

The following article was originally published in COMPUTE! magazine, copyright
1982, Small Systems Services, Inc.: "All Sorts of BASIC Sorts" (December).

Thefollowing articles were originally published in COMPUTE! magazine, copyright
1983, Small Systems Services, Inc.: "Programming the TI" (January); "Writing Your
Own Games" (February); "Easy Editing" (March); "TIGraphics Made Easy" (March);
"TI BASIC One-Liners" (May); "Usinga Printerwith the TI-99/4A" (June).

The following articles were originally published in COMPUTE! magazine, copyright
1983, COMPUTE! Publications, Inc.: "TI Mailing List" (July); "Sprite Editor for the
TI" (September); "Runway 180:UsingSpritesin TI Extended BASIC" (October); "All
About the TI Character Set" (November); "TI Word Processor" (December).

The following articles were originally published in COMPUTE! magazine, copyright
1984, COMPUTE! Publications, Inc.: "The Mozart Machine" (January); "Sound
Shaper" (March); "Worm of Bemer" (April); "Statistics for Nonstatisticians" (July).

The following articles wereoriginally published in COMPUTERS Gazette magazine,
copyright 1983, COMPUTE! Publications, Inc.: "Thinking" (December); "Bowling
Champ" (December).

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved

Reproductionor translation of any part of this work beyond that permitted by
Sections107 and 108 of the UnitedStatesCopyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-71-X

10 9 8 76543 2 1

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies, and is not associated with any
manufacturer of personal computers. TI-99/4 and TI-99/4A are trademarks of Texas
Instruments, Inc.

ffiSET^

•SES^

*SSS^

BidUM

C3S\

-«,

Foreword v

Chapter 1. Getting Started 1
TI Features

C. Regena 3
Write Your Own Games

G Regena 9
Easy Editing

C. Regena 14
All About the Character Set

Michael A. Covington 18

Chapter 2. The Basics 27
TI BASIC One-Liners

Michael A. Covington 29
CALL KEY Hints

Roger Lathrop 34
All Sorts of BASIC Sorts

C. Regena 36
Searching Algorithms

Doug Hapeman 41
Transferring Variables in TI Extended BASIC

Patrick Parrish 49
Computer Visuals

Richard D. Jones and Howard Alvir 55
Using a Printer

G Regena 60

Chapter 3. Applications 63
Mailing List •

Doug Hapeman 65
Statistics for Nonstatisticians

A. Burke Luitich (TI Translation by Patrick Parrish) 75
TIcalc

Raymond J. Herold 84
Financial Interests

Doug Hapeman 99
A Mini Data Base Management System

Raymond J. Herold 109
TI Word Processor

James D. Baker 127

Chapter 4. Recreation 145
Trap

Larry Michalewicz 147

Duck Leader

Douglas E. Smith and Douglas W. Smith 150
Freeway 2000

John B. Dorff 158
The Chase

Dennis M. Reddington 165
Thinking

Andy VanDuyne (TI Version byPatrick Parrish) 172
Bowling Champ

Joseph Ganci (TI Translation by Patrick Parrish) 179
Worm of Bemer

Stephen D. Fultz (TI Translation by Patrick Parrish) 186

Chapter 5. Sound and Graphics 195
TI Graphics Made Easy

Lyle O. Haga 197
Animating TI Displays Without Sprites

Jim Schlegel 201
SuperFont

Patrick Parrish 211
Sound Maker

Frank Elsesser 226
Sound Shaper

Steven Kaye (TI Translation by Patrick Parrish) 238
The Mozart Machine

Donald J. Eddington (TI Translation by Gregg Peele) 240

Chapter 6. Sprites 245
A Beginner's Guide to Sprites

Gary K. Hamlin 247
Sprite Editor

Larry Long 264
Runway 180: Using Sprites in Extended BASIC

James Dunn 270

Chapter 7. Utilities 281
TI Disk Deleter

Patrick Parrish 283
Master Disk Directory

Raymond J. Herold 291

Appendix 305
A Beginner's Guide to Typing In Programs 306

Index 308

4Wo»9|

Why did you buy a computer? Was it to play games? Or were
you more interested in home applications? Maybe you hoped
that your children would learn BASIC programming. Whatever
your reason, you'll be pleased with what you find between the
covers of COMPUTE!'s TI Collection, Volume 1.

