

^

BY THE EDITORS OF CONSUMER GUIDE®

EVERYONE'S
GUIDE TO

BASIC

BEEKMAN HOUSE
New York

Copyright © 1984 by Publications International, Ltd.
All rights reserved. This book may not be reproduced or
quoted in whole or in part by mimeograph or any other
printed means or for presentation on radio, television,
videotape, or film without written permission from:

Louis Weber, President

Publications International, Ltd.

3841 West Oakton Street

Skokie, Illinois 60076

Permission is never granted for commercial purposes.

Manufactured in the United States of America

10 987654321

Library of Congress Catalog Card Number: 83-63052
ISBN: 0-517-41594-1

This edition published by:
Beekman House

Distributed by Crown Publishers, Inc.
One Park Avenue

New York, New York 10016

Writer: Brian Starfire

Design: Jeff Hapner and Barbara Clemens
Cover photo: Donna Preis and George Siede

v.

CONTENTS

WHO CAN USE THIS BOOK .

ThT BASICS OF BASIC !
Ready to start learning a computerlanguage?This chapter introducesyou to BASIC and gives
you some important ground rules to follow.

ARITHMETIC OPERATIONS J
This chapter explains how to perform standard mathematical calculations, how to store data in
your computer, and how to use some of the essential program commands.

Chapter 3

INPUT/OUTPUT OPERATIONS 17_
Here you'll learnthe BASIC commands that allow you to put information into—and get
information out of—your computer.

Chapter 4

LOOPS AND OTHER VARIATIONS 25
In thischapter, you'll learnabout the loops that makeyour computer repeat certainjobs, as well
as the detours that can send the computer on different paths within programs.

CONTROL OPERATIONS 39
Here are the commands that controlyour computer's operation while it is running BASIC
programs.

l'iBRARY OPERATIONS 43
This chapter tells you about someofthe routines permanentlystored inyourcomputerthat make
it easier to perform complex tasks.

SOME7 SAMPLE PROGRAMS 59
The best way to learn BASIC is to work with programs. Try experimenting with the simple
programs in this chapter. You'll learn some techniques you can try out in programs of your own.

BASIC COMMANDS USED IN THIS BOOK 78

WHO CAN USE

THIS BOOK

The BASIC commands and functions discussed

in this book are those used in Microsoft BASIC

and Atari BASIC. Therefore, the exercises and
programs included will work without modification
in the standard BASIC languages on the following
computers: Apple (II, II Plus, and lie); Atari (all
models); Commodore (PET, VIC 20, and 64); Epson
QX-10; Franklin Ace; IBM (PC,PCjr, and PC XT); Mattel
Aquarius II; NEC PC-6000; Osborne (all models);
Radio Shack TRS-80 (Color Computer and Models 1,2,
3, and 4); and Spectravideo (SV-318 and SV-328). You
will also be able to use other computers with this
book ifyou have Microsoft BASIC.

In order to use this book with a Texas Instruments

TI-99/4A computer, you will need Extended Tl BASIC,

because the standard Tl BASIC will not handle
multiple-statement lines as used in some of the pro
gramsand exercises. (You can, however, do many of
the exercises using standard Tl BASIC.)

If your computer does not use Microsoftor Atari
BASIC but uses some other version of BASIC, you will
still be able to use most (and possibly all) of the
exercises in this text.

You may learn a lot from this book without even
having access to a computer. But, of course, the best
way to learn BASIC is to use it. So get that computer
up and running BASIC, and let's gol

I

Chapter 1

THE BASICS
OF BASIC

Soyou bought a personal computer. You read
the magazines, talked to friends who are into
computers, comparison-shopped from dealer

to dealer, and tried very hard to convince the rest of
the family that your new purchase is more than an
expensive toy The big day came when you finallyset
the box down in the middle of the living room floor
and unpacked your new computer, along with the
cables, tapes, and pages of instructions that accom
panied it. If all went well, and it usually does, the
familygot tired of playing video backgammon after a
few hours. And then you began to wonder," How do I
do all these things I've read about?" This book is part
of your answer. It teaches you the basics of BASIC, a
computer language in which many software pro
grams are written.

You have learned by now that any computer, no
matter how sophisticated, requires software—
instructions that tell it exactly what to do. Yourcom
puter system uses software programs which are
stored on cartridges, cassette tapes, or floppy disks.
You probably have already purchased prepackaged
software for several purposes—video games, a home
budget of some sort, and perhaps an educational
program or a word processing package. As an alterna
tive to buying software, you may have discovered
books and magazines with programs printed in them.
You may even have joined a users' group where you
can get free or low-cost software (either in printed
form or on cassette or disk). But now you want to
understand what those printed programs mean and
how they work, and you want to learn to write your
own programs.

Why would you want to write your own programs?
You can buy prerecorded software for nearly any
purpose you can imagine. When you buy software,
it is nearly always free from errors. Prerecorded
software tends to be clear and understandable, sel

dom requiring detailed knowledge of computer
technology. There are, however, two significant dis
advantages of prerecorded software. First, it is not
free (and may be quite expensive, depending on pre
cisely what you need). Second, it is written to meet
the general needs of many users, rather than the
individual needs of one; this means that before you
buy a particular program, you have to make sure that
it does exactly what you need it to do.

In contrast to prerecorded programs, printed pro
grams from books, magazines, or users' groups some
times contain errors. Printed programs also must be
typed into your computer, which means that you may
create errors—mistakes you'll have to find and fix.
Printed programs are inexpensive, but they can be a
real headache. And they still weren't written espe
cially for you.

Writing your own programs assures you that you get
exactly what you want and need. And being able to
write your own programs also means that you have
the skill to alter some existing programs to fit your
specific needs.

Of course, there are some types of software programs
that you will want to buy rather than write yourself
—like the longer, more complicated programs for
word processing, spreadsheets, or extensive account
ing. But other programs you may want to write for
yourself—a checkbook balancer, an auto mileage log,
a calorie-counting chart, an address book. With a little
imagination you can make your computer work for
you in all sorts of waysl

LEARNING A COMPUTER LANGUAGE

Writing your own programs requires the ability to
communicate with the computer. This must be done in
the computer's language, which is not English. That
keyboard may be familiar, and the words on the
screen may resemble English, but the computer is
actually using what is known as a high-level pro
gramming language—a computer language that
uses English words and translates them into computer
instructions (in the form of numbers).

Most spoken or written human languages are far too
complex for computers to understand directly, unless a
lot of money is spent on the computer's memory and
programs. To get around this limitation, we use high-
level programming languages, and BASIC is one of
these. (Other frequently used computer languages
include FORTRAN, Logo, Pascal, COBOL, and
FORTH.) Originally developed at Dartmouth College
in 1955, BASIC (an acronym for Beginner's All-
Purpose Symbolic Instruction Code) can be used for
many different types of programs, and it is relatively
easy to use.

To help you understand how your computer works,
let's compare it with a pocket calculator. What hap
pens when you turn on a calculator? Absolutely
nothing. You have to tell the calculator what to do.
By itself, the calculator can do nothing at all. But by
pressing its keys, you are in a sense programming the
calculator to make it do what you want it to do.

Punching numbers on a calculator is simple enough,
but how do you program your computer? When you
turn on the computer and have it running BASIC, the
screen should say OK or READY, or it may display a
flashing box called a cursor to tell you that it's ready
for you to tell it what to do. But you can't tell it what
to do by using ordinary English sentences. To see
what we mean, type the following on your computer
keyboard:

ADD TWO AND TWO AND TELL ME

THE ANSWER.

Press the RETURN key (or the ENTER key, whichever
your computer has). Your technological marvel imme
diately displays an answer something like this:

SYNTAX ERROR

or

ERROR--ADD TWO AND TWO AND

TELL ME THE ANSWER.

In order to get an answer from the computer, you
have to ask the question in a language the computer
understands. You must use the BASIC commands that

the computer is programmed to understand and
follow.

COMMAND FORMSi

DIRECT AND PROGRAM

When running BASIC, your computer accepts two
types of commands: direct commands and program
commands.

Direct Commands

A direct command is a command that the computer
executes immediately when you press the RETURN
key {or the ENTER key, whicheveryour computer has).

Try some direct commands on your computer now.
Typein the following, pressing the RETURN or ENTER
key after each line:

PRINT 22+30

PRINT 5-3

PRINT 5*5

PRINT 10/2

Each time you press the RETURN key, your system
responds with the answer—first 52, then 2, then 25,
and finally 5.

In each case, the computer provided you with an
immediate answer because you gave it a direct com
mand. The PRINTcommand tells the computer to
display on the screen the value of whatever follows
the command. (Theasterisk symbol tells the computer
to multiply, and the slash tells it to divide.)

Some BASIC commands (like PRINTand LET) can be
used either as direct commands or as program com
mands. Other commands (like SAVE) are nearly
always used as direct commands.

Program Commands

As the name implies, program commands are those
that are used in a sequence within a program to
perform a specifictask. To give the computer a pro
gram command, you precede the command with a
line number. Whenever the computer reads a new
line starting with a number instead of a letter, it auto
matically includesthat linein any program it may
already have in its memory. It assumes that the first
number in the line is the line number. When you press
the RETURN key, the computer inserts the command
in its proper numeric sequence with any other com
mands already stored in memory.

Line numbers enable the computer to keep track of
where it is and where it is going. Together, the line
numbers in a program make up a type of road map
that the computer follows. The computer will not do
anything with the commands in program lines until it
istold to do so-when you give it the RUNcommand
to start the program.

Every program line must contain a line number,
a BASIC command, and whatever information the
computer needs to act upon the BASIC command.

Some rules of BASIC always apply when writing
programs:

i * Each program line must begin with a line
number.

mL ♦ Each program line must have a larger line
number than the preceding program line.

O #Although the lines donothave tobetyped in
numeric order, they are processed by the computer
in numeric order. This means that ifyou type in line
10and then line 30 and then line 20, the computer
places the lines in their correct numeric sequence in
its memory.

i # No two different lines can have the same

number. Ifyou type two lines beginning with the
number 10, the computer replaces the first line 10
with the second one. This is convenient when you
want to change or correct a program line.

w t Every program line must contain a BASIC
command to tell the computer what to do (with the
exception of the LETcommand, which may be
omitted in most versions of BASIC). Commands
include words like PRINT,which you used as a
direct command, and many others—LET, GOTO,
READ, DATA, INPUT, FOR, NEXT, GOSUB, CLEAR,
CONT, STOP, END, and more.

These rules will be second nature to you by the time
you finish this book.

As you work through the exercises and programs in
this book, you will be introduced to many BASIC
commands. These commands and brief descriptions of
what they do are also included in a list in the back of
the book entitled "BASIC Commands Used in This

Book." You can refer to that list wheneveryou need to
refresh your memory about the use of a particular
command.

INSTRUCTIONS FOR TYPING ALL

PROGRAM LISTINGS

For all program listings (printed in this book or any
where else), there are two rules that you must follow:

i # Typeall program lines (or direct commands)
exactly as they are shown, including numerals,
quotation marks, all other characters and punctua
tion marks, and spaces.

£ ♦ Press the RETURN key (or the ENTER key,
whichever your computer has) after you finish typ
ing each line.

In this book, programs or commands for you to type in
are printed in color type. Computer responses to what
you have typed are shown in color boxes.

SPECIAL COMMANDS AND

FUNCTION KEYS

There are some special commands and function keys
on all computers. While some of these vary from
system to system, others are common to most. For
example, all computers have a RETURN key or an
ENTER key which you press to send commands or
information to the computer's working memory. For
the sake of simplicity, we will refer to this as the
RETURN key

There are a few special commands and keys that you
should avoid using unless you are sure what they do
on your particular computer. On some computers,
holding the CONTROLkey while pressing the C key
willstop a program; on other computers, the BREAK
key performs this function. On some computers, the
CONTROLkey alone will reset the computer (which
has the same effect as turning the computer off and
then back on). This could be disastrous to the execu
tion of a program. You could erase a program or other
information stored in memory Or you might have to
start running a program again from the beginning. Be
sure to check your operating manual for information
on special commands and special key functions on
your computer.

REVIEW

In this chapter, you learned that...

• Yourcomputer can be operated using either
direct commands or program commands.

• A direct command causes the computer to
act on the command as soon as you press the
RETURN key.

• Program commands require line numbers and
are executed by the computer in sequential
order after you've given the RUN command.

• When typing a program listing, you must type
it exactly as printed.

^

^

Chapter 2

ARITHMETIC

OPERATIONS

Anoperation is simply any action taken by the
computer in response to a command. The
BASIC language can be divided into four

types of operations:

arithmetic operations
input and output operations
control operations
library operations

Regardless of the size of the program you are writing,
you always begin by analyzing what you want to
accomplish and then choosing operations to fit your
needs.

In this chapter, we will review arithmetic operations
(a few of which you used with direct commands in
Chapter 1). We will review the other three types of
BASIC operations in other chapters.

9

Arithmetic operations are the easiest group of BASIC
operations to understand. Arithmetic operations
include the standard mathematical operations of
addition, subtraction, multiplication, division, and
exponentiation (raising to powers). Personal com
puters use the following symbols to perform these
operations:

Operation

addition

subtraction

multiplication

division

exponentiation

Symbol Used

/

A (varies among
computers)

In addition to these simple arithmetic operations,
some other arithmetic functions deal with relation

ships between numbers. These are shown in the fol
lowing table. (Do not type in the examples now; they
must be within a program to operate.)

There are also functions called logical operators that
are used to tell the computer under what conditions it
should take a specific action. For example, the word
AND is used to mean "if both expressions are true."
The word OR is used to mean "if either expression is
true."

Function

AND

OR

Example of Use

IF A> = 16 AND A< = 70 THEN

PRINT "OF WORKING AGE"

IFA$="FORD"OR"G.M."

OR "CHRYSLER" THEN PRINT
"BY DETROIT"

ORDER OF ARITHMETIC OPERATIONS

The computer executes calculations in a specific order.
It always performs the operations within a set of
parentheses first. Working inside the parentheses, it
performs operations in a specific order. Once it has
performed any calculations inside parentheses, it goes
on to perform all other calculations following that
same order. The following list shows the order in
which arithmetic operations are performed.

Symbol Example Order of Operations Example
Function Used of Use

parentheses (6*3)
equal to = IFA=0 THEN PRINT

"WE'RE OUT OF exponentiation 6A3

STOCK"

negation -3

less than < IFA<18 THEN PRINT

"WE DON'T SERVE multiplication/division 6*3 and 6/3
DRINKS TO MINORS!"

addition/subtraction 6+3 and 6-3

greater than > IF A> 15 THEN PRINT

"ELIGIBLE FOR greater than/less than A>3andB<6

DRIVER'S LICENSE"

greater than or equal to/ A>=6andB<=3

less than or <==or=< IF X< = 25000 THEN less than or equal to
equal to PRINT "EAST COAST

ZIP CODE" AND A=6ANDB=3

greater than > ==or=> IFA>=21THEN

or equal to GOTO 200 OR A=6 0RB=3

10

•

•

What this order of operations means is that if you
have a mathematical calculation like

(6+2*7) + (2A2/2-l)*3

the computer will first compute the segments in the
parentheses. In the first set of parentheses, it multi
plies 2*7 to get 14 and then adds 6 to get 20. In the
second set, it squares the first 2 (raising a number to
the power of 2 is called squaring) to get 4, divides
that by 2 to get 2, and subtracts I to get 1. Then,
having reduced the calculation to 20+1 *3, the com
puter first multiplies 1*3 to get 3, and then adds 20 to
get 23. Although it took some time for us to describe
all of this, the computer does all these calculations in
just a split second and shows you only the final
answer.

In cases of multiplication and division, addition and
subtraction, and greater than and less than opera
tions, one operation is precisely the opposite of the
other, so it doesn't matter which the computer does
first. For example, 5*2 and 5 + /2 both equal 10, and
5-2 and 5+(-2) both equal 3. So ifyou need the
answer to 15*4/2, the computer can first multiply 15
times 4 to get 60 and then divide by 2 to get 30. Or it
can first divide 4 by 2 to get 2 and then multiply 15
times 2 to get 30. The answer is the same in such a
case, regardless of the order of operations.

It might be important to know the correct order of
operations ifyou decide to write a computer program
to calculate your taxes or to do your math homework,
depending on how you decide to set up the program
and exactly whatyou have to do. It will also help you
to keep the order of operations in mind when you are
looking at printed programs and trying to figure out
how they work.

WORKING WITH LARGE NUMBERS

There are limits to the size of the calculations thatyour
computer can perform. Your computer will be able to
handle your financial transactions (unless you are
very, very rich). But ifyou use your computer to per
form complex mathematics, you may occasionally ask
your computer to perform a calculation that is too
much for it to handle. Ifyou do, it will let you know
about it in a hurry by displaying an error message of
some sort. You can demonstrate this by running the
short program shown here. This program squares
numbers—until the numbers get too large for your
particular computer to handle.

Type the following (remembering to press the
RETURN key after you type each line):

NEW

10 LET X = 2

20 PRINT X

30 LET X = X*X

40 GOTO 20

The NEW command erases any program lines cur
rently in the computer's memory, so that you can type
in a totally new program.

