometer" dial, also write the dial number on the front of the
tape cassette. This is where the program ends. (It starts at zero or "000" on the dial.)

CAREFUL!

If this is an important program, I suggest you put a second copy on the tape, right
after the one you just did. (That is, just start where the directions above say SAVE
CSl but don't rewind the tape when the computer asks you to in the next instruction.)

83

LOADING THE PROGRAM INTO THE COMPUTER

Let's practice loading the program we just saved.

First, enter NEW

to erase the program from the computer. (Otherwise we won't know if it loaded from
tape or just was left over from before.)

Rewind the tape.

Enter: OLD CSl

The computer peeps and prints:

* RENIND CASSETTE TAPE CSl

THEN PRESS ENTER

Do it. The computer peeps and prints:

* PRESS CASSETTE PLAY CSl

THEN PRESS ENTER

the computer peeps and prints:

* READING

84

/iw\

/BS55\

/W%g\

then is quiet for a few seconds. Then you hear the steady tone, then the twittering,
then two peeps. The computer should print:

* DATA OK

* PRESS CASSETTE STOP

THEN PRESS ENTER

CSl

Now you see the > prompt and the flashing cursor of BASIC.

Enter LIST

to see if the program got into the computer memory OK.

^v^^C,

HOW MANY PROGRAMS ON ONE TAPE?

You can put several short programs on one tape. If your recorder has a dial, it is easier
to find programs on the tape.

But with many programs on a tape, it is harder to find the one you want and more
likely that you will make some mistake and ruin a lot of programs.

Assignment 14:

1. Write a short program (4 lines) and SAVE it on tape.

2. Do NEW, and write another short program. SAVE it.

3. Do NEW. Then load and run each program.

85

INSTRUCTOR NOTES 15 SHORTCUTS AND GRAPHICS

Shortcuts this lesson covers:

LET omission

INPUT with a message in front
LIST in 5 forms

Graphics using the HCHAR and VCHAR statements are introduced.

A brief description of the differences between commands, statements and functions is
included in the lesson.

INPUT used without a message in front prints a "?" for a prompt. Used with a message,
there is no prompt, and there is no space after the message unless you put one inside the
quotes.

We show how to place characters in rows and columns on the screen. The HCHAR
command puts single characters or a horizontal line of characters on the screen.
Likewise, VCHAR puts a single character or a vertical line on the screen. The
character is described by its ASCII number. The numbers for a few punctuation
characters useful for graphics are given here. ASCII numbers are described fully in a
later lesson.

Learning to use graphics requires mastering several commands and concepts. The
students will learn how to choose different colors for her characters, how to move and
erase characters giving moving graphics, and how to manufacture custom characters
for games or for special fonts.

QUESTIONS:

1. What 5 ways can you use the LIST command?

2. How can you tell that the word LET is missing from a LET command?

3. When do you need a colon in an INPUT statement?

4. What do you put inside the () of a HCHAR() statement?

5. Where will the star be put on the screen if your program says:

10 CALL VCHAR<10>13>42)

86

LESSON 15 SHORTCUTS AND GRAPHICS

A LET SHORTCUT

These two lines do the same thing:

also these two:

10 LET A =41 and

20 LET B*="HI" and

10 A=41

20 B$="HI"

You can leave out the word LET from the LET statement! The computer knows that
you mean LET whenever the line starts witha variable name followed by an "=" sign.

AN INPUT SHORTCUT

Instead of 10 PRINT"ENTER YOUR NAME"

11 INPUT N$

You can do: 10 INPUT "ENTER YOUR NAME ":N*

Put a colon between the message "ENTER YOUR NAME" and the variables.

Examples: 10 INPUT "AGAIN? <Y OR N> ": A*

20 INPUT "LOCATION ":X#Y

30 INPUT "MONTH* DAY* YEAR ":M$#D#Y

87

A LIST SHORTCUT

There are 5 ways to use the LIST command:

LIST lists whole program
LIST 48 lists line 48

LIST 50-75 lists all lines from 50 to 75

LIST -27 lists all lines from beginning to 27
LIST 90- lists all lines from 90 to the end

KEY WORDS IN Tl BASIC

Some key words can be used only as commands. Commands tell the computer to do
something. We have learned:

LIST NEW OLD RUN SAVE

Right:
Wrong:

LIST

10 LIST

Some key words can only be used in statements which are in program lines. We have
learned:

STEP

FOR

Right:
Wrong:

GOTO

NEXT

IF THEN INPUT

10 INPUT A

INPUT A

If you try to use these as commands (without line numbers) the computer prints:

or

* INCORRECT STATEMENT

* CAN'T DO THAT

Some key words are functions. We have learned:

INT() RND TAB()

The rest of the key words can be used either as commands or in program lines as
statements. We have learned:

CALL XXX LET PRINT REM

Right:
Right:

10 PRINT

PRINT

88

/i"Wi,. S

/wry

^\

Assignment 15A:

1. Write a program which uses each of the shortcuts at least once.

2. Write a "vacation" program. It asks how much you want to spend. Then it tells
where you should go or what you should do.

3. Write a "crazy" program which asks your name. The program has three funny ways
of saying you are crazy. The program randomly chooses one of these and prints it
after your name.

LO-RES GRAPHICS

"Lo-Res graphics" means "low resolution pictures."

It means drawing pictures using dots and lines of dots.

DRAWING DOTS

We will use some punctuation characters to draw pictures.

Each character has a number.

Here are some good ones for pictures:

*

32

42

blank (good for erasing)
star

+ 43 plus
— 45 minus

0 48 zero

0 79 letter 0

89

Try addingmore HCHAR statements to drawmore dots and other pimctuationmarks
on the screen.

Look: 30 CALL HCHAR (row, column, character number)

You can put any number from 1 to 24 in the row place.

You can put any number from 1 to 32 in the column place.

You can use any character number from 32 to 126.

Try this: 10 REM ONE STAR

20 CALL CLEAR

30 CALL HCHAR(3»7»42)

99 GOTO 99

Press FCTN CLEAR to end the program.

Line 30 does this:

goes down 3 rows from the top
counts across 7 spaces from the left
puts character 42 there
(character 42 is the "star")

90

/SPSjyS

/WW,

/WW'S

/fS=sa

Try this: 10 REM CHARACTER9

20 CALL CLEAR

25 FOR C =33 TO 126

30 CALL SOUND(100 ,900 ,10)

32 X=INT(RND*32)+1

34 Y=INT(RND*24)+1

40 CALL HCHAR(Y>X»C)

50 FOR T=l TO 200

51 NEXT T

90 NEXT C

DRAWING HORIZONTAL LINES

Use CALL HCHAR to draw horizontal lines:

Trythis: 10 REM HORIZONTAL LINES
15 CALL CLEAR

20 CALL HCHAR(5*3»43>20)

It is just the same as drawing a dot, but you have one more number inside the ().

2 CALL HCHAR (row, column, character, how many)

So: 20 CALL HCHAR (3 ,7 ,88 ,8)

Means: count 3 rows down from the screen top
then go 7 across
put character 88 (the "X" letter) there
then put 8 more characters across to the right.

The "H" in HCHAR means "horizontal" line.

91

DRAWING VERTICAL LINES

Add: 70 CALL VCHAR (8 >4 >33 >7)

Means: count 8 rows down

go 4 characters across
put the character 33 there
then put 6 more down from there

Assignment 15B:

1. Put a dot at 11 down and 7 across.

2. Put a horizontal line of stars on line 3 down and running from 4 to 12.

3. Put a vertical line of dots starting 4 down and 6 across. Make it 9 characters long.

92

/REN,

INSTRUCTOR NOTES 16 THE IF STATEMENT WITH NUMBERS,
END

The IF command is extended to numerical expressions. The END statement is
introduced. The logical relations used in this lesson are:

>, <, <>

The > and < symbols may still confuse yourstudent. Remind her that "the large end
of the > goes beside the large number."

The IF statement is intricate because it involves two elements: a test for truth and a
possible branch.

Because of the branch,the IF may be part ofanon-compact sectionof codein the program.
Most of the confusion comes in seeing what lines in the program logically go together,
and how the flow of control moves through the program.

The easiest case is where the IF comes at the end of a section and the branch is backup
to the beginning of the section. This is a DO UNTIL... and the exit occurs when the IF
fails the test.

Another common case is the "skip or fall through." When the IF is TRUE, some lines
are skipped and the next section of code is executed. Otherwise the lines are executed
and control "falls through" to the next section of code.

An elaboration of this avoids the "fall through" by having a GOTO at the end of the
section. This forms a DO WHILE... .

The use of nested IF's is demonstrated.

A "home made" loop is demonstrated in the GUESSING GAME but not discussed. The
loop starts in line 50 and goes to 81. The exit test is made in line 61.

QUESTIONS:

1. What part of the IF command can be TRUE or FALSE?

2. What follows the THEN in an IF command?

3. After this little program runs, what will be in box D?

10 LET D=4

15 IF 3 < 7 THEN 30

20 LET D=9

30 REM

4. Same question, but for 3 > 7.

93

LESSON 16 THE IF STATEMENT WITH NUMBERS, END

Try this: 10 REM *** TEENAGER ***

15 CALL CLEAR

20 PRINT"YQUR AGE?"

30 INPUT A

40 IF A<13 THEN 60

50 IF A>19 THEN 70

55 PRINT"YOU ARE A TEENAGER!"

56 END

60 PRINT"NOT YET A TEENAGER!"

61 END

70 PRINT"GROWN UP ALREADY!"

90 END

This IF command is like the one that you used before with strings. Again we have:

10 IF phrase A is true THEN line number

"Phrase A" can have these arithmetic symbols:

>

<

<>

equal to
greater than
less than

not equal to

Each "phrase A" is written in "math language" but you should say it out loud in
English. For example:

AoB

5<7

is pronounced

is pronounced

"A is not equal to B"

"five is less than seven"

THE END COMMAND

The program may have zero, one, or many END commands.

Rule: The END command tells the computer to stop running and go back to the
command mode.

That is really all it does. You can put an END command anywhere in the program.

94

fwf\

PRACTICE

For these problems, LET A=7 and LET B = 5 and LET C = 5.

Say each "phrase A" out loud and circle T or F for true or false:

A=B TF

A>B TF

A<B TF

A<C TF

B = C TF

B<C TF

AoB T F

BoCTF

Example, say: "A is equal to B, or 7 is equal to 5, that is FALSE".

or "A is greater than B, or 7 is greater than 5, that is TRUE."

GUESSING GAME

10 REM --- GUESSING GAME ---

15 CALL CLEAR

20 REM--- INSTRUCTIONS

21 PRINT "TWO PLAYER GAME"

25 PRINT

30 PRINT "FIRST PLAYER ENTER A NUMBER FROM 1 TO 100"

35 PRINT "WHILE SECOND PLAYER ISN'T LOOKING"

40 REM CHOOSE NUMBER

41 INPUT N

45 CALL CLEAR

47 PRINT

50 REM MAKE GUESSES

51 PRINT "MAKE A GUESS"

52 PRINT

55 INPUT G

60 REM IS THE GUESS RIGHT?

61 IF G=N THEN 90

65 REM IS THE GUESS TOO SMALL?

66 IF G<N THEN 70

67 REM GUESS WAS TOO LARGE

68 PRINT "TOO LARGE"

69 GOTO 80

70 REM GUESS WAS TOO SMALL

71 PRINT "TOO SMALL"

80 REM GET ANOTHER GUESS

81 GOTO 50

90 REM--- --- THE GAME IS OVER

82 PRINT

85 PRINT "THAT'S IT!"

95

Save on tape.

Line 81 usually sends you to line 50 so that more guesses can be made. But if the guess
was right in line 61, then you skip to line 90 and the program prints the message:

"THAT'S IT!"

Assignment 16:

1. Draw the road map for this program. Lines 61 and 66 have "forks in the road.5
Lines 69 and 81 are jumps to other lines.

2. Here is another program. What will it print, and how many times?

10 N=l

20 IF N <> 13 THEN

25 PRINT "UNLUCKY"

30 LET N=N+2

40 IF N>30 THEN 88

50 GOTO 20

88 PRINT "DONE"

30

What will it print if line 10 is changed to:

10 LET N=2

3. Write a program which says something about each number from one to ten. The
player enters a number and the computer prints something about each number:
"three strikes, you're out" or "seven is lucky" etc.

4. Write a digital clock program. It uses a timing loop to count seconds. Input the
present time in hours, minutes and seconds. The clock then counts seconds and
prints them out. When 60 seconds have gone by, add one to the minutes and put
seconds back to zero. Same with hours. Run the clock a long time and adjust the
timing loop so the clock keeps good time.

5. Write a game for guessing a card that someone has entered. You must enter the suit
(club, diamond, heart, or spade) and the value (1 through 13). First they guess the
suit, then the program goes on to ask the value. Keep score.

96

INSTRUCTOR NOTES 17 COLOR GRAPHICS

The CALL COLOR() command in TI BASIC lets you put up to 15 colors on the screen
at once.

CALL COLOR (char, set, foreground, background)

is a command that colors a whole set of 8 characters at once. There are 16 sets. The
characters are numbered from 32 to 159. Set 1 is from 32 to 39, set 2 the next 8
characters, etc. Normally, the characters are the ASCII set listed in the appendix.

Because you assign two colors to each character set, a foreground color and a
background color, you have an immense number of color combinations.

You can choose a "transparent" color which lets the background color, assigned by a
CALL SCREEN() command, show through in either the character foreground or
background. (If transparent is used for the foreground, you have a "reversed"
character.)

The background normally only shows on the border because the "field," where the
characters are printed, usually starts out filled with character 32, the blank, which
belongs to set 1.

The CALL COLOR command recolors all the characters in the set: those yet to be
placed on the screen and THOSE ALREADY ON THE SCREEN!

Coloring in sets and changing those already on the screen may sound dreadful but,
properly used, you can draw almost anything you wish.

You assign a different color pair to each of 16 character sets at the beginning of the
program. Then you redefine characters in each set until you can make the pictures you
want in the colors you want. You may want to reassign colors or characters in the body
of the program to obtain special effects, but this may complicate the program
somewhat.

QUESTIONS:

1. What character set does the "star" belong to? The "space"?

2. How many colors can you put on the screen at once?

3. What does "character color" and "background color" mean in the CALL COLOR
command?

4. How many characters are in each character set?

5. Which character numbers belong to set 2?

97

LESSON 17 COLOR GRAPHICS

The TI 99/4A can put 15 colors on the screen at once.

THE COLORS ARE NUMBERED

1 TRANSPARENT
2 BLACK

3 MEDIUM GREEN
4 LIGHT GREEN

5 DARK BLUE

6 LIGHT BLUE

7 DARK RED

8 CYAN (BLUE- GREEN)

9 MEDIUM RED

10 LIGHT RED

11 DARK YELLOW
12 LIGHT YELLOW

13 DARK GREEN

14 MAGENTA (PURPLE)
15 GREY

16 WHITE

We will explain colornumber 1, transparent, in a later lesson.

ADJUSTING YOUR TV SET

When you first turn on the computer (orwhen you press FCTN QUIT) you see two
rows of colored rectangles on the screen.

Adjust the TV controls to make the colors look right.

You should see all the colors in the list above, especially a good "yellow."

PICKING THE BORDER COLOR

Pick a color for the background of the whole screen.

Run:

10 REM COLORS

15 CALL CLEAR

20 CALL SCREENU5)

99 GOTO 99

We picked color 15, which is grey.

Press FCTN CLEAR to end the program.

98
/^totfRi^X

/•'iwjw\

/^H^

CHARACTER SETS

Here are the first two character sets:

Setl Set 2

32 space 40 (
33 ! 41)
34 " 42 *

35 # 43 +

36 $ 44 9

37 % 45 -

38 & 46 .

39 ' 47 /

The rest of the character sets are Usted in the TI USER'S REFERENCE MANUAL.

Each character has a number, called the ASCII number.

(ASCII is pronounced "ask-key".)

Important! When you choose colors, all the characters in a set are given the same
color.

PAINTING CHARACTER SET 2

The command is:

CALL COLOR (set, character color, background color)

Add: 30 CALL CQLQR<2*9*2)

Means: 30 CALL COLOR (set 2, red characters, black background)

So each character of set 2 looks like:

a red character

on a little black rectangle

99

PUT THEM ON THE SCREEN

Use the commands CALL HCHAR and CALL VCHAR:

Add:

40 REM PRINT SETS 1 AND 2

41 FOR CH = 32 TO 47

45 CALL HCHAR(10,CH-31»CH)

50 FOR T=l TO 300

51 NEXT T

B0 NEXT CH

And run it. You see all the characters of set 1 and set 2. The characters of set 2 are red
inside black rectangles.

Assignment 17A:

1. Write the name of your favorite movie and movie starand then make them change
colors on the screen.

2. Now draw a "theater marquee" around the names and have it flash a different color.

100

MOVING PICTURES

Run: 10 REM HUMPTY DUMPTY IS SQUARE

15 CALL CLEAR

20 CALL SCREEN(2)

25 REM MAKE A SQUARE CHARACTER

2B CALL CHAR<42>"FFFFFFFFFFFFFFFF")

27 REM IB LETTER F's

30 FOR C=3 TO IB

35 CALL C0L0R(2»C»2)

40 FOR J=l TO 23

50 REM ERASE THE OLD SQUARE

51 CALL HCHAR(J»C*2-2»32)

55 REM DRAW THE NEW SQUARE BELOW

5B CALL HCHARtJ+1»C*C-2»42)

60 NEXT J

70 NEXT C

Notice these things:

Line 26 makes a new character, number 42. It is a rectangle. The old 42 was a star.
The command CALL CHAR() makes the new 42.

You will learn how to make any character you want in a later lesson.

Line 35 keeps changingthe color of characters in set 2. When the color changes, ALL
the characters in that set change color, EVEN THE ONES THAT WERE PUT ON
THE SCREEN EARLIER!

Line 50 erases the old square before line 55 draws the new one. It looks like the square
is falling.

When the program ends, character 42 is changed back into a star.

101

THE SPACE CHARACTER IS IN SET 1

Run: 10 REM THE CHARACTER FIELD
15 CALL CLEAR

IS PRINT "! *$% | &*()+"
20 CALL SCREEN<14)

30 FOR C=3 TO IB

35 CALL COLORd »2»C)

3B PRINT C

40 FOR T=l TO 500

41 NEXT T

50 NEXT C

Character 32, whichis a "space," is in set 1.

Most of the screenis usually"filled" with this blankcharacter.
So most ofthe screen changes color if you change the color of set 1.

Assignment 17B:

1. Change the HUMPTY DUMPTY program so that the square moves across the
screen instead of down.

2. Add tothe number guessing game in lesson 13 so that acolored picture shows when
the correct answer is guessed. Use atiming loop so that the picture shows for a few
seconds before the game starts again.

3. Write aprogram todraw "Sinbad's Magic Carpet," arectangular pattern ofcolored
dots on the screen.

102

/amy

^~y

INSTRUCTOR NOTES 18 COMMAND AND RUN MODES

This lesson explains the Command Mode and the Rim Mode of the computer.

We placedthis material rather late in the book, despite its fundamental nature,
because it is abstract and because we did not wish to slow down the race to mastery of
the core commands in BASIC.

However, you may want to take up this chapter at some earlier time in the course. The
only commands used in this lesson are:

NEW, PRINT and RUN

Other names for these modes are:

Command Mode: direct mode immediate mode

Run Mode: deferred mode

In some computers, the command mode is called "the edit mode" but TI BASIC has a
line edit mode called "the edit mode."

The command mode is the home base of the computer user. In the command mode you
enter a line. The characters go into the input buffer.

When RETURN is pressed, the computerlooks to see if the line starts with a number.
If so, it stores the line in the program space, making room at the right location so that
the lines are numbered in order.

A line must start with a line number followed by a "statement" key word. Or it must
start with no number and a "command" key word. Otherwise, an error message will be
printed.

QUESTIONS:

1. What does the computer do in the "RUN mode"?

2. How can youtell if the computer is in the "command mode"?

3. What 3 kinds of things can you do in the commandmode?

4. If you enter a line which startswith a line number, whathappens to the line?

103

LESSON 18 COMMAND AND RUN MODES

Enter: NEW

You are ready to begin the lesson.

EXECUTION AND RUNNING

We mean "execution" like the soldier executing the command "Left Face," not
"execution by firing squad."

"Execute a program" means the same as"run a program."

PROGRAM EXECUTION

Enter and run this program:

10 PRINT "HI"

This is the usual way to make and run programs. You enter program lines.

Each line starts with anumber and followed by astatement. The computer stores the
line with the other lines in memory. Later you execute the program by entering the
command "RUN."

COMMAND EXECUTION

Here is a short cut. Enter this (no line number in front):

PRINT "HI"

This time PRINT is used as a command. The computer executes the command right
away, without waiting for you to enter RUN.