COMPUTE! Publications has been supporting the TI-
99/4A since columnist C. Regena first appeared in COMPUTE!
magazine in January 1983. Since then, through continuous
coverage in COMPUTE! magazine and the publication of seven
books, TI owners have recognized the high-quality programs
and tutorials published by COMPUTE!. COMPUTE'S TI Collec
tion, Volume 1 continues that tradition, presenting over 30 pro
grams and articles in clear and easy-to-understand language.

This anthology of games, applications, utilities, and
tutorials for the TI-99/4A contains many never before pub
lished. "SuperFont" is an exceptionally powerful and simple-
to-use character editor. "Sprite Editor" and "Sound Shaper"
make graphics and sound programming easy. Games like
"Worm of Bemer" and "Bowling Champ" will provide hours
of fun. "Thinking," a game that tests your memory and
reasoning skills, can be played by the youngest learner, yet
challenges even the most experienced game player. Need to
organize your Christmas card files? "Mailing List" fits the bill.

And if all this weren't enough, we've included articles
that show you how to use sprites in your own programs, util
ities that help you organize your diskettes, an electronic
spreadsheet, a word processor, and much more.

•!

* j

H

H

•./•^

rf*^^\

n

C. Regena

The TI has some very powerful features. This overview of
hardware, software, and miscellaneous resources will give
you an idea of just what the TI can do.

Welcome to the world of the TI-99/4A computer. For home,
personal, and educational applications, the TI-99/4A computer
is a very powerful machine. This article will discuss some of
the features unique to this microcomputer.

Extraordinary Graphics and Sound
Graphics. You may easily define your own high-resolution

(detailed) graphics characters. There are 16 colors, and you
may use all 16 on the screen at the same time in high-resolution
graphics (unlike other computers). You may also use text any
where on the screen at the same time you use high-resolution
graphics. Most other microcomputers are limited when com
bining text with graphics.

Music. You may play up to three notes and one noise for
a specified time using one statement. The music is specified by
a number which represents a frequency of 110 Hz to 44733
Hz, tones from low A on the bass clef to beyond human hear
ing range. The tone may be between regular musical notes. An
example which plays a three-note, C-major chord for three
seconds is:

CALL SOUND(3000,262,6,330,4,440,2)

The first number is the duration in milliseconds, in this case
3000. The next numbers are frequency and loudness for each
note. You may also add a "frequency" of —1 through —8 and
a loudness for the noise generator. You may combine tones
and noises for all kinds of sounds—everything from classical
music to sound effects from outer space.

Combining music and graphics. "Computer choreog
raphy" is possible because other statements (including graph
ics) may be executed while music is played. You may illustrate
a song, for example. Or if you have a game program, you may
make calculations while you are making a noise. The com
puter will play music and execute statements until the dura
tion runs out or until the program comes to another CALL

Getting Started

SOUND statement with a positive duration. A negative num
ber for the duration will start that CALL SOUND statement
even if the first duration has not finished. Try using a
FOR-NEXT loop to vary any of the parameters for special
effects. Here is a sample using just one tone:
100 FOR N=500 TO 880

110 CALL S0UND<-99.N

120 NEXT N

130 FOR N=S80 TO 500

140 CALL S0UND<-99.N,2)

Noises. Using negative durations and combinations of
music and noise numbers for frequency, you can make all
sorts of synthesized noises. Quite often with noises you will
want to use a FOR-NEXT loop and vary the loudness
parameter.

Built-in BASIC. The programming language of TI BASIC
is built into the main console—nothing extra to buy. The TI
BASIC language is an excellent language for learning how to
program, yet it is powerful enough for an experienced math
ematician because of the built-in functions.

String manipulations. String (non-number) manipula
tions are also very powerful. Here is a sample program to print
a phrase A$ on the screen starting at row R and column C:

100 FOR 1=1 TO LEN<A*>

110 CALL HCHAR<R,C+I-1,ASC<SEG*(A$,I,1)))
120 NEXT I

The loop will go from 1 to the LENgth of the phrase A$.
String variable names must always end with a dollar sign.
SEG$ takes a SEGment of the phrase. In this case we are start
ing at the left side and taking one letter at a time. ASC gets
the ASCII character code value of the character in the phrase.
CALL HCHAR uses a graphic method to place the character
on the screen at a certain row and column.