The LET command assigns a value to a variable, in this
case X. (We'll learn more about variables shortly)

The PRINT command tells the computer to display on
the screen the value indicated after it.

The GOTO command tells the computer to vary from
its normal sequential execution of program lines, in
this case to.return to line 20 instead of looking for the
next larger line number.

Now type the word RUN and press RETURN to run
the program. Here are the results of running the
program on our computer:

ii

Your results may differ from ours in how they look on
the screen, the exact words, and the final answer. If
your computer repeats the overflow error and will not
stop, try pressing the CONTROL key and C key (or
just the BREAK key). If that doesn't stop it, turn the
computer off and then back on; you don't have any
thing in it that you need to keep right now.

Ifyou're not familiar with scientific notation, that last
number may look strange. The computer is letting you
know that the number is too large to display all of it.
So the computer added a decimal point and gave you
an additional figure following the letter E. That figure
indicates where the decimal point actually belongs (in
this case, 19 places to the right of where the decimal
point is displayed on the screen).

The error resulted when the number became so large
that the computer could not handle the calculation.
The limits in performing calculations vary among
computers.

NUMERIC VARIABLES

You can put numbers into your computer's memory,
using either direct or program commands, by creating
a variable and assigning it a value (like B= 10). You
can create variables of single letters (T=43), two let
ters combined (AX=76), or a letter followed by a
number (E4=82). Once you have assigned a numeric
value to a variable, that variable retains the value
assigned until you assign it a different value.

The LET command is used to assign values to variables
(such as LETA=5). In most versions of BASIC, how
ever, the word LET can be omitted; you can simply
type in A=5 and the computer understands that you
are assigning the value of 5 to the variable A.

Try this exercise. First type in the following to assign
values to variables A, B, and C Press RETURN after
each line.

A = 5

B=iO

C = 20

Notice that we have not used the word LET to assign
these variables their values. If this exercise doesn't

work for you, try typing in the word LET when assign
ing variables; your version of BASIC may require that
you include LET.

12

Now type in these direct commands (again, pressing
RETURN after each line):

PRINT A

PRINT B*A

PRINT C

The computer uses the values you assigned to the
variables and responds like this:

PRINT A

PRINT B*A

PRINT C

The numbers were stored by the computer in its
program memory,and the computer used them when
you requested the calculations. Variables are useful in
programs where you need to make calculations using
amounts that may vary over time or under certain
conditions (for example, ifyou wanted to determine
what your mortgage payments would be at different
interest rates).

#

1

-

USING NUMERIC VARIABLES

IN A PROGRAM

Now let's see how we can use variables in a program.
Type in the following program, pressing RETURN at
the end of each line.

NEW

10 A=10

20 B = 2

30 C = 5

40 PRINT A;B;C

50 PRINT A + B + C

60 PRINT A-B

When you finish typing the program, type the word
RUN and press RETURN to start the program. The
answers will be displayed on your screen, like this:

Now type LIST and press the RETURN key. The
LIST command tells the computer to display all of the
program lines that are stored in memory This is useful
when you want to check your program or to make
changes or corrections in a program.

You can also lista single line,or a group of lines,by
typing in the LIST command along with the line num
bers of the linesyou want to see. Forexample, type
the following:

LIST 10

Now press the RETURN key. The computer displays
line 10 of the program.

When you entered the RUN command to execute the
program, the first thing the computer did was to
retrieve line 10 from its memory Since this line told the
computer to LET A=10, the computer matched the
value of 10 to the variable A.

Now type the following:

LIST 20-60

Now press the RETURN key The computer lists the
rest of the program.

When the computer finished running line 10, it went
on to process line 20 and then line 30. It matched the
value of 2 to the variable B, and the value of 5 to the
variable C

When the computer got to line 40, it followed the
command to PRINTA;B;Cby displaying 10 2 5 on your
screen. The semicolons between the variables told the

computer to display the values of those variables on
the same line.

The computer then proceeded to line 50, where
it was told to print the sum of A+B+C (PRINT
A+B+C); so the computer added the values and
printed the result (17).

Finally, line 60 had the computer subtract Bfrom A
and print the result (8). Since there were no more lines
for the computer to process, it stopped and displayed
the READY or OK message. You havejust performed
data processing using a computer program!

13

STRING VARIABLES

In addition to storing numbers in your computer's
memory, you can store words, phrases, and sentences
in the form of character strings. A character string is
any group of letters, numerals, symbols, and spaces
enclosed by quotation marks. A character string is
really a value,just as a number is a value, and the
computer handles numeric values and character
strings similarly A variable name followed by a dollar
sign (TS, AXS, BIS)is called a string variable. The
dollar sign tells the computer that you are assigning a
character string (not a number) to that variable. Ifyou
omit the dollar sign and still assign the variable a
character string rather than a numeric value, the com
puter will give you a TYPE MISMATCH error message.

Let's try some character strings. Type the following
direct commands:

LET A*="HI, "

LET B$="THERE!"

PRINT A$+B$

The computer responds like this:

HI, THERE!

Ifyou got up and walked away from your computer
and returned a week later, the computer would still
remember that AS="HI," and BS="THERE!" (as long
as you didn't turn the computer off, of course). The
ability to store and manipulate character strings is
what actually sets your computer apart from a cal
culator.

In using a character string, what you are essentially
doing is creating an abbreviation for whatever you
put inside the quotation marks. For example, as a
programmer for an automobile manufacturer, you
might want to write a program to select any
automobile part from the computer's memory and
print a description of that part. You can take the full

14

name of a part, such as LEFT REAR TAILLIGHT FOR
1982 LEMON, and represent it with a much simpler
name like AS. To do so, type this direct command:

LET A$="LEFT REAR

FOR 1982 LEMON"

TAILLIGHT

Once you have programmed that value into the com
puter, you can use the abbreviation AS anywhere
within your program in place of the full name of the
part.

You can use entire words as string variables (such as
PARTS), but most computers only examine the first
two characters of the variable name. So you shouldn't
use PARTS and PANTSwithin the same program, since
most computers would interpret both names as PAS
and would not be able to distinguish between the
two names.

You can also use character strings with commands
other than the LET command. You will use them often

with the PRINT command.

Here are a few rules to remember when using charac
ter strings:

1 ♦ All string variables must end with adollar
sign.

♦ Quotation marks indicate the beginning
and the end of the character string, so you must not
use quotation marks inside the string. For example,
AS = "ROBERT'S NICKNAME, "BOB" IS ACCEPT

ABLE" would be read by the computer as
AS="ROBERT'S NICKNAME," and the remaining
part of the line would trigger a syntax error mes
sage. You could get a character string that would
be close to what you want by using apostrophes
instead of quotation marks inside the character
string: AS ="ROBERT'S NICKNAME, 'BOB,' IS
ACCEPTABLE".

w ♦ Any numerals in the character string will
not be treated as numeric data by the computer.
This means that ifyou put 3+2 inside quotation
marks, the computer will not give you 5; it will give
you 3+2.

CARPET COST PROGRAM-A REAL-LIFE

APPLICATION

We can write an infinite variety of programs usingjust
arithmetic operations, numeric variables, and string
variables. Suppose you want to know how much
some new carpeting for your home would cost. Let's
say that the carpet you want costs S13.00 per square
yard. You want to put carpet in three rooms: the first
room measures 10 by 12 feet; the second measures
14/2 by 13 feet; and the third measures 16 by 20 feet.
Youwant to know what the total billwill be after you
add 5% sales tax. Considering these facts, we can
write a program to calculate the total bill.

Ifwe consider what we have to do and proceed to
write a sequence of steps to do it, we can create a
flowchart that looks something like this:

tell computer price per
square yard of carpet—

calculate square feet of first room

calculate square feet of second room

calculate square feet of third room

add footage of all three rooms for
total square footage

divide by 9 to figure total
square yards

multiply total square yards
by price per yard of carpet •

calculate sales tax

add sales tax to total carpet cost-

print total amount

line 10

line 20

-•line 30

-•line 40

-•line 50

•Hine 60

-•line 70

••lines 80

&90

We can use this flowchart to write a program that will
run on your system. Type this program in now:

NEW

10 LET PY=i3

20 Ri=10*12:R2=14.5*13:R3=16*20

30 LET F=Ri+R2+R3

40 LET Y=F/9

50 LET P=Y*PY

60 LET TX=P*,05

70 LET T=TX+P

80 PRINT "TOTAL PRICE IS"

90 PRINT "$";T

Type RUN and press RETURN to start the program.
Your answer will look like this: M ^

TOTAL PRICE IS

$1057,12

To see what we'vejust done, let's go over each line of
the carpet cost program in detail:

Line 10 defines the price per yard of the carpet.

Line 20 calculates the square feet of carpet required
for each room. The use of the colon (:) between the
calculations for the rooms enables us to calculate for all

three rooms using only one line of program space. If
your system didn't respond correctly to this program,
try making line 20 into three lines (20,21, and 22) with
one room's square feet calculated in each line. You
might also try adding the LET command to each seg
ment of line 20 (although in nearly all forms of BASIC,
the LET command can be omitted).

15

/

Line30 adds together the square footage of the three
rooms to determine the total number of square feet of
carpet you need.

Line 40 divides the number of square feet by nine to
determine the number of square yards.

Line 50 multiplies the total number of square yards of
carpet needed by the price per square yard of the
carpet (as defined in line 10).

Line 60 calculates the amount of the 5.% tax.

Line 70 adds the tax to the total cost of the carpet.

Line 80 causes the computer to display on the screen
the words enclosed in the quotation marks. This
works any time you use the PRINT command: what
ever you put inside quotation marks following the
PRINT command will be displayed on the screen
exactly as you typed it (only without the quotation
marks).

Line 90 causes the computer to display on the screen
the dollar sign (S) by enclosing the dollar sign in
quotation marks after the PRINT command. The
semicolon (;) indicates that the computer is to print
something else on the same line with the dollar sign,
in this case the total cost of the carpet to you (includ
ing tax).

The lines in the carpet cost program actually perform
what we set out to do in the flowchart.

You can use these same steps anytime you write
programs for your system:

1.

2*
task.

First, analyze the task that needs to be done.

Second, create a solution (a flowchart) for that

\J f Third, write and debug the program. (Debug
means to get rid of any bugs, or errors.)

16

REVIEW

In this chapter, you learned that...

• There are four types of BASICoperations:
arithmetic, input/output, control, and library.

• Arithmetic operations use the symbols + for
addition, - for subtraction, * for multiplication,
/ for division, and A for exponentiation. Also
used are the symbols > for greater than, < for
less than, and = for equal to. The words AND
and OR are logical operators.

• The computer always performs arithmetic
operations in a specific order.

• There are limits to the size of numbers your
computer can handle in calculations. These limits
vary from computer to computer.

• You can store a numeric value in the computer
and represent it with a variable of letters (such as
A or TX) or with a letter and a number (like Bl).

• You can store groups of letters, numbers, sym
bols, and spaces in any combination, enclosed in
quotation marks, as a character string. Character
strings are represented by string variables,
which are similar to numeric variables except
that they end with dollar signs: BS,TXS,Al S.

• You can use the colon to place more than one
command on the same program line.

• You can use the semicolon to tell the computer
to display more than one value on the same line
on the screen.

t

h

i

-

*

-

Chapter 3

INPUT/OUTPUT
OPERATIONS

You use input/output (I/O) operations to
exchange information with your computer. In
an input/output operation, you use BASIC

commands to put information into, or get information
out of, your computer.

Input statements put information into the computer's
memory The information may be typed at the key
board, loaded from a cassette or disk, or transmitted
over a telephone line with the use of a modem.

Output statements take information that is in the
computer's memory and display that information on a
screen, save it on a cassette or disk, or transmit it to a
printer or another computer.

Let's look at some of the commands and procedures
that are used to perform input/output operations.

PRINT STATEMENTS

PRINT statements cause the computer to send infor
mation to an output device; usually the computer
displays the requested information on the TV or
monitor screen to which the computer is connected.
A PRINT statement consists of the command PRINT
followed by the data to be printed. The data to be
printed may take the form of variables, constants,
character strings, or a combination of all three.

17

In Chapter 2, we used PRINT statements containing
numeric variables and character strings. We also used
punctuation to control the manner in which the data
would be displayed. Ifthere are several items of data
to be printed within one PRINTstatement, the data
may be separated by commas, semicolons, or colons.

If commas are used in a PRINT statement, they sepa
rate the data into fields (blocks of space) when dis
played. The number of fields in a line of print varies
from system to system. Ifsemicolons are used, the
pieces of data are displayed on the same line and
separated bysingle spaces. Ifcolons are used, the data
is treated as ifeach piece of data had been in a PRINT
statement by itself. Thismeans that the information
will be displayed on individual lines.

To see these variations at work, try the following
direct commands. Type this:

PRINT 2,4,6

and press the RETURN key The result on the screen
should look like this:

Now let's try using semicolons; type this:

PRINT 2;4;6

and press the RETURN key. The result on the screen
should look like this:

13

To try using colons, type this:

PRINT 2:4s6

and press the RETURN key. The result on the screen
should look like this:

Now let's combine these uses of punctuation into one
program. Enter the following program:

NEW

10 A=22iB=44:C$="W STREET"

20 PRINT A$B;C$

30 PRINT A,B,C$

40 PRINT A:B:C$

When you type RUNand press RETURN, the result of
this program is displayed on your screen like this:

22 44 W !STREET

22 44 W STREET

22

44

W STREET

I

i

i

4

t

-

i

i

In our direct command examples, we used constants
as data; in the program, we used variables, assigning
values to the variables in line 10.

Line 10 is actually a LET statement, but we have
omitted the optional command LET To combine sev
eral LETstatements on one line, separate the variable
assignments by colons (just as you would to combine
several PRINT statements on one line).

Ifyou use a PRINTstatement without any data in it, a
blank line will be inserted on the screen when that

linenumber isexecuted. This can make your programs
more readable (at the expense of memory space).

With most systems, you can substitute a question
mark for the word PRINT as a BASIC command. Try
this by typing the following:

NEW

100 ? "HELLO"

When you run this program, the computer displays
the word HELLO on the screen.

Now enter the LIST command. The computer should
display the program line as follows:

100 PRINT "HELLO"

This demonstrates that the computer has read the
question mark as the word PRINT.

INPUT STATEMENTS

The INPUT statement (called GET in some versions of
BASIC) causes the computer to halt the program until
you enter (or Input) specific values requested by the
program. The INPUT statement consists of the com
mand INPUT followed by a variable. The type of
variable used tells the computer what type of input to
accept—numeric data or a character string.

Why would you ever need to use an INPUT state
ment? So far, we've used program statements and
variables to assign values (such as in our carpet cost
program). Suppose, though, you needed to assign a
value that would vary every time you ran the pro
gram. An example is a home budget program that
totals your monthly expenses. Sinceyour electric bill
varies from month to month, you couldn't use a pro
gram line like LET A=56.50 unless you knew in
advance what the exact amount would be. Instead of

assigning a definite value in the program, you could
use an INPUT statement.

Trythe following example:

NEW

50 PRINT "TELL ME A NUMBER

60 INPUT A

70 PRINT "THE NUMBER IS"

30 PRINT A

Type RUN and press RETURN to start the program.
When the computer executes line 60, it stops and
prints a question mark on the screen. It is waiting for
you to provide a number. When you type in a number,
the computer assigns the value of that number to the
variable A.

19

Just for fun, RUN the program again, and when the
question mark appears, enter the word three instead
of the numeral 3. The computer will give you an error
message something like this:

REDO FROM START?

or

ERROR: TYPE MISMATCH IN 60

To make the program operate with words instead of
numerals, you would have to change the numeric
variables in lines 60 and 80 to string variables, like this:

60 INPUT A*

80 INPUT A$

The computer would then expect you to input a
character string instead of a numeric value.

You can INPUT more than one value in the same line
by using commas. Here isan example, but don't type it
in right now because it needs a whole program in
order to do anything:

10 INPUT A,B,A$

If the computer were to execute this program line, it
would display a question mark on the screen. Itwould
expect whatyou told ityou would supply: a numeral,
another numeral, and a character string. Ifyou were
to enter less data than it needed, the computer would
print two question marks to tell you to enter more
data.

When all of the necessary data had been given, the
computer would assign the data to the variables used
by the INPUTstatement. It would then go on to
execute the next line number in the program.

Typeinthe following program to demonstrate the use
of an INPUT statement with multiple values:

NEW

10 PRINT "ENTER NAME AND AGE

IN THE FOLLOWING MANNER-

NAME, AGE"

20 INPUT A$,A

30 PRINT "YOUR NAME IS";A$

40 PRINT "YOU ARE ";A?" YEARS
OLD. "

Type RUN and press RETURN to start the program.
When the computer displays a question mark on the
screen, try enteringjust your name (which means
typing your nameand then pressing the RETURN
key). The computerwill display two more question
marks to tellyou that it needs more information, so
enter your age to let it continue with the program.

Now RUN the program again. This time type in both
yourname andyourageseparatedbya comma (such
as SUSIE SMITH, 32). The computer will quickly
complete the program.

Ifyou press the RETURN keywithout entering any
data when the computer asks for it, one of two things
happens. On some computers, the program termi
nates. On others, the computer inserts a null string (a
meaningless character set, consisting of zeros) or a
value of zero.