104

ASLEEP OR AWAKE?

People act one way if they are awake and anotherway if they are asleep. They have
two "operating modes."

You can tell if they are asleep because they snore. (Well, not all people snore, but to
explain how computers are like people, let's pretend that all sleeping people snore.)
The computerhas two operating modes too. They are called the "command mode" and
the "RUN mode."

THE COMMAND MODE

Enter: NEN

You see the ">" symbol and the flashing cursor square.

The ">" is called a "prompt" and says that the computeris in the "command mode" of
TI BASIC.

The ">" is the "snoring" of the computer when it is in the command mode.

In the command mode the computer just waits for you to enter something.

While the computer is in the command mode:

You can enter programs by typing lines which start with numbers.
You can use the computer like a pocket calculator. Big pocket!
You can enter commands like LIST, CALL CLEAR, PRINT, etc.

105

THE CALCULATOR

You can do arithmetic in the Command Mode. Try this:

PRINT 3+7

The computer prints the answer " 10".

THE RUN MODE

Enter RUN to leave the command mode and go to the run mode.

While the computer is in the run mode:

The screen turns green.

The program in memory runs.

When the program is finished, the computer automatically goes back to the command
mode.

Assignment 18:

1. How can you tell if the computer is in the command mode?

2. How can you tell if the computer is in the RUN mode?

3. What mode does the computer enter when the program is done running?
4. How can youtell where the next letter you type will appear onthe screen?

106

^y

/zs%y

fswfev

/m^iy

^y

«^

<s*z?y

INSTRUCTOR NOTES 19 DATA, READ, AND RESTORE

This lesson concerns the DATA statement. You put data into the DATA statement at
the time you write the program. READ gets data from the DATA statements and
RESTORE puts the pointer back to the beginning of a DATA statement.

The storing of data in DATA statements has a few confusing aspects when first
confronted. You can never change any of the data in the statement unless you rewrite
the program. Ofcourse, you can READ the data into a variable box, then change
what's in the box.

You must READ the data to be able to use it. It must be read in order, starting from
the beginning. If youwant to skip some data that is in a given DATA statement, you
have to read and throw awaythe stuff before it. (This procedure is not discussed in the
lesson; it may be mentioned to the student whenother ideas about DATA are well
entrenched.)

In TI BASIC you can skip data by arrangingit in different DATA statements, and
pointing to the one you wantwitha RESTORE nnn statement, where nnn is the
number of the DATA statement.

The idea of a "pointer" is used in this lesson. A pencil in the hand of the instructor,
pointing to items in a DATA statement, helps clarify this concept.

Using DATA saves someerror prone typing if you have a lot of data.

However, it is alsouseful in cases where there is not really very much data because it
clearly separates the actual data from the processing ofthe data. Thishelps when
debugging programs.

One of the most common uses of DATA is to fill arrays with initial values.

QUESTIONS:

1. What happens if you try to READ more data items than are in the DATA
statements?

2. What rule tells you where to put the DATA statements into the program? How
about where to put the READ statements?

3. Canyou put numerical data and string data into the same DATA statement?

4. Can you change the items in a DATA statement while the program runs?

107

LESSON 19 DATA, READ, AND RESTORE

TWO KINDS OF DATA

There are two kinds of data in your programs:

1. The data you INPUT or get by CALL KEY through the keyboard.

10 REM FIRST KIND OF DATA

20 CALL CLEAR

30 PRINT"YOUR PET PEEVE"

35 INPUT P$

37 CALL CLEAR

40 PRINT"REALLY!"

50 PRINT"YOU DON'T LIKE "!
B0 PRINT P$5"?"

In this program P$ is data entered by the userasthe program runs.

2. The data which is stored in the program at the time it is written.

10 REM THE SECOND KIND OF DATA
20 CALL CLEAR

30 X = 2

40 Y = 3

50 PRINT X+Y

In this program X and Y are data stored inthe program by the programmer when
she wrote the program.

STORING LOTS OF DATA

It is OKto store small amounts of data in LET statements. But it is awkward to store
large amounts of data that way.

Use the DATA statement to store large amounts of data.

Use the READ statement to get the data from the DATA statement.

10 REM LOTS OF DATA

20 CALL CLEAR

30 DATA SUNDAY»MONDAY»TUESDAY»WEDNESDAY♦THURSDAY
FRIDAY»SATURDAY

40 READ D1$»D2$»D3$»D4*

60 PRINT D1$»D2$

After the program runs, box Dl$holds the first item inthe DATA list (SUNDAY) and
box D2$holds the second (MONDAY), etc.

108

f&rtiy

STRANGE RULES

1. It doesn't matter where the DATA statement is in the program.

Do this: Change line number 30 inthe above program to line number 90. Run the
program. It works just the same.

2. It doesn't matter how many DATA statements there are.

Do this: Break the DATA statement into two:

30 DATA SUNDAY .MONDAY .TUESDAY
91 DATA WEDNESDAY .THURSDAY.FRIDAY.SATURDAY

Runthe program. It works just the same as before.

IT IS POLITE TO "POINT"

READ uses a pointer. It always points to the next item to be read.

You can't see the pointer. Just imagine it is there.

When the program starts, the READ pointer points to the first item inthe first DATA
statement in the program. (That is, the DATA statement withthe lowest line number
of all DATA statements in the program.)

Each time the program executes a READ command, the pointer moves to the next
item in the DATA list.

If the pointer gets to the end ofone DATA statement, it automatically goes to the next
DATA statement. (That is, to the DATA statementwith the next higherline number.)

It doesn't matter if there are a lot of lines between.

109

Do this: Change line 90 back to line 30. (Leave line 91 alone.)

30 DATA SUNDAY. MONDAY. TUESDAY
♦ ♦ ♦

91 DATA WEDNESDAY .THURDSAY.FRIDAY.SATURDAY

Run the program. It works just the same.

FALLING OFF THE END OF THE DATA PLANKS

When the pointer reaches the last item in the last DATA statement in the program,
there are no more items leftto read. If you try to READ again, you will see an error
message:

DATA ERROR or

DATA ERROR IN nnn where nnn is a DATA line number

BACK TO SQUARE ONE

At any point in the program, you have only three choices for the READ pointer.

1. You can do another READ: Then the pointer moves ahead one item.

2. You can command RESTORE: Then the READ pointer is put back to the beginning
of the first DATA statementin the program.

3. You can command RESTORE nnn: The nnn is a line number ofa DATA statement.
The READ pointeris put on the first item in that DATAstatement.

110

fWmfliH'\

i^sscy

C^y

MIXTURES OF DATA

The DATA statement can hold strings or numbers in any order.

But you must be careful in your READ command tohave the correct kind ofvariable
to match the kind of data.

Correct: 70 DATA 77 »FUZZ
75 READ N

80 READ B$

Wrong: 70 DATA 77 »FUZZ
75 READ B*

80 READ N

OK, B$ box holds "77"
TYPE MISMATCH ERROR

You can't put "FUZZ" into a number box.

Assignment 19:

1. Write aprogram naming your relatives. When you ask the computer "UNCLE" it
gives the names ofall your uncles. DATA statements will have pairs ofitems. The
first item is a relation like FATHER or COUSIN. The second item is a person's
name. Ofcourse, you may have several brothers, for example, each witha DATA
statement.

111

INSTRUCTOR NOTES 20 SOUND

The CALL SOUND command turns on from 1to 4voices. You can set the pitch and
loudness of each voice and the duration (up to 4.25 seconds) of the whole combination.

The computer continues toexecute instructions while the sound is being made. This is
a very convenient feature of the TI99/4A computer.

You have achoice of whether anew CALL SOUND command will cut off the existing
sound or wait for it to end. If it waits, the execution ofother program commands must
wait too.

The number specifying pitch is actually the frequency in Hertz or cycles per second.
Frequencies from 110 Hz. (a low bass note) to tones above human perception are
allowed, in one Hz. steps. The middle A for tuning an orchestra is 440 Hz.

A variety ofnoise sounds can be made byone voice, while up to three "musical" tones
are also sounding.

The most interesting sounds will bemade using several SOUND comands one after
another to provide variations such as attack, sustain, and decay portions ofasound.

When using sound in graphics situations, you get the most elaborate effects ifyou
interweave the sound commands with the"move the graphics" commands.

The DATA command is useful for storing the notes in music.

QUESTIONS:

1. Which pitch numbers give deep sounds? Which give high notes?
2. What turns the sound off?

3. What is the longest time the sound will last?

4. How do you make a hissingnoise?

5. What number gives the loudest noise? The softest?

6. How do you make a "motor" sound?

112

LESSON 20 SOUND

The TI-99/4A has four sound voices.

One voice can "sing" by itself.

Or two, three, or four can "sing" at the same time.

You can pick one of the voices to be a "noise maker," with a choice of 8 kinds of noises.

Use them in music and sound effects like explosions, laser guns, and wind.

MAKING MUSIC

Each CALL SOUND command picks one sound duration and 1, 2, 3, or 4 voices. Each
voice has a pair of numbers giving its pitch and loudness.

Examples: 30 CALL S0UND<D> P » L)
30 CALL S0UND<D» Pit LI, P2» L2)

30 CALL S0UND(D» PI» LI» P2 » L2 ♦ P3» L3)

30 CALL S0UND(D# PIt LI» P2» L2* P3» L3# P4» L4)

variable

D for "duration"

P for "pitch"
L for "loudness"

value

from 1 to 4250

from 110 to 44733

from 0 to 30

DURATION

"Duration" means "how long the sound lasts."

The number D varies from 1 to 4250. Move the decimal over 3 places and D tells how
many seconds the sound will last.

D = 500

D = 1000

D = 1500

D = 2000

D =(fill in)
D =(fill in)

half a second

1 second

1.5 seconds

2 seconds

3 seconds

4 seconds

113

PITCH

Pitch tells whether you have a "high note" or "low note." The bigger the number, the
higher the pitch.

The pitch numbers are actually the frequency in Hertz or cycles per second. Only
integers work for pitch numbers.

Small numbers give low tones. Large numbers give high notes, maybe so high only
your dog can hear them!

Here is a tempered scale of musical notes:

note number

C (below middle C) 131

C# 139

D 147

D# 156

E 165

F 175

F# 185

G 196
G# 208

A 220

A# 233

B 247

C (middle C) 262

C# 277

D 294

D# 311

E 330

F 349

F# 370

G 392

G# 415

A 440

A# 466

B 494

C (above middle C) 523

Try this: 10 CALL SOUND(1000 ,440 »0)

This plays "A above middle C" for one second.

These notes may be a little out of tune.

114

^y

/SmF\

/@&y

/#*»!

0^fy

fbwMy

/Hwfy

rmy

This is the reason:

only integers are used in the SOUND command
but decimal numbers are needed for notes in tune

and the frequency played may be off by up to 10% from the frequency asked for.

You get very high notes for pitch numbers above 5000.

You may not be able to hear anything for pitch numbers above 10000.

LOUDNESS

Little numbers give loud sounds.

L = 30 sound is turned off

L = 10 sound is normal loudness

L = 0 sound is loudest

(Of course, you can turn up the TV to get a louder sound.)

115

ONE VOICE

DUET

10

20

22

23

25

26

35

36

40

REM ONE VOICE

PRINT "ONE VOICE"

PRINT "HOW LONG? <1 TO 4250>"

INPUT D

PRINT "WHAT PITCH <110 TO 10000>"

P

"HOW LOUD <0 TO 30>"

L

SOUND(D» P, L)

INPUT

PRINT

INPUT

CALL

45 FOR T=l

46 NEXT T

50 GOTO 20

TO 1000

10

20

25

26

30

31

40

45

46

50

REM DUET

PRINT "TWO

PRINT

INPUT

PRINT

INPUT

CALL

PRINT

PRINT

GOTO 20

V0ICE5"

"PITCH 1"

PI

"PITCH 2"

P2

SOUNDC2000tPl »0»P2»0)

DOING TWO THINGS AT ONCE

The TI computer makes sounds and computes at the same time!

You can move characters on the screen while the sound is still going. Most other
personal computers can't easily do this.

Try this: 10 CALL CLEAR
20 CALL SOUND(4250>110»0)

30 FOR I = 1 TO 15

33 PRINT I

36 NEXT I

40 CALL SOUND<4250»500»0)

45 PRINT "5EC0ND"

50 CALL 8OUND(4250>1000»0)

55 PRINT "THIRD"

116

^^y

/nm\

fmwvv\

,*my

/BS\

/&ar$y

^y

Line 20 asks for a low note. While it is still sounding, the loop in lines 30 to 33 is also
running.

Then the program gets to line 40 where a newsound is called for. But the computer
waits until the sound from line 20 is over before starting the new tone.

While line 40's sound is going, the computer prints in line 45 and then waits at line 50
for the second sound to end.

Finally, the sound of line 50 is made, and the program prints "THIRD" and then ends.

The computer prints:

** DONE **

while the sound is still going!

SOMETIMES IT IS POLITE TO INTERRUPT

If you want the new sound to start right away and not wait for the old sound to end,
then put a minus sign in front of its duration number.

Change: 50 CALL SOUND(-4520tl000*0)

Run the program again and see that the high tone at the end cuts off the middle tone
before it has run very long.

117

MAKING NOISES

You make noises by choosing a "pitch" that is one of these negative numbers:

Try this:

-1

-2

-3

-4

-5

-6

-7

-8

periodic noise type 1
periodic noise type 2
periodic noise type 3
periodic noise mixed with tone 3
"white" noise type 1
"white" noise type 2
"white" noise type 3
"white" noise mixed with tone 3

10 REM NOISE

20 FOR I=-l TO -8 STEP -1
30 CALL SOUND(4000»I »0)

40 NEXT I

You are supposed to use noise -4 and -8 with one, two, or three other sounds.

Change: 30 CALL SOUND<4000 >I »0 »500 »10 »B00 »10 #700 »10)

COMPLICATED SOUNDS

You can try combinations to see what sounds you like:

10 REM COMBINATIONS

15 Sl=200

16 S2=1000

20 FOR 1=1 TO 20

22 S1=S1 * 1.1

24 S2=S2 * 0.95

30 CALL SOUND(100»S1»0»S2»0)

40 NEXT I

Assignment 20:

1. Make a list of sound effects. For each pitch number -1, -2, -3, -5, -6, and -7
tell what kind of sound you get. Try it togther with other voices and tones. Think of
a game or program which the sound would be good for.

2. Make the sound of: a truck horn

a laser gun
an explosion
a wind storm

Write a program to play a short tune, like "Row, Row, Row Your Boat" or'
Had A Little Lamb." Use a DATA statement to store the pitch numbers.

118

'Mary

8®y

/SS!\

/^¥?\

/$$W\

jfs^y

fi**$y

s^ny

/m?W\

/$s^$y

/$$sy

/pipy

/'•W>\

INSTRUCTOR NOTES 21 HI-RES GRAPHICS

TI BASIC has a powerful command, CALL CHAR(), to define new characters.

It can be used to produce a new type font ormake game characters. For example, 8
arrows, cars, planes, tanks, etc., pointing in different directions allow plenty of action
in games. You can make ships, dinosaurs, and other elaborate high resolution graphics
by using 2 or more adjacent characters.

A special character is made in two steps. First it is drawn onpaper in an8x8 grid.
There is a page in this lesson that you should reproduce by office copier so your
student will have plenty of grids to use.

Then, noticing that the grid is divided into 16 short rows of 4 dots each, youwrite a
code word (16 characters long) that specifies the shortrowsin the character. You pick
the code characters by referring to a table of 4-dot rows in the lesson.

Another description for those of you who are familiar with binary and hexadecimal
notation is this: Each of the eight rowsof the character is viewed as an eight digit
binary number. Then the character is specified by writing one 16digit hex number
which is made up of the 8 (two digit) hex numbers specifying the rows of dots.

The color numbered "1" is called "transparent." It means that the dots are chosen to be
of the "background" color which was specified by the CALL SCREEN(color)
statement. (Defaults to green.) Transparent can be used either for the "off" or
"background" dots of a character, or the "on" or "foreground" dots of the character.

Or evenboth. Then the character is a solid square of background color. This mightbe a
way to use the CALL COLOR() statement to make invisible things on the screen
appear and then disappear again!

QUESTIONS:

1. How many character sets are there?

2. How many characters are in each set?

3. What does "59" mean in the statement

40 CALL CHAR<59f,,FFFF0000FFFF0000")

4. What does "FFFF0000FFFF0000" mean?

5. If you want the characters to sit onthe "background" color instead of sitting in a
little square of another color, what do you do?

119

LESSON 21 HI-RES GRAPHICS

Learn to make your own graphics characters for drawing "high-resolution" pictures.

REVIEW OF GRAPHICS

Let us review the graphics you have already learned.

THE COLORS

1 TRANSPARENT

2 BLACK

3 MEDIUM GREEN

4 LIGHT GREEN

5 DARK BLUE

6 LIGHT BLUE

7 DARK RED

8 CYAN (BLUE-GREEN)

9 MEDIUM RED

10 LIGHT RED

11 DARK YELLOW

12 LIGHT YELLOW

13 DARK GREEN

14 MAGENTA (PURPLE)
15 GREY

16 WHITE

Adjust your TV controls to make the colors look right.

120

/gSM/y

/^By

/SM&y

/-^

/giis^

/ '!!^\

/ •i4i^

r^s

/"'QlfSw

THE CHARACTER SETS

There are 16 sets. Each has 8 characters in it.

Set character number

1 32 33 34 35 36 37 38 39
2 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55
4 56 57 58 59 60 61 62 63
5 64 65 66 67 68 69 70 71
6 72 73 74 75 76 77 78 79
7 80 81 82 83 84 85 86 87
8 88 89 90 91 92 93 94 95
9 96 97 98 99 100 101 102 103
10 104 105 106 107 108 109 110 111
11 112 113 114 115 116 117 118 119
12 120 121 122 123 124 125 126 127
13 128 129 130 131 132 133 134 135
14 136 137 138 139 140 141 142 143
15 144 145 146 147 148 149 150 151
16 152 153 154 155 156 157 158 159

THE COMMANDS

Color a character set using the CALL COLOR statement:

Enter: 10 REM GRAPHICS

15 CALL CLEAR

20 CALL C0L0R(2»7»15)

This paints all 8 characters in set 2. They become red with a grey background.

Set 2 looks like this now,

Number 40 41 42 43 44 45 46 47

Character ()* + ,-./

but we will soon change some of the characters to lookdifferent. You put characters on
the screen with CALL HCHAR and CALL VCHAR.

Add: 30 CALL HCHAR<3»6»42»4)

99 GOTO 99

Run the program. Line 30 means

30 CALL HCHAR (row 3, col. 6, char. 42, repeat 4 times)

121

MAKING A NEW CHARACTER

Each character is a square made of dots.

The square is 8 dots across and 8 dots down.

Here is an arrow character:

You have to tell the computer two things:

which character number to use

which dots to light tip

Let's change the "star" character to an arrow:

0 8

I C

2 A

0 8

0 8

0 8

0 8

0 0

Add: 40 CALL CHAR(42>"081C2A0808080B00")

41 CALL MCHAR(10»11»42»8)

Rim the program.

When line 40 is executed, character 42, which used to be the star "*", becomes the
arrow.

IMPORTANT! Even the stars already on the screen change to arrows!
Add:

35 FOR T=l TO 400

38 NEXT T

And run it again. Watch to see the "old" stars change to arrows.

122

fgMO\

/~VM\

CODE FOR THE CHARACTER

A special code tells the computer which dots are in the character.

Each character is divided up into 16 little rows of four dots each. Each kind of 4-dot
row has its own code name. The code is a number or a letter: 0123456789ABC
DEF.

i

6_
7_
8_

_9

A
B
_C
D

(If you know about binary and hexadecimal numbers, you can see why each little row is
named the way it is.)

123

THE REST OF THE ARROWS

Here is a tilted arrow.

0 0

7 8

6 0

5 0

4 8

0 4

0 2

0 0

Assignment 21 A:

1. Draw 6 more arrows, so you have 8. One arrow in each direction: up, down, left,
right, and four tilted arrows in between the others.

2. For each arrow, write its code letters.

3. Add the above arrow characters to the above program, using CALL CHAR()
command lines. Use all the numbers 40 to 48 which are in character set 2.

4. Add lines to the program so all the arrows on the screen revolve like little clock
hands. Use CALL HCHAR and CALL VCHAR in a loop which has a delay loop
nested inside it.

5. Now put the 8 arrows in 8 different character sets. Make each set a different color.
When the arrows slowly revolve, they will also change color!

124

THE "TRANSPARENT" COLOR

Run: 10 REM FLASHING BACKGROUND
15 CALL CLEAR

20 CALL CHAR(42»"081C2A0808080800")
30 CALL C0L0R(2>7»15)
31 CALL HCHAR<12,14>42)
35 FOR T=l TO 400

36 NEXT T

40 CALL C0L0R(2#7>1)
45 FOR T=l TO 400
46 NEXT T

50 GOTO 30

The arrow sits in a little square that flashes white, then"transparent." (The green
background shows through.)