No Variable Name Worries
Variable naming. In your own programming on the TI-

99/4A you may use meaningful variable names, although in
many microcomputers the BASIC language recognizes only
two characters for a variable name. For example, if you have a
program with the variable name BLUE and another variable
name BLACK, other computers may recognize only one vari-

STEP 20

2)

STEP -20

dBEESTfH

te£w?|

Getting Started

able, BL, but the TI-99/4A knows you are using two variables.
You also do not have to worry about embedded reserved
words in variable names.

Documentation. Two excellent manuals are included with
the computer. One teaches you programming in TI BASIC.
The manual is very easy to understand, and a person with no
previous computer experience can learn to program with this
book. Also included is the User's Reference Manual, which may
cost over $15 for other computers. The reference manual,
which is in loose-leaf form, includes all the commands along
with explanations and sample programs.

Plug-in modules. The easiest way to use the TI-99/4A is
to insert a command module which contains a program. The
modules actually add memory to the computer while they are
being used. Unfortunately many of the very best modules are
difficult to find or even completely unavailable.

Speech. Even though this feature is not built in, I'm going
to include speech in this list of unique features of the TI-
99/4A because it is very easy to use. The speech synthesizer
is a small box that attaches to the side of your console.

16-bit microprocessor. The TI-99/4A uses a TMS9900,
16-bit microprocessor, which offers more computing power
and greater expansion and configuration flexibility than an
8-bit microprocessor. You can get higher numeric precision
and simplified memory addressing.

Programmer's aids. Programmers will enjoy the easy line
editing features. Various function keys allow you to insert or
delete characters or to erase or clear a line. There is also a
TRACE command to help in debugging.

Another feature programmers like is the built-in automatic
numbering. Just type in NUM, press ENTER, and you can start
programming. The line numbers start with 100 and automati
cally increment by 10. Or you may specify any starting num
ber and increment. NUM 5,2 will start with line 5 then
increment by 2.

After you have programmed and added or deleted state
ments here and there, you'll enjoy the automatic resequencing
command, RES. This command will automatically renumber
your statements, including all statement numbers referenced

am by other statements.

Getting Started

Usingthe Cassette Recorder «•<
Cassette. Probably one of the first items you'll need is a

cassette cable to connect a cassette recorder to the computer.
Nearly any cassette recorder is acceptable; however, the vol- *»
ume setting for the TI-99/4A is quite critical. In general, a
battery-operated recorder does not work well enough for ac
curate data retrieval. Also, your recorder should have a tone «*>
control and a volume control. I have had the greatest success
using the Panasonic RQ2309A cassette recorder.

Page 1-9 in the User's Reference Guide tells how to connect
the cassette cable, and the pages following describe how to
save and load data from modules. Page n-42 shows an example
of how to load a program that you have saved or purchased.
Some other hints for using the cassette recorder are:
Turn the tone control to the highest setting.
Start with the volume about mid-range.
Follow the instructions after you type in OLD CS1.
If you get the message NO DATA FOUND, increase the

volume.
If you get the message ERROR IN DATA, decrease the

volume.

Sometimes a fraction of a change in volume can make all
the difference in your success in reading a program. Once in a
while, if I alternate between the two error messages at a vol
ume setting near 2 or 3,1 turn the volume to about 8 or 9 and
the program will load.

The smallest jack of the cassette cable goes into the re
mote switch of the cassette recorder so the computer can turn
the recorder on and off automatically. If the recorder does not
turn on and off properly, simply remove the remote jack from
the plug. You can operate the cassette recorder manually to ;
save and load programs. For programs using the cassette re
corder for data entry, you will need the remote capability. An ^
adapter is available for the remote switch. \

Disk drives. You can save and retrieve data or programs
on a diskette much more quickly than by using a cassette sys-
tern. The TI-99/4A uses 5V4-inch, single-sided, soft-sectored \
diskettes. To connect a disk drive, you also need a disk
controller. One disk controller can handle up to three disk
drives. Many business applications require two disk drives. [

Getting Started

» Memory expansion. The TI Memory Expansion is for 32K
RAM, and you need a module that will access it. You cannot
use it with console BASIC. Extended BASIC does not require

f*s* the memory expansion but can use it. Pascal, TI Logo, and
Editor/Assembler require the memory expansion.