As a shortcut and to save space, you can write an
INPUT statement that acts as both an INPUT and a
PRINT statement. Try this example:

NEW

10 INPUT "WHAT'S YOUR AGE?";A

Then run the program. Note that a semicolon must be
included in a combined statement like line 20, to show
the computer where the PRINT statement ends and
the INPUT statement begins.

READ AND DATA STATEMENTS

READ and DATA statements are used together in
programs. DATAstatements allowyou to store data in
a program. READ statements allowyou to call that
data up at a later time.

A READ statement acts something like an INPUT
statement; however, instead of putting a question
mark on the screen and waiting for you to supply a
value, a READ statement looks for a DATA statement

in the program to supply the information. The values
in DATA statements are read in sequential order.

The information in a DATA statement can be numeric

values or character strings, but it must match the types
of variables in the READ statements. The individual

data items must be separated by commas (DATA
105,112,56,83). Character strings in DATA statements
must be enclosed in quotation marksjust as they
must anywhere else. DATAstatements can appear
anywhere in a program; the computer will find them
when it needs them.

When the computer sees the command READ, it
jumps out of the line number routine and goes in
search of a DATA statement; it skips any line that does
not contain the word DATA. It doesn't care what the

line number of the DATA statement is. All it cares

about is finding a DATAstatement that it hasn't read
yet. Once it finds a DATA statement, it reads the first
piece of information it finds. If it needs more pieces of
information, it keeps reading until it has enough
information to assign values to all of its variables.
When the computer has assigned values to all of the
variables in the READ statement, it continues execut
ing the program.

Ifthe computer encounters another READstatement
later in the program, it reads the next DATAstatement
that had not been read previously. The computer does
not read the same DATA statement twice in the same

program (unless you force it to by using the RESTORE
command, which we'll discuss later in this chapter).

For now, remember that READ and DATA statements

provide a powerful method of storing values in your
computer's memory READ and DATA statements are
very useful in programs that make extensive use of
files, such as recipes, home budgets, and mailing lists.

Try the following example to demonstrate the use of
READ and DATA statements:

NEW

10 READ A,B,C:PRINT A;B;C

20 DATA 10,20

30 DATA 30,40

When you run the program, the system responds like
this:

Line 10 told the computer to read and display on the
screen the first three values in the DATA statements.

So the computer looked through the program for
DATAstatements to supply values for the variables A,
B,and C. When the computer had read all of the
values in the first line of data (line 20), the next READ
statement (READ C) called up the first value in the
next DATA statement (line 30). Since the READ state
ment asked the computer to read only three values,
the computer did not read or display the remaining
value in line 30.

Now type in 30 and press the RETURN key. This
erases line 30. LIST the program to see the following:

10 READ A, B,C' PRINT Al B', c

20 DATA 10 ,20

21

Now RUN the program again. You will get an OUT
OF DATAerror message. This is because there were
three READ requests in the program, and there were
only two DATA values left.

READand DATAstatements are used when you have
large amounts of information to enter into the com
puter. For example, you might want to store words in
the computer's memory for use in a word display
program for young children. It is possible to display a
word list without using READ and DATA statements,
as in the following program:

NEW

100 LET A$="APPLE"

110 LET B$="D0G"

120 LET C$="CAT"

130 LET D$="B0Y"

140 LET E$="CHAIR"

150 LET F$="GIRL"

160 LET G$="DESK"

170 LET H$="T0Y"

180 PRINT A$,B$,C$,D$,E*,F$, G$,H$

190 END

Now try running the program. While this program
works, you have to write an individual line for each
word to be stored. If the program contained many
more words, you would have a very large program
(and a lot of typing).

You can perform the same task with a savings in
memory space, and a lot less typing, by using READ
and DATAstatements, as in the following program:

NEW

100 FOR W=l TO 8

110 READ X$

120 PRINT X$

130 NEXT W

140 END

1000 DATA "APPLE","DOG",

"CAT","BOY","CHAIR",
"GIRL","DESK","TOY"

When you run the program, it displays the listof
words in the DATA statement in line 1000.

The FOR and NEXT commands in lines 100 and 130

set up a kind of loop, something we will discuss in
detail in Chapter 4. In this case, the FOR and NEXT
commands force the computer to go through lines 110
and 120 eight times, once for each word on the word
list (in the DATA statement, line 1000).

Each time the computer gets to line 110, it ignores the
other lines in the program and searches for the DATA
statement (line 1000). When it finds the data it needs,
it continues to execute the program, printing the
value it has just assigned. When the eight DATA val
ues have been read, the computer continues to line
140. There it follows the command to END the pro
gram.

Ifyou wanted to have 25 words in the word listin this
program, all you would have to do is add the extra
words to the list and change line 100 to read as
follows: 100 FOR W=l TO 25.

RESTORE STATEMENTS

The RESTORE statement is used in combination with

READ and DATA statements. It actually restores the
information in the DATA statements so that the infor
mation can be used more than once. After a RESTORE
statement is executed, the next READ statement goes
back to the first DATA statement in the program.

Type in the following program to see how this works:

NEW

10 READ A$

20 RESTORE

30 READ B$

40 PRINT A$,B$

50 DATA "FIRST", "SECOND

When you run the program, your computer displays
the following:

FIRST FIRST

Because the program included a RESTORE statement,
the computer read the first piece of information in the
DATA statement twice, rather than reading the first
piece of information the first time and the second
piece of information the second time.

To see what the computer would display without the
RESTORE command in the program, type 20 and press
the RETURN key to erase line 20. Then RUN the
program.

This time the system responds like this:

FIRST SECOND

You might want to use a RESTORE statement in a
program in which you need to use the same informa
tion several times (as we will in the telephone direc
tory program in Chapter 4).

REM STATEMENTSi NOTES IN PASSING

The REM (forremark) statement is difficult to classify
as a type of operation because the REM statement
accomplishes absolutely nothing, as far as the com
puter is concerned. REM statements are used to make
notes that aid the programmer in keeping track of
what the program is doing. A typical REMstatement is
shown in line 90 of the program excerpt that follows:

90 REM THIS PROGRAM CALCULATES

INTEREST

100 LET A=X/100

110 » , » , (program continues)

When the computer reads the BASIC keyword REM,
it ignores the remaining information in the line and
proceeds to the next line number.

It is good practice to use REM statements often to
keep track of what is happening in your program.
REM statements also make it easier for others to

understand your program ifyou leave notes through
out the program.

The only drawback with REM statements is that they
take up memory space in your computer. Ifyou are
having difficulty storing a large program in your com
puter's memory, you can delete REM statements to
save memory space.

23

PROGRAM EXERCISEi A SMALL-BUSINESS

PAYROLL

Setting up a payroll program for a small business is an
example of a popular application for small computers.
The following is a small part of a payroll program. It
demonstrates the use of string variables, numeric vari
ables, and INPUT statements.

NEW

50 LET A$="J. SMITH"

60 LET B$=*J» DOE"

70 LET C$="C, JONES"

80 A=9,75:REM PAY RATE

100 PRINT "HOW MANY HOURS

DID ";A$;" WORK?"

110 INPUT HA

120 PRINT "HOW MANY HOURS

DID ";B$5" WORK?"

130 INPUT HB

140 PRINT "HOW MANY HOURS

DID ";C$;" WORK?"

150 INPUT HC

200 PA=HA*A:PB=HB*A:PC=HC*A

300 PRINT "SALARY FOR n?A$:
PRINT "$";PA

310 PRINT "SALARY FOR "?B$:
PRINT "$";PB

320 PRINT "SALARY FOR ";C$:
PRINT "$";PC

350 PRINT:PRINT "TOTAL SALARY

FOR ABC COMPANY THIS WEEK IS

$";PA+PB+PC

24

When you run the program, pick a number of hours to
insert each time the computer asks you for input, and
the program will do the rest. Ifyou get a SYNTAX
ERROR message on the screen, LIST the program and
look at it again—perhaps you put a semicolon where a
colon ought to be or made some other typing mis
take.

Here's how the program works:

Lines 50,60, and 70 assign the names of the
employees to string variables (AS, B$,C$).

Line 80 assigns the pay rate ($9.75 per hour) to the
numeric variable A.

Lines]00 through 150 assign numeric variables (HA,
HB, HC) to the number of hours worked by each
employee.

Line 200 performs the salary calculations by multiply
ing the pay rate by the variables that represent the
hours worked by the employees. Line200 also assigns
new variables (PA, PB,PC) that represent the results of
these calculations (each employee's salary).

Lines 300,310, and 320 print each employee's total
salary for the week. Line 350 prints a blank line and
then prints the total payroll for all employees com
bined.

REVIEW

In this chapter, you learned that...

• PRINTstatements tell the computer to print
information, usually on the TVor monitor screen.

• INPUT statements tell the computer to request
information from the person using the program.

• READ and DATA statements work together.
READ statements tell the computer to read
information that is stored in the corresponding
DATA statements.

• RESTORE statements allow DATA statements

to be read more than once in the same program.

• REMstatements allow the programmer (you!)
to make notes for personal reference, to help
remember exactly what is happening at any
point in the program.

ft

ft

ft

Chapter 4

LOOPS AND
OTHER VARIATIONS

Vntfl**'- .

FOR GOTO

NEXT GOSUB

STEP RETURN

IF-THEN

J

CLEAR

You've already learned that your computer
follows a path, according to the program line
numbers. In this chapter, we will talk about

loops that cause your computer to repeat certainjobs
and detours that send your system off on different
paths.

Suppose you want the computer to follow different
paths when you run the program on different occa
sions. The idea is similar to reaching a fork in a road.
One day you might want to turn left at the fork. The
next day you might want to turn right. A computer
program can be designed to branch in much the same
manner. You can create detours to cause the com

puter to follow different paths—by using GOTO,
GOSUB, and IF-THEN commands. And you can

create loops that cause the computer to repeat a
particular section of a program over and over again—
by using FOR-NEXT commands.

The ability to create loops and detours gives you
tremendous flexibility. At one time, you might want to
use a part of the program, and at another time, you
might want to skip that part of the program and go to
a different part of the same program. Using loops and
detours, you can make one program follow a variety
of paths, according to changes you make each time
you run it.

To get a better idea of exactly what this means, let's
first learn about FOR-NEXT loops.

25

GOING AROUND IN CIRCLES: FOR-NEXT

STATEMENTS

FOR and NEXT statements create a repetitive loop.
They cause a specific segment of a program to be
repeated over and over again. How many times the
segment loops iscontrolled by the values thatyou use
in the FOR and NEXT statements.

It works like this. The FOR statement takes the form of
a line like 10 FOR X= 1 TO 10. The NEXT statement

takes the form of a line like 100 NEXTX. The NEXT

statement compares the value of variable X with the
final value assigned in the FORstatement (inthis case
10). Ifthe value has not yet reached its final limit, the
NEXT statement sends the computer back to the line
containing the FOR statement. The value of the vari
able in the FOR statement increases by 1each time the
loop segment of the program is executed, unless
otherwise specified with a STEP statement.

Usinga STEP statement changes the value by which
the FOR variable will increase. Instead of auto

matically increasing by 1each time, the value will
increase (increment) by the amount specified. A FOR
statement with a STEP value assigned takes the form
of a line like 10 FOR X=l TO 10 STEP 2. Adding STEP 2
to this line tells the computer to increase the value of
the variable by 2 each time the loop is executed.

Here's how a simple FOR-NEXT loop would look:

10 FOR X=l TO 5

20

section of program to be repeated

0

100 NEXT X

What happens with a program like this? The FOR
statement begins by letting the variable X equal I.
Then the computer executes lines 20-90. When it
reaches line 100, the computer increases the value of
X by 1and returns to line 10. Lines20-90 are thus
executed over and over—in this case, five times. When

X reaches the value of 5, the loop ends. And if there
are more lines in the program (after the NEXTstate
ment), the computer goes on to execute them.

26

Here is an example of a small program containing a
FOR-NEXT loop. Try itl

NEW

10 FOR X=l TO 10

20 PRINT "SAY IT TEN TIMES!

30 NEXT X

40 PRINT "DONE!"

50 END

Now run the program. The results of the program
look like this on the screen:

SAY IT TEN TIMES!

SAY IT TEN TIMES!

SAY IT TEN TIMES!

SAY IT TEN TIMES!

SAY IT TEN TIMES!

SAY IT TEN TIMES!

SAY IT TEN TIMES!

SAY IT TEN TIMES!

SAY IT TEN TIMES! '

SAY IT TEN TIMES!

DONE!

In line 10, when the FOR statement was executed the
first time, the variable Xwas assigned a starting value
of 1. In line 20, the computer printed the character
string on the screen. In line 30, the NEXT statement
was executed and the computer read the value of X.
Since the value did not yet equal 10, the computer
increased the value of X by I and went back to line 10.
This process was repeated until the value of X was
found to equal 10 when the computer reached line
30. Then the computer was allowed to continue to
line 40 to print the word DONEI Line 50 told the
computer to end the program.

Now try the program again, but add a STEPstatement
to it. To do this simply change line 10 by typing in
this line:

10 FOR X=l TO 10 STEP 2

Now run the program. The result? Because the STEP
statement specified an increase of two each time, the
computer printed the character string "SAY ITTEN
TIMES!" only five times.

Ifthe value specifiedafter the STEP statement isnega
tive, then the variable will decrease (decrement) by
the specified amount. To see how this works, try the
following program:

NEW

10 FOR A=5 TO 1 STEP -1

20 PRINT A

30 NEXT A

40 PRINT "FINISHED COUNTING

BACKWARDS!"

50 END

When you run the program, your computer responds
this way:

Now try a STEP statement using a different increment:

NEW

10 FOR B=l TO 10 STEP 4

20 PRINT B

30 NEXT B

40 END

When you run the program, your computer responds
this way:

The STEP counter increased by the value of 4 on each
pass. By the fourth pass, B had reached a value of 13.
When the NEXT statement found the value of B to be

greater than the specified ending value of 10, it ended
the loop without printing another value of B.

27

A Mistake To Avoid

Once you are inside the loop, do not change the value
of the variable that you used in the FOR statement.
For example, if the variable used in your FOR state
ment is C, do not use C as a variable again until after
the line containing the NEXT statement.

Here is an example of a loop that causes a problem. If
you run this program, you.will find that it creates a
continuous loop, one that you can break only with
your CONTROL-C key combination or your BREAK
key (depending on your computer). Beforeyou try this
program, make sure you know how to stop it. Ifall
else fails, turn the computer off and start again.
(Remember, however, that when you turn the com
puter off,you lose anything in its working memory
that you have not stored onto cassette tape or disk.) If
you want to try this program, go ahead.

10 FOR C=l TO 50

20 PRINT "I'M COUNTING!"

30 LET C=44

40 LET D=12

50 LET E=18

60 NEXT C

This program creates a continuous loop because line
30 locks the value of C. At the start of the program,
line 10 uses C as a variable in the FOR statement. C is

assigned a starting value of 1and a final value of 50.
Then in line 30, C is assigned a new value of 44, and
that happens every time the loop is executed. The
NEXT statement will never find that C has reached or

exceeded its final value of 50, because C will always
equal 44 when the computer gets to the NEXT state
ment in line 60.

This sort of thing will confuse your computer every
time. The best way to prevent it is to avoid using the
same letter as a variable more than once in the same

program.

28

Using For-IMext Statements To Create Time Delays

FOR-NEXT statements can be useful in building time
into your programs to let you read information dis
played on your screen. When using FOR and NEXT for
this purpose, you can easily put them together in the
same line, as in the following example. (Don't type this
on your computer now; it needs a program with it to
make sense.)

10 FOR X=l TO 1000:NEXT X

Since there are no program instructions between the
FOR and NEXTstatements, all the computer can do is
perform 1000 FOR-NEXT loops and then proceed to
the next line number. Since there is no change in the
screen display while the computer is performing such
loops, this creates the effect of a pause or delay in the
program—at least as far as the user is concerned. Try
the following program to see how this works.

NEW

10 PRINT "TIME TO READ SCREEN"

20 FOR A=l TO 3000:NEXT A

30 PRINT "TIME'S UP!"

Now run the program. The final value of A in line 20
controls the amount of time that the system appears
to pause. Changing the final value of the variable in
the FOR statement changes the amount of time. Try
changing the final value of A in line 20 to different
values so that you get an idea of how long or short a
pause you get from different values.

Nested Loops

A nested loop is a FOR-NEXT loop inside a larger
FOR-NEXT loop. The following program makes use of
a nested loop.

NEW

10 FOR A=l TO 20

20 FOR X=l TO 5

30 PRINT X

40 NEXT X

50 PRINT "HERE WE GO AGAIN!"

60 NEXT A

Now run the program. The results whisk by on the
screen before you, and you may wonder ifyou did
something wrong. You may even be tempted to use
your CONTROL-C key combination to stop it. But
don't stop it. Let the program run its course. Your
screen will show something like this when the pro
gram is finished.

HERE WE GO AGAIN!

HERE WE GO AGAIN!

HERE WE GO AGAIN!