Line 20 makes anarrow character and stores it in the memory.
Line 30 colors it red with a grey background.

30 CALL COLOR (char. 42, red color, white background)

Line 40 colors it red with a "transparent" background.

Change: 40 CALL COLOR (2 ,1 #15)

Run it again. What happens?

Assignment 21B:

1. Make some other characters which, seen from above, point in 8 different directions.
Theymaybe birds, cars, airplanes, tanks, etc. Draw them in copies of page 126
and figure out which code numbers they have.

2. Make the club, diamond, heart, and spade characters of a set of cards.

125

Do not draw on this page!
Instead make copies on an
office copier.

126

errs

INSTRUCTOR NOTES 22 ASCII CODE, KEYBOARD, ON...GOTO

This lesson treats theASCII code for characters and the functions ASC() and CHR$()
which change characters to ASCII numbers and vice versa.

The ASCII code is primarily intended to standardize signals between hardware pieces
such as computers with printers, terminals, other computers, etc. But within programs
the ASCII numbers are also useful. The letters are numbered inincreasing order and
so the ASCII numbers are useful inalphabetizing routines. The numerical digits are
also in order, and the punctuation marks also have ASCII numbers.

The CALL KEY statement gets keystrokes from the keyboard and reports them as
ASCII numbers in a variable. This is treated in the next lesson.

The CALL CHAR statement treated later identifies characters by numbers from 30 to
159. The default value of these characters is that given by the ASCII code.

QUESTIONS:

1. Does ASC(S$) return a string or a number for its value?

2. Does ASC(S$) have a string or a number for its argument?

3. Same two questions for CHR$(N).

4. Which letter has the larger ASCII code number, B or W?

5. Do you know the ASCII code for the character "1"? Is it the number 1?

6. What will the computer do if you run this line:

10 PRINT CHR$(65)5 CHR$(30)?

(If you don't know, try it.)

127

LESSON 22 ASCII CODE, KEYBOARD, ON...GOTO

NUMBERING THE LETTERS IN THE ALPHABET

"That is easy," you say. "A is 1, B is 2, C is 3 ..."

Well, for some strange reason, it goeslike this: A is 65, B is 66, C is 67

These numbers are called the ASCII code of the characters. ASCII is pronounced
"ask-key."

The punctuation marks and numberdigits have ASCII code numbers too. Later you
will learn how to make your own characters and give them ASCII numbers.

ASC() CHANGES CHARACTERS INTO NUMBERS

Use the ASC() function to change characters into ASCII numbers.

Run: 10 REM *** WHAT NUMBER IS THIS KEY? ***

20 PRINT "PRESS KEYS TO SEE ASCII NUMBER"

30 INPUT C*

40 PRINT C*;TAB(5);ASC(C*)

50 GO TO 30

Try out some letters, digits, and punctuation.

Press FCTN CLEAR to end the program. Then SAVE it to tape.

128

CHR$() CHANGES NUMBERS INTO CHARACTERS

Use CHR$() to change ASCII codenumbers into a string holding one character.

Run: 10 REM /// DISPLAY ASCII ///

11 REM

20 CALL CLEAR

30 FOR 1=30 TO 127

40 PRINT I t CHR$(I)

50 FOR T=l TO 200

51 NEXT T

B0 NEXT I

Save the program to tape.

CHR$() IS THE REVERSE OF ASC()

We showed these two functions: ASC() and CHR$().

ASC() gives you the ASCII number for the FIRST characterin the string.

CHR$() does the reverse. It gives you the character belonging to each ASCII number.

129

THE ASCII NUMBERS FOR CHARACTERS

Here are the groups of characters and their ASCII numbers:

13 ENTER key
30 cursor

31 edge character (invisible)
32 to 47 punctuation
47 to 57 number digits
58 to 64 punctuation
65 to 90 capital letters
91 to 96 more punctuation
97 to 126 small letters

127 DEL (invisible)
128 to ::: free for graphics use

ALPHABETICAL LIST

What good are the ASCII numbers? They are needed for the CALL KEY command
explained in the next lesson.

They can also help in making alphabetical lists.

Run: 10 REM ALPHABETIZE

20 PRINT

30 INPUT"GIVE ME A LETTER: ":A$

35 PRINT

40 INPUT"GIVE ME ANOTHER: ":B*

45 A=ASC(A$)

46 B=ASC<B«)

47 REM PUT IN ALPHABETICAL ORDER BY

48 REM SEEING WHICH HAS THE LONER ASCII NUMBER.

50 IF A<B THEN 60

51 REM SWAP THE LETTERS

52 X = A

53 A = B

54 B = X

60 PRINT

65 PRINT"HERE THEY ARE IN ALPHABETICAL ORDER"

70 PRINT

71 PRINT CHR$(A)!TAB(5)5CHR$(B)

Save it to tape.

130

/8|R\

/TwFfJk

THE ON...GOTO COMMAND

The SNAKE program below uses the ON ... GOTO command.

125 ON Z GOTO 130 ♦ 135t140,145

if

if

is 1

2

3

4

GOTO 130

135

140

145

Z is something else print:

* BAD VALUE IN 125

After the GOTO you can put in one, two, or as many numbers as you want. Each
number is the same as the number of a line somewhere in the program.

Assignment 22:

1. Write a program which asks for a word. Then it rearranges all the letters in
alphabetical order.

2. Write a program which speaks "double dutch." It asks for a sentence, then removes
all the vowels and prints it out.

3. Write a program which uses CALL KEY to get a letter A to C to use in a menu.
Change the letter to a number 1 to 3. Then use the ON...GOTO command to pick
which menu item to do.

131

2 REM +++++ SNAKE +++++

3 GOTO 1000

100 REM

REM -- MAIN LOOP

REM

REM ---GET KEY STROKE

CALL KEY(0#W,S>

IS S=0 THEN 125

REM TURN WHICH WAY?

IF W04B THEN 120

Z = Z-1

IF ZO0 THEN 125

Z = 4

GOTO 125

Z = Z+1

IF Z<5 THEN 125

Z=l

REM NEW POSITION OF HEAD

ON Z GOTO 130»135»140»145

Y = Y-1

GOTO 150

X = X-1

GOTO 150

Y = Y+1

GOTO 150

X = X+1

REM SNAKE MOVES

A = B

101

102

10S

110

111

113

114

116

117

118

119

120

121

122

124

125

130

131

135

138

140

141

145

149

150

151

152

153

154

155

160

161

162

163

164

165

169

170

171

172

199

1000

B = C

C = D

D = E

E = F

F = X

L = M

M = N

N = 0

0 = P

P = 0

0 = Y

REM ERASE OLD TAIL END

CALL HCHAR(L»A»32»1)

REM PRINT NEW HEAD

CALL HCHAR(Y»X,50»1)

GOTO 100

REM

1001 REM +++++ SNAKE +++++

1002 REM

1500 G05UB 3000

132

0
:

L
U

OO
l

OC
D

L
L

l
l

Ll_
L
L

U
l

L
l

l
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

L
l

U
.

U
l

L
l

0
1

U
J

L
U

u

o
o

C
H

L
P

O
L
U

C
D

L
U

L
U

*~
*

^
^

*
:

-
*

c
m

—
*
j

<
x

<
E
N
H
5
J
N
Z

z
n

*
c
m

*
e
n

*
c
m

-
C
M

C
M

*
J

C
M

«3T

*
.
-
J

*
>

*
.

H
(
M

H
H

•
s
^
"
"
W

>
»
*
•

«
s
^
»

0
:
0
:
0
:
0
:

<
E

<
E

<
E

<
E

X
X

X
X

u
u

u
o

X
X

1
>

L
>

-
J

-
J

-
J

-
J

=
=

i
n

e
n

*
h

*
.

*
.

*
.

c
m

e
n

c
m

n
*
j

i
n

~
~

^
^

C
t

Q
i

f
c

o
:

o
:

o
o

<
r

<
r
<
i
j

j
u
j

X
X
O
O
-
J

U
C
J

u
u

u

0
3

C
M

Z
Z
Z
_
I
_
I
-
J
-
J
-
I
Z
-
J
-
J
-
J
-
J
Z
-
h
-
h
X
X
X
X
X
X
>
-

u
j
L

U
L

u
<

r
<

r
<

r
<

r
<

r
u

<
r
<

r
<

r
<

r
u

n
n

n
11

11
11

n
n

n
o

:
o

:
o

:
o

o
u

u
u

o
:
u

u
u

u
o

:
x
>

-
<

e
c
d

u
o

u
j
l
j
—

1

c
n

zoC
J

0
:

0
3

o
>

>
-
>

-
>

-
>

-
«

*
H

h
-
Z

Z
Z

ll
II

ll
ll

ll
ll

O
L

U
U

J
L

U
z
z
o

o
-
o

n
l
5

q
:
q

:
o

:

>
-

L
U

*
:

>
-

L
U

h
-

X
L

L
L

3
«

s

L
U

H
H

«s>

-
1

0
:

•s
.

C
M

Z
z

l
v

q
i

0
:

0
<

E
Z

3
3

h
-

U
J

h
-

h
-

_
J

=
r

•
H

C
J

II
h

-
z

*
-

H
-

H
-

0
:

-
J

Z
Z

h
-

Z
3

_
J

~
1

—
1

0
:

X
h

-

<
L

0
1

l
v

O
U

J
U

J
u

a
.

a
.

U
.

z
0

:

Q
S

®
T

H
^
N

N
n

0
1

G
G

^
'
H

l
I
I
Q

Q
'
H

T
H

T
H

r
H

^
^
N

N
N

N
N

N
S

i
l
I
I
'
S

Q
®

'
S

»
H

N
r
r
)
S

i
G

I
I
I

®
®

^
S

iG
iS

i®
®

S
i^

T
H

^
,H

^
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
C

M
n

c
n

®
®

S
>

S
»

®
®

®
^
^
O

T
N

C
M

N
N

C
M

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
C

S
l
N

N
C

M
N

N
N

N
n

C
O

n
n

n
n

n
n

n
n

t,
I

i
I.

t
I

I
I

I
f

I
I

|
I

|
f

1
|

I
f
t
l
l
f
f
f
l
l

C
O

C
O

f
I

I
I

I
I.

I

INSTRUCTOR NOTES 23 SECRET WRITING AND CALL KEY

CALL KEY is a method of requesting a single character from the keyboard. The
computer polls the keyboard and reports two things: a keystroke and a status.

There is no screen display at all. No prompt or cursor is displayed while waiting, and the
keystroke, when made, is not echoed to the screen.

The utility of the CALL KEY command lies just in this fact. For example, a secret
password may be received with a series of CALL KEY's without displaying it to bystanders.

Another advantage over INPUT is that no ENTER key pressing is required. This
makes CALL KEY useful in "user friendly" programming.

The CALL KEY command doesn't wait for a key to be pressed. This makes it useful in
action games. If you need to have the program wait for a keystroke, you must do an IF
and branch back until a keystroke is detected. This is demonstrated in the lesson.

Along with saving the keystroke in a variable, the command also saves a "status" which
records if this is the same or a different key stroke from the last time. It also tells whether
a key is presently down or not.

If you want to get numerical values, get them as strings and convert them to numbers
using the VAL() function discussed in a later lesson.

QUESTIONS:

1. Compare INPUT and CALL KEY. One gets one letter at a time, the other gets
whole words and sentences. One has a cursor, the other not. One prints on the
screen, the other not. One needs the ENTER key, the other not. Which does which?

134

fl. vP,!\

LESSON 23 SECRET WRITING AND CALL KEY

THE INPUT STATEMENT

Examples: 10 INPUT A$
10 INPUT N

10 INPUT NAME$*AGE>DAY>MONTH$>YEAR

The computer waits for you to type a word, sentence or number.

Then you press the ENTER key to tell the computer that you are done entering.

THE CALL KEY STATEMENT

The CALL KEY statement is different from INPUT.

It doesn't wait.

It looks to see if a key is being pressed. If so, it puts the ASCII number of the key into
a numerical variable box.

You do not have to press ENTER.

CALL KEY FOR INVISIBLE TYPING

Nothing shows on the screen:

no question mark will show
no cursor will show

what you type will not show.

To see what happens, you have to PRINT the variable.

Run: 10 CALL KEY<0>K *S)

20 PRINT K

25 REM BOX K HOLDS THE ASCII NUMBER

30 GOTO 10

The computer prints -1 until you press a key. Then it prints the ASCII number of the
character.

Try this: Hold down the "A" key

See that the computer prints "65" which is the ASCII number of the letter
"A".

Try holding down different keys.

If you press a key too quickly, the computer may miss it. Try it!

135

MAKING THE COMPUTER WAIT FOR YOU TO TYPE

Add to the above program:

15 IF K = -l THEN 10

20 PRINT K5TAB<7)5 CHR$(K)

Line 15 makes the computer keep looking until a key is pressed.

SAME KEY OR NEW KEY?

The CALL KEY(0,K,S) statement fills two variable boxes, K and S.

In the K box it puts the ASCII number of the key being pressed right now. (It puts -1
if no key is being pressed.)

What it puts into the S box depends on what key was pressed the time before.

In the S box it puts:

S = 0 if no key is being pressed now
S = 1 if a new key is being pressed
S = -1 if the same key as before is being pressed

Try this: 10 CALL KEY(0»K»S)

20 PRINT CHR$(K)5S

25 FOR T=l TO 200

26 NEXT T

30 GOTO 10

Press some keys and see when S is zero, -1 or 1.

V.
136

<&>

/UPS

{Km,

/;#SS

SECRET WRITING

Use CALL KEY in guessing games for entering the word or number to be guessed
without the other player being able to see it.

"CHR$<K>

Run this program: 10 REM CALL KEY-

20 CALL CLEAR

30 PRINT "PRE5S ANY KEY"

40 CALL KEY(0»K »S)

41 IF K = -1 THEN 40

45 CALL SOUND(300 ,900 ,10)

47 FOR T=l to 1000

48 NEXT T

50 PRINT "THE KEY YOU PRE55ED WAS

99 GOTO 40

Run this one too: 10 REM «** BACKWARDS ***

20 CALL CLEAR

30 PRINT"TYPE IN A 5 LETTER WORD"

35 PRINT

40 FOR 1= 1 TO 5

42 CALL KEY(0»L#S)

43 IF L = -1 THEN 42

44 W$=CHR$(L) & W$

46 CALL KEY(0»L>8)

47 IF 8 <> 0 THEN 46

48 NEXT I

50 PRINT"NOW HERE IT IS BACKWARDS"

55 PRINT

60 PRINT W*

Line 43 will not let the program continue until a key is pressed.

Lines 46 and 47 make sure that the key was let up before line 42 can ask about a new key.
Try the program without lines 46 and 47 and see how your letters repeat!

137

MAKING WORDS OUT OF LETTERS

The CALL KEY command gets one letter at a time. To make words, glue the strings.

10 REM GET A WORD

20 CALL CLEAR

30 PRINT"TYPE A WORD, END IT WITH AN 'ENTER'."

35 W$=""

40 CALL KEY(0»L»S)

41 IF L = -1 THEN 40

50 IF L = 13 THEN 80

60 W* =W$ & CHR$ (L)

62 CALL KEY(0»L»S)

63 IF SO0 THEN 62

65 GOTO 40

80 REM WORD IS FINISHED

85 PRINT W*

How does the computer know when the word is all typed in? Line 40 looks to see if the
ENTER key was pressed. The ASCII number of the ENTER key is "13". Line 50
branches to print the word if the ENTER key was pressed.

CALL KEY FOR NUMBERS

If you want to enter a secret number from the keyboard, you have to enter digit
characters (0 to 9), glue them into a string, and then use the VAL function explained in
Lesson 27.

Assignment 23:

1. Write a program which has a "menu" for the user to choose from. The user makes
her choiceby typing a single letter. Use CALL KEY to get the letter. Example:

PRINT "WHICH COLOR? <R=RED» B=BLUE» G=GREEN>"

2. Write a sentence making game. Each sentence has a noun subject, a verb, and an
object. The first player types a noun (like"The donkey"). The second player types a
verb (like "sings"). The third player types another noun (like "the toothpick."). Use
CALL KEY so no player can see the words of the others. You may expand the game
by having adjectives before the nouns.

138

INSTRUCTOR NOTES 24 PRETTY PROGRAMS, GOSUB,
RETURN

This lesson covers subroutines.

Like GOTO, GOSUB causes a jump to another line number. The only difference is that
in GOSUB the computer stores the next line number following the GOSUB on a stack.
When the computer encounters a RETURN statement, it pops the line number off the
stack and returns control to that line.

Subroutine calls can be nested at least 9 deep.

The END command can be put anywhere in the program and you can use as many end
statements as you wish. All that END does is to return control to the command mode.

Subroutines are useful not only in long programs but in short ones where "chunking" the
task into sections leads to clarity.

GOSUB was put into BASIC for making modules. This lesson shows modular construction
in a graphics program. The same subroutine which writes the letter "J" also erases it.

The JUMPING J exercise allows the student to try many different effects in the moving
graphics display.

QUESTIONS:

1. What happens when the command END is executed?

2. How is GOSUB different from GOTO?

3. What happens when RETURN is executed?

4. If RETURN is executed before GOSUB, what happens?

5. What does "call the subroutine" mean?

6. How many END commands are you allowed to put into one program?

7. Why do you want to have subroutines in your program?

139

LESSON 24 PRETTY PROGRAMS, GOSUB, RETURN

Run this program then save it to tape:

100 REM MAIN PROGRAM

101 REM

110 PRINT "HOP TO THE SUBROUTINE"

120 GOSUB 200

130 PRINT "BACK FROM THE SUBROUTINE"

133 PRINT

135 PRINT "HOP AGAIN"

140 GOSUB 200

150 PRINT "BACK AGAIN"

190 END

199 REM

200 REM SUBROUTINE

201 REM

210 PRINT "IN THE SUBROUTINE"

212 CALL SOUND<500»300»100)

215 FOR T=l TO 1000

21B NEXT T

220 PRINT "PACK YOUR BAGS > BACK WE GO"

290 RETURN

This is the skeleton of a long program. The main program starts at line 100 and ends at
line 190.

Where there are PRINT commands, you may put in many more program lines.

Line 120 and line 140 "call the subroutine." This meansthe computer goes to the lines in
the subroutine, does them, and then comes back.

The GOSUB 200 command is likeaGOTO 200 command exceptthat the computerremem
bers where it came from so that it can go back there again.

The .RETURN command tells the computer to go back to the next statement after the
GOSUB.

140

ffiftj>!

WHAT GOOD IS A SUBROUTINE?

In a short program, not much.

In a long program, it does two things:

1. It saves you work. It saves space in memory. You do not have to type in the same
program lines in different parts of the program.

2. It makes the program easier to understand and faster to write and debug.

Assignment 24A:

1. Write a short program which uses subroutines. It doesn't have to do anything
useful, just print some silly things. In it put three subroutines:

Call one of them twice from the main program.
Call one of them from another of the subroutines.

141

MOVING PICTURES

10 REM f t t JUMPING J t t t
20 CALL (:lear

22 X=15

23 Y=12

24 D=l

25 FOR J ==1 TO 5

26 FOR 1 ==1 TO 5

30 CH =42

31 GOSUB 100

40 CH = 32

41 GOSUB 100

45 Y = Y-D

50 NEXT][

55 D = -D

60 NEXT J

90 END

100 REM

101 REM ==== DRAM THE J = = =

102 REM

110 CALL HCHAR(Y,X »CH»5)

120 CALL yCHAR(Y+l #X+2»CH»7)

130 CALL HCHAR(Y+7 ♦ X »CH»2)

140 CALL HCHAR(Y+6 >X »CH)

190 RETURN

The picture is the letter "J." The subroutine starting in line 100 draws the "J." Before
you GOSUB 100 you pick what character you want the "J" to be. Look at line 30 and at
line 40. If you pick the space character, then the subroutine erases a "J" from that
spot.

The subroutine draws the "J" with its upper left corner at the spot X,Y on the screen.
When youchange X orY (or both) the "J" will be drawn in a different spot. Lines22and
23 say that the first "J" will be drawn near the middle of the screen.

The variable "D" tells how far the "J" will move from one drawing to the next. Line 24
makes "D" equal to 1, but line 55 changes D to -1 after 5 pictureshave been drawn. A
negative "D" makes the picture move down.

Line 45 says that each picture will be drawn at the spot where Y is smaller than the last
Y by the amount D.

