

'Ipft^

<S^\

••^Sfev

Creative Programming
for Young Minds

...ontheTI-99/4A

Volume V

by Leonard Storm

i^^f K^— -VJ

.:I.V/---

^IgPIfr^l

..A

1982, CREATIVE Programming, Inc., Charleston, IL 61920
A Subsidiary of R.V. Weatherford Co.

® A registered trade mark of Texas Instruments, Inc.

'^ISSS

^l^5*\

CREATIVE PROGRAMMING FOR YOUNG MINDS

... ON THE TI/99-4A

VOLUME V

TABLE OF CONTENTS

LESSON #17 DEBUGGING 191

TRACE 191

UNTRACE 192

BREAK 193

UNBREAK 200

LESSON #18 ARRAYS 202
DIM 204

Two Dimensional Arrays 206
Three Dimensional Arrays 215

LESSON #19 MORE IF-THEN 222
IF-THEN-ELSE 222

+ (or) 223
* (and) 224
GCHAR 226

Scientific Notation - . 229

TAB 232

ABS 234

LESSON #20 SPEECH 236

Speech Editor 236
Word Separators 238
CALL SAY 239

Vocabulary List 243

BLUE PROJECTS

191

LESSON #17: DEBUGGING

GREETINGS, TI PROGRAMMERS! WELCOME

TO VOLUME V, LESSON 17. IN THIS

LESSON, YOU WILL LEARN HOW TO GET

RID OF PROGRAM BUGS. PROGRAM BUGS

ARE ERRORS IN PROGRAM LOGIC OR SYNTAX

WHICH CAUSE A PROGRAM TO MISBEHAVE.

TRACE AND BREAK COMMANDS CAN BE USED

TO ELIMINATE THESE NASTY BUGS.

The TRACE command lists program statement numbers on the

screen as they are executed. This allows you to see the

order in which statements are being executed and may help

you to find an unwanted error.

Type in the following program and observe the effect of

the TRACE command. Let the NUM command number the state

ments for you.

10 FOR 1=1 TO 10

20 PRINT I;

30 NEXT I

40 PRINT "END OF LOOP"

50 STOP

Type in TRACE.

Then RUN the program.

192

Notice that the number of the statement executed is

printed on the screen just before the statement itself

is executed. Also, notice that PRINT statements still

cause data to be printed on the screen.

Try RUNning the program again. Notice that the TRACE

command is still in effect.

To get rid of the TRACE command just type in the UNTRACE

command. Do it, then RUN the program again.

Now change statement 20 to:

20 PRINT I:

Next, type in TRACE and then RUN the program again.

Notice the effect of the PRINT separator on the screen

listing.

TRACE and UNTRACE commands may also be used as statements

in a program. To illustrate this, type in the following

additional statements:

1 TRACE

31 UNTRACE

Next, type in the command UNTRACE and then RUN the program

again. Notice that statement 1 is not listed because the

TRACE command is not yet in effect until after statement 1

is executed. Statements 40 and 50 are not listed because

statement 31 undoes the TRACE command.

193

Now delete statement 31 and add the following statement

to your program:

25 UNTRACE

Before you RUN the program again, try to predict what

statement numbers will be printed out on the screen.

Write your predictions on the line below and then RUN

the program.

Next, type in NEW and press ENTER. The NEW command causes

the TRACE command to be erased.

The BREAK command is another useful feature of TI BASIC

which allows you to debug programs. Let's see how this

command can be used to help find program logic errors.

Type in the following program:

10 CALL CLEAR

20 INPUT "INPUT A NUMBER THAT IS A MULTIPLE OF 3":N

30 K=N

40 N=N/3

50 C=C+1

60 IF N=l THEN 80

70 GOTO 40

80 PRINT "3 TO THE POWER";C;"=";K

90 FOR D=l TO 2000

100 NEXT D

110 GOTO 10

Now RUN the program. When it asks for a number, type in 9

194

Did you get a message from the computer saying:

3 TO THE POWER 2=9

That is, 3x3 = 9.

Now type in the number 9 again. What response do you get

this time?

The last response is obviously wrong. The value of C in

statement 80 somehow got messed up. Here's what we'll

do. Let's keep a close eye on the value of C as the pro

gram runs to see where the value of C goes buggy.

Type in the following statements:

35 BREAK

55 BREAK

Now RUN the program again. Again, type in 9 when the

program asks for a number.

As the program continues, it encounters statement 35

which tells the computer to stop. The following message

is printed on the screen:

♦BREAKPOINT AT 35

Now we can take a peek at the value of C. Type in the

following command:

PRINT C,N (ENTER)

The computer should print a 0 and a 9. That is, COUNT =0

and N = 9.

195

Everything is O.K. so far since statement 20 makes N equal

9 and the value of C equals zero since it has not yet been

given a value. (Remember, the computer initially sets all

variables to zero when you type RUN.)

What is the value of K at this breakpoint (statement 35)?

Check your answer by typing:

PRINT K

Now let's allow the program to continue where it left off.

Type:

CONTINUE

and press ENTER. The BREAKPOINT at 55 causes the program

to stop once again. At this time, N has been divided by

3 in statement 40 so that N = 3. And C has been incremented

in statement 50 so that C = l. The variable, C, keeps track

of how many times the original number has been divided by 3.

Check that the above values are correct by typing in the

following command:

PRINT C;N;K (ENTER)

Now type:

CONTINUE (ENTER)

The program should execute statements 60, 70, 40, 50, and

55 before it again stops. N should have been divided by

3 again so that N now equals 1. C should equal 2. Verify

this by commanding the computer to print the values of C, N,

and K.

196

Type CONTINUE again. The computer should then print out

the correct message.

Enter the number 9 again when the computer asks for an

input.

At the next breakpoint, check the values of C, N, and K.

Notice that C = 2. It has not been reset to zero as it

should be. This is why the program works only the first

time through.

Now CONTINUE the program and check the values of C, N,

and K at each breakpoint. Fill in the following blanks:

BREAKPOINT C N K

35

55

3 TO THE POWER

Now let's fix the program. See if you can make the

necessary changes to make the program RUN correctly

This is called debugging!

Also get rid of statements 35 and 55.

197

Now RUN the program again. Use the values given below for

the input numbers. Fill in the blanks with the computer's

response.