29

What the program does is list the numerals 1,2,3,4,
and 5 and print the character string "HERE WE GO
AGAIN!" twenty times. It does the whole thing
twenty times because of the FOR-NEXT loop started
in line 10; this is the outer loop (in this case, the A
loop). The program printed the numbers because of
the loop started in line 20; this is the inner or nested
loop (in this case, the X loop). Ifyou had a program
consisting of only lines 20,30, and 40 (the X loop), the
computer would print the numerals once and then
stop. But in this program, the outer loop causes the
inner loop to repeat.

Notice that the X loop is entirely within the A loop—
hence the term nested loop. Keeping the nested
loop entirely within the outer loop is very important.
Make these changes in the program by typing these
two lines:

40 NEXT A

60 NEXT X

Now run the new program. You'll see that you don't
get very far. List the new program (by typing LIST and
pressing RETURN)so you can see what's wrong here.

i—10 FOR A=l TO 20

r20 FOR X=i TO 5

30 PRINT X

40 NEXT A

50 PRINT "HERE WE GO AGAIN!"

^60 NEXT X

CROSSED

LOOPS

By switching the order of lines 40 and 60, you have
created a crossing between the two loops, and
neither loop can complete itself. Although you have
both of the matching NEXTstatements to go with
your FOR statements, the NEXT statements are out of
sequence. The X loop is not yet complete at line 40,
yet you try to complete the A loop with a NEXT A
statement.

30

For a nested loop to work correctly, no matter how
many loops you use, there must be no crossing
between them. In writing programs, you may find it
useful to make a chart to show yourself that the loops
are properly nested. Here's an example:

[

10 FOR X=l TO 10

20 FOR Y=l TO 10

30 FOR Z=l TO 10

40 NEXT Z

50 NEXT Y

60 NEXT X

PROPERLY

NESTED

LOOPS

IF-THEN STATEMENTS

An IF-THEN statement causes the computer to
evaluate an expression and then take a particular
action if the expression is true. The expression being
evaluated may involve either a numeric variable or a
string variable. Ifthe expression is true, then the
computer will perform whatever action is specified in
the THEN statement. If the expression is false, then
the computer takes no further action at that line
number. It simply continues to the next line in the
sequence.

Here are a couple of examples of IF-THEN state
ments. (Do not type them in now; they need to be
within a program to operate.)

IF X>=21 THEN

WON THE GAME,

PRINT "YOU'VE

IF A$="YES" THEN GOTO 400

4

i

We can see how IF-THEN statements work by setting
up a flight destination schedule for Treetop Airlines.
We will use Dallas as a departure city, with Houston,
Austin, and San Antonio as destination cities. We

could use PRINTstatements to display the entire flight
schedule to all the cities, but then we would have to
hunt through the list for the city we wanted to know
about (a real problem ifyou had fifty or a hundred
cities!). A more efficient way to do this is to use
IF-THEN statements, like this:

NEW

5 PRINT "TREETOP AIRLINE

SCHEDULES"

10 PRINT "ENTER CITY

DESIRED."

20 INPUT A$

30 IF A$="H0UST0N" THEN GOTO

100

40 IF A$="AUSTIN" THEN GOTO

200

50 IF A$="SAN ANTONIO" THEN

GOTO 300

60 PRINT "WE DON'T FLY

THERE!":G0T0 10

100 PRINT "HOUSTON FLIGHTS ARE

1PM, 3PM, 5PM":END

200 PRINT "AUSTIN FLIGHTS ARE

2PM, 4PM, 7PM":END

300 PRINT "SAN ANTONIO FLIGHTS

ARE 2:30 PM, 6 PM, 8 PM":END

Now run the program. The computer tells you to
"ENTER CITY DESIRED." Type in the name of the city
you want to know about. The computer then com
pares the name you typed in to the cities in the IF-
THEN statements until it finds a match. As long as no
match is found, the computer ignores the rest of the
line and continues to the next line number. When the

computer finds a match, it carries out the THEN
statement in that line. Each THEN statement tells the

computer to go to the program line containing the
flight times for that city-line 100,200, or 300. If the
computer does not find a match in lines 30,40, or 50,
it goes on to line 60. Line60 lets you know that you
have entered the name of a city that is not in the
program. The GOTO command in line 60 sends the
computer back to line 10 to give you a chance to enter
another city name. Now let's take a closer look at
GOTO statements.

DETOURS IN THE ROAD: GOTO AND

GOSUB

There are ways to force the computer to stray from
its normal path of following the line numbers in
sequence. GOTO and GOSUB statements are two
ways to do so. The names of the statements are fitting:
they tell the computer to go to a different location or
to go to a subroutine. A subroutine isa small part of a
program; usually it is a part that is used often within
the program. Using a subroutine allows the pro
grammer to call on the same section of a program at
different times (without writing it over and over).

31

GOTO STATEMENTS

A GOTO statement sends the computer to a specified
line. It tells the computer to branch off to another part
of the program, rather than going on to the next line
number in sequence.

Branches in computer programs are like branches on
trees. When you are following the main part and get
to a branch, you have to make a choice. Youcan stay
with the main part or go offon the branch. And ifyou
follow the branch, you go away from the main part.
Computer program branches often have commands
built into them to get you back to the main part
eventually

Youcan use a GOTO statement in one of two ways: in
an unconditional branch or in a conditional

branch.

In an unconditional branch, the computer is simply
instructed to go to another line. An unconditional
branch is created with a simple GOTO statement like
the following:

430 GOTO 30

The other type of GOTO statement is a conditional
branch. For a conditional branch, a GOTO statement
is used within an IF-THEN statement or in the same

program line following an IF-THEN statement. The IF
part of the statement tells the condition under which
the computer should execute the rest of the line. Here
are examples of conditional branch statements:

50 IF Xl=10 THEN GOTO 400

60 IF Xl=20 THEN PRINT "NO":

GOTO 500

32

Whether the computer goes to the line indicated
depends on whether the condition in the IFstatement
is true. For example, when line 50 is executed, the
computer evaluates the value of XJ. IfXI equals 10,
then the computer proceeds (or branches, in com
puter terminology) to line 400 and continues program
execution from that point. We have set a specific
condition for the branch—hence the term condi

tional branch. IfXI does not equal 10, the computer
ignores the rest of this line and proceeds to the next
line number in sequence.

To see both conditional and unconditional branches at

work, try the following program:

NEW

10 PRINT "WHAT'S YOUR AGE?"

20 INPUT A

30 IF A>17 THEN PRINT "NORMAL

DRIVER'S LICENSE":G0T0 100

40 IF A>15 THEN PRINT "JUNIOR

LICENSE":G0T0 100

50 GOTO 200

100 PRINT "ISSUE APPLICABLE

LICENSE":END

200 PRINT "NOT ELIGIBLE FOR

LICENSE":END

When you run the program, the computer first
responds this way:

WHAT'S YOUR AGE?

•

V

What it does next depends on your response to
the INPUT statement in line 20. Lines 30 and 40
both contain GOTO statements, but these statements
will be processed only ifthe conditionsset by the
IF-THEN statements in the lines are met. Because
of this condition, these GOTO statements are
conditional statements.

By comparison, line 50 is an unconditional GOTO
statement. Ifthe computer reads line 50, it will
go to line 200; no conditions are included in that
program line.

The programworks like this. If the numberyou type in
is greater than 17, then line 30 will be executed; the
computer will print "NORMAL DRIVER'S LICENSE"
and then go directly to line 100, which tells it to print
"ISSUE APPLICABLE LICENSE" and end the program.

Ifthe number isnot greater than 17, the computer
goes to line 40. The condition in line 40 is that the
number must be greater than 15. But if the number
were greater than 17,the computer would have gone
on to line 100 and not read line 40 at all.Therefore,
line 40 will be executed only ifthe number is 16or 17,
since these are the only numbers greater than 15, but
not greater than 17.

Ifthe number is not greater than 15, the computer
goes on to read line 50, which sends it to line 200. Line
200 prints "NOT ELIGIBLE FOR LICENSE" and ends
the program.

Here's one additional note about GOTO commands.
When you are using a GOTO command within the
THEN part ofan IF-THEN statement,you can usually
eliminate the word GOTO in most versions of BASIC
Forexample, the computer would read the following
two program lines in the same way:

10 IF R=14 THEN GOTO 300

10 IF R=14 THEN 300

For allother uses of GOTO, however, you must
include the word GOTO in the program line.

You willuse GOTO statements often \n programming,
simplybecause you willoften find it necessary to send
the computer to another part of the program.

GOSUB AND RETURN STATEMENTS

The idea behind GOSUB is similar to that behind
GOTO. However, the GOSUB statement causes the
computer to remember what line number it left when
the GOSUB command sent it to another line. The
computer then continues to execute the program
from that point until it sees a RETURN statement.
Whenitdoes,it returnsto the line immediately follow
ing the line containing the GOSUB command and
continues executing program lines in sequence.

The entire operation is called a subroutine. The
following demonstrates how a subroutine is used
within a program:

NEW

100 PRINT "I'M LEAVING!"

110 GOSUB 2000

120 PRINT "I'M BACK!"

130 END

2000 FOR T=l TO 2000:NEXT T

2010 PRINT "FAR AWAY IN
SUBROUTINE!"

2020 FOR T=l TO 2000:NEXT
T:RETURN

33

Theprogram took the route shown inthis illustration:

Line 100

i—Line 110

MAIN PROGRAM

Line 120

Line 130

-Line 20 0 0

Line 2010 SUBROUTINE

Line 2020 _

Here are a few rules to follow in using subroutines:

1 tThe RETURN statement is a BASIC command
and should not be confused with pressing the
RETURN key to enter a direct command or program
line. The RETURN command must always be typed
in using the letter keys (except on a computer like
the Timex Sinclairwhere you have specific keys to
press for each command).

£ $Be sure thatyou include a matching RETURN
statement for every GOSUB that you use. Ifyou
send your computer to a subroutine and never give
it a RETURNcommand, errors may develop later in
the program that will be difficult to find.

When you put the subroutine after the
main program, use an ENDstatement at the end of
the main program (the part which you leave to go
to the subroutine). The END statement keeps the
main program and the subroutine separate.

34

Here's an example of why you need to use an END
statement at the end of the main program. Try it.

NEW

10 PRINT "ONE"

20 PRINT "TWO"

30 GOSUB 100

40 PRINT "FOUR"

50 PRINT "FIVE"

60 PRINT "DONE!"

100 PRINT "THREE"

105 RETURN

Now run the program. Oops! What happened? An
extra THREE prints, out of sequence, then an error
results, because the computer crashed into the sub
routine. Stop the program (using the CONTROL
and C keys or the BREAK key). Now add this line
to the program:

90 END

Then run the program again. With the END state
ment, the program does what you probably thought
it should do.

One additional note: If there are no subroutines
after the main program, you usually do not have to
use an END statement. END is optional in nearly all
versions of the BASIC language.

•

1

t

TELEPHONE DIRECTORY PROGRAM -
A REAL-LIFE APPLICATION

The following program makes use of FOR-NEXT
loops, IF-THEN statements, and GOTO commands. It
also contains one statement which we have not used
yet: the CLEAR statement. CLEAR is a control opera
tion. (Control operations are discussed in Chapter 5).
Butsince we need the CLEAR statement for this pro
gram, let's briefly discuss it now.

The CLEAR statement resets allof a program's numeric
variables to zero and all of the string variables to null
(or zero) characters. The CLEAR statement is useful if
you want to reset the program's variables without
erasing the entire program (as the NEW command
would).

Here's the program:

NEW

10 CLEAR

20 PRINT "PLEASE ENTER THE NAME DESIRED."

30 PRINT "TO SEE ALL NAMES IN THE DIRECTORY, ENTER THE WORD NAMES."

40 INPUT D$

50 IF D$="NAMES" THEN 700

100 FOR P=l TO 10

110 READ A$,B$

120 IF A$=D$ THEN 200

130 GOTO 300

200 LET C$=A$

210 LET E$=B$

300 NEXT P

310 RESTORE

400 IF C$="" THEN 420

410 GOTO 500

420 PRINT "SORRY, THAT NAME IS NOT IN THE DIRECTORY."

35

430 GOTO 30

500 PRINT:PRINT "THE PHONE NUMBER YOU REQUESTED" 4

510 PRINT "IN THE NAME OF "?C$;" IS"

520 PRINT E$

530 PRINT "WOULD YOU LIKE ANOTHER NUMBER?" ^

540 INPUT K$:IF K$="YES" THEN 10

600 END

700 FOR Z=l TO 10 §

710 READ A$,B$:PRINT A$

720 NEXT Z

730 PRINT:PRINT "PLEASE ENTER THE NAME DESIRED."

740 INPUT D$:RESTORE:GOTO 100

800 DATA "JOHNSON","555-1213"

810 DATA "TIME OF DAY","234 -1232"

820 DATA "LEONARD","555-3479" •
I

830 DATA "SMITH","211-3377"

840 DATA "EWING","311-9880"

850 DATA "FORD","411-6674"

i
860 DATA "ALLEN","611-3434"

870 DATA "OFFICE","911-3302"

880 DATA "WEATHER","314-5545"

890 DATA "DOCTOR","512-3323"

36

Now run the program by typing the word RUN and
pressing RETURN. The first thing the computer does is
display this message:

PLEASE ENTER THE NAME DESIRED.

TO SEE ALL NAMES IN THE

DIRECTORY, ENTER THE WORD
NAMES.

The computer wants you to tell it what to do next. It
has executed lines 10,20, and 30, and line 40 tells it to
ask you for information.

Sothat we can explainwhat the program does asyou
go along, followour directions this first time. Type in
the word NAMES (and press RETURN).

The computer now displays a listof the names,
something like this:

JOHNSON TIME OF DAY
LEONARD SMITH EWING
FORD ALLEN OFFICE
WEATHER DOCTOR

PLEASE ENTER THE NAME DESIRED.

?

When you gave the word NAMES as the value for D $,
line 50 sent the computer to line 700 where it exe
cuted a loop. The loop told the computer to display
the names in the DATA statements in lines 800 to 890.

When it finished the loop, the computer went on to
line 730, which gave it two commands. The first com
mand was to PRINT a blank line; the second was to
PRINT a character string.

Line 740 tells the computer to ask you to input a new
value for DS,to RESTORE the DATA values [so that
they can be read again), and to go back to line 100.As
soon as you respond to the input question mark and
give the computer a new value for D$, the computer
will complete the rest of the line 740 commands. This
time, type the name ALLEN (and press RETURN). The
computer then RESTORES the DATA values and
returns to line 100.

The computer executes the loop between lines 100
and 300 until it finds the name and telephone number
you requested. It reads each DATA statement until it
finds the value that matches the valueyou assigned to
D$—ALLEN. When the values match, the computer
can break out of the loop; line 120 sends it to line 200
ifthe values match. (Thenitdoes not go on to line130,
which would have sent it back to line 300 and
through the loop again.)

In lines 200 and 210, the computer changes the
names of AS and B$ to CS and ES, respectively. Line
310 again restores the DATA values (although that
doesn't matter much right now). Since C $has a value,
line 400 has no effect. The computer gets to line 410
which sends it to line 500.

Lines500 through 540 print a blank line first and then
the message that follows:

THE PHONE NUMBER YOU REQUESTED
IN THE NAME OF ALLEN IS

611- 3434

WOULD YOU LIKE ANOTHER NUMBER?

37

Line 540 causes the computer to ask you for input. If
you type YES (and press RETURN), the computer will
return to line 10 and execute the program again. (In
line 10, the CLEAR command resets all the program's
variables to zero or null characters so thatyou can use
the program again, assigning new values to the vari
ables.) Ifyou type anything other than YES in response
to line 540, the computer will continue to line 600 and
end the program.

Ifyou would like to replace the sample names and
numbers in the DATA statements with some names
and numbers ofyour own, here's how (it's easy!):

i ♦ Change the final values for the variables in
both FOR-NEXT loops (the one starting in line 100
and the one starting in line 700) to match the
number of names inyour list. Ifyou have 14 names
instead of 10, lines 100 and 700 should read like
this:

100 FOR P=l TO 14

700 FOR Z=l TO 14

£ ♦ Usea new line number (after line 890) for
each extra name and phone number.

Ifyou want to store this program on cassette or disk
for future use, turn to the "SAVE" section in Chapter
5, "Control Operations."

33

REVIEW

In this chapter, you learned that...

• The FOR-NEXT statement creates a repetitive
loop. How many times the loop repeats depends
on the values specified within the FOR state
ment.

• The IF-THEN statement causes the computer
to take a particular action under certain condi
tions. Ifthe expression in the IFpart of the
statement is true, the computer executes the
THEN part of the statement. Ifthe expression is
false, the computer ignores the rest of the line
and proceeds directly to the next program line.

• The GOTO statement sends the computer to a
specific line number. The GOTO statement can
be used in one of two ways: in conditional
statements or unconditional statements.

• The GOSUB statement also sends the com

puter to a specific linenumber. Inthe case of the
GOSUB statement, the line number that the
computer goes to is the start of a subroutine.
When the subroutine is completed, a RETURN
statement is used. The RETURN statement sends

the computer back to the program line immedi
ately following the line containing the GOSUB
command that sent it to the subroutine.

• The CLEAR statement is a control operation
which resets all program variables at zero or null.