142

fMHSBX

(rtras^

Assignment 24B:

1. Enter the JUMPING J program and run it. Then make these changes:

2. Change the subroutine so it prints your own initial.

3. Change the character to a solid square. Make its color blue.

4. Change the "jumping" to "sliding" (so the initial moves horizontally instead of
vertically).

5. Change the starting point to the lower right hand corner instead of the middle of
the screen.

6. Change the distance the slide goes to 10 steps instead of 5.

7. Change the size of each step from 1 to 2.

8. Change the "sliding" so it slides uphill. Use

X = X+D

Y = Y-D

9. Change the program so the initial changes color from green (color 3) through all the
colors to white (color 16) as it jumps.

143

INSTRUCTOR NOTES 25 LINE EDITING

Line editing allows youto callup a linefrom a programand change it. ***

EDIT 125 "*
/SKA

You can make any changes you wish, except the line number must remain the same.
This restriction makes the EDIT mode less useful than it might be.

fmm>\

Editing a line is conceptually more complicated than simply typing it over again. How- ^
ever, most students will learn the editing procedure and use it for most line repairing.

Therules for naming variables in TI BASIC are rather free from restrictions compared ^
to some other versions ofBASIC. The name can have up to 15 characters. Names must ^
start with a letter character. You cannot use a reserved (or "key")word as a name. There
are certain punctuation marks you may not put in a name. In fact, it is better to leave all ^
punctuation out of names (except the "$" at the end of string names). /**

QUESTIONS:

1. How do you put an "old line" on the screen to fix it?

2. If youwant to copy a line but give it another number, can youuse the EDIT
command? ***.

3. After you have fixed the line, how do you get it back into memory? ^

m^

/SPSS

/£»>

/H!H\

144 "^

LESSON 25 LINE EDITING

PRACTICE MOVING THE CURSOR

Remember how to move the cursor left and right?

FCTN and left arrow key (on "S")

FCTN and right arrow key (on "D")

Push the keys once to move one space.

Hold down the keys and the cursor will keep moving.

FIXING A LINE

You learned this before.

To fix a line that you are typing:

1. Use the arrow keys to move the cursor to the error.

2. Fix things up:

type the correct letter
or use the FCTN DEL keys to remove (delete) a letter
or use the FCTN INS keys to stick in (insert) letters.

3. Press ENTER to put the line in memory.

LINE EDITING: CHANGING A LINE THAT IS IN MEMORY

Sometimes you don't find the error until after the line is put in memory.

Sometimes you just change your mind about the line.

Do you have to type the line over? No!

Suppose you want to change line 623. Do these three things:

1. Enter EDIT 623 to put the line on the screen.

2. Move the cursor to the error in the line using the FCTN and the left arrow keys.

3. Fix the line. Press the ENTER key when done.

145

PRACTICE LINE EDITING

Enter: 623 PRINT "I LIKE SPINACH"

CALL CLEAR

Now enter: EDIT G23

Press FCTN and the right arrow to move the cursor over the "L" in "LIKE."

Press the FCTN INS keys. Type DON'T. This fixes the line to be

"I DON'T LIKE SPINACH"

Press ENTER.

Then LIST 623 to see if the line is correct.

146

VARIABLE NAMES

Variable names can be up to 15 characters long. They must start with a letter and have
only letters and numbers in them. (Except, of course, string variables must end in a
dollar sign.)

(Actually, certain punctuation characters are allowed inside names, but you will make
fewer errors if you do not allow any.)

Good names:

Bad names:

JOE

T9

WX$

REDCOW$

FATLETTER1

COWBOY

2SIDE starts with a number

XX has punctuation char.
LET is a keyword

147

The computer will print:

* BAD NAME

if you try to enter a line that has an incorrect name in it.

It is a goodidea to make your variable names describe the variable. Examples:

CAR1 and CAR2 in a racing game
HOUSE and HOTEL in a board game
GUESS$ and COLOR$ in a color guessing game

On the other hand, short names are quicker to type.

Assignment 25:

1. Load one of your old programs from tape and practice EDITing lines.

148

/SSf\

INSTRUCTOR NOTES 26 SNIPPING STRINGS: SEG$, LEN, POS

In this lesson the functions:

SEG$ LEN POS

are demonstrated.

These functions together with the concatenation operation "&"|allow complete freedom
to cut up strings and glue them back in any order.

The SEG$() function is similar to the MID$() of some other dialects of BASIC. As such,
it can do the job of RIGHT$() and LEFT$() too.

The LEN function just returns the number of characters in its string argument.

TI BASIC uses the "&" for concatenation of strings. Other BASIC dialects often use
" +." The latter is more confusing, because it is also used in arithmetic.

The POS statement is a nice feature of TI BASIC. It allows you to search for one string
inside of another string. It reports the position of the first letter of the first occurrence
of the string. The search starts at a given "starting number/'

QUESTIONS:

1. If you want to save the "STAR" from "STARS AND STRIPES," what function will
you use? What arguments?

2. If you want to save "AND," what function and arguments?

3. If you want to count the number of characters in the string PQ$, what function do
you use? What argument?

4. What is wrong with each of these lines?

10 A*=LEFT*(4>D$)

10 RIGHT$(R$>I>

10 F*=SEG$(A*3)

10 J$=LEFT(R$>YT)

5. What command will search a string PQ$ to find where "THE" is in it?

6. Write a short program which takes the word "computer" and makes it into
"putercom."

149

LESSON 26 SNIPPING STRINGS: SEG$, LEN, POS

GLUING STRINGS

You already know how to glue strings together:

Example: 55 A*="CQN" & "CAT" & "EN" & "AT I ON"

B0 PRINT A$

The real name for "gluing" is "concatenation."

Concatenation means "make a chain." Maybe we should call them "chains" instead of
"strings."

SNIPPING STRINGS

Let's cut a piece off a string. Enter and run:

10 REM >>> SCISSORS >>>

20 CALL CLEAR

30 N$="123456783"

35 Q*=SEG$(N*>3*4)

40 PRINT Q$> N$

The SEG$ function snips out a piece of the string. The snipped off piece can be put into
a box or printed or whatever.

Here is what line 35 does:

Get the string from box N$.
Count over 3 letters and start saving letters into box Q$.
Save 4 letters.

Rule: The SEG$() function needs three things inside the () signs.

The string you want to snip.
The number of the first character

The number of characters to snip out

150

MORE SNIPPING AND GLUING

The pieces of string you snip off can be glued back together in a different order.

Run: 10 REM ::: SCISSORS AND GLUE :::

20 CALL CLEAR

30 N*="123456789ABCDEF"

35 FOR 1=1 TO 13

40 L$=SEG$<N$»I>3)

42 M*=SEG*(N$»14-I»3)

45 Q* = M* & L$

50 PRINT 0*

80 NEXT I

HOW LONG IS THE STRING?

Run: 10 REM ::: LONG ROPE :::

20 CALL CLEAR

30 PRINT "GIVE ME A STRING: "

31 INPUT N$

40 L=LEN(N$)

50 PRINT "THE STRING: '".N*;"'"

55 PRINT

56 PRINT "IS "5L5" CHARACTERS LONG"

The function LEN() tells the number of characters in the string. It counts everything
in the string, even the spaces.

151

LOOK MA, NO SPACES

Enter: 10 REM <<< NO SPACES >>>

20 PRINT

21 PRINT

30 PRINT"GIME ME A LONG SENTENCE"

31 PRINT

35 INPUT S$

40 L=LEN(S$)

45 T*=""

49 REM LOOK AT EACH CHAR.

50 FOR 1=1 TO L

60 L*=SEG$<S$>I>1)

70 IF L*=" " THEN 90

71 REM SKIP SPACES

72 T*=T* & L$

90 NEXT I

92 PRINT

94 PRINT "HERE IT IS WITH NO SPACES:"

96 PRINT

99 PRINT T$

Line 60 snips just one letter at a time out of the middle of the string.

LOOKING FOR A WORD IN A SENTENCE

The POS() function tells where one (short) string is located in another (longer) string.

"POS" is short for "position."

Run: 10 REM NORM

15 A*="CAT RAT DOG HORSE MOUSE BIRD NORM AARDVARK

TURTLE FISH CALERPITTER"

20 Z=POS(A*»"WORM"»1)

30 B*=SEG*(A$»Z»4)

40 PRINT B*» Z

Line 15 A long string is put into box A$.
Line 20 The POS() function looks for "WORM" in A$
Line 30 The "WORM" is snipped out of the A$
Line 40 And PRINTed.

POS() is a function. It "returns a value." It works like this:

POS(long string, short string, start at number)

The short string is supposed to be somewhere inside the long string.

152

/$»§f^

(*ff\

You start looking at the "start number." You usually will start at the beginning of the
'long string," so the "start number" will usually be 1.

Then the computer counts letters starting from the left until it gets to the first letter
of the "short string." It "returns" to the expression with the number at which the
short string started.

Assignment 26:

1. Change the WORM program so that it asks the user which animal to look for. Then
use LEN to find the length of the name. Finally, the animal name must be found in
the string A$.

2. Write a secret cipher making program. You give it a sentence and it finds how long
it is. Then it switches the first letter with the second, third with the fourth, etc.
Example:

THIS IS A DRAGON becomes:

HTSIIS ARDGANO

3. Write a question answering program. You give it a question starting with a verb
and it reverses verb and noun to answer the question. Example:

ARE YOU A TURKEY?

YOU ARE A TURKEY.

4. Write a PIG LATIN program. It asks for a word. Then it takes all the letters up to
the first vowel and puts them on the back of the word, followed by AY. If the word
starts with a vowel, it only adds LAY. Examples:

BOX

APPLE

becomes

becomes

OXBAY

APPLELAY

-M4&P- ^
A

153

INSTRUCTOR NOTES 27 SWITCHING NUMBERS WITH
STRINGS

This lesson treats two functions, STR$ and VAL. A general review of the concept of
function is also made.

STR$ takes a number and makes a string that represents it.

VAL does just the opposite, taking a string and making a numerical value from it. If
the string does not represent a number (for example "5T7") then the computer prints:

* BAD ARGUMENT IN 10

The interconversion of the two main types of variables adds great flexibility to
programs involving numbers.

You can slice up a number and rearrange its digits by first converting it into a string.
This is demonstrated in the assignment which makes a number "march" by repeatedly
putting its rear digit in the front.

Functions "return a value" to the expression they are in. One also says that functions
are "called" just as one "calls" a subroutine. The reason is, of course, that functions are
implemented as subroutines on the machine code level.

QUESTIONS:

1. If your number "marches" too quickly in the program of assignment 27, how do you
slow it down?

2. If your program has the string "GEORGE WASHINGTON WAS BORN IN 1732."
write a few lines to answer the question "How long ago was Washington born?"
(You need to get the birthdate out of the string and convert it to a number.)

3. What is a "value"? What is meant by "a function returns a value"? What are some
of the things you can do with the value?

4. What is an "argument" of a function? How many arguments does the SEG$()
function have? How many for the CHR$() function?

5. Can you put a function at the start of a line?

154

/as**

LESSON 27 SWITCHING NUMBERS WITH STRINGS

This lesson explains two functions: VAL() and STR$().

MAKING STRINGS INTO NUMBERS

We have two kinds of variables, strings and numbers. We can change one kind into the
other.

Run: 10 REM MAKING STRINGS INTO NUMBERS
20 CALL CLEAR

30 L$="123"

40 M*="789"

50 L=VAL(L$)

60 M=VAL(M$)

70 PRINT L

72 PRINT M

74 PRINT " "

7B PRINT L+M

VAL stands for "value." It changes what is in the string to a number, if it can.

155

MAKING NUMBERS INTO STRINGS

Run: 10 REM MAKING NUMBERS INTO STRINGS

11 REM

20 PRINT

25 INPUT''GIME ME A NUMBER ':NB

30 N*=STR$(NB]

35 L=LEN(N$)

37 PRINT

40 FOR 1 ==L TO 1 5TEP -1

45 B* = B$ & MID*(N*»I ,1)

50 NEXT][

60 PRINT''HERE IT IS BACKWARDS"

65 PRINT

66 PRINT B$

STR$ stands for "string." It changes a number into a string.

FUNCTIONS AGAIN

In this book we use these functions:

RND()
VAL()

INTO
ASC()

SEG$()
STR$()

156

LEN()
CHR$()

POS()

Rules about functions:

Functions always have () with one or more "arguments" in them. Example:

SEG$(D$,5,J) has 3 arguments: D$, 5, and J

The arguments may be numbers or strings or both.

A "function" is not a "command." It cannot begin a statement.

right: 10 LET D=LEN*(CS*)

wrong: 10 LEN (CS$)=5

A function acts just like a number or a string. We say the function "returns a value."
The value can be put into a box or printed just like any other number or string. The
function may even be an argument in another function.

The arguments help pick which value is returned.

(Remember, string values go into string variable boxes, numeric values go into
numeric boxes.)

PRACTICE WITH FUNCTIONS

For each function in the list below:

Tell how many arguments it has and give their names. Tell whether the value of the
function is a string or a number:

INT(Q)

SEG$(R$,E,2)

VAL(ER$)

STR$(INT(RND*30))

Each line below has errors. Explain what is wrong.

10INT(Q) = 65

10D$ = SEG(R$,1)

10PW$ = VAL(F$)

10 PRINT CHR$

157

Assignment 27:

1. Write a program which asks for a number. Then make another number which is
backwards from the first, and add them together. Print all three numbers like an
addition problem (with " +" sign and a line under the numbers).

2. Make a number "leapfrog" slowly across the screen. That is, write it on the screen,
then take its left digit and put it on the right. Keep repeating. Don't forget to erase
each digit when you move it.

158

/ffi*s\

INSTRUCTOR NOTES 28 JOYSTICKS FOR GAMES

TI calls its joysticks "Wired Remote Controllers." This lesson introduces the function
CALL JOYST. The statement CALL KEY is used to test if the "fire button" is being
pressed.

Joysticks are commonly used in animated graphics games. In this lesson, the joystick is
used to move a dot around on the screen.

The JOYST(N,X,Y) statementhas 3 arguments. The first indicates which stickis being
interrogated. The second contains -4, 0, or 4 depending whether the stick is left,
center or right. The third contains -4, 0, 4 depending on whether the stick is up,
center or down.

The student will need to understand the X,Y addressing of the squares on the 32 by 24
screen.

When drawing moving objects, you need to erase each old image before the next image
is drawn. The erasing is best done just before the new dot is drawn, to minimizeflicker
on the screen.

BASIC is very slow for action games. Maximumspeed can be obtained if the
"working" part of the program is first, and the "initialization"part is at the end,
reached by a GOTO in line 1 or 2. This idea is further developed in the lesson on user
friendly programs.

The joystick is also useful for picking selections in menus.

QUESTIONS:

1. How do you ask the joystick what direction it is being pushed?

2. How do you erase a dot before moving it?

3. How do you tell if the button on the joystick is being held down?

159

LESSON 28 JOYSTICKS FOR GAMES

Texas Instruments calls its joysticks "Wired Remote Controllers."

Plug the joystick cable into the socket on the left side of the computer.

(Do NOT plug it into the socket on the back of the computer. That is where the tape
recorder plugs in.)

THE JOYSTICKS

There are two joysticks. Test them out with this program.

Run: 10 REM === JOYSTICKS ===

15 CALL CLEAR

30 PRINT "PUSH THE JOYSTICKS AROUND"

38 REM CHECK THE STICKS

44 PRINT" X Y H V"

45 FOR 1=1 TO 23

50 CALL JOYSTd >X>Y)

51 call j0yst(2»h»v)

60 print x;y;h;v

B5 NEXT I

70 PRINT

99 GOTO 44

Use the FCTN CLEAR keys to end the program. Save to tape.

160

/PSffPN

jj^ff^irl.'.A

THE CALL JOYST STATEMENT

Use theCALL J0YST(1,X,Y) statement toask which way joystick 1has been pushed.

Left, center, or right puts -4, 0, or 4 into the X variable box.

Up, center, or down puts 4, 0, or -4 into the Y variable box.

CALL JOYST(2,X,Y) does the same for stick 2.

Run: 10 REM MOVE A SPOT

12 CALL CLEAR

25 CALL CHAR(42»"FFFFFFFFFFFFFFFF")
27 CALL C0L0R(2»7»1)

50 X=15

51 Y=12

59 REM LOOK AT JOYSTICK

B0 CALL JOYSTd »H»V)

Bl DX=H/4

B2 DY=V/4

S3 REM ERASE OLD SPOT

64 CALL HCHAR(Y»X»32)

67 X=X+DX

68 Y=Y-DY

79 REM PUT SPOT ON SCREEN

80 CALL HCHAR(Y#X»42)

99 GOTO 60

Use the FCTN CLEAR keys to stop the program. Save to tape.

In line 68, you need the negative sign because HCHAR measures Y down while the joy
stick measures Y up.

161

ERASE AND PUT

"Erase and put, erase andput... ."Every time you put a dot, you have to erase it
again before puttingit somewhere else. Otherwise, you will get more and more dots.
(To see this happen, remove line 64.)

Line 64 erases the old dot.

Line 80 puts a new dot on the screen.

Assignment 28A:

1. Add a border to the MOVE A DOT program.

2. Make the dot stop when it moves up to any border.

THE FIRE BUTTON ON THE JOYSTICK

Use CALL KEY() to see if the fire button is down.

Add: 70 CALL C0LQR<2>7>1)

85 CALL KEY(1 >K *S)

8B IF S=0 THEN 99

89 CALL CDL0R(2>8tl)

This CALL KEY statement is just like the one in Lesson 23. The status variable S is
zero when you are pushing the fire button.

Assignment 28B:

1. Change the program above so that the dot disappears when the fire button is
pushed.

162

INSTRUCTOR NOTES 29 LONG PROGRAMS

This lesson demonstrates top down organization of a task.

One ofthe hardest habits to form in some students (and even some professionals) is to
impose structure onthe program. Structuring has gone by many names such as
"structured programming" and "top down programming" and uses various techniques
to discipline the programmer.

Here we outline the program right on the screen. The task is "chunked" into sections
byusing subroutines. This leads to clarity inthe articulation ofthe program parts and
allows testing and debuggingof each part separately from the others.

After the outline is done, each subroutine is expanded bywriting in ordinary English
what needs be done. Only when the English description is itselfsufficiently detailed,
does the BASIC programming begin.

Ofcourse, there is always some backing and filling to be done as the program is
written. The number of subroutinesmaychange and the tasks performed in each will
also change, usually expand.

There are thosewho advocate performing allplanning ofthe program onpaper before
starting coding at all. This may work for some programmers, but children especially
are unlikely to adopt this style ofwork. Besides, if oneadvocates word processors so
that writing text canbe done interactively onthe screen, it would seem equally
appropriate to plan computer programs on the screen.

QUESTIONS:

1. Why is it good to outline the program on the screen?

2. If youhave trouble deciding what steps go in a game program, how can you, a
friend and a piece of paper help?

3. What do you do (in English) to the outline next?

4. When do you test each subroutine that you have written?

163

LESSON 29 LONG PROGRAMS

HOW TO WRITE A LONG PROGRAM

Let's write a hangman game. This is a word guessing game where you draw another
part of the hanging person each time you make a wrong guess for a letter.

First make an outline. You can do this on paper or right on the screen.

If youhave trouble deciding what to do, then get a friend to play through a game with
you. Keep careful track on paperof what is done during the game. Then the progam
has to do the same things.

The outline could be:

10 REM *** HANGMAN GAME ***

200 REM INSTRUCTIONS

300 REM GET THE WORD TO GUESS

400 REM MAKE A GUESS

500 REM TEST IF RIGHT

B00 REM ADD TO THE DRAWING

700 REM TEST IF GAME IS OYER

800 REM END GAME MESSAGE

SAVE to tape.

After making this outline, fill in more details. Just write in Engish what each
subroutine needs to do.

164

/bsp\

,RWfSMI'"y

/SEN

10 REM === HANGMAN GAME ===

S3 REM

100 REM MAIN LOOP
101 REM

120 INPUT" NEED INSTRUCTIONS? <Y/N> ": Y*
122 IF Y*="Y" THEN 200

130 REM GET WORD

131 GOSUB 300

132 STOP

135 REM MAKE GUESS
136 GOSUB 400

140 REM TEST GUESS
141 GOSUB 500

145 REM TEST IF GAME IS OVER
146 GOSUB 700

130 REM MAKE ANOTHER GUESS
131 GOTO 135

200 REM INSTRUCTIONS

— write the instructions last

** rr^

165

230 GOTO 130

233 REM

300 REM •

301 REM

GET THE WORD TO GUESS

— use INPUT to get a word from player 1
— draw dashes for the letters to be guessed

330 RETURN

333 REM

400 REM

401 REM

— player 2 guesses a letter

430 RETURN

433 REM

500 REM

501 REM

MAKE A GUESS

TEST IF GUESS IS RIGHT

— if wrong, GOSUB 600, draw hangman part
— if right, GOSUB 700, see if game is over

530 RETURN

533 REM

600 REM

601 REM

— add to the hangman drawing
— test if drawing is done
— if so, then GOSUB 800

630 RETURN

633 REM

700 REM --

701 REM

— see if all letters have been guessed
— if yes, GOSUB 900

730 RETURN

733 REM

800 REM

801 REM

— message for when guesser loses

166

ADD TO THE DRAWING

TEST IF GAME IS OVER

END GAME MESSAGE

/Bern's

830 RETURN

833 REM

300 REM

301 REM

— message for when guesser wins

330 RETURN

END GAME MESSAGE

SAVE to tape

Now is the time to start writing and testing the first part of the program. Put a STOP
in line 132 so that only the first subroutine will be run. (After the first subroutine
works OK, take the STOP out. See Lesson 33.)