INPUT 3 TO THE POWER ?

9

9

3

27

5

Notice that the first 4 inputs get correct responses from

the computer. But when the input equals 5, the computer

gets hung up. Let's do some sleuthing and find out why.

Enter the FCTN 4 command to stop the program. Then set

the TRACE command. Finally, RUN the program. Input 5

again. After the screen fills with numbers, type FCTN 4.

Notice that the same statement numbers are executed over

and over in the same order:

40 50 60 70 40 50 60 70 ETC.

Evidently the condition that N=l must never be met in

statement 60.

Next, put a BREAK command at line number 65 so that we

can keep track of N.

RUN the program again. Again, input the number 5.

At each breakpoint, find out the value of N

FIRST BREAK N =

SECOND BREAK N =

THIRD BREAK N =

198

Can you see why N never equals 1 when N starts at 5?

To correct this program error, we may include the following

program statements:

65 IF N <1 THEN 120

120 PRINT K; "IS NOT AN INTEGER MULTIPLE OF 3."

130 GOTO 90

Type in the above statements, get rid of TRACE, and eliminate

the breakpoint. Then RUN the program again.

Input the number 26 and then write down the computer's

response on the line below.

Is the computer's response correct? What a clever

little computer!! (And an even smarter programmer!)

199

In the example below, you will learn about variations of

the BREAK command. Enter the following program:

10 A=l

20 PRINT A

30 PRINT A;A+A

40 PRINT A;A+A;3*A

50 FOR 1=1 TO 1000

60 NEXT I

70 PRINT :::

80 GOTO 10

Now type in the following command. (Notice no line number.)

BREAK 10,30,70

Now RUN the program. Each time a breakpoint is encountered,

type in CONTINUE. Observe what happens.

The program should BREAK at statement 10 first, then at

30, and finally at statement 70. But notice that the

breakpoints are automatically removed as the computer

loops through the program additional times.

Stop the program using FCTN 4 and then RUN it again.

This time do not enter the BREAK command.

Observe that the breakpoints at 10, 30, and 70 have been

removed forever.

Stop the program again and add the following program line:

5 BREAK 10, 30, 70

200

Now RUN the program again. Again, type in CONTINUE when

ever a program break occurs.

Observe that the breakpoints at 10, 30, and 70 again are

set only once. This is because breakpoints are removed

after having been executed.

Stop the program and start it again. Notice that the break

points have been reset because statement 5 (which sets the

breakpoints) has been executed.

Stop the program again and change statement 80 to:

80 GOTO 5

Before RUNning the program again, what effect do you think

this will have on the program?

Now RUN the program again.

Observe that the program stops at lines 10, 30, and 70 each

time through the loop because statement 5 is encountered

every time through the program.

Now type in CONTINUE several times as needed until the

following message occurs on the screen:

♦BREAKPOINT AT 10

After you get this message, type in:

UNBREAK

CONTINUE

The UNBREAK command clears out the rest of the breakpoints

set in statement 5 so that no stops occur this time until

statement 5 resets the breakpoints.

201

Now at the message

♦BREAKPOINT AT 10

type in the following additional statement:

15 UNBREAK 10,30,70

Then type CONTINUE.

This time the program won't continue to execute because

you have edited the program. So you must RUN the program

again. Do it. Type CONTINUE at any breakpoint.

Notice that statement 15 has eliminated the breakpoints

at 30 and 70, but it comes too late to affect the break

point set at line 10.

What happens if you input the following command? Write

the computer's response on the line below.

BREAK 300

For your own benefit, you should practice using the TRACE,

UNTRACE, BREAK, and UNBREAK commands until you have mastered

them. They will be of great benefit when you start de

bugging large programs.

LESSON #1.8: ARRAYS

202

IN THIS LESSON, YOU WILL LEARN HOW

TO USE ARRAYS IN YOUR PROGRAMMING.

AN ARRAY IS A COLLECTION OR LIST OF

VARIABLES. EACH VARIABLE IN THE

ARRAY IS CALLED AN ELEMENT OF THE

ARRAY. AN EXAMPLE OF A SIMPLE ARRAY

IS SHOWN BELOW.

M(l

M(2

M(3

M(4

M(5

M(6

M(7

M(8

M(9

= 31

= 28

= 31

= 30

= 31

= 30

= 31

= 31

= 30

M(10)=31

M(ll)=30

M(12)=31

M is the name of the above array. Notice that each element

in the array is given a number. This number tells the

position of the element in the array. Thus M(l) is the

first element in array M. M(6) is the sixth element in

array M, etc.

203

In the example given, the elements of the array have been

assigned values representing the number of days in each

month of the year. M(l) =31 represents the number of days

in the first month, January. M(2) =28 is the number of

days in February, and so on.

Arrays can help you simplify your programs. For example,

if you had made the following assignments,

JAN = 31

FEB = 28

MAR = 31

APR = 30

ETC.

then to print out all this information on the screen requires

either twelve PRINT statements or one long PRINT statement.

However, if we had this information stored in an array, we

could put the information on the screen using the following

statements:

80 FOR 1=1 TO 12

90 PRINT M(I)

100 NEXT I

Let's see how that can be done. Type in the following

program:

10 DIM N$(12) , M(12) < Here we will establish two arrays,
N$(12) for the names of the months

20 CALL CLEAR anf .H("{,?? the ""f** °f dayS'
Notice N$(12) is a string array
while M(12) will contain only
numbers.

Keep going.

204

30 INPUT "WHAT'S YOUR NAME: ":NAM$

40 PRINT

50 FOR 1=1 TO 12

60 PRINT "WHAT IS THE NAME OF MONTH #";I

70 INPUT N$(I)

80 PRINT "HOW MANY DAYS IN ";N$(I):

90 INPUT M(I)

100 NEXT I

110 CALL CLEAR

120 PRINT "THANKS FOR THE DATA, ";NAM$::

130 PRINT "I HAVE PERFECT RECALL! WATCH!"

140 FOR X=l TO 1000

150 NEXT X

160 CALL CLEAR

170 FOR K=l TO 12

180 FOR Y=l TO 250

190 NEXT Y

200 PRINT "THE NUMBER OF DAYS IN ";N$(K);U IS ";M(K)

210 NEXT K

220 GOTO 220

The DIM command in line 10 tells the computer how many

elements there are to be in an array. The DIM statement

must always appear before the array is used in the program,

Try to figure out how the program works before you RUN it.