Chapter 5

CONTROL

OPERATIONS

Control operations can be considered control
lers of the computer. They give the BASIC
language its power. The names of the control

operations always provide clues to what they do.

Ifyou examine any extensive BASIC program, you'll
find that the bulk of the program is made up of control
operations and arithmetic operations. Input/output
operations are only necessary when humans need to
interact with the computer, and many library opera
tions are used only for advanced mathematical or
scientific functions.

The extensive programs you may have seen else
where (or even later in this book) may appear far more
complex than any program you feel you could ever
write, but keep this in mind: any large program is

actually a collection of several much smaller programs.
Bytaking a large task a step at a time, and writing and
debugging small pieces of programs, you'll find that
longer programsjust take a little more time than short
programs.

We have already discussed a few control operations:
NEW LIST, RUN, END, FOR and NEXT, GOTO,
GOSUB and RETURN, IF-THEN, CLEAR, and
RESTORE. In this chapter, we will discuss some other
control operations: SAVE, LOAD, STOP, CONT, NULL,
ON-GOTO, ON-GOSUB, and DIM. We will also
discuss RUN and END in more detail than we did

earlier. Of all of these operations, DIM is the most
complicated and will require the most explanation.

39

SAVE

The SAVE command stores information from the com

puter's memory to a cassette tape or floppy disk. You
will use the SAVE command to avoid having to type
the same program into the computer each time that
you want to use it.

The exact way the SAVE command is used varies from
computer to computer, so you should check your
owner's manual to be sure you use the correct com
mand for your system. Most computers let you save a
program using a name ofyour choice for the program.
For instance, ifyou've entered a program, and you
want to name that program BUDGET, most com
puters let you enter a statement similar to this:

SAVE "BUDGET"

Ifyou are using a cassette recorder, you must also
depress the RECORD and PLAY keys to save programs
or data. Ifyou're using a disk drive, the system auto
matically saves the program on disk (assuming that
you have placed a disk in the disk drive and turned on
the disk drive) when you use the SAVE command.

Some systems (usually with a cassette drive) require
you to use a statement like this:

CSAVE "BUDGET"

Some computers that use floppy disks require a state
ment like this:

SAVE DSK1 "BUDGET"

Because of these minor command variations, check

your owner's manual to see how to save a program
on your model of computer.

40

LOAD

The LOAD statement (CLOAD for systems using cas
sette tapes for storage) commands the computer to
load a program from the cassette or disk drive into the
active memory of the computer. The LOAD statement
turns on the computer's load flag, a sort of electronic
switch that transfers the computer's capability to
receive data from the keyboard to the cassette input
cable or floppy disk operating system.

Most cassette-based systems and all disk-based sys
tems allowyou to load one specificprogram from a
tape or disk that contains more than one program.
This is done by specifying the program desired with a
statement like this:

LOAD "BACKGAMMON

On cassette-based systems that allow the retrieval of
specific programs by name, the system usually reads
only the first two letters of the program name. This
means that ifyou saved two programs, one named
Star Trek and one named Star Wars, on the same side
of a cassette tape and then gave the LOAD "STAR
WARS" command, you might get the Star Trek pro
gram instead. Therefore,you should avoid putting
two programs that start with the same two letters on
the same side of a cassette tape.

All disk-based systems examine a larger number of
letters, so ifyou are working with floppy disksyou will
always get exactly the program you request.

The actual methods of loading programs from a tape
or disk (like the actual methods of saving programs)
vary from system to system, so check your operator's
manual for details on your specific model of computer.

RUN

The RUN command causes the computer to execute
the program currently in its active memory. The RUN
command also automatically resets all variable values
to zero.

Ifyou type the RUN command without specifying a
line number, the computer begins executing from the
first line of the program. Ifyou specify a line number,
the execution begins with the specified line number.
For example, if you type the command RUN 160, the
computer begins at line 160 of the program currently
stored in memory (instead of at the first program line
number).

Youcan also use the RUN command within a pro
gram. With disk-based systems, you can use the com
mand in a menu to select other programs on the same
floppy disk. A menu is simply a list of choices; you
select the item you want when the program runs.
Here is an example of how this might work in a
program. It takes more than what we have given you
here to run the program effectively, but this will give
you the idea.

100 PRINT "CHOOSE PAYROLL (1),
LEDGER (2), OR INVENTORY (3)"

110 INPUT A

120 IF A=l THEN GOTO 200

130 IF A=2 THEN GOTO 300

140 IF A =3 THEN GOTO 400

20 0 RUN "PAYROLL"

300 RUN "LEDGER"

40 0 RUN "INVENTORY"

Line 100 contains a menu or list of choices. Line 110
asks the user to type in a choice number. Depending
on the choice number, line 120,130, or 140 sends the
computer to the appropriate RUN command in line
200,300, or 400.

STOP

A STOP statement interrupts the execution of a pro
gram. When a STOP statement is encountered, the
computer halts and displays a BREAK message. Ifthe
program stopped at line 100, for example, the mes
sage would look like this:

BREAK IN 100

CONT (Continue)

The CONT command continues the execution of the

program that was running when halted with the
STOPcommand. The following program demon
strates the use of the STOP and CONT commands:

NEW

10 PRINT "ONE,TWO"

20 PRINT "THREE,FOUR":ST0P

30 PRINT "FIVE,SIX"

40 PRINT "SEVEN,EIGHT"

50 END

When you run the program, the computer halts after it
printsthe word FOUR on the screen and displays this
message:

BREAK IN 20

Now type

CONT

Press the RETURN key, and the computer continues
executing the rest of the program.

The combination of STOP and CONT commands is
useful ifyou want to halt a program for some reason—
for example, to give you time to read the screen at
your leisure. Using FOR-NEXT statements lets you
stop the screen for set periods of time, but the STOP
and CONT commands let you take as long as you
need to read the screen each time.

41

CONT and STOP commands are also useful when you
need to debug (finderrors in)programs. Ifyou are not
sure which line in a program is causing the problem,
you can halt the program at places where you suspect
the problem might be.

WARNING: Ifyou use STOP to go into the program
and make changes, you cannot use the CONT com
mand to restart the program once you have made
changes in the program. Ifyou try to do so, you will
see a CONTINUE ERROR message on the screen.
Once you have used STOP and made changes, you
have to run the program again from the beginning to
see whether your changes have fixed the problem.

END

An END statement completes the execution of a pro
gram in a normal manner. It is usually the last state
ment in a program. Ifyou are using a subroutine,
however, you should put the END statement
between the main program and the subroutine. In
such cases, END isused to prevent the computer from
going past the end of the main program into the
subroutine.

The END command differs from a STOP command in
that once the END command is executed, it cannot be

reversed. (You can, of course, run the program again
from the beginning.)

NULL

A NULL command inserts a specific number of nulls
(dead spaces) in a program line. In executing a pro
gram line like this

180 PRINT NULL 4; "BOB
SMITH,222 CHESTNUT LANE"

the computer would execute four nulls before execut
ing the PRINTstatement.

Nulls are useful when a mechanical peripheral (usually
a slow printer) isattached to your system and there is
a chance that the computer might outrun the
peripheral. This possibility exists with some printers,
such as Selectric and Teletype converted printer/
typewriters. If the computer is sending data to the
printer faster than the printer can print it, nulls can
create delays that give the printer time to catch up. If
your printer was designed to be used with a personal
computer (or ifyou don't have a printer), this should
not be a problem and you won't have to use nulls.

ON-GOTO

An ON-GOTO statement is a multiple GOTO state
ment. The value of the variable used in the ON part of
the statement determines where the program will
branch. Here's a sample of how ON-GOTO state
ments work.

ON X GOTO 400, 500, 600, 700

This is what happens when the system executes
this line:

IfX= 1,the computer branches to the first line
number listed in the GOTO part of the statement,
in this case line 400.

IfX=2, the computer branches to the second
line number listed, line 500.

IfX=3, the computer branches to the third
line number, line 600.

IfX=4, the computer branches to the fourth
line number, line 700.

IfX does not equal 1, 2,3, or 4, the computer
simplygoes on to the next line number (since there
are only four choices listed inthe GOTO part of the
statement).

The ON-GOTO statement can save space within a
program by reading a numeric value and sending the
computer to another line number, depending on what
the numeric value is.

Let's see how this savings might work. In Chapter 4,
we used a sample schedule from Treetop Airlines. We
will use part of that program again and then make
some changes to shorten it while getting the same
outcome. Try this (and compare it with the airline
schedule program in Chapter 4):

NEW

5 PRINT "TREETOP AIRLINE

SCHEDULES"

10 PRINT "FOR HOUSTON (1),
AUSTIN (2), OR SAN ANTONIO

(3), ENTER CHOICE NUMBER,"

20 INPUT A

30 ON A GOTO 100, 200, 300 "

60 PRINT "INVALID CHOICE

NUMBER!":G0T0 10

100 PRINT "HOUSTON FLIGHTS ARE

1PM, 3PM, 5PM":END

200 PRINT "AUSTIN FLIGHTS ARE

2PM, 4PM, 7PM":END

300 PRINT "SAN ANTONIO FLIGHTS

ARE 2:30PM, 6PM, 8PM":END

In the program in Chapter 4, we used IF-THEN
statements to deal with the choice of cities the user

might type in. Ifwe had many cities on the list, it
would take a large number of IF-THEN statements to
accommodate the choices. By using the menu tech
nique (in line]0) and the ON-GOTO statement (in
line 30), you can use fewer program lines and less of
your computer's memory to store the program.

ON-GOSUB

The ON-GOSUB statement is similar to the

ON-GOTO statement. The difference is that the

GOSUB part of the statement sends the computer to
the appropriate subroutine, rather than to the
appropriate line number, as the GOTO part of the
ON-GOTO statement would.

DIM

The DIM statement is used to set up a dimensional
array. An array is simply an amount of space the
computer sets aside to handle variables. Most per
sonal computers normally allot ten spaces for each
variable. If, in special cases, you want to enlarge that
space (to use a larger array), you can specify the size of
the array you want by using a DIM statement. It is
good BASIC grammar to put all of your DIM state
ments at the beginning of the program, although it is
not necessary to do so.

The DIM statement is made up of the basic keyword
DIM followed by the name of the array whose size
you want to specify and then a set of parentheses
enclosing the amount of space you want to set aside
for the array What the DIM statement does is create a
dimension in the computer's memory.

Normal variables occupy only a one-dimensional
array: they are given one row with ten columns in it in
the computer's memory Using the DIM command,
you can set up a one-dimensional array with as many
columns as you like. The command to set up a one-
dimensional array of twenty columns, with the vari
able name A, would be DIM A(20).

A two-dimensional array occupies two dimensions in
the computer's memory—it has more than one row,
and as many columns as you like. The command to set
up a two-dimensional array of five rows and ten
columns, with the variable name B, would be DIM B
(5,10).Once you have established the size of the
expanded space that you need, you can store various
values inside those dimensions. We will explain what
all this means in a little more detail in the examples
that follow.

43

So far in this book we've stayed away from programs
that would require us to store a large amount of data
in memory. We've kept things simple. We have been
working with a limited number of variable names in
our programs. Ifwe had many values to represent
within a program, we could let AA equal the first
variable, AB equal the second, AC equal the third, and

RETIREMENT INVESTMENT ANALYSIS

PROGRAM

Let's say that you have decided to save a specific
amount each month in a retirement account. You

could use 12 different variables to represent the
amount you saved each month over a period of one
year, like this:

so on. But if we were using a large number of vari
ables, keeping track of which variable represents
which value could be very confusing. The DIM com
mand makes it a little easier to keep track of multiple
variables. Tosee how this works, we will develop a
Retirement Investment Analysis program.

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Al A2 A3 A4 A5 A6 A7 A8 A9 Bl B2 B3

At first, this method of assigning variables may seem
perfectly workable. But what would happen ifyou
wanted to track the results of more than one year of
savings? For two years, you would need twice as
many variables. For thirty years, you would have to
name so many individual variables that the program
probably wouldn't fit in the computer's memory.

Instead, you can let the same variable represent the
entire group of values! Youcan do this by using
dimensioned arrays. In many ways, the use of dimen
sioned arrays makes the program much easier to work
with. You can consider one year as a one-dimensional
set of values, like this:

DIMENSION: 12 columns-

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

AA

Then you can consider five years as a second
dimension, like this:

1984

1985

1986

1987

1988

DIME NSION:

5 rows

The amazing fact about the DIM command is that you
can use only one variable (perhaps A) to represent
either the one-dimensional set of values or the two-
dimensional set of values. To do this, you use paren
theses to define the individual values as subsets (indi
vidual elements) of A. To see what this means, look at
the charts that follow.

Let's take the one-dimensional sets of values first. We

can let each month be represented like this:

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
A(l) A (2) A (3) A (4) A (5) A (6) A(7) A(8) A(9) A(10) A(ll) A(12)

We can represent the two-dimensional set of values
(for the five-year span) like this:

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
1984 A(l, 1J A(l,2) A|l,3) A(!,4J A(l,5) A(l,6) A(l,7) A(f,8] A(l,9) A(l, 10) Afl, 11) A(l,12)
1985 A (2, 1) A (2,2) A (2,3) A (2,4) A (2, 5) A (2,6) A (2, 7) A (2,8) A (2, 9) A (2, 10) A (2, 11) A (2, 12)
1986 A (3,1) A (3, 2) A (3,3) A (3,4) A (3,5) A (3,6) A (3, 7) A (3,8) A (3, 9) A (3, 10) A (3, 11) A (3, 12)
1987 A (4, 1) A (4,2) A (4,3) A (4,4) A (4,5) A (4,6) A (4, 7) A (4, 8) A (4, 9) A (4, 10) A (4, 11) A (4, 12)
1988 A(5, 1) A (5,2) A (5,3) A (5, 4) A (5, 5) A (5,6) A (5, 7) A (5,8) A (5,9) A (5, 10) A (5,11) A (5, 12)

The numbers in the parentheses tell you which year
and month you are defining. Since January of 1984 is
the first year and the first month, it is represented by
A (1,1). Since December of 198 8 is the fifth year and
the twelfth month, it is represented by A (5,12).

45

Throughout all of this, it's important to realize that
there is a significant difference between this
statement

Ai=475.80

and this statement

A(i)=475,80

The first statement merely tells the computer that the
variable Al is assigned the value 475.80. The second

statement tells the computer that a one-dimensional
array of variables called A exists; the 1 inside the
parentheses tells the computer that the first subset
inside that array is assigned the value 475.80.

Now you may think at this point that we are not
saving anything at all by using this method of naming
values; in fact the whole method seems rather com
plex. But the savings in time and in effort come when
you consider that variables can be used inside the
array parentheses. In other words, if M= 1and Y=l,
then A (M,Y) isthe same as A (1,1). Using this fact, we
can combine it with FOR-NEXT statements to set up
a repetitive loop that will rapidly change the values
within the parentheses.

Let's try this in a Retirement Investment Analysis
program:

5 Y=i:M=i

10 INPUT "ENTER AMOUNT SAVED PER MONTH" *, X

20 DIM A<5,12): REM CREATE SPACE FOR 5 BY 12 ARRAY

30 FOR Y=l TO 5: REM YEARS 1 TO 5

35 PRINT "YEAR NUMBER "]Y

40 FOR M=l TO 12: REM MONTHS 1 TO 12

50 LET A(Y,M)=X

60 LET T=T+A(Y,M): REM TOTAL SAVED SO FAR

70 PRINT "MONTH NUMBER "\M\" TOTAL IS ";T

80 NEXT M: REM ADVANCE MONTH BY ONE

90 FOR Z=l TO 2000: NEXT Z: REM TIME TO READ SCREEN

100 M=l: REM SET MONTH BACK TO JANUARY

110 NEXT Y: REM ADVANCE YEAR BY ONE

120 PRINT "FIVE YEAR ANALYSIS COMPLETE."

46

Now run the program. When the computer displays
this message

ENTER AMOUNT SAVED PER MONTH
9

select the amount per month you want to put into this
retirement account. Enter that number (don't use a
dollar sign with the number).

The program will flash by on the screen as it is being
executed. The computer is printing the amount of
money accumulating by the year and the month,
assuming that you invest the same amount per
month. At the end, the screen will say

FIVE YEAR ANALYSIS COMPLETE.

and the final amount given (under the fifth year, the
twelfth month) will be how much money you would
have in the account at the end of the five years.

This program demonstrates the power of dimen
sioned arrays by setting up a two-dimensional array
and storing each month's savings in an individual
subset of the array. Line 20 is the crucial part of this
setup. Line 20 contains our DIM statement, which
warns the computer that we are about to take a
section of its memory and devote it to a two-
dimensional array.

Line 30 is the FOR statement that creates the Y loop,
which is executed five times, once for each year. Line
40 is the FOR statement that creates the M loop,
which is nested inside the Yloop. The M loop is
executed 12 times, once for each month. The use of

the two repeating loops together results in the core of
the program, lines 50 through 70, being executed 60
times over the projected five-year period.

The values of M and Y(which change constantly after
having been given starting values in line 5) result in
the values provided for by the two-dimensional array
created by line 50. Lines 60 and 70 calculate and print
the running total.