Start by writing the subroutine at 300, GET A WORD. The first step is to write more
details, in English, of what the subroutine needs to do. Then start writing the BASIC
lines.

Assignment 29:

1. Finish the hangman game. This is a long project. Start by writing the GET A
WORD subroutine. Then SAVE it to tape. You may want to write one subroutine
each day until the program is done.

167

INSTRUCTOR NOTES 30 ARRAYS AND THE DIM STATEMENT

This lesson introduces arrays. The DIM() statement is described.

TI BASIC allows arrays with one, two, or three indices.

Arrays with one index are described first. The array itself is compared to a family, and
the individual elements of the array to family members, with the index value being the
"first name" of the member.

Two dimensional arrays are compared to the arrangement of numbers on a calender
month page or the rectangular array of cells on the TV screen.

Three dimensional arrays are just mentioned, with no examples given.

Arrays themselves are not too difficult a concept. The trick is to see how they help in
programming. There are a large variety of uses of arrays, and many do not seem to fall
into recognizable catagories.

One can use them to store lists of information. Connected lists also can occur. The
telephone number program uses two linear arrays: one for names, the other for
numbers. They are indexed the same, so a single index number can retrive both the
name and the number that goes with it.

Another general use of matrices is to store numbers which cannot be neatly obtained
from an equation. An example would be the length in days of the 12 months.

Games often use arrays to store information about the playing board.

QUESTIONS:

1. What does the DIM AD$(5) command do?

2. Where do you put the DIM command in the program?

3. What two kinds of array families are there?

4. What is the "index" or "subscript" of an array?

5. What does the command DIM SR(5,9) do?

168

LESSON 30 ARRAYS AND THE DIM STATEMENT

MEET THE ARRAY FAMILY

22 F$(0)="DADn

24 F$(1) = ,,M0MU

26 F$(2)="MINDA"

Each member of the family is a variable. The F$ family are string variables.

Here is a family of numeric variables:

35 N<0) = 43

37 N(l)= 13

39 N(3)= 0

41 N(4)= 0

The family has a 'last name" like A() or B$(). Each member has a number in () for a
"first name." The array always starts with the first name "0".

Instead of "family" we should say "array."

Instead of "first name" we should say "index number" or "subscript."

THE DIM() COMMAND SAVES BOXES

When the array family goes to a movie, they always reserve seats first. They use a
DIM command to do this.

The DIM ... command tells the computer to reserve a row of boxes for the array. DIM
stands for "dimension" which means "size."

For example, the statement

18 DIM A(3)

saves four memory boxes, one each for the variables A(0), A(l), A(2) and A(3). These
boxes are for numbers and contain the number "0" to start with. Another example:

30 DIM A(3) ,B$(4)

This time, DIM reserves 4 boxes for the A() array and 5 for the string array B$().
The boxes named B$(0) through B$(4) are for strings and are empty to start with.

Rule: Put the DIM() statement early in the program, before the array is used in any
other statement.

169

MAKING A LIST

Enter: 10 REM +++ in A ROW +++

20 CALL CLEAR

30 DIM A$(5)

35 PRINT"ENTER A WORD"

40 FOR N=l TO 5

50 INPUT A$(N)

55 PRINT

57 IF N=5 THEN G0

59 PRINT "ANOTHER"

60 NEXT N

70 PRINT

100 REM PRINT THEM

105 PRINT"HERE THEY ARE ALL MIXED UP"

106 I=INT(RND*5) + 1

120 PRINT A$(I) !" "5

130 GOTO 106

Run and save to tape.

170

/HUPS

You can use a member of the array by itself; look at this line:

40 B*(2)="YELL0W SUBMARINE"

Or the array can be used in a loop where the index keeps changing. Lines 50 and 120 in
the program "IN A ROW" do this.

MAKING TWO LISTS

Enter: 10 REM PHONE LIST

20 CALL CLEAR

30 DIM NA $(20) » NU $(20)

35 1=0

40 PRINT "ENTER NAMES AND NUMBERS "

50 PRINT

51 INPUT "NAME? ":NA$(D

60 INPUT "NUMBER? ":NU$

70 1=1+1

71 GOTO 50

Run. Press the FCTN CLEAR keys to stop program. Save to tape.

171

ONE DIMENSION, TWO DIMENSION,...

The arrays which have one index are called one dimensional arrays. But arrays can
have 2 or 3 indices. Two dimensional arrays have their "family members" put into a
rectangle like the days in a month on a calendar.

10 REM +++ TWO-DIM ARRAY +++

15 REM

18 CALL CLEAR

20 DIM T(5>6)

30 FOR X=0 TO 5

40 FOR Y=0 TO 6

50 T(X>Y)= X+Y

60 NEXT Y

61 NEXT X

65 REM

70 REM PRINT OUT THE ARRAY

72 REM

80 FOR J=0 TO 6

82 PRINT

85 FOR 1=0 TO 5

88 PRINT TABU*3) 5T(I »J) 5

90 NEXT I

91 NEXT J

Assignment 30:

1. Write a program which stores the number of days in each month in an array. Then
when you ask the user to enter a number <1 to 12>, it prints out the number of
days in that month.

2. Finish the PHONE LIST program so that it prints out the list of names with the
telephone numbers beside them.

3. Use a two dimensional array to make a "weekly school calendar" program. It could
use an array made by DIM AR$(5,6) so that each day of the week could have an
entry for each class hour.

172

INSTRUCTOR NOTES 31 LOGIC: TRUE AND FALSE

This lesson treats the numeric values for TRUE and FALSE. The student is

encouraged to use homemade DO WHILE and DO UNTIL constructions.

There are two abstract ideas in this lesson which may give difficulty.

One is that TRUE and FALSE have numeric values of -1 and 0. Any expression
which is of the form of an assertion (a "phrase A"), has a numeric value of 0 or -1.
This number can be treated just as any other number. It can be stored in a numeric
variable, printed, or used in an expression. Most often it is used in an IF statement.

The other abstract idea compounds the confusion. The IF command doesn't really look
to see if "phrase A" is present. Rather, it looks for a numeric value between IF and
THEN. Any number which is non-zero is treated as TRUE.

(The value -1 for TRUE may seem artificial. It comes from the idea that FALSE is
zero, which is a natural idea. Then NOT FALSE should be TRUE. But the Boolean
operation NOT on a number whose digits are all zero gives a number whose digits are
all ones. This number has the value -1 in the usual two's complement notation used on
the binary level of the computer's operation.)

It is easy to build a program using GOTO and IF branchingthat ends up being a bowl
of spaghetti. The programmermust discipline herself to avoid this. A universal scheme
limits the programs to single-entry, single-exit blocks. Then those which make
conditional branches (IFs) are limited to just two:

DO UNTIL and DO WHILE.

The difference is whether the test for exit is made at the beginning or at the end of the
block.

QUESTIONS:

1. What do you call this block? (DO UNTIL or DO WHILE)

20 1 = 1

30 IF I>9 THEN 60

00 1=1+1

45 PRINT I

50 GOTO 30

60 REM

2. Write your own DO UNTIL block.

3. Write your own DO WHILE block.

4. What number will each of these lines print?

10 PRINT 3<>4

10 PRINT 8>9

173

LESSON 31 LOGIC: TRUE AND FALSE

TRUE AND FALSE ARE NUMBERS

The computer says true and false are numbers.

Rule: TRUE is the number -1

FALSE is the number 0

(It is easy to remember that 0 is FALSE because zero is the grade you get if your
homework is false.)

To see these numbers, enter these commands:

PRINT 3 =7 prints 0 because 3 =7 is FALSE
PRINT 3 =3 prints-1 because 3 =3 is TRUE

PUTTING TRUE AND FALSE IN BOXES

The numbers for TRUE and FALSE can be put into boxesjust like other variables:

Run: 10 N = (3 =22)
20 PRINT N

The number 0 is stored in the box N because 3=22 is FALSE.

Run: 10 N = "B" = "B"
20 PRINT N

The number -1 is storedin the box N because the two letters in the quotes are the
same, so the statement "B" = "B" is TRUE.

174

THE IF COMMAND TELLS LITTLE WHITE LIES

The IF command looks like this:

10 IF phrase A THEN line number N

Try this: 10 IF 0 THEN 30
20 PRINT "FALSE"

21 END

30 PRINT "TRUE"

It should print FALSE.

Try it again with this line:

10 IF -1 THEN 30

It should print TRUE.

Now with this: 10 IF 22 THEN 30

What does it print?

Rule: In an IF, the computer looksat "phrase A":

If it is zero, the computer says "phrase Ais FALSE", and skips whatis after THEN.

If it is not zero, the computer says "phrase A is TRUE", and goes to the line whose
number is after THEN.

So the IF command tells little white lies:

TRUE is supposed to be the number "-1".

But the "IF" stretches the truth to say "TRUE is anything that is not FALSE."

That is, any number that is not zero is TRUE.

175

THE LOGIC SIGNS

You can use these 6 symbols in the "phrase A":

<>

equal

not equal
< less than
> greater than
< = less than or equal
> = greater than or equal

You have to press the SHIFT key and two other keys to make the <> sign and the
< = and > = signs.

The last two are new so lookat this example to see the difference between < and <=

2< = 3 is TRUE

3< = 3 is TRUE

4< = 3 is FALSE

2<3 is TRUE

3<3 is FALSE

4<3 is FALSE

Assignment 31 A:

1. Tell what will be found in the box N if:

N = 4 = 4

N = "G"< >"S"

N = 5>7

N = 5> = 4

2. Tell if the word "JELLYBEAN" will be printed:

IF 0 THEN PRINT "JELLYBEAN"
IF 1 THEN PRINT "JELLYBEAN"
IF 9 THEN PRINT "JELLYBEAN"
IF 3< >0 THEN PRINT "JELLYBEAN"
IF »A"="Z" THEN PRINT "JELLYBEAN"
IF 4<=5 THEN PRINT "JELLYBEAN"

176

ONE DOOR TO GO IN AND ONE DOOR TO GO OUT

Use your IF and your GOTO statements carefully to avoid "spaghetti" programs.

Each IF should be used in a block of code which has one entrance and one exit.

There are onlytwo kinds of blocks you need for programming any IF idea:

58

DO UNTIL... 60 REM DOOR IN
B2

64

SB

G8 IF A THEN 60

70 REM DOOR OUT

72

The lines in the DO UNTIL block keep repeating until phrase A is false.

58

DO WHILE... 60 REM DOOR IN
B2 IF A THEN 70

84

68

68 GOTO 62

70 REM DOOR OUT

72

The lines in the DOWHILE block keep repeating while phrase A is true.

Assignment 31B:

1. Go back and look at the examples is thisbook. Find "IF" blocks which are like DO
UNTIL Find"IF" blocks which arelike DO WHILE Find onesthat are
"spaghetti"!

2. Write aprogram todetect adouble negative in asentence. Look for negative words
like not, no, don't, won't, can't, nothing, and count them. If there are 2 such words
there is a double negative. Test the program on the sentence "COMPUTERS
AIN'T GOT NO BRAINS".

177

INSTRUCTOR NOTES 32 USER FRIENDLY PROGRAMS

This lesson concerns clear programs which interact with the user ina"friendly" way.

The "spaghetti" program should be discouraged. A format for writing programs is
presented in this lesson. While methods ofimposing order on the task are largely a
matter of taste, the methods used in this lesson can serve to introduce the ideas.

"User friendly" means that the screen displays are easy toread, keyboard input is
"ENTER key free" as much as possible, and errors are "trapped." Ask if entries are
OK. If not, give anopportunity to fix things.

Instructions and "HELP" should be available. Prompts need begiven. Beginners need
complete prompts, butexperienced users would rather have curt prompts.

It is hard to teach the writing of"user friendly" programs. Success depends mostly on
the attitude ofthe programmer. The best advice isto"turn up your annoyance
detectors to high" as you write and debug the program.

Most young students will not progress very far toward fully "friendly" programming.
To be acquainted with the desirability of"friendly" programming and touse some
simple techniques toward accomplishing it are satisfactory achievements.

QUESTIONS:

1. Should your program give instructions whether the userwants them ornot?
2. What is a "prompt"? Give two examples.

3. If you want the user to enter asingle letter from the keyboard, what command is
best? (Avoids usingthe ENTER key.)

4. What is an "error trap"? How would you trap errors if you asked your user to enter
a number from 1 to 5?

5. In what part of the program are most ofthe GOSUB commands found?

6. Why put the"STARTING STUFF" section ofthe program at theend ofthe
program (at high line numbers)?

178

LESSON 32 USER FRIENDLY PROGRAMS

There are two kinds of users:

1. Most want to run the program. They need:

instructions

prompts
clear writing on the screen
no clutter on the screen

erasing old stuff from the screen
not too much key pressing
protection from their own stupid errors

2. Some want to change the program. They need:

a program made in parts
each part with a title in a REM
explanations in the program

(Don't forget you are a user of your own programs, too! Be kind to yourself!)

PROGRAMS HAVE THREE PARTS

"STARTING STUFF": at the beginning of the program run.

give instructions to the user
draw a screen display
set variables to their starting values
ask the user for starting information

MAIN LOOP:

controls the order in which tasks are done
calls subroutines to do the tasks

SUBROUTINES:

do parts of the program

179

PROGRAM OUTLINE

1 REM program name ***
2 GOTO 1000

100 REM MAIN LOOP

calls subroutines

199 END

1000 REM

1001 REM program name ***
1002 REM

REM REM's that give a description of the
program, variable names, etc.

1999 REM

2000 REM 9TARTING 9TUFF

ask for starting information
set variable values

give instructions

2999 GOTO 100

PUTTHE MAIN LOOP AT THE BEGINNING OF THE PROGRAM

Put the MAIN LOOP near the front because it will run faster there.

PUT STARTING STUFF AT THE END OF THE PROGRAM

Put the STARTING STUFF near the back because it may be the biggest part ofthe
program, and you may keep adding to it as you write, to make the program more "user
friendly." It does not need to run fast.

PUT SUBROUTINES IN THREE PLACES

between line 2 and line 99 for subroutines that must run fast
after line 2999 for starting stuff subroutines
between line 200 and 999 for the rest of the subroutines

180
/SW\

INFORMATION PLEASE

380 PRINT "DO YOU WANT INSTRUCTIONS? <Y/N> "

This lets a beginner see instructions and lets others say "no."

TIE A STRING AROUND THE USER'S FINGER

Use a "prompt" to remind users what choices they have.

Example: <Y/N> where the choice is Y for "yes" or N for "no".

Beginners need long prompts. Other users like short prompts.

OUCH! MY FINGERS HURT

Use the CALL KEY command to enter single letters. This saves having to press
ENTER.

380 PRINT "DO YOU WANT INSTRUCTIONS? <Y/N> "

381 CALL KEY(0»K »S)

382 IF K=-l THEN 381

383 IF CHR*(K)="Y" THEN 900

181

SET TRAPS FOR ERRORS

Example: Add this line to the above lines:

384 IF CHR$(KX>,,N" THEN 380

Line 380 asked for only two choices, Y orN. If the user presses some other key, line
384 sends him back to line 380.

Traps make your program "bomb proof" so that users will be unable
to goof it up!

Assignment 32:

1. Look at the COLOR EATER program. Add REM's to explain the lines in the
program. Fix up the program to be user friendly.

2. Write a secret cipher program. The user chooses a password and it is used to make
a cipher alphabet like this:

if the password is DRAGONETTE
remove the repeated letters, get DRAGONET
put it at the front of the alphabet and the rest of
the letters after it in normal order

DRAGONETBCFHUKLMPQSUVWXYZ

The user chooses to code or decode from a menu.

182

/saw.'"1"\

/WEP\

2 REM *** COLOR EATER ***

3 GOTO 1000

100 REM MAIN LOOP

101 REM

110 CALL HCHAR(Y»X»32)

115 X=X+INT(RND*3)-1

116 Y=Y+INT(RND*3)-1

120 IF XO0 THEN 122

121 X=l

122 IF X<>33 THEN 124

123 X=32

124 IF YO0 THEN 126

125 Y=l

126 IF Y<>25 THEN 130

127 Y = 24

130 CALL GCHAR(Y»X»N)

133 IF N=32 THEN 140

136 CALL SOUND(50»900>10)

140 CALL HCHAR(Y»X»50)

150 A=INT(RND*32>+1

151 B=INT(RND*24)+1

155 CALL HCHAR(B»A»58)

189 GOTO 100

1000 REM

1001 REM === STARTING STUFF ===

1002 REM

2000 CALL CLEAR

2002 RANDOMIZE

2005 F*="FFFFFFFFFFFFFFFF"

2010 CALL CHAR(42»F$)

2012 CALL CHAR(50»F$)

2013 CALL CHAR(58»F$)

2020 CALL C0L0R(2»8»5)

2021 CALL C0L0R(4»5»1)

2025 CALL SCREEN(15)

2100 FOR 1=1 TO 300

2120 X=INT(RND*32)+1

2121 Y=INT(RND*24)+1

2140 CALL HCHAR(Y»X»42)

2180 NEXT I

2200 REM EATER POSITION

2210 X=16

2220 Y=12

2899 GOTO 100

183

INSTRUCTOR NOTES 33 DEBUGGING, STOR CON

If we had NASA's budgetand time scale, we might teach debugging by systematically
categorizing all types of errors, preparing a set of "bad" programs containing these
errors, and conducting 'lab" sessions to drill in debuggingtechniques.

The "sigh and moan" technique being a loser, our students need a bag of tricks which
help isolate program bugs, and should practice on programs that they arewriting as
they go through this book.

The inexperienced debugger feels hopeless inertia when"it doesn't work right." Rather
than sit and stare, it is more useful to try some changes. Any changes are better than
none, but random changes are very inefficient. The best changes are those which
eliminate sections of the program from the list of possible hiding places for the bug.

As programs grow in complexity, more of the bugs result from unforeseen interactions
between separated parts of the program. The bagof tricks we offer helps find these
also. Delay loops, PRINT commands, and STOP statements help the student see how
the program is functioning.

Many people overlook those techniques they can use after the program is stopped with
a FCTN CLEAR, STOP, or an END. You can PRINT out any variable values youlike
so as to see what the program has done. You can also do arithmetic in the PRINT
command to check what the program should be doing.

QUESTIONS:

1. How can you make the computer print

BREAKPOINT AT 55

by adding a line in the program?

2. Are the STOP and the END commands different?

3. How are the STOP and FCTN CLEAR commands different?

4. What does the CON command do?

5. Why would you put STOP commands into your program?

6. How do delay loops help you debug a program?

7. How do extra PRINT commands help youdebug a program?

8. Why do you take the STOP and extraPRINT commands out of the program after
you have fixed the errors?

9. Can you pick in what line the FCTN CLEAR keys will stop the program? Can you
pick using the STOP command?

184

LESSON 33 DEBUGGING, STOP, CON

THE STOP COMMAND

Enter and run: 10 REM 8ECRET 5T0P

20 CALL CLEAR

25 G = INT<RND*200)

30 FOR 1=0 TO 200

40 IF IOG THEN 50

45 STOP

50 NEXT I

The program will stop.

What do you suppose the secret value of I was?

Enter: PRINT I (Noline number)

and find out.

"STOP" is just like "END". It doesn't matter which you use.

STOP makes the computer stop and enter the command mode.

You can have as many STOP commands in your program as you like.

STOP is used for debugging your program.

ANOTHER WAY TO STOP RUNNING THE PROGRAM

You can stop running the program with FCTN CLEAR. This means you hold down the
key that says FCTN on it, and then press the "4" key.

Try it: 10 REM GO FOREVER
15 PRINT

20 PRINT "MUD TURTLES OF THE WORLD"

30 PRINT "UNITE!"

35 PRINT

40 FOR T=l TO 400

41 NEXT T

99 GOTO 10

The command FCTN CLEAR stops the program wherever it is. It prints:

BREAKPOINT AT XX peeps and enters the command mode

(XX is the line number where it stops.)

The command CON starts the program again at the same spot.

185

WHAT DO YOU DO AFTER YOU STOP?

You put STOP in whatever part of your program is not working right. Then you run
the program. After it stops, you look to see what happened.

(Or you use FCTN CLEAR to stop the program, but it may not stop in the spot where
the trouble is.)