Then RUN the program.

"ISSNy

1SBV

205

The DIM statement in line 10 actually provides for 13

elements in both array N$ and array M. The other element

is the zeroth element. That is, N$(0) and M(0) are valid

elements.

EXERCISE 18-1

Create a program that uses arrays to enter ten names and ten

phone numbers. When you have this, add to the program the

ability to enter a name and have the computer find and print

the phone number.

206

So far, we have limited our dimensional arrays, or lists

to one dimension. TI BASIC however allows for 2 or 3

dimensional arrays as well. Let's first talk about the 2-D

(two dimensional) array. An example of a 2-D array is shown

below.

FIRST ROW

SECOND ROW

THIRD ROW

FOURTH ROW

FIRST SECOND THIRD FOURTH

COLUMN COLUMN COLUMN COLUMN

1 2 3 4

2 4 6 8

3 6 9 12

4 8 12 16

Let's call this array, TABLE. There are 16 elements in

TABLE. To specify a particular element in TABLE, one must

give two positions, the element's ROW and COLUMN.

For example, there is a 12 in ROW 4, COLUMN 3. So one

could write:

TABLE(4,3)=12

Notice that the ROW position comes first:

TABLE(ROW,COLUMN)=ELEMENT VALUE

Similarly:

TABLE(2,4)=8

TABLE(1,3)=3

To see if you've gotten the general idea, fill in the

following blanks:

TABLE(1,1) = TABLE(2 ,3) = TABLE(,2) =8

Now let's use a 2-D array in a program. Type in the

following program:

5 CALL SCREEN(15)

10 DIM A(24,32)

20 CALL COLOR(l,2,15)

30 CALL CHAR(33,"E7818100008181E7")

40 CALL CHAR(34,"E7F3F97C3E9FCFE7")

50 CALL CHAR(36,"E7CF9F3E7CF9F3E7")

60 RANDOMIZE

70 CALL CLEAR

80 INPUT "INPUT A # BETWEEN 0 AND 1 ":N

90 IF N >1 THEN 80

100 IF N < 0 THEN 80

110 FOR ROW=l TO 24

120 FOR COL=l TO 32

130 X=RND

140 IF X > N THEN 170

150 A(ROW,COL)=33

160 GOTO 220

170 X=RND

180 IF X> .5 THEN 210

190 A(ROW,COL)=36

200 GOTO 220

210 A(ROW,COL)=36

220 NEXT COL

230 NEXT ROW

Keep going.

207

208

240 PRINT "THE ARRAY IS FILLED"

250 INPUT "TYPE C TO CONTINUE ":A$

260 IF A$<>"C" THEN 250

270 CALL CLEAR

280 FOR 1=1 TO 24

290 FOR J=l TO 32

300 CALL HCHAR(I,J,A(I,J))

310 NEXT J

320 NEXT I

330 GOTO 330

This is how the program works:

STATEMENT:

5 turns the screen gray.

10 defines an array called A which is to have

24 rows and 32 columns. Array A will be

used to store screen characters.

20 Set 1 will have a black foreground and a

gray background.

30,40,50 define 3 characters in set 1.

60 sets up the random number generator to give

a different sequence of numbers every time

the program is run.

80,90,100 These statements ask for a number between 0

and 1. If the number input is outside this

range, statement 90 (or 100) causes the input

statement to be repeated.

110-230 These statements cause the elements of array

A to be given a value of 33, 34, or 36 in a

random fashion.

209

STATEMENT:

110,120 The elements are filled in a row at a time:

ROW=l,COL=l

ROW=l,COL=2

ROW=l,COL=3

up to

ROW=l,COL=32

then

ROW=2,COL=l

ROW=2,COL=2

up to

ROW=2,COL=32

and so on.

130,140,150 Statement 130 generates a random number

160,220 between 0 and 1. If the random number is

less than or equal to the number you have

input in statement 80, then statement 150

is executed which sets A(ROW,COL) equal to

number 33 (also a character number). Then

statement 160 causes a jump to statement

220 which increments the COL number by 1.

130,140, If the random number generated in statement
170-220

130 is greater than the number you have input

in 80, then statement 140 causes a jump to

statement 70.

Statement 170 generates another random number

between 0 and 1. If this random number is

greater than h, then the element of the array

will be assigned the number 36. If the random

number is less than or equal to h, then the

element of the array is given a value of 34.

210

STATEMENT:

240 This statement lets you know when all the

elements of the array have been given a value.

250,260 These statements cause the computer to pause

so that the message in statement 240 can be

read before statement 270 clears the screen.

280-r320 These statements cause all of the elements of

the array to be printed on the screen in the

same ROW and COL as the element appears in the

array.

Statement 300 causes the elements to be printed

on the screen as the characters defined in

statements 30-50.

330 Statement 330 holds the pattern on the screen.

RUN the program several times. Each time input a different

number at statement 80. (Suggestions: Input zero, one, .5)

Try to figure out what would happen if statement 170 were

changed to:

170 X=X

Then test your answer by RUNning the program. On the lines

below, explain why X=RND is needed in line 170.

Next, put statement 170 back the way it was. Now change

the program where necessary to create an array A containing

6 rows and 10 columns.

"TfffiV

<W$\

211

Let the program fill up this array in the same way as it

filled the one before. Also, have the program print the

elements of the array on the screen as it did before.

Show the changes to the program on the lines below.

RUN the program and de-bug it until it is working properly,

Now change the way the array is printed on the screen.

Instead of printing row by row, change the program so that

it prints the array column by column but still with the

array elements in the same location on the screen.

Show the program changes below:

212

As a final test of understanding, change the printing

technique once more. This time, have the program put

the elements of the array on the screen using the RND

command to determine which element gets printed first,

which second, and so on. Each element should be printed

in the same screen position as it was in the previous

programming examples.

Test run your program to see that it is working properly

Then record the program changes below.

Another example of a 2-D array is given below. Type this

program into the computer.

10 CALL CLEAR

20 DIM N(50,2)

30 INPUT A,B

40 IF A=0 THEN 90

50 1=1+1

Keep going.