Those are the basics of how this program runs. But
now let's add the compounding of interest, which will
make our Retirement Investment Analysis program
more useful. Add the following lines to the program
already in memory by simply typing them in (press
RETURNafter each program line):

12 PRINT "ENTER INTEREST RATE AS FOLLOWS--6,75%, ENTER .0675, ETC.

14 INPUT "YEARLY INTEREST RATE";B

62 LET I=(B/12)*T: REM CALCULATE MONTH'S INTEREST

64 LET T=T+I: REM ADD INTEREST TO TOTAL

47

Now run the program again. This time you have to
enter not only the amount you plan to invest per
month but also the amount of interest you will be
earning on the money. Once you have done so, the
computer executes a procedure similar to what it did
before. Ifyour computer has enough memory space, it
will complete the program and display a final answer
(under the twelfth month of the fifth year). Ifyour
computer doesn't have a large enough memory, the
computer will not be able to finish the program, and
you will see some sort of error message on the screen.
Either way, you will see the effect that the increasingly
large arrays have on memory size.

Ifyou want to change the number of years being
analyzed in the program, you must change lines 20
and 30. In line 20, the value of 5 in the DIM statement
must be changed to the value of the final year desired.
In line 30, the final value of the FOR statement must
also match the new value.

This program gives you the opportunity to find out
how your total savings would vary, depending on the
amount you save per month, the interest rate, and the
number of years you save. You might want to try
changing these amounts a few times to see the results
of various investments.

Ifyou would like to store this program for future use,
use the SAVE command to store it on cassette or disk.

Once you have the program safely stored (or ifyou
don't mind losing the program), you might try an
experiment that shows how important the DIM
statement is in this program. Try deleting line 20 by
typing 20 and pressing the RETURN key. Then RUN
the program without the DIM statement. You will see
that it works, up to a point. But you wind up with
something like this on your screen:

MONTH #10 TOTAL IS 2051.01

?SUBSCRIPT OUT OF RANGE IN 50

48

This highlights the importance of the DIM statement.
The use of dimensioned arrays sets aside all the mem
ory space needed to fit the entire array. This occurs
whether you use all of the array or not. The larger the
array, the more memory required.

REVIEW

In this chapter, you learned that...

• Control operations are a group of complex
BASIC operations that control the computer dur
ing the execution of programs.

• The SAVE command (CSAVE for cassette
drives) lets you store programs on cassette tape
or floppy disk.

• The LOAD command (CLOAD for cassette
drives) lets you load a single program from a tape
or disk.

• The RUN command can be used by itself to run
a whole program or with a line number to
specify that the program should run only from
the specified line on.

• The STOP and CONT commands work to

gether to temporarily halt the program and then
make it continue running.

• The END command completes the execution of
a program in a normal manner.

• The NULLcommand inserts nulls (dead spaces)
in a program.

• The ON-GOTO and ON-GOSUB commands

send the computer to particular program loca
tions, depending on the value of the variable in
the ON part of the statement.

• The DIM command tells the computer to set
aside a specific amount of its memory space to
hold data to be used in the program.

Chapter 6

LIBRARY
OPERATIONS

Library operations have two general types of
functions: they work with character strings,
and they perform mathematical operations.

Their names, like other BASIC command names, gen
erally indicate their functions. They are called library
operations because they make up a library of routines
(likesmall programs which respond to single com
mands) that are permanently stored inyour computer.
These routines make it easier to perform certain com
plex functions, but every one of them could be dupli
cated by a BASICprogram. Like the ON-GOTO and
ON-GOSUB commands, they make writing pro
grams easier once you know how to use them, and
they save memory space.

There are some library operations that you may use
often, even ifyou're not involved with advanced

mathematics. Those are the library operations that
we'll discuss, starting with the ones involving charac
ter strings.

INSIDE STRINGS

You already know that a group of characters can be
stored in your computer as a character string. One
group of powerful library operations allows you to
reach inside a character string and pull out specific
characters (or values based on those characters).
These operations have the following names: LEN,
LEFTS, MIDS, RIGHTS, STRS, and VAL Let's look at
each of these operations.

49

LEN

The LENoperation causes the computer to count the
number of characters (including spaces) in a specified
character string. LEN is an abbreviation for LENgth of
a character string. The actual command to the com
puter to get it to count the number of characters in the
character string AS would be LEN(AS). Trythis short
program to see how the LEN operation works:

NEW

10 A$="CHARLIE"

20 B$="DENISE"

30 PRINT A$*,LEN(A$)

40 PRINT B$;LEN(B$)

When you run the program, the computer's response
is this screen display:

CHARLIE 7

DENISE 6

The computer printed the contents of the character
strings in response to the PRINT commands in lines 30
and 40 (although you wouldn't always have it do
that). It also counted and displayed the number of
characters in each string in response to the LEN com
mands in lines 30 and 40. In some cases, you might
not want to have it display the number of characters
in the string. You might instead use LEN to assign a
value to a variable with a command like X=LEN(AS).

50

LEFT!

The LEFT Soperation identifies the specified number of
characters at the left end (the beginning) of the
character string. The number of characters wanted
may be specified by using either a constant or a
variable. The form for a command to identify the first
five characters in string AS would be LEFTS (AS,5).

To see how this works, try these direct commands:

A$="WHYN0T"

PRINT LEFT$(A$,3)

The computer displays this on the screen:

You asked for the first three characters of the character
string AS, and that's what you got. Now try a pro
gram example:

NEW

10 A$="EASY BASIC COMMANDS"

20 B$=LEFT$(A$,4)

50 PRINT B$

Now run the program. The computer responds by
printing the first four letters of the character string A S,
because that is the value assigned to BS in line 20.

J-

4

4

•

i

^

»

MIDI

The MIDSoperation identifies the specified number of
characters in the middle of the character string. The
form for a command to identify a section of four
characters, starting with the fifth character in the
character string AS, would be MID S(A$,4,5).You can
use either a constant or a variable to specify the
number of characters to be identified and the number
of the character where the section begins.

Add these lines to the program you just used:

30 C$=MID$(A$,5,6)

60 PRINT C$

Then usethe LIST command to display the program on
the screen. The program now looks like this:

10 A$="EASY BASIC COMMANDS

20 B$=LEFT$(A$,4)

30 C$=MID*(A$,5,6)

50 PRINT B$

60 PRINT C$

Now run the program, and the computer givesyou
this response:

As before, you asked the computer to identify and
print the first four characters in AS. The new lines
asked it to identify and then print a section of five
characters, starting with the sixth character in AS.

RIGHT!

The RIGHTS operation identifies the specified number
of characters at the right end (the end) of the charac
ter string. The number of characters to be identified
may be specified by using either a constant or a
variable.The form for a command to identify the last
five characters in string AS would be RIGHTS (A$,5).

Let's add two more lines to the program we've been
working with to see the RIGHTS operation in action:

40 D$=RIGHT$(A$,8)

70 PRINT D$

Now LIST the programon the screen again. It looks
like this:

10 A$="EASY BASIC COMMANDS

20 B*=LEFT$(A$,4)

30 C$=MID$(A$,5,6)

40 D$=RIGHT$(A$,8)

50 PRINT B$

60 PRINT C$

70 PRINT D$

Now run the program. The computer givesyou this
response:

You asked the computer to do the same things that it
did before. In the new lines,you asked it to identify
and print the last eight characters in AS.

51

STR*

The STR Soperation converts a numeric value into a
character string. Why might you want to do that?

Remember that these two statements are not

the same:

10 A=29.95

20 A$="29,95"

The value in line 10 can be used in any numeric
calculation you might want to perform, but the value
in line 20 cannot. The computer considers the numeral
in line 20 as a string of characters—not as a numeric
value.

There will be times when you have a numeric value
that you want to display as a character string. The
form for a command to change a value of the numeric
variable A to a string value would be STR S(A). Here's a
case in which you need to do just that:

NEW

10 PRINT "ENTER THE COST OF

THE ITEM"

20 INPUT A

30 LET A$=STR$(A)

40 LET B$="$":REM FOR DOLLAR

SIGN

50 PRINT "THE COST OF THE ITEM

IS"

60 PRINT B$+A$

When you run the program, the INPUTstatement in
line 20 asks you to supply a numeric value. The STR S
operation in line 30 converts that numeric value into a
character string, which can then be used in line 60.

52

VAL

The VAL operation is the opposite of the STR Sopera
tion. The VAL operation converts a character string
into a numeric value. The VAL operation can be very
useful for pulling numeric data out of a character
string. But it is much more complex for the computer
than the STR Soperation, because the character string
which the computer is asked to convert may contain
letters, numerals, or combinations of both. For this
reason, the computer follows some very specific rules
when performing VAL operations.

If there are no numeric characters in the character

string, or if the character string begins with letters
rather than numerals, the VALoperation will assign
a value of zero. Ifthe string contains both numerals
and letters, the VAL operation will read only the first
numeral (or first combination of numerals).

The form for a command to change the string value of
character string AS to a numeric value would be VAL
(AS). Here is a simple example of a VAL operation in a
program:

NEW

10 A$="1000 TIMES, 2000 TIMES,"

20 PRINT VAL(A$)

When you run the program, the computer displays
this response:

The VAL operation gave you the first combination of
numerals in the character string AS.

HOW YOUR COMPUTER HANDLES
CHARACTERS

Your computer performs all of its calculations by trans
lating whatever you type on the keyboard [orwhat
ever it receives through a telephone modem) into
numbers. Each key on your keyboard can be repre
sented by a specific number. The group of numbers
that represents all the characters on the keyboard is
known as the ASCIITable. The word ASCII (pro
nounced ask-ee) is an acronym for American
Standard Code for Information Interchange. The
entire scheme of ASCII codes allows one brand of
computer to talk to another brand of computer over
telephone lines. They communicate by using the
ASCII codes.

We could showyou a table displaying the ASCII value
for every character on your keyboard. But itwould be
more fun to letyour computer do that foryou. Try this
program for an interesting display:

NEW

10 FOR X = 0 TO 255

20 PRINT "CHARACTER IS";CHR$(X

30 PRINT "ASCII VALUE IS ";X:
PRINT

40 FOR T=l TO 500: NEXT T: REM

TIME DELAY TO READ SCREEN

50 NEXT X

The program causes your computer to print every
value assigned within the normal ASCII range of 0 to
255. This program will not do exactly what you might
expect it to do. You may get blank spaces often, and
the screen display may be scrambled. These things are
all fine, but we can't tell you exactly what they will be
because they are totally different from computer to
computer.

The uppercase and lowercase letters, the numbers,
punctuation marks, and other keyboard symbols are
the same or very similar from computer to computer,
but those values occupy only part of the range dis
played by this program. The other values displayed
are assigned by the manufacturer of your particular
computer. On some computers, various graphics pat
terns correspond to various ASCII values. On other
computers, you will get special control codes, or blank
spaces. The exact ASCII table you get, therefore, will
depend on your specific model of computer.

CHRI

The CHRS operation (performed in line 20 of the
program wejust ran) provides the character that is
equivalent to the ASCII value specified. The operation
name CHRS is an abbreviated form of character. The
form fora command to identify the characterequiva
lent to ASCII value 78 would be CHRS(78). The value
to be identified can be any number between 0 and
255. The program wejust ran went through variables
with each of those values (using a FOR-NEXT loop).

You can also see the character equivalents of indi
vidual ASCII values. Tryit, using this direct command:

PRINT CHR$(78)

Yourcomputer displays the character N on the screen.

ASC

The ASC operation isjust the opposite of the CHR S
operation. ASCcauses the computer to identify a
numeric value representing the ASCII equivalent of
the first character in the character string. The opera
tion name ASC is an abbreviated form of ASCII.

Tofind out what the ASCI Ivalue of the character M is,
for example, you can use this direct command:

PRINT ASC("M")

The computer tells you that the ASCIIvalue of M is 77.
(Note that the computer gives you the ASCII number
in decimal form, even though the computer actually
operates with numbers in binary form.)

53

POSITIONING CHARACTERS

ON THE SCREEN

The SPC and TAB functions are used to move the

cursor to different positions on the screen.

SPC or PRINT AT

The SPC operation (called PRINTAT on some com
puters) moves the cursor to another position on the
screen. It creates space (hence its name) between the
left side of the screen, where your computer normally
starts to display text, and where the text actually
shows on the screen. You specify the number of
spaces you want by placing that number in parenthe
ses after the SPC command. The command takes the

form SPC (X).

Youcan also use SPC to create controlled spacing
between words and numbers in your PRINT
statements.

Trythis direct command to see how SPC works.

PRINT SPC(12) "HI!"

The computer displays this response:

Ifyour computer gives you an error message instead,
try

PRINT AT (12)"HI!"

54

TAB

The TAB operation also moves your cursor a specified
number of spaces from the left side of the screen. It
works like the TAB key on a"typewriter. TAB is useful
for preparing charts with columns of numbers, or for
anything else that requires standard but indented
spacing.

Trythis example to see how it works:

PRINT TAB(5)2$TAB(10)4iTAB(15)6

The computer should give you this evenly spaced
response:

The number in parentheses after the TAB command
tells the computer the exact column in which to begin
displaying the word or numeral. The firstTAB tells the
computer to print the numeral 2 in the fifth column
from the left side of the screen. The second TAB tells it
to begin in the tenth column. The third TAB tells it to
begin in the fifteenth column.

On some computer keyboards, there is a TAB key,
which means that you may not need the TAB
command. Ifyou have a TAB key on your computer,
see your operator's manual for instructions on
setting tabs.

•

v

AND NOW FOR THOSE MATHEMATICAL
OPERATIONS!

The remaining library operations are used primarily
in advanced mathematics; for that reason, we will
explain only what they do (not how or why or what
that might mean). Some of these functions will be
familiar to you ifyou have studied algebra or
trigonometry.

ABS

The ABS operation identifies the absolute value of
the specified number (or variable value). To find the
absolute value of -5, enter the following:

PRINT ABS(-5

The computer responds like this:

ATN

The ATN operation identifies the arctangent of the
value of the angle when the specified number (or
variable value) is the tangent of the angle. The ATN
value is expressed in radians; for conversion to
degrees, multiply it by 57.29578.

To find the arctangent of the value of the angle when
the tangent of the angle is 29, enter the following:

PRINT ATN(29

The computer responds like this:

COS

The COS operation identifies the cosine of the
number (or variable value) when the number is
expressed in radians. Tofind the cosine of 45, enter the
following:

PRINT C0S(45)

The computer responds like this:

EXP

The EXPoperation identifies the value of e raised to
the power of the number (orvariable value) specified,
as represented by the mathematical expression e*The
symbol e represents the base of the natural system of
logarithms. The name EXP is an abbreviation for
exponent. The EXP operation is the opposite of the
LOG operation. To find the value of el enter the
following:

PRINT EXPd)

The computer responds like this:

INT

The INT operation rounds a specified number (or
variable value) to the nearest integer (whole number)
that is not larger than the number itself. In other
words, INT tells the computer to round down (trun
cate) a decimal number to a whole number—which
means that it simply cuts off anything to the right of a
decimal point.

55

Trythis short program to get a few examples:

NEW

10 PRINT INT(55.B)

20 PRINT INTO.9)

30 PRINT INTO.01)

When you run this program, the computer gives you
these responses:

LOG

The LOG operation identifies the natural (base)
logarithm of the specified number (or variable value).
LOG is exactly the opposite of the EXPoperation. To
find the natural logarithm of 15, enter the following:

PRINT L0G(15

The computer responds like this:

2.70805

RND

The RND operation generates an artificial random
number. The numbers produced are not actually ran
dom numbers, since the computer uses a specific pro
cedure to create them. However, due to the rate at

which they vary, they appear to be true random
numbers.

56

Some computers require the use of the command
RANDOM at the beginning of a program that uses a
RND statement. The exact method in which RND is

used varies from computer to computer. On most
computers the format used here is acceptable. But if
your computer gives you an error message, refer to
your operator's manual to find the precise form
required for your computer.

Using the RNDstatement in an expression creates
random numbers within whatever restrictions you
set. Try these examples:

PRINT (25*RND<1))

PRINT INT(25*RND(1)

The first example produces a number between 0 and
25; the second produces a whole number between 0
and 25.

The RND and INToperations are useful in many game
programs. Various random values add an element of
surprise to some games and are necessary in many
others. For example, in a program that plays blackjack,
the computer usually creates the effect of drawing
different cards by using a RND statement. And since
the RND statement generates a number that is not
necessarily a whole number, an INTstatement is used
to round the value down to make it a whole number.

SGN

The SGN operation identifies the sign of a value. The
computer responds with a -1 for any value that is
negative, 0 if the value is zero, and +1 for any value
that is positive.

Try this example:

PRINT SGN (-312)

The computer responds like this:

SIN

The SIN operation identifies the sine of the specified
number (or variable value) when the value is
expressed in radians. To find the sine of 45, enter the
following:

PRINT SIN(45)

The computer responds like this:

son

The SQR operation identifies the square root of the
specifiednumber or variable. To findthe square root of
25, enter the following:

PRINT SQR(25)

The computer responds like this:

TAN

The TAN operation identifies the tangent of the
specified number (or variable value) when the value is
expressed in radians. To find the tangent of 129, enter
the following:

PRINT TAN(129)

The computer responds like this:

• 197194

MACHINE LANGUAGE

Now we'll consider some operations that are avail
able on some but not all personal computers. These
operations have direct control over the language in
which your computer works. That language is called
machine language. Since it deals entirely with num
bers and never with words, it is a great deal more
difficult to work with than BASIC. There are three
common statements that provide direct access to the
machine language of personal computers. Those
statements are PEEK, POKE, and USR.