Put on your thinking cap. Ask yourself questions about what happened as the program
ran.

You are in the command mode. You can:

List parts of the program and study them.

Use the PRINT command to look at variables. Do they have the values you
expected?

Use LET to change values of variables.

If you find the trouble, you may add lines, change lines, or delete lines.

186

^jRS111 \

/sdH^

STARTING THE PROGRAM AGAIN

There are three ways to start a program. They are:

CON for CONTINUE

RUN XX where XX is a line number

RUN your old friend

You may use the CON command if you stopped the program with FCTN CLEAR and
did not make any changes in the program.

Otherwise, your only choice is to use RUN.

You can start at the lowest line number using RUN,

or you can start at any line XX using RUN XX.

Either way, RUN or RUN XX, the variable boxes are emptied before the program is
run.

187

DEBUGGING

Little errors in your program are called "bugs."

If your program doesn't run right, do these four things:

1. If the computer printed an ERROR MESSAGE, it tells what line it stopped on.
Careful, the mistake may really be in another line!

2. If the computer just keeps running but doesn't do the right thing, stop it and put in
some PRINT lines which will tell what is happening.

3. Or you can put STOP commands into the program.

4. If the program runs so fast that you can't tell what is happening, put in some delay
loops to slow it down.

After you have fixed the program, take the PRINT lines, the STOPs and the delay
loops out of the program.

Assignment 33:

1. Go back to the SNAKE program and fix up some of the bugs. For example, the
program "crashes" when the snake hits a wall. Add "food" for the snake. Add score
keeping. Let the game end if the snake touches a wall.

2. Go back and fix up some other program that you have written.

188

189

n

^)

^)

^)

n

n

ANSWERS TO ASSIGNMENTS

1-2

10 REM GREETING

20 PRINT "HI THERE*"

30 PRINT "TI COMPUTER"

2-1

10 REM NAMES

20 PRINT "MINDA"

30 PRINT "ANNE"

40 PRINT "CARLSON"

2-3

10 REM NAMES

20 CALL SOUND(300#400>10)

22 CALL SCREEN(5)

25 PRINT " MINDA"

30 CALL SOUND(300#600»10)

32 CALL SCREENU0)

35 PRINT " ANNE"

40 CALL SOUND<500»800»10)

42 CALL SCREENU5)

45 PRINT " CARLSON"

3-6

10 REM BIRDS

15 CALL CLEAR

20 PRINT

22 CALL SOUNDU00 ,1000,10)

25 PRINT " 0 "

30 PRINT

40 PRINT

42 CALL SOUND(150 ,900 ,10)

50 PRINT " ---o---1

B0 PRINT

70 PRINT

75 CALL SOUND(100 ,1100,15)

80 PRINT " --0--"

191

ft _ o /S^>

It "

II

II ***\

II /Wffi^

WHAT IS YOUR NAME?" ^

SILLY TO TALK TO COMPUTERS!" ^

10 REM THE STRING BOX

12 CALL CLEAR ""*
20 PRINT "WHAT IS YOUR FAVORITE COLOR?" ^

25 INPUT C* ^
27 PRINT

30 PRINT "I PUT THAT IN BOX C*" "*
32 PRINT *n

35 PRINT "NOW* YOUR FAVORITE ANIMAL?" ^
40 INPUT C*

42 PRINT ~*

45 PRINT "I PUT THAT IN BOX C$ TOO" ^
47 PRINT

50 PRINT "NOW LET'S PRINT WHAT IS IN BOX C$" *""1

192

10 REM SMILE

12 CALL CLEAR

20 PRINT

30 PRINT

40 PRINT

50 PRINT II 00 00

60 PRINT

61 PRINT

62 PRINT

63 PRINT " *

64 PRINT II
* *

B5 PRINT II
* *

66 PRINT II ******

5-1

10 REM TALKING

15 CALL CLEAR

20 PRINT

22 PRINT

24 PRINT

30 PRINT "HELLO.

32 PRINT

34 INPUT N$

36 PRINT

40 PRINT "WELL*"

42 PRINT

44 PRINT N$

46 PRINT

50 PRINT "IT IS

52 PRINT

55 PRINT "IT IS:

57 PRINT

60 PRINT C$

6-2

10 REM MUSIC

12 CALL 1CLEAR

20 PRINT "WHAT IS YOUR FAVORITE MUSICAL GROUP?"

25 INPUT G$

27 CALL 1CLEAR

30 PRINT "WHAT TUNE DO THEY PLAYr*p "

35 INPUT T$

40

50

CALL 1

PRINT

CLEAR

55 PRINT G$i" 1PLAYS " ;t*

6-3

10 REM SAME AS ABOVE EXCEPT:

55 PRINT G$5

56 PRINT " PLAYS "5

57 PRINT T*

7-2

10 REM FEELINGS

15 CALL CLEAR

20 PRINT

22 PRINT

24 PRINT "HOW IS THE WEATHER?"

26 PRINT

28 INPUT W$

30 PRINT "AND HOW DO YOU FEEL?"

32 PRINT

34 INPUT F*

36 PRINT

38 PRINT "YOU MEAN:"

40 PRINT

45 S$ = W$ & '1 AND " & F$

50 PRINT S$

193

8-2

10 REM TEEN TIMES

11 REM

20 PRINT "TEEN POWER"

21 PRINT

22 PRINT

23 PRINT

30 GOTO 20

(£$*?{

10 REM FRIENDS ^

15 CALL CLEAR ^
20 PRINT "MINDA"

22 CALL SOUND(200»200»10) ^
25 PRINT ""*>

30 PRINT "NELL" ^
40 CALL SOUND(200 ,400 ,10)

S3 GOTO 20 ^

uH~ 1

10 REM NICKNAMES ^
15 CALL CLEAR

20 PRINT"WHAT IS YOUR LAST NAME?" ^
22 PRINT ^

24 INPUT L$

28 CALL CLEAR "^
30 PRINT"SOMEONE TYPE THE NICKNAME" ^

32 PRINT ^

34 INPUT N$

36 CALL CLEAR ^
38 PRINT TAB(5)5L*5TAB(15)!N* <-\

40 FOR T=l TO 500

41 NEXT T

50 GOTO 10 ^

SA-2 «—»

10 REM &e%«%! INSULTS !*$%& ^
15 CALL CLEAR ^

IB PRINT ->

17 PRINT

194

20 PRINT "HEY YOU!! WHAT IS YOUR NAME?"
22 PRINT

25 INPUT N*

30 CALL CLEAR

31 PRINT

32 PRINT

35 PRINT N$

36 PRINT

37 PRINT

38 FOR T=l TO 300

31 NEXT T

40 PRINT "BAH!!"

41 PRINT

42 PRINT

45 CALL SOUND(300 ,110 ,0)

50 PRINT "YOUR FATHER EATS LEEKS!!!"

10-1

^ 10
REM BIRTH YEAR

^my 1 5 CALL CLEAR

30 PRINT "HOW OLD ARE YOU?"

32 PRINT
f!BB*i *3Z1 INPUT A

•'SP^ *»» O PRINT

40 PRINT "AND WHAT YEAR IS IT NOW?
<a* 42 PRINT

(W\ £±5 INPUT Y

B = Y-A

52 PRINT
^m\ et er

PRINT "HAS YOUR BIRTHDAY COME Y

Wr5*y i? O PRINT "<Y/N>"

53 PRINT
m B0

INPUT Y*
iw&\ C J5 IF Y* =="N" THEN 70

66 REM SEE LESSON 13 FOR "IF"

67 B = B-1
--^ ^g

PRINT

W«\ / J3 PRINT "YOU WERE BORN IN "5B5"."

YET THIS YEAR?"

10-2

10 REM MULTIPLICATION

15 CALL CLEAR

20 PRINT

22 PRINT

195

/^"\

24 PRINT

30 PRINT "GIVE ME A NUMBER" <-*

32 PRINT

35 INPUT A

37 PRINT

38 PRINT /»w\

40 PRINT "GIVE ME ANOTHER "

42 PRINT

45 INPUT B m*'

48 C = A*B

50 PRINT

52 PRINT

60 PRINT "THEIR PRODUCT IS " 5C «*

1 1 A _ 1 ^K\

10 REM COUNTING BY FIVES

12 CALL CLEAR ""
20 FOR 1=5 TO 100 STEP 5 ~*

30 PRINT I „
35 FOR T=l TO 100

36 NEXT T ^

40 NEXT I „m\

1 1 O — 2 ^ffl^

10 REM YOUR NAME IS CLIMBING

20 CALL CLEAR *"*

25 PRINT "YOUR NAME?" ^
27 PRINT

30 INPUT N$

33 CALL CLEAR ^

35 FOR I = 1 TO 13 ^
40 PRINT TAB<2*I)5N*

45 NEXT I ^

11B-3

10 REM FRIENDS ^

15 CALL CLEAR

20 PRINT "GIVE ME YOUR NAMES" "™*
25 INPUT N$»F$ ~~\

30 FOR I = 1 TO 5

35 PRINT N*

36 PRINT F$ ^

196

0$F\

/*l?i?\

38 PRINT

40 FOR T=l TO 300

41 NEXT T

50 NEXT I

11B-4

10 REM LOOPY TUNES

20 FOR 1=1 TO 3

25 PRINT "SING"

26 PRINT

27 PRINT

30 FOR J=l TO 3

34 CALL SOUNDO00 ,J*200 ,10)

35 PRINT "TRA"

36 PRINT

40 FOR K=l TO 3

44 CALL SOUND(200»J*200+50*K»10)

45 PRINT "LA "5

50 NEXT K

51 PRINT

52 PRINT

55 NEXT J

56 PRINT

57 PRINT

60 NEXT I

12-1

10 REM ** A PAIR OF DICE **

15 CALL CLEAR

20 LET Dl =1+INT(RND*6)

22 LET D2 =1+INT(RND*6)

25 D=D1+D2

30 PRINT "THE ROLL GAVE:"

32 PRINT

33 PRINT " THE FIRST DIE "?D1

34 PRINT " THE SECOND "5D2

35 PRINT " THE DICE " !D

47 PRINT

48 PRINT

50 PRINT "AGAIN?"

51 PRINT

55 INPUT Y$

60 IF Y$ = "Y" THEN 15

197

12-2

10 REM - PAPER* SCISSORS* ROCK

12 CALL CLEAR

13 PRINT

14 PRINT

16 PRINT "PLAY THE "

18 PRINT

13 PRINT " PAPER"

20 PRINT " SCISSORS"

21 PRINT " ROCK"

22 PRINT

23 PRINT "GAME AGAINST THE COMPUTER"

24 PRINT

25 PRINT "PRESS 'CLEAR' KEY TO END GAME "

26 PRINT

27 PRINT "ENTER YOUR CHOICE <P»S»R>"

29 REM COMPUTER CHOOSES ITS MOVE

30 C=INT<RND*3)+1

31 C*="P"

32 IF C=l THEN 36

33 C$="S"

34 IF C=2 THEN 36

35 C*="R"

36 REM C$ IS THE COMPUTER'S CHOICE
37 INPUT Y$

38 REM- - - Y$ IS YOUR CHOICE

39 REM

40 REM -- IS THERE A TIE?

41 REM

50 IF C*OY$ THEN 60

52 REM-- THERE IS A TIE

55 PRINT " TIE"

57 GOTO 30

58 REM

60 REM NO TIE* WHO WINS?

61 REM

62 IF C$<>"P" THEN 70

63 IF Y*= "S" THEN 90

64 GOTO 80

70 IF C*<>"S" THEN 76

72 IF Y*= "R" THEN 90

74 GOTO 80

76 IF C*<>"R" THEN 90

77 IF Y*= "P" THEN 90

80 REM- - - COMPUTER WINS

82 PRINT " COMPUTER WINS"
84 GOTO 30

198

/#H\

fawfs

80 REM

91 REM YOU WIN

92 REM

95 PRINT " YOU WIN"

99 GOTO 30

13A-1

10 REM HAPPY

20 PRINT "ARE YOU HAPPY? <Y/N>"

30 INPUT A»

40 IF A*="N" THEN 20

50 IF A$<>"Y" THEN 20

60 PRINT "GOOD"

13B-1

10 REM BOYS AND GIRLS

15 CALL CLEAR

20 PRINT

25 PRINT "ARE YOU A BOY OR A GIRL?"

26 PRINT "ANSWER 'BOY' OR 'GIRL'"

30 INPUT A$

32 PRINT

35 IF A*O"B0Y" THEN 40

36 PRINT "SNIPS AND SNAILS"

37 GOTO 60

40 IF A$<>"GIRL" THEN 25

41 PRINT "SUGAR AND SPICE"

60 REM ALL DONE

13C-1

2 REM PIZZA

3 REM BY CHRIS CLARK* JR. AGE 14 GOING ON (YOU FIGURE IT

OUT)

4 CALL CLEAR"

5 PRINT "HALLO* AY AM MARIO* YOUR PIZZA MAN."

6 PRINT

7 PRINT "JUST TELL ME ZE GORY DETAILS AND I'LL DO ZE REST"

9 PRINT

10 PRINT"WHAT 9IZE 9H0ULD ZIS PIZZA BE? (S/M/L)"

20 INPUT S*

21 PRINT

30 IF S*<>"S" THEN 33

31 PRINT"ON A DIET? HO HO!"

199

33 IF S*<>"M" THEN 38

34 PRINT "GOOD CHOICE-NOT TOO BIG*
38 IF S*<>"L" THEN 10

39 PRINT "YOU MUST HAVE A BIG BUNCH AT HOME!"
40 PRINT

41 PRINT "NOW* YOU WANT DOUBLE CHEES ON ZIS (Y/N)?"
42 INPUT CH$

45 REM ETC.

50 REM MUSHROOMS* ETC.

60 REM ANCHOVIES* ETC.

90 REM PEPPERS* ETC.

90 REM MEAT* ETC.

150 PRINT "HOKAY* HERE IS YOUR PIZZA!"
154 IF S*<>"S" THEN 156

155 PRINT "WAN 8MALL PIZZA WITH "5
156 REM ETC.

160 IF BASE*<>"P" THEN 165

161 PRINT "PEPPERONI"

165 REM ETC.» ETC.

238 PRINT

240 FOR J=l TO 1000

242 NEXT J

13C-2

BUT FILLLNG!

10 REM === COLOR GUESSING GAME = = =

20 CALL CLEAR

23 PRINT

24 PRINT

25 PRINT "PLAYER 2 TURN YOUR BACK"

27 PRINT

30 PRINT "PLAYER 1 ENTER A COLOR"

35 INPUT C*

40 CALL CLEAR

42 PRINT

43 PRINT

50 PRINT "PLAYER 2 TURN AROUND AND GUESS"
52 PRINT

54 PRINT

55 INPUT G$

60 IF G*=C* THEN 80

61 PRINT "WRONG!'1

67 PRINT

70 GOTO 55

80 PRINT "RIGHT"

200

yfcdflS

/•ill's

/W'S

/#s*\

/MS\

/5SW»\

/sr\

(BZS\

15A-2

10 REM !!! VACATION !!!

13 CALL CLEAR

14 PRINT

15 PRINT

IB PRINT

20 REM HEADING

21 PRINT "VACATION CHOOSING PROGRAM "

22 PRINT

23 PRINT "PICKS YOUR VACATION BY THE"

24 PRINT "AMOUNT YOU WANT TO SPEND"

25 PRINT

30 REM INSTRUCTIONS

31 PRINT "ENTER THE AMOUNT IN DOLLARS THAT "

32 PRINT "YOU CAN SPEND"

33 PRINT

35 REM GET DOLLAR AMOUNT

37 INPUT D

38 PRINT

40 M*="FLIP PENNIES WITH YOUR KID BROTHER"

41 P*="SPEND THE AFTERNOON IN BEAUTIFUL HOG WALLOW* MICH.

42 0*="ENTER A PICKLE EATING CONTEST IN SCRATCHY

BACK »TENN."

47 REM ETC.

58 Z*="BUY A COSY YACHT AND CRUISE THE CARIBBEAN SEA"

70 IF D>0.5 THEN 75

71 PRINT M$

72 GOTO 900

75 IF D>1 THEN 80

76 PRINT P*

77 GOTO 900

80 IF D>5 THEN 85

81 PRINT 0*

82 GOTO 900

85 REM ETC.

300 IF D<1000000 THEN PRINT Z$:GOTO 90

301 PRINT "TREAT YOUR WHOLE SCHOOL TO A 'ROUND THE WORLD

TRIP!"

900 REM ENDING OF PROGRAM

15A-3

10 REM CRAZY

15 CALL CLEAR

20 PRINT "WHAT IS YOUR NAME?"

21 PRINT

201

22 INPUT N*

30 CALL CLEAR

40 PRINT "**

41 PRINT N$ ^
45 PRINT

49 RANDOMIZE ^
50 Z=INT(RND*3)+1 «•*

80 ON Z GOTO 70>80,90 _
70 PRINT "HAS ONE BRICK SHORT OF A FULL LOAD"

71 END m^

80 PRINT "HAS BATS IN THE ATTIC" ^
81 END

90 PRINT "HASN'T GOT BOTH OARS IN THE WATER" "*
91 END ^

16-3

10 REM I GOT YOUR,NUMBER! ^
20 CALL CLEAR «n

25 PRINT

26 PRINT

27 PRINT ^

30 PRINT "GIVE ME A NUMBER BETWEEN ZERO AND TEN:" ^
35 PRINT

36 PRINT ""•
37 PRINT <*°\

40 INPUT N _
45 PRINT

46 PRINT "^

50 IF N>0 THEN 60 ^

51 PRINT "I GOT PLENTY OF NOTHING!"

52 GOTO 25 ~>
60 IF N>1 THEN 70 **»

61 PRINT "I'M NUMBER ONE!"

62 GOTO 25

70 IF N=2 THEN 80 ^

71 PRINT "TWO IS COMPANY" «*

72 GOTO 25

80 REM ETC.

160 IF N>10 THEN GOTO 999 "*

161 GOTO 25 ^
999 PRINT "THAT'5 ALL* FOLKS"

16-4

10 REM CLOCK "->

15 CALL CLEAR ^
20 PRINT "TIME? <H» M» S>"

2Q2 ^

25 INPUT H# M» S

30 FOR T=l TO 225

31 NEXT T

33 S=S+1

35 PRINT H5":"5M»" :"5S

50 IF S<60 THEN 60

55 S = 0

56 M=M+1

60 GOTO 30

70 REM DO SAME FOR HOURS

17B-3

2 GOTO 1000:REM SIMBAD'S MAGIC CARPET

198 REM

199 REM MAIN LOOP

200 REM

210 FOR I =1 TO 11

211 FOR J1=1 TO 11

213 K=I+J1-1

214 C=C+8
i

218 IF C<159 THEN 220

219 C=42

220 CALL HCHARU »K+5*C)

221 CALL HCHARtK ,1+5»C)

222 CALL HCHAR(23-I »K+5*IC)

224 CALL HCHAR(K »2S-I»C)

225 CALL HCHARU »28-K >C>

226 CALL HCHAR(23-I»2B-K »C)

227 CALL HCHAR(23-K »2B-I »C)

228 CALL VCHAR(23-I*28-K »C)

229 CALL VCHAR(23-K »28-I *C)

290 NEXT J

291 NEXT I

999 GOTO 999

1000 REM

1001 REM SINBAD'S MAGIC iCARPET

1002 REM

2000 CALL. CLEAR

2001 CALL. SCREEN(IG)

3000 FOR 1=2 TO 16

3004 CALL. COLORU »I »I)

3010 NEXT I

3200 C=42
•

3990 CALL. CLEAR

3999 GOTO1 200

203

19-1

10 REM RELATIVES ^

12 CALL CLEAR _

20 PRINT "RELATION?"

21 PRINT ^

22 INPUT W* ^

23 PRINT

24 FLAG=0

29 RESTORE *->

30 READ R* ^
32 READ N$

34 IF R*="END" THEN 300 "^
36 IF R$=W* THEN 200 ^

39 GOTO 30

90 DATA FATHER* WILLIAM ^
91 DATA MOTHER* ANNE *-\

92 DATA SISTER* JOAN ^
93 DATA SISTER* SUSAN

34 DATA GRANDFATHER* JOHN ^

95 DATA GRANDMOTHER* ADA ^

96 DATA GRANDMOTHER* VIVIAN

97 DATA UNCLE* FRED

99 DATA UNCLE* GEORGE *-\

99 DATA AUNT* MARY ^
100 DATA COUSIN* ROGER

110 DATA END* END ^
200 REM <*=\

201 REM PRINT IT

202 REM

210 PRINT R*5" "5N$ <->

239 GOTO 30

300 REM **
301 REM NO RELATION ^

302 REM _
310 IF FLAG=1 THEN 320

315 PRINT "YOU DO NOT HAVE A " 5W* ^

320 FOR T=l TO 200 ^

321 NEXT T

399 GOTO 20

20-3 ^

10 REM SONG ^

15 CALL CLEAR

20 FOR 1=1 TO 10 """'
22 READ P*D """i

204 ^

24 CALL SOUND(D*P*10)

40 NEXT I

100 DATA 175*300*175*300*175*200*196*100

101 DATA 220*300*220*200*196*100*220*200*247*100*262*600

22-1

10 REM ALPHABETICAL

12 CALL CLEAR

20 PRINT "THIS PROGRAM ARRANGES"

21 PRINT "THE LETTERS OF A WORD"

22 PRINT "IN ALPHABETICAL ORDER."

25 PRINT

30 PRINT "GIVE ME A WORD"

31 PRINT

32 INPUT W$

33 PRINT

35 L=LEN(W$)

33 K = l

40 FOR 1=65 TO 65+26

41 REM TEST LETTERS IN ALPHABET

42 REM TO SEE IF IN WORD

45 FOR J=l TO L

50 G = ASC(SEG$(W$*J*1))

55 IF GOI THEN 60

56 H$=H$ & CHR$(G)

57 K=K+1

60 NEXT J

61 NEXT I

70 PRINT "HERE IT IS IN ALPHABETICAL ORDER:

75 PRINT

80 PRINT " "!H*

22-2

10 REM %«! DOUBLE DUTCH !%*

12 CALL CLEAR

25 PRINT"GIVE ME A SENTENCE"

2B PRINT

27 INPUT S*

28 PRINT

30 L=LEN(S$)

50 FOR 1=1 TO L

51 L$=SEG*(S**I»1)

52 IF L*="A" THEN 72

205

53 IF L*="E" THEN 72

54 IF L*="I" THEN 72

55 IF L$="0" THEN 72

56 IF L*="U" THEN 72

69 SS$=SS$ 8. L$

72 NEXT I

76 PRINT "HERE IT IS IN DOUBLE

78 PRINT

80 PRINT SS*

22-3

DUTCH"

10 REM "ON ... GOTO" SAMPLE

20 REM MAKE A MENU

22 CALL CLEAR

25 PRINT "MAKE YOUR CHOICE:"

27 PRINT

28 PRINT " <A> TAKE A NAP "

28 PRINT

30 PRINT " EAT AN APPLE

31 PRINT

32 PRINT " <C> CALL A FRIEND

40 PRINT

42 CALL KEY(0»X»S)

44 IF X=-l THEN 42

46 PRINT

48 X=X-64

50 ON X GOTO 60*70*80

52 GOTO 22

60 PRINT "YOUR BED IS NOT MA

61 END

70 PRINT "YOUR SISTER ATE TH

71 END

80 PRINT "YOUR FATHER IS ON

81 END

LAST ONE

23-1

10 REM MENU MAKER

12 CALL CLEAR

20 PRINT "WHICH COLOR

21 PRINT

22 PRINT " <Y> YELLOW"

23 PRINT " <R> RED"

25 PRINT " BLUE"

26 PRINT

THE PHONE! "

DO YOU LIKE?'