60 N(I,1)=A

70 N(I,2)=B

80 GOTO 30

90 FOR J=l TO I

100 CALL SOUND(N(J,l),N(J,2),0)

110 NEXT J

120 INPUT "R=REPLAY ":C$

130 IF C$="R" THEN 90

140 STOP

RUN the program. Input the numbers given below:

A B A B

500,330 500,262

250,294 500,294

500,262 500,330

500,294 500,330

500,330 750,330

500,330 500,330

1000,330 500,294

500,294 500,294

500,294 500,330

1000,294 500,294

500,330 1000,262

500,392 o,0

1000,392

500,330

500,294

213

214

Array N is a two column array. The first column represents

the duration of a note. The second column represents the

tone of the note. Thus, N(7,l) is the duration of the

seventh note and N(7,2) is the tone of the seventh note.

Play with this program a little. Make some changes.

If you are ready to go on, change the program so that two

1-D arrays are used instead of the one 2-D array. Let

D(I) be the array representing the duration of the Ith

note. Let T(I) be the array representing the tone of the

Ith note. When you get your program working properly,

record the program on the lines below.

215

Now let's take a look at three dimensional arrays. Elements

in a 3-D array are specified by giving three numbers (or

positions). An example of a 3-D array is shown below.

ROW 1

ROW 2

ROW 1

ROW 2

ROW 1

ROW 2

COLUMN

1 19 8 3

14 21 17 11

6 7 16 13

12 10 23 22

15 2 100 18

5 9 20 4

ARRAY M

PAGE 1

PAGE 2

PAGE 3

The number 16 has been assigned to one of the positions in

the array M. Note that the 16 is on page 2 in the first row

and in the third column. Therefore, one could write:

M(2,1,3)=16. In a similar way, one could write: M(l,l,3)=8

Notice that the numbers represent page, then row, and then

column.

Now you fill in the following blanks:

M(

M(2,2,2) =

M(l,l,l) =

)=5

M(l,l,l)+M(3,l,2)=l + 2 = 3

M(2,2,4)+M(2,2,l)=

The general form for all arrays is as follows

X(A,B,C) = N

* *—' t.
value of the element

position of the element

name of the array

216

Besides numerical arrays, one may also have string arrays.

For example, M$(1,1)="HELLO". In this example, the array

M$ is a 2-D string array. The value at location, R0W=1 and

C0L=1 is the string "HELLO".

Type in the following program which contains a 3-D array.

10 CALL CLEAR

20 DIM A$(3,3,3)

30 PRINT "3-D TIC TAC TOE":::

40 FOR P=l. TO 3

50 FOR R=l TO 3

60 FOR C=l TO 3

70 INPUT T$(P,R,C)

80 NEXT C

90 NEXT R

100 NEXT P

110 PRINT :::::

120 FOR P=l TO 3

130 FOR R=l TO 3

140 FOR C=l TO 3

150 PRINT T$(P,R,C);" ";

160 NEXT C

Keep going.

217

170 PRINT

180 NEXT R

190 PRINT :::

200 NEXT P

210 GOTO 210

When you RUN the program, input the following data (one at a

time):

X, O, , O, X, , , 0, 0, , , , X, X,

0, , , , , X, , , 0, , X, O, X

The program displays your data in the form of a 3-D TIC-TAC-

TOE board. The 3 by 3 square at the top of your screen

represents the top layer of the 3-D TIC-TAC-TOE board. The

square in the middle of your screen represents the middle

layer of the 3-D TIC-TAC-TOE board, and so on.

Can you tell that "X" won the TIC-TAC-TOE game in 2 different

ways?

One way was:

T$(l,l,l) T$(2,2,l) T$(3,3,l)
* A *

— first column

— first row

— top layer

What was the other way?

218

EXERCISE 18-2

Write a program that INPUTS numbers from the keyboard and

stores them in a 1-D array. Design the program so that

when you enter the number 999, the computer stops taking

new numbers and begins printing the elements of the array

back onto the screen. Design the program so that up to

1000 numbers can be put into the array.

When you get the above program to work properly, add some

program statements that will allow the computer to keep

track of the number of elements that have been input into

the array. The computer should then print this information

on the screen:

YOU HAVE INPUT ? NUMBERS

219

EXERCISE 18-5

In this lesson, you are going to design a "coloring"

program which will allow you to paint pictures on your

TV screen. These pictures will be made of colored squares.

Include a statement that will allow the user to choose

the "background" screen color upon which the pictures will

be painted. For example:

INPUT "SCREEN COLOR ":SC$

An INPUT statement should also be used to input the color

of the square and the square's position to the computer.

This information will be stored in a 2-D array.

The INPUT statement may have the following form:

INPUT "ROW,COLUMN,COLOR ":R,C,A$

This information may be stored in an array using a

statement similar to the one below:

TV$(R,C)=A$

R and C are the row and column numbers of a screen location

And A$ is the color of the square to be placed at this

position.

A$ could be any of the following string constants:

B, MG, LG, DB, LB, DR, C, MR, LR, DY, LY, DG, M, G, W

These represent the possible colors available in TI BASIC:

B=black, MG=medium green, LG=light green, and so on.

220

For example, when the computer prints out:

ROW,COLUMN,COLOR

the user might respond:

8,22,LY

The computer should then put the string constant, LY, at

row 8, column 22 of the array TV$. All of this would mean

that the user wants a light yellow square to be printed on

the TV screen at row 8, column 22.

The program should allow you to input as many position

colors as you want. When you are through entering colors,

enter:

0,0,0

to tell the computer you are through.

The DECODING of color codes can be done by using IF-THEN

statements. An example is shown below.

1000 IF TV$(I,J)="B" THEN 2000

1010 IF TV$(I,J)="MG" THEN 2020

Etc.

2000 CALL HCHAR(I,J,40)

2010 GOTO 3000

2020 CALL HCHAR(I,J,48)

Etc.

3000 NEXT J

3101 NEXT I

221

Statement 2000 contains the character code 40 which is

to represent a black square. The character code 48 in

statement 2020 represents a medium green square.

After the program fills up the screen, it should wait a

while and then loop back to the beginning so that the

user may make changes or additions.

When you get the program to work properly, call someone

over and share your success!