Peripheral box. The "old" method had each peripheral in
<sa> a separate "box" connected to the computer or the previous

peripheral; each had its own power cord. The "new" system is
the peripheral box, which has its own power supply and slots
for cards for the RS-232 interface, memory expansion, disk
controller, P-code, one disk drive, and possible future cards.

Monitor. Although most TI users connect their computers
to a regular television set, it is possible to connect to a mon
itor. A monitor will give a very clear, sharp picture.

Making the Computer Speak
Speech. The TI Speech Synthesizer allows you to hear the

computer speak to you. You will need a command module
with built-in speech to hear the computer speak.

To program your own speech or to use any cassette or
disk programs that use speech, you will need a module.
Speech Editor and Extended BASIC have speech capabilities
with a given list of words. Terminal Emulator II allows un
limited speech; the accompanying documentation gives you
ideas for programming speech using this module. You may
vary the pitch, slope, and inflections. You may use allophones
to create words, or you may have the computerspeak words
which you spell phonetically.

Telecommunications and Languages
p» Terminal. The Terminal Emulator II command module

(or Terminal Emulator I, which does not have speech) allows
you to use your TI-99/4A to act as a terminal either to an-

p* other computer or to a large telecommunications service. You
'• will also need the TI RS-232 Interface and a telephone

modem.
it** Printer. You may use a number of different brands of
I printers with your microcomputer. To connect your TI-99/4A

to a printer, you'll need the TI RS-232 Interface and a cable to
pa go from the interface to the printer (the cable is usually sold
! with the printer).

Getting Started

RS-232. The RS-232 Interface has two ports so you may
be connected to a modem and a printer at the same time. An
instruction book comes with the RS-232 so you'll know how
to operate the computer under different conditions.

Extended BASIC. TI Extended BASIC (XBASIC) is a
programming language contained on a module. A manual
(over 200 pages) and a programmer's reference card come
with the module. No other peripherals are necessary to use
XBASIC. If a program has been written in XBASIC, the
XBASIC module must be inserted for the program to run.
Some of the advantages of XBASIC are multistatement lines,
complex IF-THEN-ELSE logic, subroutine and MERGE
capabilties, DISPLAY AT and PRINT USING, program se
curity (SAVE protection), speech (with speech synthesizer),
and moving sprites with greater graphics capabilities.

Editor/Assembler. For machine language programmers,
it requires the memory expansion, disk controller, and one
disk drive.

Software
I've mentioned software (programs) last, although it's probably
the first extra purchase you will make for your computer. Soft
ware is what you need to use your computer. Software is
available on command modules, cassettes, diskettes, and by
typing in programs you find in books and magazines. This
book is an example of a source of inexpensive software.

C. Regena

Some tips on getting the most out ofyour TI when writing
games.

You have probably discovered that one of the fun things to do
with your TI-99/4A is to play games. In fact, many people
who wanted one of the popular game machines have discov
ered that for about the same amount of money they could
have a computer and still be able to play games. Many of the
games written for the TI-99/4A are arcade quality—that is,
they have good graphics and fast action.

To program your own games with fast, smoothly moving
objects, you will want to use TI Extended BASIC. It allows
you to use up to 28 sprites. You may define the shapes of the
sprites and designate a certain magnification. You may also
specify the sprites' speed. The row velocity and the column
velocity may vary from —127 to +127, and by specifying
numbers for both velocities you will get a diagonal movement.
Sprites "wrap" at the edges of the screen, so you don't need
to worry about "crashing" your program on edge conditions.
With one CALL SPRITE statement you can define the sprite
number, shape, color, position, and speed. (For more infor
mation about sprites see chapter 6.)

TI Console BASIC (the BASIC built in with no accessories
or peripherals) is a language powerful enough that you can
design a variety of fun games with it. If you have moving ob
jects, however, they have to move a square at a time and thus
will have jerky movement. Depending on the number of ob
jects, BASIC games tend to be slow; however, I have seen sev
eral fast action games that really require nimble fingers.

Whether you are writing a game in TI BASIC or in TI Ex
tended BASIC, I can offer a few programming tips. Keep in
mind that the best way to learn is to actually start program
ming—and playing.