206

/pits'!\

30 CALL KEY(0*C*S)

31 IF C=-l THEN 30

32 C$=CHR$(C)

35 IF C*<>"Y" THEN

36 C=12

37 GOTO 80

40 IF C*<>"R" THEN

41 C = 7

42 GOTO 80

45 C = 5

80 CALL SCREEN(C)

90 FOR T=l TO 500

91 NEXT T

40

45

23-2

10 REM SILLY SENTENCES

12 CALL CLEAR

13 PRINT"SILLY SENTENCES"

14 PRINT

15 PRINT"WANT INSTRUCTIONS <Y/N>"

16 PRINT

18 GOSUB 200

20 IF Y$="Y" THEN 100

21 PRINT"THE SUBJECT: (END WITH A PERIOD)"
22 PRINT

23 GOSUB 300

33 PRINT "THE VERB: (END WITH A PERIOD"

34 PRINT

40 GOSUB 300

50 PRINT"THE OBJECT: (END WITH A PERIOD)"
51 PRINT

52 GOSUB 300

85 PRINT S*

99 END

100 CALL CLEAR

110 PRINT"THREE PLAYERS ENTER PARTS OF A SENTENCE":?
115 PRINT"NO PLAYER CAN SEE WHAT THE OTHERS ENTER":?
120 PRINT"THE FIRST ENTERS THE SUBJECT"

121 PRINT" (THE PERSON DOING SOMETHING)":?

125 PRINT"THE SECOND ENTERS THE VERB"

126 PRINT" (THE ACTION WORD)":?

130 PRINT"THE THIRD ENTERS THE OBJECT"

131 PRINT" (THE PERSON OR THING TO WHOM"

132 PRINT" THE ACTION IS DONE)":?

150 FOR T=l TO 2000

151 NEXT T

207

199 GOTO 21 ^

200 REM LOOK AT KEYBOARD

210 CALL KEY(0»Y*S) ""*
220 IF Y = -l THEN 210 *~\

230 Y*=CHR*(Y) ^
240 CALL KEY(0*Y»S)

250 IF SO0 THEN 240 ^
299 RETURN **.

300 REM GET A WORD

310 GOSUB 200

320 IF Y$="." THEN 390 ^

330 S$=S$ & Y* ^
340 GOTO 310

390 S* =S* 8t " " ^

399 RETURN ^

2/1A — 1 /Wff^

10 REM GOSUB AND RETURN

12 CALL CLEAR T
20 REM THE FIRST ONE >-\

21 GOSUB 200 _
30 REM --- NEXT ONE

31 GOSUB 300 ^

40 REM THE LAST ONE ^
41 GOSUB 400

50 REM- AGAIN ^
51 GOSUB 200 ^

99 END "

200 REM

201 REM SUBROUTINE 1 ^

202 REM ^

210 PRINT "LOOK OUT!"

215 PRINT T?
250 GOSUB 900 ^

299 RETURN ^
300 REM

301 REM SUBROUTINE 2 T
302 REM ^

350 PRINT "RED SMOKE"

355 PRINT ""?
360 G05UB 900 ^

339 RETURN ^
400 REM

401 REM LAST ONE ^
402 REM «~\

450 PRINT "IS POURING FROM YOUR COMPUTER!" ^

208

455 PRINT

460 GOSUB 900

499 RETURN

900 REM

901 REM TIMER

902 REM

930 CALL SOUND(300*800*10)

350 FOR T=l TO 400

951 NEXT T

999 RETURN

28-2

10 REM CIPHER MAKER

12 CALL CLEAR

20 PRINT "CODE 11AKING PROGRAM '1

21 PRINT

25 PRINT "ENTER A SENTENCE FOR CODING:"

26 PRINT

30 INPUT S$

35 L=LEN(S$)

36 S$=S* & " "

40 FOR 1=1 TO L STEP 2

45 P$=SEG*(S**I *2)

50 Q$=SEG$(P*»2 *1) 8. SEG$(P*»1 *1)

55 L»= L$ 8c Q$

60 NEXT I

64 PRINT

65 PRINT "HERE IS THE CODED SENTENCE:"

66 PRINT

70 PRINT " "!L$

26-3

10 REM QUESTION ANSWERER

12 CALL CLEAR

20 PRINT "ENTER A QUESTION"

22 PRINT

25 INPUT Q*

27 L=LEN(Q$)

28 PRINT

30 REM TAKE OFF THE QUESTION MARK

32 Q* = SEG*(Q*»1 »L-1) 8c "."

36 REM LOOK FOR THE END OF THE FIRST WORD

40 FOR 1=1 TO L

41 C$=SEG*(Q$»I*1)

43 IF C*<>" " THEN 46

209

44 S1=I

45 I=L ^

46 NEXT I ^
48 REM LOOK FOR THE END OF THE SECOND WORD

50 FOR I=S1 + 1 TO L

52 C$=SEG*(Q$*I >1) >~\

53 IF C*<>" " THEN 56 ^
54 S2=I

55 I=L "^
56 NEXT I /=»i

58 REM TURN THE WORDS AROUND

60 S$=SEG$(Q*»S1+1»S2-S1)

82 V$=SEG$(Q$»1»S1) ^

65 PRINT S*!V*;SEG*(Q$»S2+1»L-S2) ^

10 REM PIG LATIN

15 CALL CLEAR

20 PRINT "PIG LATIN PROGRAM"

25 PRINT

30 PRINT "GIVE ME A WORD"

31 PRINT

33 INPUT W*

34 L=LEN(W»)

35 PRINT

40 REM FIND THE FIR5T VOWEL

41 FOR 1=1 TO L

42 V$=SEG$(W$*I*1)

43 IF V*="A" THEN 50

44 IF V*="E" THEN 50

45 IF V*="r' THEN 50

46 IF V$="0" THEN 50

47 IF V*="U" THEN 50

48 NEXT I

50 IF IOl THEN 60

52 L* = W* 8c "LAY"

55 GOTO 80

60 REM FOUND IT

68 L$=SEG*(W**I»L-I+1)

70 L$ = L$ 8c SEG*(W**1 *I-1)

72 L* = L* 8c "AY"

80 PRINT " "5L*

80 FOR T=l TO 1000

91 NEXT T

99 GOTO 15

j/fflSSilif.S

27-1

10 REM BACKWARD ADDED TO FORWARD

15 CALL CLEAR

20 PRINT "GIVE ME A NUMBER"

21 INPUT N

22 N$=STR*(N)

35 L=LEN(N$)

40 FOR 1=1 TO L

41 B=L-I+1

45 B$ = B$ 8. SEG$(N$*B*1)

50 NEXT I

55 B=VAL(B$)

57 PRINT

60 PRINT " "»N

61 PRINT " +"5B

62 L$=" "

65 PRINT " " 5SEG*(L$,1»L+2)

70 A=N+B

72 A$=STR$(A)

75 IF LEN(A*)OL THEN 80

76 PRINT " "!A

77 END

80 PRINT A

27-2

10 REM MARCHING NUMBERS

15 CALL CLEAR

20 PRINT "GIVE ME A NUMBER

21 PRINT

22 INPUT N

23 CALL CLEAR

25 N*=STR*(N)

26 L=LEN(N$)

40 FOR 1=1 TO 32-L

43 B*=SEG$(N$»2»L)

44 B* = B* 8. SEG*(N*>1 *1)

45 N*=B*

50 C$=SEG$(N$*L*1)

52 C=ASC(C$)

56 IF KL+1 THEN 60

58 CALL HCHARU2*I-L»32)

60 CALL HCHAR(12*I*C)

65 FOR T=l TO 100

66 NEXT T

70 NEXT I

211

/«$^

30-1

10 REM ARRAYS ^
12 DIM D(12)

15 CALL CLEAR "^
16 PRINT **

17 PRINT ^
18 PRINT

20 FOR 1=1 TO 12 ^

22 READ D ^

24 DU)=D

29 NEXT I ~>
30 PRINT "MONTH NUMBER? <1-12>" *-v

31 PRINT ^
32 INPUT M

33 PRINT *^

35 PRINT "MONTH NUMBER "5M?" HAS "!D(M)?" DAYS." «

30 DATA 31 *28*3i *30*31 *30*31 *31 *30*31 *30*31

31B-2

10 REM = = "AIN'T GOT NO ..." = = = = = = = = = = **

15 CALL CLEAR ^
16 PRINT

17 PRINT ^
18 PRINT /»»,

19 REM GET A SENTENCE ^
20 PRINT "ENTER A SENTENCE:"

22 PRINT ^

23 INPUT Si

24 S* = S$ 8c " "

25 PRINT *T
26 L =LEN(S$) i"*.

28 REM REMOVE PUNCTUATION

30 FOR 1=1 TO L

31 L$=SEG*(S**I»1) ^

32 C=ASC(L$) ^

33 IF C=38 THEN 38

34 IF C=32 THEN 38 ^
35 IF C<65 THEN 39 "*

36 IF C>89 THEN 39 ^
39 C$ =C* 8, L$

39 NEXT I T
40 REM NN IS NUMBER OF NEGATIVE WORDS >-i

41 REM S2 IS START LETTER OF WORD ~

42 NN=0

43 S2=l "^

44 REM - TEST WORDS IN SENTENCE ^

23 INPUT S* ^

45

50

54

55

57

58

59

60

65

66

70

71

72

75

76

77

80

81

82

85

99

100

101

102

111

112

113

200

201

202

205

210

211

215

220

225

226

299

900

901

902

910

911

912

913

914

915

920

FOR 1=1 TO L

L*=SEG*(S*.I*1)

REM

IF L*<>" " THEN 60

51=S2+2

S2=I-1

GOSUB 200

NEXT I

REM PRINT RESULT

PRINT

IF NN>0 THEN 75

PRINT "THI5 SENTENCE

GOTO 99

IF NN>1 THEN 80

PRINT "THIS SENTENCE

GOTO 99

IF NN>2 THEN 85

PRINT "THIS SENTENCE HAS A DOUBLE NEGATIVE."

GOTO 99

PRINT "THIS SENTENCE IS HARD TO UNDERSTAND!"

END

REM

REM SOME TEST SENTENCES

REM

I DON'T EAT JUNK FOOD.

I NEVER EAT NO JUNK FOOD!

I DON'T NEVER EAT NO JUNK FOOD!

REM

REM

REM

REM

REM

REM

RESTORE

N*=SEG$(S$*S1*S2-S1+1)

PRINT W*

READ N$

IF N*="END" THEN 299

IF N*OW$ THEN 215

NN=NN+1

RETURN

REM

REM NEGATIVE WORDS

REM

DATA NO»NOT»NEVER*NONE*NOTHING

DATA DON'T»DOESN'T»AREN'T»AIN'T

DATA ISN'T»DIDN'T

DATA HAVEN'T»HASN'T*HADN'T

DATA CAN'T»COULDN'T*SHOULDN'T

DATA WOULDN'T»WON'T

DATA END

IS IT A SPACE?

IS POSITIVE.

IS NEGATIVE."

IS THE WORD NEGATIVE?

213

32-2

2 REM **»* CODE--DECODE **** <~\

3 GOTO 1000

100 REM

101 REM MAIN LOOP *"*

102 REM ^
109 REM GET PASSWORD

110 GOSUB 400 ~
115 PRINT .—\

116 PRINT "CODE OR DECODE? <C/D>" ^
117 CALL KEY(0»Y»S)

118 IF Y=-l THEN 116 ^

119 Y$=CHR$(Y) ^
120 IF Y*="C" THEN 500:REM CODE ME68AGE

125 IF Y$="D" THEN 600:REM DECODE MESSAGE *
130 GOTO 115 '•"n

199 END ^
400 REM

401 REM --- FORM CODE ALPHABET ^

402 REM ^\

405 PRINT "INPUT PASSWORD "

406 PRINT

407 INPUT PW* *n

408 REM - REMOVE REPEATED LETTERS ^
409 F*=SEG$(PW*,I>1)

410 FOR 1=2 TO LEN(PW$) ""»
411 L1$=PW*U *I) ^
412 FOR J=l TO LEN(F$)

415 L2*=SEG$(F*,J»1) ^
420 IF L1*=L2* THEN 430 —>

421 NEXT J

422 F$ = F*8.L1*

430 NEXT I ^
431 PW*=F$ ^
432 PRINT

433 PRINT " THE 3H0RTENED PASSWORD IS "

434 PRINT ^

435 PRINT " "iPW* ^
436 REM REMOVE PA85W0RD LETTERS FROM THE ALPHABET

440 FOR J=l TO 26 ^
442 L1* =SEG$(A*»J»1) *n

444 FLAG=0 ^
446 FOR 1=1 TO LEN(PW$)

447 IF SEG$(PW**I»1)<>L1* THEN 450 ^

448 FLAG=1 ^

449 I=LEN(PW$)

450 NEXT I ^
452 IF FLAG=1 THEN 455 *->

/BBSS

)
}

)
3

3
3

3
3

)
1

3
3

3
3

1
)

3
3

I
1

1
1

1
1

1
I

)
1

!
1

1
1

1
J

!
1

1
1

I
1

!
]

J

r
o

c
n

c
n

o
i
m

c
n

c
n

c
i
J
c
n

c
n

c
D

c
n

c
n

c
n

c
n

c
n

Q
U

i
S

k
O

D
s
l
G

3
U

I
U

N
^

$
C

D
N

c
n

c
n

c
j
i
u

i
c
j
i
u

i
c
j
i
u

i
u

i
a

i
c
j
i
c
j
i
c
n

c
n

c
j
i
c
^
c
^
c
j
i
u

i
c
n

c
^

e
n

e
n

<
.

H
H

*
n

H
-1

-<
H

H
n

"
D

-T
3

-
o

-
o

*
T

l
o

-
n

*
T

|
3

>
3

3
3D

3
0

3
0

II
3D

II
i
"

H
H

K
-4

l
-
l

1
—

1

c
o

<
•<

o
<

r
z

z
z

z
m

«
H

H
*

X
II

H
H

H
H

a
ii

II
ii

Z
O

1
Z

K

4
*

/S
*

-
*

=
*

•-
*

m
=

s

-"
•*

V
*

*
*

>
.

-<
m

H

C
D

C
O

H
:

<
H

^
m

H
z

<

*
m

O
w

X
«

s
a

T
J

~
in

H
m

.
»

m
i-

t
4

t
N

X
z

-<
z
:

«
•

*
*

*
C

D
m

«
•

>
-4

»
-
«

h
*

X
>

z
C

D
C

O
H

z
w

*
H

*
w

X
H

-1
C

D
U

I
-H

.
»

C
D

T
>

X
H

*
S

i
m

w

*
n

H
«%

o

X
o

m
C

O
m

z
i
n

o

e
n

z
2

£
>

=
m

<
s>

C
O

C
O

i> m

i
-
i
3

3
3

0
»

-
«

»
-
»

*
-
«

H
l
l
l
l

II
r
~

»
-
«

»
-
«

»
-
«

3
3

3
H

»
-
i*

-
ii

-
i>

-
«

»
-
"
i»

-
ii

-
«

»
-
«

i-
i»

-
«

ii
X

ll
z

z
z
z
o

-
o

c
o

-
<

-
<

-
<

n
<

r
-
z
z
z

c
z
z
z
z
z
z
z
z
z
z
t
j
-
h

o
3

0
H

H
H

-
I
H

-
H

-
H

h
h

z
:

*

O m n o a m m e
n

c
o

i> in m

h
h

#
m

v
a

#
i

ii
e
n

in
a

j
c
o

u
z
o

i
3

*
-
o

^
G

*
*

*
c
D

c
n

=
*

H
*

m
*

«S
i

-
^

*
-*

*
<

-<
3

>
H

H
=

-
<

H
~

4
*

*
X

X
—

X
®

*•
m

m
—

i
m

-
c
:

-
c

z
z

X
z

<
H

i
m

<
••

o
)

e
n

u
i

z
e
n

c
o

3
£

>
£

>
£

»
•
-*

w
m

^
s
s
c
n

o
C

O
i—

C
O

C
O

%
-*

^
5

i> m m z a
o 3

0

o o a m a m c
o

c
o

i> m m

Z o 3

4
*

m
X 3

>
C

D
m H C

O

a

631 :1=26

640 1MEXT I

645 1PRINT Y*

650 1SOTO 615

680 1END

1000 REM

1001 REM ♦♦** CODE- -DECODE ****

1002 REM

2003 CALL CLEAR

2004 PRINT

2010 A$="ABCDEFGHIJKLMNOPORSTUVWXYZ"

2015 B$ = A$

2999 GOTO 100

((3C\

EXTRA

10 REM +++ WALL PAPER +++ <s

11 CALL CLEAR

12 RANDOMIZE

15 READ X* "^

22 FOR J=l TO 16

25 Z=INT(RND*16)+1 ^
26 B*=8EG$(X$*Z»1) ^

30 Q* =Q$ 8. B$ _
35 NEXT J

40 CALL CHAR(32»Q$) ^

42 X=INT(RND*16)+1 ^
44 Y=INT(RND*16)+1

46 IF X=Y THEN 44 ^
47 FOR T=l TO 500 <-\

48 NEXT T ^
50 CALL COLORU »X»Y)

99 GOTO 20 ^

100 DATA 0123456799ABCDEF ^

21g

GLOSSARY

argument
The variable, number or string which appears in the parentheses of a function.
Like:

I NT (lv|) has N as an argument
LEN(W$) has W$ as an argument

array

A set of variables which have the same name. The members of the array are
numbered. The numbers appear in parentheses after the variable name. See
dimension, subscript. Examples:

A(0) is the first member of the array A
B* (7) is the eighth member of the array B$
CD(3 »I) is a member of the array CD

arrow keys
Four keys on the computer which have arrows on them. They move the input
cursor to the left and right. The up and down arrow keys are used to go to the
previous or the next lower lines when in the line edit mode.