LESSON #19: MORE IF-THEN

IN THIS LESSON, YOU WILL LEARN

HOW TO ADD PIZZAZ TO THOSE

CONDITIONAL STATEMENTS. YOU

WILL LEARN HOW TO INCORPORATE

MORE THAN ONE CONDITION IN AN

IF-THEN STATEMENT AND HOW TO

CAUSE ADDITIONAL BRANCHING BY

USING IF-THEN-ELSE.

222

Begin this lesson by typing in the following program:

10 CALL CLEAR

20 INPUT "INPUT A NUMBER ":N

30 IF N=16 THEN 40 ELSE 10

40 PRINT "YOU GUESSED THE NUMBER"

50 FOR 1=1 TO 500

60 NEXT I

70 GOTO 10

RUN the program and input some numbers. Notice how state

ment 30 works. When the number input is 16, statement 30

causes the program to jump to statement 40. If the condition

that N=16 is not met, the ELSE part of statement 30 causes

the computer to jump to statement 10.

223

In English, one could interpret statement 30 as follows:

If the number N is a 16, then execute statement 40,

otherwise execute statement 10.

Sometimes one would like to include more than one condition

in the same statement. This is possible in TI BASIC. The

following program illustrates this possibility. Type in the

program and RUN it.

10 CALL CLEAR

20 INPUT "INPUT A NUMBER: ":N$

30 IF (N$="10")+(N$="TEN") THEN 50 ELSE 90

t40 STOP Notice the special use of this
symbol to mean OR.

50 PRINT "CONDITION MET"

60 FOR 1=1 TO 500

70 NEXT I

80 GOTO 10

90 PRINT "CONDITION NOT MET"

100 FOR 1=1 TO 500

110 NEXT I

120 GOTO 10

Try entering the following string constants at statement 20:

1, ONE, 10, TEN, 10.0

The + in statement 30 should be read as OR. Thus statement 30

reads:

If N$ equals "10" OR if N$ equals "TEN", then go to

statement 50; otherwise, go to statement 90.

224

When you are satisfied that you know how the program works,

you may continue.

Now make the following changes to the previous program:

20 INPUT "INPUT 2 NUMBERS: ":A$,B$

30 IF (A$="10")+(A$="TEN")+(B$="7") THEN 50 ELSE 90

Try the following inputs. Check (v^) the appropriate response

NEITHER AT LEAST ONE

INPUT CONDITIONS MET CONDITION MET

1.6

1.7

2,7

10,5

TEN, 5

10,7

TEN, 7

Next, make the following changes to the above program:

30 IF(A$="5")*(B$="6") THEN 50 ELSE 90
Notice the special use

50 PRINT "BOTH CONDITIONS MET" of * to mean AND-

90 PRINT "AT LEAST ONE CONDITION NOT MET"

RUN the program again.

Now turn the page and fill in the table.

225

BOTH AT LEAST ONE

INPUT CONDITIONS MET CONDITION NOT MET

7,7

7,8

5,7

7,6

5,6

6,5

The * in statement 30 should be read as AND. Thus state

ment 30 reads:

If A$ equals "5" AND if B$ equals "6", then go to

statement 50, otherwise, go to statement 90.

Only when all the conditions are true, does the AND IF-THEN

statement cause a jump to statement 50. For the OR IF-THEN

statement, only one condition had to be true for a jump to

statement 50 to take place.

Now type in the following program:

10 CALL CLEAR

20 CALL COLOR(2,2,15)

30 CALL CHAR(40,"FFFFFFFFFFFFFFFF")

40 CALL SCREEN(15)

50 CALL VCHAR(1,1,40,48)

60 CALL VCHAR(1,31,40,48)

70 D=l

80 1=3

Keep going. :

226

90 CALL HCHAR(10,I,61)

100 CALL GCHAR(10,I-D,X)

110 IF X=40 THEN 130

120 CALL HCHAR(10,I-D,32)

130 I=I+D

140 IF (1=2)+(1=31) THEN 150 ELSE 90

150 D= -1*D

160 I=I+D

170 GOTO 90

RUN the program and observe the moving pattern which results.

Statements 10 through 60 define the background colors and

the border color which appear on the screen. Statements

70 through 170 produce and control the moving equal sign.

Let's first examine statement 100 which contains the CALL GHAR

command. GCHAR stands for Get CHARacter. This command is

used to determine what character is currently printed at

some screen location.

The form of the command is as follows:

CALL GCHAR(ROW,COLUMN,CODE)

When this command is used, the variable, CODE, is set equal

to the character code of the symbol printed at position

ROW,COLUMN on the screen.

For example, if the letter A is printed at location ROW=5,

COLUMN=22 on the screen, then CALL GCHAR(5,22,CODE) will

set the numeric variable CODE equal to 65, since 65 is the

character code for A.

227

Now back to the program . . .

Statement 90 prints an equal sign at position ROW =10,

COLUMN =I on the screen. Statement 100 then finds out what

character is printed one column behind this equal sign. If

the character behind is a border character, then statement

120 is by-passed. If the character behind the equal sign

is another equal sign, then this previously printed equal

sign is erased by statement 120.

Statement 130 changes the column variable, I, by one.

Statement 140 checks to see that I doesn't equal a border

column number. If it doesn't, the program loops back to

statement 90 and prints the new equal sign. If I does

equal a border number, then the program jumps to statement

150, where the direction variable, D changes sign. The

column variable is then changed in the opposite way. If

it was increasing before, it now decreases, or if it was

decreasing, it now increases.

228

EXERCISE 19-1

Given the following IF-THEN statement,

100 IF (A<>7)*(B=5)+(C=2) THEN 1000 ELSE 5000

tell which statement the program would transfer to for the

following values of A, B, and C:

ABC TO STATEMENT:

7 5 3

6 5 3

7 5 2

10 4 7

Now check your answers by writing a simple program which

uses statement 100 above.

229

EXERCISE 19-2

In this exercise, you will be learning about a convenient

way of writing large numbers. For example, you'll agree

that it takes an insufferable amount of time to write down

the following number:

602300000000000000000000

But this is about equal to the number of atoms in a cubic

centimeter of a metal.

What we need is a short-cut for writing down this number.

We will call this short-cut method, SCIENTIFIC NOTATION.

How's that for an important sounding namel

To convert the above number to scientific notation, all we

have to do is move the decimal point so that there is only

one non-zero digit to the left of the decimal point, and

then write down the number of places the decimal point was

moved.