"CAUTION**

The PEEK, POKE, and USR statements allow direct
control of the system. When using these statements,
be very careful. You need to know where you are
when you POKE or what you are accessingwith USR.
And you need to double-check your work before
running programs. Ifyou POKE the wrong locations
(such as the registersor stack area) you can cause
your program to crash, which will force you to start
over from the beginning. Inrare cases, ifyou POKE the
memory circuitry, you can damage the circuitry and
may need to replace the memory chips. Because of
their tremendous power, PEEK, POKE, and USR are
not even valid commands on some computers. Check
your operator's manual before you try to use these
commands.

Wedo not want to scare you away from using PEEK,
POKE, and USR, but we do want you to be careful.
Know where you are when you are using them.

PEEK

The PEEKstatement provides the value that is stored
at a specific memory location. The value is given in
decimal form (though your computer actually works
with numbers in binary form). Before you use PEEK,
you should consult the memory map in the operations
manual for your computer. PEEK (X) provides the
contents of the memory address represented by the
value given.

57

POKE

The POKE statement loads a specific value into a
specified memory location. The complete statement
takes the form POKE (X, Y). Here X is the address
where we want to store data, and Y is the data that
we want to store. The address and the data must be

separated by a comma.

Ifyou are writing the program, you should consult the
memory map in the technical overview section of the
operations manual to check the location to poke. The
value (Y) can range from 0 to 255. The address (X) can
range from 1to 65,535 (the limitof addressable mem
ory in an 8-bit microcomputer). Exceptions to the limit
of 65,535 exist in the case of 16-bit computers (like the
TI-99/4Aand the IBM Personal Computer).

Both PEEK and POKE are useful in using machine
language instructions. By using them, you can access
machine language from a BASIC program for more
efficient use of your system.

USR or CALL

The USR operation (named CALL on some computers)
enables you to linkyour BASIC program with machine
language to run more efficient programs. Youcan call
machine language from a BASIC program with the
USR operation and return to BASIC when you need
to. Machine language, while far more efficient to use,
is also considerably more difficult to use than BASIC. It
requires you to be familiar with assembly language
programming, as well as with the instruction set of the
microprocessor used by your computer.

58

REVIEW

In this chapter, you learned that...

• Library operations generally either work
with character strings or perform advanced
mathematical operations.

• The LEN operation counts the number of
characters (including spaces) in the specified
character string.

• The LEFTS, MIDS, and RIGHTS operations
identify the specified number of beginning, mid
dle, and end characters (respectively) in a
character string.

• The STR Soperation converts a numeric value
into a character string. The VAL operation does
just the opposite, converting a character string
into a numeric value.

• The ASC operation gives the ASCII value that
corresponds to the character specified. The
CHRSoperation doesjust the opposite, giving
the character equivalent to a specified ASCII
value.

• The SPC (or PRINTAT)and TAB operations
move the cursor to specified places on the
screen.

• The ABS, ATN, COS, EXP INT, LOG, RND,
SGN, SIN, SQR, and TAN operations perform
advanced mathematical functions.

• The PEEK, POKE, and USR(or CALL) operations
allow direct control of the machine language of
most computer systems.

^

Chapter 7

SOME SAMPLE
PROGRAMS

This book is not intended to turn you into a
computer programmer overnight, but by now
you should have a good idea of what BASIC is

and how it works. Ifyou would like to learn more
about programming, the sample programs in this
chapter will help you practice and learn.

At this point, one of the best things you can do to
learn more about programming is to work with and
experiment with programs. Enter one of the following
sample programs into your computer's memory Tryto
figure out what the program does and how it works.

Then try to modify it in some way, using what you
have learned about BASIC programs.

When you get tired of these programs, buy a
book of programs at your local computer store or
bookstore, and try modifying some of the programs in
it. Try writing a couple of short, simple programs of
your own. The only way to learn to program is to sit
down in front of the computer and try it—experiment!

59

ADVENTURE GAME PROGRAM

*9 *? 1 '?'?'?*?'?'?'•?'?*?'?'?'•?'?

Here isa program for an adventure game called "Reef
Rescue." The program uses IF-THEN statements to
send you on different adventures every time you play
the game. Note how lines 580 to 600 keep track of
how long the player has waited on the reef. Once you
understand how this program works, you can use the
same techniques to expand on this game or to write
your own adventure or mystery games.

10 IW=0

20 REM CLEAR THE SCREEN

30 FOR CL=1 TO 40:PRINT:NEXT CL

40 PRINT " WELCOME TO REEF RESCUE!"

50 PRINT

60 PRINT "YOU HAVE JUST WASHED UP ON THE SHORE OF A SMALL"

70 PRINT "ISLAND SOMEWHERE IN THE SOUTH PACIFIC. YOU ARE"

SO PRINT "A LITTLE DISORIENTED AND CONFUSED, BUT YOU REMEMBER"

90 PRINT "SOMETHING ABOUT GOING FOR A CRUISE ON A REAL-LIFE"

100 PRINT "LOVE BOAT, AND THEN FALLING OVERBOARD WHEN YOU"

110 PRINT "FAINTED WHILE READING YOUR LINES,"

120 PRINT

130 PRINT "THERE IS A CLIFF TO THE EAST, WITH A TREACHEROUS"

140 PRINT "STONE PATH LEADING TO THE TOP. THE BEACH IS TOO"

150 PRINT "NARROW TO FOLLOW SOUTH, BUT IT LOOKS LIKE YOU COULD"

160 PRINT "WALK NORTH ALONG THE BEACH,"

170 PRINT

180 INPUT "DO YOU WANT TO GO NORTH OR EAST";DI$

60

190 PRINT

200 IF DI$="NORTH" THEN GOTO 260

210 IF DI$="EAST" THEN GOTO 230

220 PRINT DI$?" IS NOT ONE OF YOUR CHOICES!":PRINT:GOTO 180

230 PRINT "YOU CLIMB SLOWLY TO THE TOP OF THE CLIFF, WHERE YOU"

240 PRINT "ARE EATEN BY A MAN-EATING TIGER. BUMMER."

250 GOTO 760

260 PRINT "WALKING ALONG THE BEACH, YOU SOON FIND A SMALL WOODEN"

270 PRINT "BOAT STUCK IN THE SAND. THE TIDE IS RISING, AND THE"

280 PRINT "BOAT WILL SOON BE FLOATING. A DARK AND NARROW PATH"

290 PRINT "LEADS INTO THE JUNGLE BEHIND THE BOAT."

300 PRINT

310 INPUT "DO YOU WANT TO GO BOATING OR WALKING";DI$

320 PRINT

330 IF DI$="BOATING" THEN GOTO 470

340 IF DI$="WALKING" THEN GOTO 360

350 PRINT DI$; " IS NOT ONE OF YOUR CHOICES!":PRINT:GOTO 310

360 PRINT "THE PATH LEADS TO A SMALL HOUSE. A SMALL ELDERLY"

61

4

i

370 PRINT "GENTLEMAN COMES OUT OF THE HOUSE TO GREET YOU."

380 PRINT MYOU TELL HIM OF YOUR JOURNEY, AND HE"

390 PRINT "YELLS BACK TO SOMEONE INSIDE THE HOUSE, 'JOSEPH,"

400 PRINT "BRING THE LEAR JET AROUND AND TAKE THIS" ^

410 PRINT "POOR SOUL BACK TO THE MAINLAND.'"

420 PRINT

430 PRINT "SOON, A LEAR JET LANDS NEARBY. YOU CLIMB ABOARD, AND"

440 PRINT "THE PILOT ASKS YOU WHERE YOU'RE GOING. MOMENTS LATER,"

450 PRINT "YOU ARE AIRBORNE AND HEADED FOR HOME."

460 GOTO 760

470 PRINT "THE TIDE SLOWLY RISES, AND THE BOAT BREAKS FREE. YOU"

480 PRINT "HOP ABOARD AT THE LAST SECOND, AND THE BOAT DRIFTS"

490 PRINT "SLOWLY OUT TO THE REEF, WHERE IT RUNS AGROUND. YOU"

500 PRINT "HAVE TWO CHOICES NOW -- YOU CAN WAIT ON THE REEF, OR SWIM"
I

510 PRINT "BACK TO SHORE."

520 PRINT

530 INPUT "WHAT DO YOU WANT TO DO";DI$

I
540 PRINT

550 IF DI$="SWIM" THEN GOTO 630 *

560 IF DI$="WAIT" THEN GOTO 580

570 PRINT DI$s" IS NOT ONE OF YOUR CHOICES!":PRINT:GOTO 530

580 IF IW=20 THEN GOTO 740 fl

590 IF IW>10 THEN GOSUB 720

^

^

^

.

*

*-

600 IW=IW+1

610 PRINT "IT IS MUCH LATER NOW. YOU HAVE TWO CHOICES -- YOU"

620 PRINT "CAN WAIT LONGER, OR SWIM BACK TO SHORE,":PRINT:GOTO 530

630 PRINT "YOU SLIP INTO THE WARM WATER AND BEGIN SWIMMING TOWARD"

640 PRINT "SHORE, THE TIDE IS GOING BACK OUT NOW, SO IT TAKES A"

650 PRINT "LONG TIME TO REACH THE BEACH. FINALLY, YOUR TOE HITS"

660 PRINT "BOTTOM AND YOU STAND UP. YOUR FEET SINK IN A LITTLE"

670 PRINT "AND YOU FEEL SOMETHING SLIMY AGAINST YOUR LEGS. TOO"

680 PRINT "LATE, YOU REALIZE THAT YOU'RE STANDING IN A GIANT CLAM"

690 PRINT "AND HE IS CLOSING HIS JAWS. THE TIDE IS RISING AGAIN"

700 PRINT "NOW, AND,.. (WE'LL LEAVE OUT THE GRUESOME DETAILS)"

710 GOTO 760

720 PRINT "A HELICOPTER CAN BE HEARD IN THE DISTANCE."

730 PRINT:RETURN

740 PRINT "CONGRATULATIONS! YOUR INFINITE PATIENCE HAS FINALLY"

750 PRINT "PAID OFF. THE HELICOPTER LANDS, AND YOU CLIMB ABOARD."

760 END

63

EDUCATIONAL PROGRAM

The following program can form the basis of a
computer-assisted education program for virtually
any subject. It makes use of READ and DATAstate
ments, and you can change the information in the
statements to match the questions you would like the
computer to ask. Just make sure that you change the
final value of 5 in the FOR-NEXT loop in line 50 to
match the number of DATA statements used from line

200 on.

10 PRINT "THIS PROGRAM WILL TEST YOUR KNOWLEDGE OF"

20 PRINT "IMPORTANT YEARS IN AMERICAN HISTORY."

30 PRINT "ENTER YOUR ANSWER FOLLOWING EACH QUESTION."

35 PRINT "IF YOU CANNOT ANSWER, ENTER NEXT FOR THE NEXT
QUESTION."

40 PRINT:F0R T = i TO 1000:NEXT T

50 FOR A=l TO 5

60 READ Q$,Y$

70 PRINT "WHAT IS THE YEAR OF THE"

30 PRINT Q$

90 INPUT B$

95 IF B$="NEXT" THEN PRINT "THE CORRECT ANSWER IS ";Y$:G0T0 150

100 IF B$=Y$ THEN 130

110 PRINT:PRINT "NOT QUITE CORRECT. TRY AGAIN."

120 GOTO 70

130 PRINT:PRINT "THAT'S RIGHT!"

140 FOR T=l TO 1000:NEXT T

150 NEXT A

200 DATA "DISCOVERY OF AMERICA BY COLUMBUS","1492"

64

b

~

210 DATA "START OF REVOLUTIONARY WAR","1776"
i

220 DATA "START OF CIVIL WAR","1861"

230 DATA "GREAT SAN FRANCISCO EARTHQUAKE","1906

240 DATA "BOMBING OF PEARL HARBOR","1941"

^

~

^

•

65

FORM LETTER PROGRAM
,<&k jfo. &&. &&. &&. 1&&. jfo. &&. g&. &&. J&. ^ ^ ^ ^ ^

Here is a program for a computerized form letter.The
program uses string variables and INPUTstatements
to personalize the letter. Of course, the computerized
form letters you receive in the mail are sometimes
more sophisticated. But this simple program shows
you the basic principles behind form letters. Using
those principles,you can write your own form letter,
using whatever variables you wish within the letter.

You might want to adjust the number of characters
used in the character strings in the PRINTstatements
to match the number of columns that can be displayed
on your computer. Ifyou have a printer and want
printed copies of the letter, use the LPRINT command
(or whatever command your computer uses to pro
vide output to the printer) instead of PRINT in those
program lines containing the actual letter.

10 PRINT "SWEEPSTAKES WINNER FORM LETTER"

20 PRINT "ENTER RECIPIENT'S FIRST NAME."

30 INPUT TN$

40 PRINT "ENTER RECIPIENT'S LAST NAME."

5 0 INPUT LN$

60 PRINT "ENTER RECIPIENT'S STREET ADDRESS."

70 INPUT AD$

80 PRINT "ENTER RECIPIENT'S CITY."

90 INPUT CT$

100 PRINT "ENTER RECIPIENT'S STATE."

110 INPUT ST$

120 PRINT "ENTER RECIPIENT'S ZIP CODE,"

130 INPUT ZC$

66
V

.£%. ^ &&. ^. &&. ^fa. ^ &&. &&. xSk &&. .dAk ^S^ ^& ,&*%* x&k

140 PRINT "ENTER PRIZE WON."

150 INPUT PW$

160 FOR CL=1 TO 40:PRINT:NEXT CL

200 PRINT TN$;" ";LN$

210 PRINT AD$

220 PRINT CT$;" ";ST$;" ";ZC$

230 PRINT

240 PRINT "CONGRATULATIONS, "•,TN$$" ";LN$;"!!"

250 PRINT "YOU ARE ONE OF THE LUCKY WINNERS IN"

260 PRINT "THE STUPENDOUS SUPER SWEEPSTAKES."

270 PRINT

280 PRINT "THE WHOLE ";LN$?" FAMILY WILL BE"

290 PRINT "DELIGHTED WHEN YOUR SPECIAL PRIZE"

67

4

i

&&, &&. &&. &&. &&. .3A&. &&. &&. ^Ak &&. &&. &&. -«& &&. .£*& ^;

300 PRINT

310 PRINT TAB(10)PW$

320 PRINT ^

330 PRINT "IS DELIVERED TO YOUR DOOR AT"

340 PRINT AD$;"i YOU'LL BE"

350 PRINT "THE ENVY OF ALL YOUR FRIENDS AND" «

360 PRINT "NEIGHBORS IN ";CT$;"."

370 PRINT

380 PRINT "IMAGINE!! ";PW$ *

390 PRINT "WILL BE ALL YOURS!! YOUR PRIZE WILL BE"

400 PRINT "DELIVERED WITHIN THREE WEEKS,"

410 PRINT *

420 PRINT "CONGRATULATIONS AGAIN, ";TN$;" ";LN$;","

430 PRINT "ON YOUR GOOD FORTUNE!"

440 PRINT *

450 PRINT "SINCERELY,"

460 FOR CL=1 TO 4:PRINT:NEXT CL

470 PRINT "ROGER THOMPSON" ^

480 PRINT "EXECUTIVE VICE-PRESIDENT"

490 PRINT "STUPENDOUS SUPER SWEEPSTAKES"

68

HOME FINANCE ANALYSIS

Here is a program for home finance management.
Home finance software programs are extremelypopu
lar,and many such programs are available on the
market. However, there is a problem with "standard"
home finance programs. They are written to match
any and allfamily finances, which does not necessarily
mean your finances. You can solve this problem (and
get a little practice in modifying a BASIC program) by
developing a program tailored to your own home
finances. Here isa basic personal finance program,
along with details regarding each of the subroutines.
By applying the suggestions following the program,
you can customize the program to match your indi
vidual financial picture.

The program consists of four major subroutines.
The first is an income subroutine that will take into

account various pay periods and store in memory the
total income for a given month. It also provides an
input for additional income of varying amounts. The
second subroutine considers fixed expenses—those
costs that do not normally vary on a month-to-month
basis.The third subroutine considers expenses that do
vary, such as utility bills. The fourth subroutine is a
display or print subroutine that provides a "balance
sheet" of the financial information calculated by the
program. The program is flexible in that it affords you
the opportunity to shift expenses and re-display the
new results ifyou don't like the looks of the balance
sheet. For the months when expenses are greater
than income, the program givesyou the opportunity
to borrow from savings or sources of credit; then you
can re-display the balance sheet with the updated
results.