ASCII

Stands for American Standard Code For Information Interchange. Each character
has an ASCII number.

assertion

The name of a phrase which can be TRUE or FALSE. The "phrase A" in an IF
statement is an assertion. An assertion is also a numeric expression with value 0
or -1. See expression, TRUE, FALSE, logic, IF, phrase A. Example:

the assertion "A"<>"B" is TRUE

the assertion 3 = 4 is FAL5E

background
The part of the screen which is blank, not having characters on it.

BASIC

Beginners's All-purpose Symbolic Instruction Code. A computer language
originated by John Kemeny and Thomas Kurtz at Dartmouth College in the
early '60s.

bell

The early teletype machines had a bell (like the bell on a typewriter). The TI 99/
4A makes a low tone sound instead.

bells and whistles

A phrase going back to the early days of hobby computing. It means the personal
computer was hooked up to do some interesting or spectacular things, like flash
lights or play music.

blank

The character which is a space.

217

boot

Means to start up the computer from scratch. An easy thing to do with modern
computers which have start up programs stored permanently in ROM memory. It
was an involved procedure in the early days. Now it usually means to read in the
disk operating system programs (DOS) from a disk.

branch

A point in a program where there is a choice of which statement to execute next.
An IF statement is a branch. So is an ON...GOTO statement. A branch is not the
same as a jump where there is no choice. See jump, IF.

buffer

A storage area in memory for temporary storageof informationbeing inputed or
outputed from the computer.

call

Using a GOSUB calls the subroutine. Putting a function into a statement calls the
function. Call means the computer does what commands are in the subroutine or
does the calculation which the function is for.

carriage return
Ona typewriter, you pushthe lever which movesthe carriage carrying the paper
so a new line can begin. In computing, it means the cursor is moved to the start of
the line, but not down to the next line. See line feed, CRLF.

character

Letters, digits, punctuation marks and the space are characters. So are graphics
characters you make with CALL CHAR().

checksum

In some I/O operations, the computer adds together all the character numbers.
The resulting sum is the "checksum/' If the datawas transmitted correctly, the
checksum calculated after the data is received will agree with that calculated
before the data was sent. See I/O.

clear

Means erase. Used in "clear the screen" and"clear memory."

coldstart

When first turned on, the computer loads certain parts of memory. Some of these
will be changed as the computer is used. See warmstart.

column

Things arranged vertically. See row.

command

In BASIC a command makes the computer do some action, such as erase the
screen and memory by the NEW command. See statement, expression. Some
commands need expressions to be complete. Example:

IF X+3 THEN 35

concatenation

Means sticking two strings together.

218

constant

A number or string which does not change as the program runs. It is stored right
in the program line, not in a box with a name on the front. See line.

CRLF

Short for "carriage return followed by line feed." This is what is called just a
"carriage return" on a typewriter. See carriage return, line feed.

cursor

A marker which shows where the next character on the screen or in a storage
buffer will be placed. Cursor means "runner." The cursor runs along the screen as
you type. There are two kinds of cursors in the TI:

INPUT cursor a flashing square on the screen
PRINT cursor invisible, "shows" where next character will

be printed

data

BASIC has two kinds of data: numeric and string. Logical data (TRUE, FALSE)
are types of numeric data.

debug
Means to run a program to find the errors and fix them. You fix the errors by
editing the program. See edit.

deferred execution

Means run a stored program. See immediate execution

delay loop
A part of the program which just uses up time and does nothing else. Example:

10 FOR T=l TO 2000

31 NEXT T

duration

A number in a CALL SOUND() statement which tells how long the sound
will last.

edit

There are two kinds: editing a line and editing a program. In either kind you are
retyping parts of it to correct it.

enter

To put information into the computer by typing, then pushing the ENTER key.
The information goes into the input buffer as it is typed. When ENTER is pushed,
the computer uses the information.

erase

To destroy information in memory or write blanks to the screen. See clear.

error trap
Part of a program which checks for mistakes in information that the user has
entered, or checks to see if computed results make sense.

219

execute

To run a program or to perform a single command or statement.

expression
A portion of a statement which has a single value, either a number or a string. See
value. Examples:

7*X+1

"DOPE '«<> N$

A* 8c "HAT"

FALSE

The number 0. See logic, assertion.

fork in the road

Describes a branch point in the program. See branch.

function

BASIC has a number of functions built in. Each function has a name followed by
parentheses. In the parentheses are one or more arguments. The function has a
single value (numerical or string) determined by its arguments. See value,
argument. The functions treated in this book are:

ASCt CHR$* INT* LEN* POSt RNDt SEG$t STR$t VAL

garbage
A random mess of characters in memory. Usually due to human or machine error.

graphics
Means picture drawing.

immediate execution

When a command which does not start with a number is entered from the
command mode, it is executed as soon as the ENTER key is pressed.

index

An array name is followed by one or more numbers or numerical variables in
parentheses. Each number is an index. Another word for index is "subscript."

0(7*1) 7 and I are indices

integers
The whole numbers, positive, negative and zero.

I/O

Input/Output. Input from keyboard, tape recorder, etc. Output to screen, printer,
tape recorder, etc.

joystick
A device used in games. It is like the control stick used in early airplanes. It can
detect 8 different directions, as well as "centered." Texas Instruments calls its
joysticks "Wired Remote Controllers."

jump
The GOTO command makes the computer jump to another line in the program,
rather than execute the next line.

220

line

Lines start with a number followed by a statement which may contain expressions,
etc.

Parts of a line:

IB IF 7<=INT(Z) THEN 48

16 line number

IF 7< = INT(Z) THEN 48 statement

7< = I NT (Z) an assertion
7< =I NT (Z) an expression
INT(Z) a function

Z argument
? constant

<= operation
IF* INT* THEN reserved words

line buffer

The storage space which receives the characters you type in. See buffer.

line editing
Retyping parts of a line to correct it. First you call up the line with EDIT nnn,
where nnn is the line number. Then you move the cursor to the wrong part and
type the correct characters. Store the corrected line in memory by pressing
ENTER.

line feed

Moving the cursor straight down to the next line. The ASCII number 10 signals
this command to the screen or printer. See carriage return and CRLF.

line numbers

The number at the beginning of a program line. The line number tells the
computer where to store the line. Some lines don't have numbers (the ones which
will be executed in the immediate execution mode).

listing
A list of all the lines in a program.

load

To transfer the information from a file on tape to the memory of the computer by
using the OLD command.

logic
The part of a program which compares numbers or strings. The relations =, <>,
<, >, < =, and > = are used. See assertion, IF, phrase A.

loop
A part of the program which is done over and over again. There are many kinds of
loops: FOR...NEXT loops, "home made" loops which use IF... commands with a
loop variable and DO WHILE... and DO UNTIL... loops.

221

loop variable
Is the number which changes as the loop is repeated. For example:

40 FOR 1=1 TO 5

50 NEXT I

I is the loop variable

loudness

A number in CALL SOUND which tells how loud the sound should be.

memory

The part of the computer where information is stored. Memory is made of
semiconductor chips, but we think of it as "boxes" with labels on the front and
information inside.

menu

A list of choices shown on the screen. Each choice has a letter or number beside it.
The program user presses a key to pick which choice is wanted.

message

A PRINT statement which tells what is expected in an INPUT statement.
Example:

60 PRINT "AGE?"

81 INPUT A

monitor

Has two meanings. We use it to mean a box with a TV type screen which is
connected to the computer. It displays text and graphics but cannot receive
television programs. In machine language programming, a monitor is a control
program.

nesting
When one thing is inside of another. In a program we nest loops. Inside a
statement, we can nest expressions or functions.

L =INT <LEN <P$)+3♦4) nested functions

X=5* <6+(7* <8+K))) nested parentheses

number

Is one type of information in BASIC. The numbers are generally decimal numbers.
See integer, strings.

operation
In arithmetic: addition, subtraction, multiplication and division, with symbols +,
-, *, and /.The only operation for strings is concatenation.

phrase A
Is a phrase in this book which stands for an assertion in an IF statement. See
assertion, IF. Example:

IF A>4 THEN 500 A>4 is "phrase A"

222

pitch
The number in a CALL SOUND() statement which tells the musical pitch of the
sound. Pitch is the same as "note" and can be high or low.

pixel
Picture Element. The smallest dot which is placed on the screen in a graphics
mode.

pointer
A number in memory which tells where in a list of DATA you are at the present
moment.

program

The usual program is a list of numbered lines containing statements. The computer
executes the statements (commands) in order when the RUN command is entered.
The program is stored in a special part of memory; only one program can be
stored at a time.

prompt
Is a little message you put on the screen with an INPUT to remind the user what
kind of an answer you expect. Its name comes from the hint that actors in a play
get from the prompter if they forget their lines.

pseudo-random
A number which is calculated in secret by the computer using the RND function.
It is usually called a ''random number." Pseudo-random emphasizes that the
number really is not random (since it is calculated by a known method) but just is
not predictable by the computer user.

punctuation
The characters like period, comma, /,?,!, $, etc.

random

Numbers which cannot be predicted, like the numbers that show after the roll of
dice, or the number of heads you get in tossing a coin 10 times.

remark

A comment you make in the program by putting it into a REM statement.
Example:

REM THE GRAPHICS SETUP SUBROUTINE

reserved words

A list of words and abbreviations that BASIC recognizes as commands,
statements, or functions. The reserved words cannot be used as variable names.

return a value

When a function is used (called), its spot in the expression is replaced with a value
(a number or a string). This is called "returning a value."

RUN mode

The action of the computer when it is executing a program is called "operating in
the RUN mode." You get into the run mode from the command mode by entering
RUN. When the computer ends the program for any reason, it returns to the
command mode.

223

row

Things arranged horizontally (across).

save

To save a program which is in memory on tape.

screen

The TV screenor a similar one in a monitor which is hooked up to the computer.
See monitor.

scrolling
The usual way the computer writes to the full screen is to put the new line at the
bottomof the screen and push all the old lines up. This is called "scrolling."

simple variable
A variable which is not an array variable.

stack

Is a data type used in machine language programming. The data are arranged in a
column and the last one put on is the first one taken off.

starting stuff
Is the name given in this book to initialization material in a program. It includes
REMs for describing the program, inputofinitial values ofvariables, set up of
array dimensions, drawingscreen graphics, and any other things which need to be
done just onceat the beginningof a program run.

statement

The smallest complete section of a program. It starts with a command. The
command may have expressions in it.

store

To put information in memoryor to save it on tape.
string

A type of data in BASIC. It consists of a row of characters. See number.

subroutine

A section of a program which starts with a line called from a GOSUB command
and ends with a RETURN command. It may be called from more than one place in
the program.

subscript
A number in the parentheses ofan array. It tells which member ofthe array is
being used. See index.

syntax
Means the way a statement in BASIC is spelled. A syntax error means the
spelling ofa command or variable name is wrong, the punctuation is wrong or the
order of parts in the line is wrong.

timing loop
A loop which does nothing except use upa certain amount oftime. See delay loop.

title

The name of a program or subroutine. Put it into a REM statement.

224

TRUE

Has the value -1. See logic, FALSE, assertion.

typing
Pressing keys on the computer. It is different from "entering." See enter.

value

The value of a variable is the number or string stored in the memory box
belonging to the variable. See variable.

variable

A name given to a "box" in memory. The box holds a value. When the computer
sees a variable name in an expression, it goes to the box, takes a copy of what is in
the box back to the expression, puts it where the variable name was, and
continues to evaluate the expression. See variable names.

variable name

A variable is either a string variable or a numerical variable. The name tells
which. String variables have names ending in a "$" sign. Numerical variables do
not.

wired remote controllers

See joystick.

225

RESERVED WORDS IN TI BASIC

ABS APPEND ASC ATN

BASE BREAK BYE

CALL CHR$
CONTINUE

CLOSE

COS

CON

DATA DEF DELETE DIM DISPLAY

EDIT ELSE END EOF EXP

FIXED FOR

GO GOSUB GOTO

IF INPUT INT INTERNAL

LEN LET LIST LOG

NEW NEXT NUM NUMBER

OLD ON OPEN OPTION OUTPUT

PERMANENT POS PRINT

RANDOMIZE READ

RES

RND

REC

RESEQUENCE
RUN

RELATIVE

RESTORE

REM

RETURN

SAVE SEG$
SQR
SUB

SEQUENTIAL
STEP

SGN

STOP

SIN

STR$

TAB TAN THEN TO TRACE

UNBREAK UNTRACE UPDATE

VAL VARIABLE

Variable names in TI BASIC can be up to 15 characters long.
You should not use reserved words as variable names.

226

INDEX OF COMMANDS AND FUNCTIONS

EXPLAINED IN THIS BOOK

ASC() 127,156
CALL CHAR 17,101,119
CALL CLEAR 17,21
CALL COLOR 99,121
CALL HCHAR 17,86,100,121
CALL VCHAR 17,86,100,121
CALLJOYST 17,161
CALL KEY 17,127,135,162
CALL SCREEN 17,119
CALL SOUND 17,113
CHR$() 129,156
CON 185

DATA 108

DIM 169

EDIT 144

END 94

FOR...NEXT 33,63
GOSUB 139

GOTO 33,47,131
IF...THEN 33,73,94,175
INPUT 33,42,57,87
INT() 69
JOYST() 160,
LEN() 150
LET 42,57,87
LIST 22,88
NEW 12,18,22
NEXT 63

OLD 84

ON 131

POS() 150
PRINT 12,33,37,52,57
READ 108

REM 12,26
RESTORE 110

RETURN 139

RANDOMIZE 68

RND 68,88
RUN 12,187
SAVE 81

SEG$() 150
STEP 64

STOP 185

STR$() 155
TAB() 53
VAL() 58,134,155

227

INDEX OF KEYS USED IN THIS BOOK

CLEAR 31,47
INS 31,37
DEL 31

QUIT 31,47
ENTER 12,30
ARROW KEYS 29

SHIFT 42

FCTN 29,47,68
QUIT 31

228

/8S^»

ERROR MESSAGES

ERRORS WHILE YOU ARE ENTERING A LINE

* BAD LINE NUMBER

You used a line number which was zero or larger than 32767.

* BAD NAME

You used a name which was more than 15 characters long
or you used a bad character in the name:

right ABC
wrong AB%

* CAN'T CONTINUE

You tried to CONTINUE a program but:
The program had not been stopped with a FCTN CLEAR key.

* CAN'T DO THAT

You tried to use one of these statements as a command:

DATA, FOR, GOTO, GOSUB, IF, INPUT, NEXT, ON, RETURN

or you tried to use one of these commands as a statement:
CONTINUE, EDIT, LIST, NEW, OLD, RUN, SAVE

or you entered LIST, RUN, or SAVE when there was no program in the
memory.

* INCORRECT STATEMENT

You used incorrect punctuation in a statement. Maybe you forgot a :,', =, +,
jf et/C»

* LINE TOO LONG

Lines can be only 4 lines long on the screen.

* MEMORY FULL

Your program is too big.

229

ERRORS JUST AFTER YOU ENTER RUN'

The computer makes some checks of your program before you run it.

* BAD VALUE

You made an array with a dimension larger than 32767.

* FOR-NEXT ERROR

Your program does not have the same number of NEXT statements as FOR
statements.

* INCORRECT STATEMENT

A DIM statements is:

missing its dimension number
or has more than 3 dimension numbers

or you forgot a comma or a) in the DIM
or you have a bad name in the DIM statement

* MEMORY FULL

You made an array which is too large
or there is no more room in memory for variables

* NAME CONFLICT

You named two different sized arrays with the same name
or you named a simple variable and an array the same
or you used DIM to make an array, then used it with a different number of

subscripts

Wrong: 10 DIM A<3>3>3)
20 A<2>2)=5

ERRORS WHILE THE PROGRAM IS RUNNING

* BAD ARGUMENT

You used ASC or VAL with a string which was of zero length
or you put a string into VAL which was not a number

Wrong: 30 A=VAL< "33♦NN")

* BAD LINE NUMBER

You asked an ON, GOTO or GOSUB statement to goto a line which is not in
the program.

230

* BAD NAME

You put a name after CALL which is not allowed.

The only allowed names are CHAR, CLEAR, COLOR, GCHAR, HCHAR,
JOYST, KEY, SCREEN, SOUND, VCHAR

* BAD SUBSCRIPT

You have a bad number as an array subscript:
It is not an integer

or it is bigger than the size you put in the DIM command

Wrong: 10 DIM A(8)
20 A(10)=5

* BAD VALUE

The computer expected a number in the line, but didn't find it
or the number was negative when a positive one is needed
or the number had some letters mixed in
or the number was too big
or the number was zero when it must be positive
or the computer expected to see an = sign.

* INPUT ERROR

The computer came to an INPUT statement, then:
you input too long a line of characters

or you input more or fewer numbers than were asked for
or you typed letters when a number was asked for.

* I/O ERROR

You made an error with the commands SAVE, OLD, INPUT, PRINT, or
RESTORE

* MEMORY FULL

There is too little memory to use with the CALL CHAR
or your GOSUB line goes to itself
or you nested your subroutines too deeply
or you have an expression which is too complicated.

* NUMBER TOO BIG

You made a number (positive or negative) bigger than 9.99 E 127.

231

/ffif^l

/Sl*^

* STRING-NUMBER MISMATCH ^

You used a string where a number was needed
or you used a number where a string was needed.

* CHECK PROGRAM IN MEMORY

This happens only when you commanded OLD and it did not put a program
from tape into memory. It is telling you that the program in memory may be
bad.

232

/ffit!Si

/9I$\

/|Siffl\

INDEX OF TOPICS

addition 56,57
alphabetize 127,130
argument 17,54,154,157
arithmetic 42,56, 57,61,106
array 168,169
arrow 119,122
arrow keys 29,145
ASCII 97,127
assertion 72,173

BASIC 62,74,144
bells and whistles 17

blank space 19,20
boxes, see memory boxes 21,56,58,169,174
breakpoint 184
branch 72,93,33
buffer 103

calculator mode, see command mode 106
carriage return 218
character 17,20
character set 99,121
clear 22,31
colon 86,87
color 17,18,98
column 90

comma 35

command 10,12,52,86,88
command mode 103,185
concatenation see gluing 42,45,149,150
conditional test 72

constant 17,20,59
cursor 11,37,39,145

data 107,108
debugging 185,188
decimal numbers 67,68,113,115
decode 128

deferred execution mode, see run mode 103
delay loop 52,55,63
dice 67,68
die, see dice 68,70
dimension 169,172
direct mode, see edit mode 103
division 56,57
dollar sign 34,58
DO UNTIL 93

drawing 89,91,92

233

edit mode 103,144
enter 11,12,80
equal 56,60
erase 12,21,22,24,31
error 29,30,35
error trap 182
execute 104

expression 70

false 72,73,76,173,174
flow of command 72,178
fork in the road 72,74,75,93
function 10,29,62,67,88,156,157

gluing 42,45,149,150
graphics 89,98,120,159
greater than 94,

horizontal 91

immediate mode, see command mode 103
index 233

initialization 159

input 33,34,135
input cursor 34
inside loop 65
instruction 178,179
integer 69

jump 47,48,49,96

keyboard 47
keyword 10,88

less than 94

letters 20

line numbers 13,16
line 12

line, adding 25
linefeed 221

line, replace 25
line editing 24,145
list 22,88
logic 72,174,176
loop 46,62,65,93,179

234

memory 10,21,30
memory boxes 21,56,58,169,174
menu 11

message, in INPUT 34,44
message, ERROR 233
minus sign 57
modular 139

monitor 224

multiplication 56,57,68

name 147

nesting 65
not equal 76
numbers 18,56,67,128,129,130,154,155,156
number, negative 173,174

operation 222
output 37
output cursor 37

parenthesis 69
phrase A 73,94,222
pitch 17,114
pixel 223
PRINT, mixtures in 60
PRINT cursor 39
program 14
programs, fast 164,180
program, spaghetti 50,178
programming, top down 164,180
prompt 105,181,223
punctuation 20

question mark 34,86

random 68

remark 15,26
replace 61
reserved words 226

run mode 46,103,106

screen 11

scrolling 224
semicolon 37,39
snipping strings 42,45,150
space 39,54,97
starting stuff 179,180
statement 10,

235

/m\

stop 29,46,185 ^
string 19,150,155
string constant 17,19,20,59 ^
string, empty 19,20 «
string variable 34,44,60
string value 44
strip overlay 47 ^
structured programming 163 ^
subroutine 17,141,179
subtraction 57 ""^
suit of cards 67 «

tab 53

tape cassette 80 "*
true 72,73,76,173,174 ^
typing 12

user friendly 134,179 ^

value 44,58,155
variables 33,58,70 ^
variable, array 169 ^
variable, loop 55,65
variables, numeric 60,135
variables, string 34,44,60 ^
variable names 147 ^
vertical 92,

whole numbers, see integers 69, ^
word 138

zero 13 ^

236

/ssag\

	front-cover
	Binder1
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content012

	back-cover