The above number becomes 6.023E23 when written in scientific

notation.

6.023E23

— number of places decimal point has
been moved to the left

— one non-zero digit to the left of
the decimal point

If one wanted to convert this number back to its old form,

this would be quite easy. Just move the decimal point 23

places to the right and fill in the missing zeroes which

serve as place holders: 6. 023v^ul^w'-u,u^^^^-:
fill with zeroes

EXERCISE 19-2 (CONT.)

Let's look at a few more examples:

86000

2004000000

2004

-2004

8.6E4

2.004E9

2.004E3

-2.004E3

230

Scientific notation can also be used to write down numbers

which are incredibly small. For example, 0.00000000706

becomes: 7.06E-9

I decimal point has been moved 9
places to the right

Other examples:

one non-zero digit to the left of
the decimal point

.1 = 1E-1

.01 = 1E-2

-.051 = -5.1E-2

1 = 1E0

500E-2 = 5E0

.05E-2 = 5E-4

700E3 — 7E5

Study the above examples carefully and then fill in the

following blanks.

A B(IN SCIENTIFIC NOTATION)

2000

20100

300.54

EXERCISE 19-2 (CONT.)

.00720

00720000

9.076

90.3E2

90.3E-2

B(IN SCIENTIFIC NOTATION)

7.0605E3

-7.00E-2

6.54E7

8.09E-0

231

To check your answers, type in and RUN the following program,

Use columns A and B above as the inputs to the program.

10 CALL CLEAR

20 PRINT TAB(5);"CHECK YOUR ANSWERS"

30 PRINT :::

. 40 PRINT "INPUT A AND B: ":

50 INPUT A,B

60 IF A=B THEN 70 ELSE 100

70 PRINT :A;TAB(11);"EQUALS";TAB(18);B

80 PRINT :::

90 GOTO 40

100 PRINT :A;TAB(11);"DOES NOT =";TAB(18);B

110 PRINT :::

120 GOTO 40

232

Notice the TAB function which has been introduced in lines

70 and 100. The TAB function tells the PRINT command

where to print the next print item. For example, TAB(6)

tells the computer to print the next item in column 6

from the left. The following program illustrates this

property. Type it into the computer and RUN it.

10 CALL CLEAR

20 N=-5

30 PRINT "COLUMN";N

40 PRINT TAB(N);"*"

50 N=N+1

60 FOR 1=1 TO 1000

70 NEXT I

80 GOTO 30

Notice that when N is less than or equal to zero, the

TAB(N) function causes the next print to occur in column 1

If N is between 1 and 28, including 1 and 28, then the

TAB(N) function causes the next print item to occur in

that column number.

However, if the value of N is greater than 28, then the

computer keeps reducing the value of N by 28 until N

finally equals a number between 1 and 28. For example,

TAB(30) would cause the next print to occur in column:

(30-28) =2. TAB(60) would allow the next print item to

be printed in column: 60 - 28 - 28 = 4.

233

One last note. The TAB(N) function will not allow you

to print backwards on a line. If you attempt to do so,

the TAB(N) function will cause the next item to be printed

on the next line in column N. The next program illustrates

this property. Type it in and RUN it.

10 CALL CLEAR

20 PRINT "123456789";TAB(7);"*"

30 GOTO 30

The TAB(7) does not allow the "*" to be printed over the

"7". So the "*" appears in column 7 of the next line.

The program below shows an easy way to generate a random

star field. Type it in and RUN it.

5 CALL CLEAR

10 RANDOMIZE

20 CALL COLOR(2,16,l)

30 CALL SCREEN(2)

40 PRINT TAB(28*RND);"*"

50 GOTO 40

NOTE: The TAB function automatically rounds off its

ARGUMENT, 28*RND, SO THAT YOU DON'T HAVE TO

WORRY ABOUT THE FACT THAT 28*RND WILL GENERALLY

NOT BE A WHOLE NUMBER.

234

The CALL COLOR command causes set 2 characters to have a

white foreground on a transparent background. The trans

parent background means that the square behind the char

acter will take on the color of the screen. To illustrate

this, RUN the program twice more with the following changes

Once with:

30 CALL SCREEN(7)

and once with:

20 CALL COLOR(2,15,2)

30 CALL SCREEN(7)

Another TAB program is shown below. Type it in and RUN it.

10 CALL CLEAR

20 X=14*SIN(I)

30 Y=ABS(X)

40 PRINT TAB(Y);"*"

50 I=I+.25

60 GOTO 20

Statement 20 generates values of x from -14 to +14. (Don't

worry about the SIN function. All you need to know is that

it generates values between -1 and 1 depending on the value

of I.) Statement 30 contains the ABSolute value function.

If X is a positive number, statement 30 sets Y equal to X.

If X is a negative number, then statement 30 sets Y equal

to -X. That is, the ABS value function always returns a

positive number. Examples are shown on the next page.

^i&*v

ABS(28.4)

ABS(-28.4) =

ABS(2.8E-4) =

ABS(-2.8E-4)=

28.4

28.4

2.8E-4 or .00028

2.8E-4 or .00028

235

LESSON #20: SPEECH

236

HEAR YE! HEAR YE! IN THIS LESSON,

YOU ARE GOING TO LEARN HOW TO MAKE

THE COMPUTER SPEAK. IT'S REALLY

QUITE EASY TO DO!

To begin, make sure that the Speech Synthesizer is attached

to the right side of the computer console. If it isn't,

ask your teacher to plug it in for you.

Next turn your TV monitor and your computer console on.

(Or if these are already on, press FCTN = to return to

the TI title page.)

Find the Speech Editor Command Module and slide it into

the slot on the top of your computer. The title page

should disappear momentarily and then reappear.

Next press any key to obtain the master selection list.

Finally, select the SPEECH EDITOR option. You are now

ready to program the computer to speak. Type in HELLO

and then press ENTER.

The speech synthesizer should say the word, HELLO. Press

ENTER again. Again, the word HELLO should be spoken by

the computer.

Next type in the word, I. The screen should now have the

following words:

HELLO I

"?SrS\

237

Be sure to leave a space between and 0 and I. If you

make a typing mistake, you can use all the editing features

that you have learned about previously to correct the

mistake.