10 PRINT " HOME FINANCE ANALYSIS "

20 PRINT:PRINT:PRINT

50 REM JIM'S SALARY=$301.50

60 LET JS=301,50

70 REM MARY'S SALARY=$355,00

80 LET MS=355

90 PRINT "HOW MANY PAY PERIODS THIS MONTH FOR JIM?"

100 INPUT JP

110 PRINT "HOW MANY PAY PERIODS THIS MONTH FOR MARY?"

120 INPUT MP

130 LET TS=(JS*JP)+(MS*MP)

140 PRINT "ANY ADDITIONAL INCOME I SHOULD KNOW ABOUT?"

69

150 INPUT A$:IF A$="YES" THEN 200

160 IF A*="Y" THEN 200

170 IF A$="NO" THEN 300

180 IF A$="Nn THEN 300

190 PRINT "A SIMPLE YES OR NO WILL DO!":GOTO 140

200 PRINT "ENTER THE ADDITIONAL AMOUNT OF INCOME,"

210 INPUT AS

220 LET TS=TS+AS

300 REM FIXED EXPENSE CALCULATIONS

310 REM M0RTGAGE=$682.83

320 LET A=682,83

330 REM CAR PAYMENT=$188.85

340 LET B=188,S5

350 REM SECOND CAR PAYMENT=$124,80

360 LET C=124.80

370 REM CAR INSURANCE=$32,30

380 LET D=32.30

390 REM BEDROOM FURNITURE=$57,50

400 LET E=57,50

500 LET FX=A+B+C+D+E+F+G+H+J+K

600 FOR CL=1 TO 30:PRINT:NEXT CL

610 PRINT "I WILL NEED INFORMATION REGARDING"

620 PRINT "THIS MONTH'S VARIABLE EXPENSES,"

70

630 PRINT:PRINT "GROCERIES COST?"

640 INPUT M

650 PRINT "ELECTRIC BILL?"

660 INPUT N

670 PRINT "GAS BILL ?"

680 INPUT P

690 PRINT "WATER BILL?"

700 INPUT Q

710 PRINT "HEALTH COSTS?"

720 INPUT R

730 PRINT "CLOTHING COSTS?"

740 INPUT S

750 PRINT "CHARGE CARD BILL?"

760 INPUT T

770 PRINT "ANY ADDITIONAL EXPENSES? YES OR NO."

780 INPUT B$:IF B$="YES" THEN 830

790 IF B$="Y" THEN 830

800 IF B$="NO" THEN 1000

810 IF B$="N" THEN 1000

820 PRINT "A SIMPLE YES OR NO WILL DO!":GOTO 770

830 PRINT "PLEASE DESCRIBE THE ADDITIONAL EXPENSE"

840 PRINT "IN TWENTY CHARACTERS OR LESS."

850 INPUT AX$

71

860 PRINT "PLEASE ENTER THE AMOUNT"

870 PRINT "OF THE ADDITIONAL EXPENSE."

880 INPUT AX

1000 LET VX=M+N+P+Q+R+S+T+U+V+AX

1110 FOR TT=1 TO 6000:NEXT TT:FOR CL=i TO 30:PRINT:NEXT CL

1120 PRINT "YOUR VARIABLE EXPENSES TOTAL $";VX

1130 PRINT "THIS MONTH'S EXPENSES TOTAL $";(VX+FX)

1140 PRINT "WHEN YOUR EXPENSES ARE SUBTRACTED FROM YOUR INCOME,"

1150 PRINT "THE AMOUNT REMAINING IS: $"\(TS-(VX+FX))

1160 IF (TS-(VX+FX))<0 THEN 1400

1170 PRINT "ANY FUNDS TO SAVINGS? YES OR NO."

1180 INPUT C$:IF C$="YES" THEN 1230

1190 IF C$="Y" THEN 1230

1200 IF C$="NO" THEN 2000

1210 IF C$="N" THEN 2000

1220 PRINT "A SIMPLE YES OR NO WILL DO! "-.GOTO 1170

1230 PRINT "ENTER AMOUNT DESIRED."

1240 INPUT SV:IF (TS-(VX+FX+SV)X0 THEN 1600

1250 FOR TT=1 TO 6000:NEXT TT:FOR CL=1 TO 30:PRINT:NEXT CL

1260 PRINT "WHEN SAVINGS ARE DEDUCTED FROM YOUR READY CASH,"

1270 PRINT "YOUR NEW READY CASH REMAINING IS: $";(TS-(VX+FX+SV))

1280 LET RC=(TS-(VX+FX+SV)):GOTO 2000

1400 FOR TT=1 TO 6000:NEXT TT:FOR CL=1 TO 30:PRINT:NEXT CL

1410 PRINT "WARNING! CALCULATIONS SHOW A DEFICIT"

1420 PRINT "IN THIS MONTH'S FINANCES."

1430 PRINT "CHOOSE AN OPTION FROM THE MENU BELOW."

1440 PRINT:PRINT "(1) WITHDRAW FROM SAVINGS"

1450 PRINT "(2) BORROW FROM SOURCE OF CREDIT"

1460 PRINT "(3) REDUCE FLEXIBLE EXPENSES"

1470 PRINT:PRINT "ENTER CHOICE NUMBER."

1480 INPUT CN

1490 ON CN GOTO 1700,1800,1900

1600 PRINT "SAVINGS AMOUNT HAS CREATED DEFICIT."

1610 PRINT "PLEASE RE-FIGURE SAVINGS."

1820 LET SV=0:GOTO 1170

1700 PRINT "ENTER AMOUNT FROM SAVINGS"

1710 INPUT SN

1720 PRINT "THIS AMOUNT WILL NOW BE ADDED TO"

1730 PRINT "YOUR INCOME, AND A NEW READY-CASH BALANCE SHOWN.

1740 LET TS=TS+SN

1750 FOR TT=1 TO 6000:NEXT TT:FOR CL=1 TO 30:PRINT:NEXT CL

1760 GOTO 1140

73

f

i

1800 PRINT "ENTER AMOUNT BORROWED."

1810 PRINT "ALL LOANS WILL IMPACT FUTURE EXPENSES." t

1820 INPUT BN

1830 PRINT "THIS AMOUNT WILL NOW BE ADDED TO YOUR"

1840 PRINT "INCOME, AND A NEW READY-CASH BALANCE SHOWN." 4

1850 LET TS=TS+BN

1860 FOR TT=i TO 6000:NEXT TT:FOR CL=1 TO 30:PRINT:NEXT CL

1870 GOTO 1140 ^

1900 PRINT "THE FIGURES THAT YOU RE-ENTER WILL"

1910 PRINT "REPLACE THE VARIABLE EXPENSES ENTERED EARLIER."

1920 FOR TT=1 TO 6000:NEXT TT:GOTO 610 ^

2000 REM BALANCE SHEET

2010 PRINT:PRINT "PRESS D AND RETURN TO"

2020 PRINT "DISPLAY BALANCE SHEET." *

2030 INPUT F$:IF F$="D" THEN 2070

2040 PRINT "WHAT???"

2050 GOTO 2010 I

2070 PRINT " INCOME FIXED EXPENSES "

2080 PRINT " --- " "

2090 PRINT "JIM'S =$"', (JS*JP)

2100 PRINT "MARY'S=$";(MS*MP)

2110 PRINT "ADDITIONAL=$"-,AS

2120 PRINT "TOTAL=$";TS *.

2130 PRINT " MORTGAGED" *, A

74

2140 PRINT " CAR PMT.tl=$";B

2150 PRINT " CAR PMT.#2=$";C

2160 PRINT " INSURANCE=$";D

2170 PRINT " FURNITURE=$";E

2250 PRINT:PRINT "PRESS N AND RETURN TO DISPLAY"

2260 PRINT "THE NEXT BALANCE SHEET."

2270 INPUT D$:IF D$="N" THEN 2300

2280 PRINT "WHAT???":PRINT:GOTO 2250

2300 FOR CL=1 TO 30:PRINT:NEXT CL

2310 PRINT"---VARIABLE EXPENSES "

2320 PRINT" ---"

2330 PRINT "GROCERIES=$";M

2340 PRINT "ELECTRIC BILL=$";N

2350 PRINT "GAS BILL=$";P

2360 PRINT "WATER BILL=$"?Q

2370 PRINT "HEALTH COSTS=$";R

2380 PRINT "CLOTHING COSTS=$";S

2390 PRINT "CHARGE CARD=$";T

2395 PRINT "-ADDITIONAL EXPENSES-"

2400 PRINT AX$;"=$";AX

2410 PRINT "FIXED EXPENSES TOTAL: $";FX

2420 PRINT "VARIABLE EXPENSES TOTAL: $";VX

2430 IF SV>0 THEN PRINT "AMOUNT TO SAVINGS IS: $";SV

2440 IF SN>0 THEN PRINT "AMOUNT FROM SAVINGS IS: $" \ SN

75

**************** «

2450 IF BN>0 THEN PRINT "AMOUNT BORROWED IS: $";BN

i
2460 PRINT "REMAINING READY CASH IS: $";(TS-(VX+FX+SV))

2470 PRINT "ENTER Y AND PRESS RETURN FOR MENU." *

2480 INPUT E$:IF E$="Y" THEN 2500

2490 PRINT "WHAT???":PRINT:GOTO 2470

2500 FOR CL=1 TO 30:PRINT:NEXT CL ^

2510 PRINT "WOULD YOU LIKE TO:"

2520 PRINT "(1) RE-DISPLAY THE ENTIRE BALANCE SHEET"

2530 PRINT "(2) RE-RUN THE PROGRAM FROM START"

2540 PRINT "(3) RE-RUN THE VARIABLE EXPENSE PORTION"

2550 PRINT "(4) QUIT"

2560 PRINT "ENTER NUMBER OF CHOICE."

2570 INPUT Z

2580 ON Z GOTO 2000,10,1900,2590 |

2590 FOR CL=1 TO 30:PRINT:NEXT CL

2600 PRINT " HAVE A NICE DAY ":END

76
1

Program Analysis

The first subroutine, lines)0 to 220, computes total
monthly income. Since pay periods vary from person
to person, the program makes its calculations based
on the number of pay periods in a given month. Lines
50 through 130 assume two wage earners in a family.
Lines similar to lines 70,80,110, and 120 can be added
for each additional wage earner in the family, or those
lines can be deleted entirely ifthere is only one wage
earner. Line 130 performs the actual calculation of
total monthly income, which is represented by the
variable TS. Lines 140 to 220 comprise an additional
income routine for moonlighting, garage sales, and
the like. You will need to substitute your salaries for
the values given as JS and MS in lines 50 to 80.

Lines 300 to 500 comprise the fixed expense sub
routine. You will need to substitute the names of each

of your fixed expenses for those expenses used in lines
310,330,350,370, and 390. In a similar fashion, you
will need to substitute the values of those fixed

expenses for the values of the variables in lines 320,
340,360,380, and 400. Ifyou have more than five
fixed expenses each month, you can add lines similar
to lines 310 to 400, numbering them anywhere in the
401 to 499 range, using the unused variables of f^ G,
H, J, and Kto represent the values of the expenses.

Lines 610 to 760 comprise the variable expense sub
routine. Again, the names of the bills listed in the
PRINTstatements can be changed, ifdesired, to reflect
your specific needs. The INPUT statements will cause
the amounts entered (at the time the program is run)
to be assigned to the variables M through V Lines 770
to 880 allow additional unplanned expenses to be
entered.

Lines 1000 to 2000 should not require any modifica
tion by you. These lines will total all expenses, subtract
them from the total income, and display the remaining
ready cash. A subroutine will be entered if a deficit
occurs. This subroutine (lines 1400 to 1920) will pre
sent a menu that allows you to resolve deficits by
withdrawing from savings, borrowing, or reducing
flexible expenses.

Lines 2000 to 2590 display a balance sheet showing
the results of all calculations. You will need to change
the names of the expenses in the PRINTstatements
(lines2090 to 2170 and 2330 to 2390). Also, ifyou
added lines within the range of 401 to 499 to repre
sent additional fixed expenses, you will need to add
additional lines to match these between line numbers

2171 and 2249. Each of the lines that you add must be
a PRINT statement, showing the name of the expense
and the variable chosen (from F to K) that matches it.
Lines2250 to 2280 exist only for the purpose of
splitting the balance sheet onto two full screens. This
is necessary with most personal computers, as the
balance sheet will not fit on one screen. Ifyour per
sonal computer displays 32 (or more) lines per screen,
you can delete lines 2250 to 2280 entirely and fit the
balance sheet on a single screen. Ifyou desire printed
output, and your computer uses the LPRINTstate
ment to provide output to your printer, you can sub
stitute LPRINT for PRINT in the lines between lines
2000 and 2460.

Also note lines 600,1110,1250,1400,2300,2500,
and 2590. These lines are used to clear the screen by
repeating PRINT statements within a FOR-NEXT
loop. This isn't the best method of clearing a screen,
but it works with all personal computers using
Microsoft, PET, or Atari BASIC. Ifyour system has a
"clear screen" command (such as CLS on a TRS-80 or
HOME on an Apple II), you should use it instead. Lines
1400 and 1920 are used to create time delays before
the screen displays further information. If the delay is
too short or too long on your system, you can increase
or decrease the final value of 6000 in these lines to

increase or decrease the time delay.

The information provided here should help you
develop a similar program, matched to your finances.
It's also possible to modify the program to make it run
more efficiently For instance, you could include disk
commands to save the financial values, ifyou have a
disk drive. This program and these suggestions should
provide a basis for an efficient cash management pro
gram for your home.

77

BASIC COMMANDS

USED IN THIS BOOK

ABS Identifies the absolute value of the

specified number

ASC Gives the ASCII value that cor

responds to the character specified

ATN Identifies the arctangent

CALL See USR.

CHRS Gives the character that corresponds
to the ASCII value specified

CLEAR Resets all program variables to zero or
null

CLOAD See LOAD.

CONT Restarts execution of a program that
was halted with a STOP command

COS Identifies the cosine

CSAVE See SAVE.

DATA Allows storage of data in a program
to be called up at a later time through
the use of a READ statement

DIM Sets up a dimensional array (a specific
amount of memory space for han
dling variables)

END

78

Completes the execution of a pro
gram in a normal manner

EXP Gives the value of e raised to the

power of the specified number

FOR Works in combination with the com
mand NEXT; assigns beginning and
ending values to the variable which
controls the number of repetitions of
a loop

GET See INPUT.

GOSUB Sends the computer to a specific line
that is the start of subroutine

GOTO Sends the computer to the line
specified, which varies the sequential
execution of program lines

IF-THEN Causes the computer to take a par
ticular action only under certain con
ditions. Ifthe expression in the IFpart
of the statement is true, the computer
executes the THEN part of the state
ment; if the expression is false, the
computer ignores the rest of the line
and proceeds directly to the next
program line.

INPUT Halts the execution of a program
[or GET) until the operator enters values for

the variables in the command

INT Rounds down (truncates) the
specified number to the nearest
integer (whole number) not larger
than the number itself

^

_

LEFTS Identifies the specified number of
beginning characters (those at the left
side) in the specified character string

LEN Counts the number of characters

(including spaces) in the specified
character string

e

LET Assigns a value to a variable

~

~

•

»

LIST Displays all program lines that are
currently in the computer's memory;
displays the line(s) specified after the
LIST command

LOAD

(or CLOAD)
Loads programs into working mem
ory from tape or disk

LOG Identifies the natural logarithm of the
specified number

~
MIDS Identifies the specified number of

middle characters in the specified
character string

NEW Erases any program lines currently in
the computer's memory

~ NEXT Works in combination with the com-

NULL

mand FOR; reads the value of the
variable to determine whether to

send the computer back through
a loop

Inserts the specified number of nulls
(dead spaces) in a program line

ON-GOSUB

ON-GOTO

PEEK

Sends the computer to one of the
specified subroutines, depending on
the value of the variable in the ON

part of the statement

Sends the computer to one of the
specified line numbers, depending on
the value of the variable in the ON

part of the statement

Provides the value stored at the

specified memory location (in decimal
form)

POKE Loads a specific value into a specified
memory location

PRINT Displays the value of whatever fol
lows the PRINT command

PRINT AT See SPC.

READ Looks for a DATA statement from

which to assign values to variables

REM Allows the programmer to make
notes in the program to keep track of
what the program is doing

RESTORE Restores the information in already
used DATA statements so that

the information can be used more

than once

79

RETURN Returns the computer from a
subroutine to the line immediately
following the GOSUB line in the
main program

RIGHTS Identifies the specified number of end
characters (those at the right) of the
specified character string

RND Generates artificial random numbers

RUN Begins the execution of program lines
in sequence

SAVE

(or CSAVE)
Stores data and programs on tape
or disk

SGN Identifies the sign of a value (positive,
negative, or zero)

SIN Identifies the sine

SPC

(or PRINT AT)
Moves the cursor to the specified
location on the screen

SQR

SO

Identifies the square root of the
specified number

STEP Specifies the value by which the vari
able in a FOR statement will increase

STOP Halts or interrupts the execution
of program lines (but allows for
restarting the program with a
CONT command)

STRS Converts a numeric value into a

character string

TAB Moves the cursor to a specified loca
tion on the screen

TAN Identifies the tangent of the specified
number

THEN See IF-THEN.

USR

(or CALL)
Links your BASIC program with
machine language

VAL Converts a character string into a
numeric value

	front-cover
	divider01
	divider02
	divider03
	divider04
	back-cover