Press ENTER to hear the words: HELLO I

Now finish the sentence in the following way:

HELLO I AM A #TEXAS INSTRUMENTS# HOME COMPUTER

Press ENTER to listen to the sentence.

The # symbols around TEXAS INSTRUMENTS must be included

because the speech synthesizer doesn't know the word TEXAS

or the word INSTRUMENTS, but it does understand #TEXAS

INSTRUMENTS#. The # symbols let the computer know that

these two words are stored in memory as one word.

Now press FCTN 4 to erase the text on the screen.

Now try this. Type in the following and press ENTER.

HELLOI

Instead of hearing the words HELLO and I, the letters,

HELLOI, flash at the bottom of the screen, indicating

that this "word" is not in the vocabulary.

One may change the pause between words by using word

separators other than spaces. A list of word separators

is given on the next page.

SEPARATOR WAITdN SECONDS)

+ 0

space .1

- .2

r .3

t .5

: .8

1.0

238

Try the following examples. Use the edit features to

insert the separators.

I AM SO SORRY (ENTER)

I.AM;SO+SORRY (ENTER)

I+AM++SO...SORRY (ENTER)

Now use an arrow key to position the flashing cursor over

either letter of the word SO. Then press FCTN 3. Notice

that this deletes the word SO and all trailing separators

Let's now incorporate the speech feature into a TI BASIC

program. Press FCTN = . Then press 1 twice to get to

the TI BASIC option. Then type in the following program

and RUN it.

10 CALL CLEAR

20 PRINT "TYPE IN A NUMBER BETWEEN"

30 PRINT TAB(10);"0 AND 9"

40 CALL SAY("TYPE IN A NUMBER BETWEEN 0 AND 9")

50 INPUT ":":A$

Keep going.

239

60 CALL SAY(A$)

70 B$="DO+IT+AGAIN"

80 CALL SAY(B$)

90 GOTO 50

Notice the form of the command used to speak words. The

words to be spoken are enclosed in quotes to form a string.

This string is then used as the argument of the CALL SAY

command.

In statement 40, the word string itself is the argument of

the CALL SAY command. But in statements 60 and 80, a string

variable, which has been set equal to the word string, is

used as the argument of the CALL SAY command. This latter

form can save a considerable amount of typing if a phrase

needs to be spoken over and over.

Now type in the following example and RUN it.

10 DIM A$(9)

20 A$(0)="0"

30 A$(l)="l"

40 A$(2)="2"

50 A$(3)="3"

60 A$(4)="4"

70 A$(5)="5"

80 A$(6)="6"

90 A$(7)="7"

100 A$(8)="8"

Keep going.

240

110 A$(9)="9"

120 FOR 1=0 TO 9

130 CALL SAY(A$(I))

140 NEXT I

When you are satisfied that you know how the program works,

continue.

Now make the following change to the program and RUN it

again.

110 A$(9)="XX"

Notice the sound which occurs when statement 130 attempts

to say "XX". Because no such word exists in the synthesizer

vocabulary, you hear an "UHOH" sound.

Now type in the following program and RUN it.

10 CALL CLEAR

20 PRINT "SOMEWHERE"

30 CALL SAY("SOMEWHERE")

40 PRINT "SOME+WHERE"

50 CALL SAY("SOME+WHERE")

60 A$="THEREFORE"

70 B$="THERE+FOUR"

80 PRINT A$

90 CALL SAY(A$)

100 PRINT B$

110 CALL SAY(B$)

120 PRINT "A$=THERE,B$=4"

Keep going.

241

130 A$="THERE"

140 B$="4"

150 CALL SAY(A$&B$)

160 A$="READ"

170 B$="READ1"

180 PRINT A$

190 CALL SAY(A$)

200 PRINT B$

210 CALL SAY(B$)

220 GOTO 220

This program illustrates how some words can be spoken

even though they are not in the vocabulary list of the

Speech Synthesizer. Notice the three different ways

shown.

The program also illustrates that some words in the TI

vocabulary have two different pronunciations. For example,

READ is pronounced as reed, but READl is pronounced as

red.

~$S\

242

EXERCISE 20-1

Now it's your turn. Write a program which asks you to

input two numbers. The program should then compute the

sum of the two numbers that you input and then say:

"HERE IS THE SUM"

The program should then print out the sum. Write your

completed program below.

NOTE: A COMPLETE LIST OF VOCABULARY WORDS FOR YOUR TI

SPEECH SYNTHESIZER IS GIVEN ON THE FOLLOWING PAGES

243

VOCABULARY LIST

-(NEGATIVE) BLUE DO FOURTEEN

+(POSITIVE) BOTH DOES FOURTH

.(POINT) BOTTOM DOING FROM

0 BUT DONE FRONT

1 BUY DOUBLE G

2 BY DOWN GAMES

3 BYE DRAW GET

4 C DRAWING GETTING

5 CAN E GIVE

6 CASSETTE EACH GIVES

7 CENTER EIGHT GO

8 CHECK EIGHTY GOES

9 CHOICE ELEVEN GOING

A CLEAR ELSE GOOD

Al COLOR END GOOD WORK

ABOUT COME ENDS GOODBYE

AFTER COMES ENTER GOT

AGAIN COMMA ERROR GRAY

ALL COMMAND EXACTLY GREEN

AM COMPLETE EYE GUESS

AN COMPLETED F H

AND COMPUTER FIFTEEN HAD

ANSWER CONNECTED FIFTY HAND

ANY CONSOLE FIGURE HANDHELD UNIT

ARE CORRECT FIND HAS

AS COURSE FINE HAVE

ASSUME CYAN FINISH HEAD

AT D FINISHED HEAR

B DATA FIRST HELLO

BACK DECIDE FIT HELP

BASE DEVICE FIVE HERE

BE DID FOR HIGHER

BETWEEN DIFFERENT FORTY HIT

BLACK DISKETTE FOUR HOME

HOW LOWER OR RIGHT

HUNDRED M ORDER ROUND

HURRY MADE OTHER S

I MAGENTA OUT SAID

I WIN MAKE OVER SAVE

IF ME P SAY

IN MEAN PART SAYS

INCH MEMORY PARTNER SCREEN

INCHES MESSAGE PARTS SECOND

INSTRUCTION MESSAGES PERIOD SEE

INSTRUCTIONS MIDDLE PLAY SEES

IS MIGHT PLAYS SET

IT MODULE PLEASE SEVEN

J MORE POINT SEVENTY

JOYSTICK MOST POSITION SHAPE

JUST MOVE POSITIVE SHAPES

K MUST PRESS SHIFT

KEY N PRINT SHORT

KEYBOARD NAME PRINTER SHORTER

KNOW NEAR PROBLEM SHOULD

L NEGATIVE PROBLEMS SIDE

LARGE NEXT PROGRAM SIDES

LARGER NICE TRY -PUT SIX

LARGEST NINE PUTTING SIXTY

LAST NINETY Q SMALL

LEARN NO R SMALLER

LEFT NOT RANDOMLY SMALLEST

LESS NOW READ SO

LET NUMBER READl SOME

LIKE 0 READY TO START SORRY

LIKES OF RECORDER SPACE

LINE OFF RED SPACES

LOAD OH REFER SPELL

LONG ON REMEMBER SQUARE

LOOK ONE RETURN START

LOOKS ONLY REWIND STEP

244

STOP TOO WHO

SUM TOP WHY

SUPPOSED TRY WILL

SUPPOSED TO TRY AGAIN WITH

SURE TURN WON

T TWELVE WORD

TAKE TWENTY WORDS

TEEN TWO WORK

TELL TYPE WORKING

TEN U WRITE

TEXAS INSTRUMENTS UHOH X

THAN UNDER Y

THAT UNDERSTAND YELLOW

THAT IS CORRECT UNTIL YES

THAT IS RIGHT UP YET

THE UPPER YOU

THEl USE YOU WIN

THEIR V YOUR

THEN VARY Z

THERE VERY ZERO

THESE W

THEY WAIT

THING WANT

THINGS WANTS

THINK WAY

THIRD WE

THIRTEEN WEIGH

THIRTY WEIGHT

THIS WELL

THREE WERE

THREW WHAT

THROUGH WHAT WAS THAT

TIME WHEN

TO WHERE

TOGETHER WHICH

TONE WHITE

245

•flte^

'DBRy

THE COLORED PAGES

At the end of this manual, you will find several

colored pages. These are projects that test your ability

to use what you have learned. There are no right or

wrong answers. If your program does what is asked, then

it is quite acceptable. You are free to express your

creativity. Be proud of what you do. Do not worry

whether your solution is like anyone else's.

Some of these projects may seem easy. . .but do not

be deceived into thinking that you can skip them. After

all, if they are easy for you, then it will not take long

to do them.

Good lucki

54^ A- :J°^*-
Henry A. Taitt
Director

BLUE PROJECT 1

In YELLOW PROJECT 1, you were asked to input five

numbers and then have the computer print the even numbers

in one column and the odd numbers in a second column.

Your screen may have looked like this:

Each number was printed as it was entered. You

had nowhere to store them and arrange them. An array

will let you store them and then arrange them for

printing.

CREATE a program that will allow you to place ten

different numbers into an array, and then print the

even numbers in one column and the odd ones in a second

column so that your screen looks like this:

BLUE PROJECT 2

CREATE a program that will randomly pick ten

numbers, but will not pick the same number twice.

Store them in an array and then display them on the

screen. (See YELLOW PROJECT 8 ... it should be much

easier to do with arrays!!!)

M N'

BLUE PROJECT 3

Using the PRINT TAB(X) command, CREATE a program

that will produce the following display:

N' N" N"

1 1 1 1 1

2 4 8 16 32

3 9 27 81 243

4 16 64

etc.

5 25 125

PROJECT

CREATE a special character of your own design

Have it appear randomly on the screen ten times.

BLUE PROJECT 5

CREATE a program that will allow you to input

two numbers. Have your program add the numbers and

get the sum. Then have your program (using the speech

synthesizer) pronounce the numbers and their sum.

For example:

on the screen)

(sound)

3 + 4 = 7

Three plus four equals seven.

PROJECT BLUE 6

Using the speech synthesizer, CREATE a program that

will recite a four line poem. Have a colored picture

appear with each line.

BLUE PROJECT 7

The following is a code.

COLUMN I COLUMN II COLUMN I COLUMN II

A E N Y

B F 0 X

C G P W

D A Q V

E H R U

F I S T

G B T S

H J U R

I K V Q

J L W p

K M X 0

L C Y N

M Z Z D

CREATE a program that will allow you to code a

message (You put in letters in column I and get out

letters in column II.) or decode a message. (You put

in letters in column II and get out letters in column I.)

Send to:

BLUE PROJECT 8

A deck of playing cards has four different suits:

hearts, spades, diamonds, and clubs. Each suit has 13

cards: Ace, two, three, four, five, six, seven, eight,

nine, ten, Jack, Queen, and King.

Randomly draw two hands of five cards each and

store them in an array. Then print them on the screen

in two columns. Remember that no card may be used more

than once!

Send us a list of your working program, and we

will send you your BLUE PROGRAMMER V card. This BLUE

page must be included.

Henry A. Taitt
CREATIVE Programming Inc
604 Sixth Street

Charleston, IL 61920

Your name

Phone # _

Address

TI-99/4A

City, State

Zip Birthdate

Don't forget to enclose a self-addressed stamped envelope

'^^\

1
_/*~^ - . --

r
-_ K-

~"~

i ' 7* "- v*-'*

L^-' —

*Vh^
—

|~\ t

V

Clh /A- *L
1 i ••

U

^ , •—

V ^ FORUM FOR YOUNG MINDS

CREATIVE Programming, Inc.. Charleston, IL 61920

A newsletter published 12 times a year. The articles are for young programmers, about young
programmers and often written by young programmers.

Each month a graphics program created by a student is selected for the cover. It could be yours!
Contests, mind bending challenges, computer game reviews, new creations, programs, even an X-rated
column for parents and teachers who are running programs in their areas.

Name.

Address

City

Please make checks payable to:

.State Zip.

CREATIVE Creations
604 Sixth Street
Charleston, IL 61920

Only $18 a year ($32 for two years) brings all twelve
issues to your door. Join us today in sharing in the
excitement of CREATIVE Programming through
CREATIVE Creations.

• one year ($18.00) • two years ($32.00)

	front-cover
	front-cover-inside
	content01
	content02
	content03
	content04
	back-cover