Getting Started

Randomness «^
Probably a central tool in computer games is the machine's
ability to choose things randomly. Most computers have the
command RND, but each computer has a slightly different esm
syntax (way of writing the command). On the TI-99/4A, RND
represents a random number between zero and one. Turn on
your computer, press any key to begin, and press 1 for TI ^
BASIC. Now type in PRINT RND and press ENTER. The com
puter will print a decimal fraction (to ten places). Usually in
game situations you won't want a fraction, so multiply that
fraction by a number. For example, multiply RND by 10 like
this: PRINT 10*RND or PRINT RND*10. Now you will get
ten times that decimal fraction.

You probably want just the whole number part of that
mixed decimal number. Use the INTeger function to get the
whole number. PRINT INT(10*RND). If you keep trying this
command, you will get numbers from zero to nine. Remember,
INT truncates the decimal portion; it does not round the num
ber. Suppose you really wanted a random number from one
through ten. The command would be: PRINT INT(10*RND)+1
or PRINT INT(10*RND+1).

One more step. Assume you want a number N to be a
random number between 10 and 20, inclusive. 20 — 10 = 10.
There are 10 numbers plus 1 ("inclusive"). The command
could be N=INT(11*RND)+10. The portion INT(11*RND)
will give you numbers from 0 to 10; then you add 10 to get
numbers from 10 to 20.

Now try this short program:

100 FOR 1=1 TO 10

110 PRINT INT(10*RND>+1

120 NEXT I *»»

\

Run the program. Run it again. And again. The program is
printing ten random numbers from 1 to 10. However, you'll -ca»
notice that each time you run it, you get the same numbers in !
the same order. You need to add the line: 105 RANDOMIZE.

The RANDOMIZE command mixes up the numbers so ^
that each time the program is run you will get different num- \
bers—and that's what you want in a game. The User's Ref
erence Guide indicates that the RANDOMIZE statement only msme^
needs to be somewhere in the program to generate different |.
numbers; however, I have found that one RANDOMIZE state-

10

Getting Started

ment at the beginning of a program does not always work. It's
better to use the RANDOMIZE statement just before you use
the statement containing RND. Note: If you are debugging a
program, you may want to leave RANDOMIZE out so that
you'll know exactly what numbers your program is choosing.
Debug your program, then add the statement and test it.

Moving Objects
In general, the fewer moving objects you have in your game,
the faster the action can be, and the logic will be a lot less
complex. Also, each moving object should be specified by only
one character number so you don't have to use up valuable
time by building an object out of several characters. To move
an object in TI BASIC you need to erase the object in the first
position (replace it with a space) and draw it again in the sec
ond position—each move takes two statements.

Player Input
There are two main ways the computer can understand what
you want: by using the joysticks or pressing keys on the key
board. Your game may be designated for joysticks only, key
board only, or both. Because of the logic involved, a game
using both methods of input will be slightly slower in re
sponse; and depending on the branch sequence, one of the
methods will be slower than the other.

Joysticks may be easier to use to learn a game, especially
if the player is used to a videogame using joysticks. My
own children, and many other players I know, prefer using
the keyboard for TI Invaders and Munchman because the
joystick response is considerably slower than the keyboard
response.

The keyboard action is easy to learn because there are
standard arrow keys for all games designed for the TI-99/4A.
Programmers writing games for other computers often choose
their own favorite keys to use, and the directions are different
for each game. On the TI-99/4A, the arrow keys are E (up), X
(down), S (left), and D (right), with the shooting key either the
ENTER key or the period key. If there are two players, the
standard arrow keys on the right half of the keyboard are I, J,
K, and M.

The TI joysticks (wired remote controllers) come with a
little instruction book with some sample programs. The main

11

Getting Started

command is CALL JOYST(K,X,Y), which returns an X and Y
value for the position of the joystick, where X and Y may be
4, -4, or 0.

To detect keys pressed on the keyboard, use the CALL KEY
command. This command is like the GET command in other
BASIC languages. The form is CALL KEY(0,KEY,STATUS)
where 0 means to scan the whole keyboard. STATUS is a
variable name (it could be ST or S, or whatever you wish)
which will return whether a key has been pressed or not. KEY
is a variable name (again, use whatever you wish) that will re
turn the ASCII code of the key pressed, such as 13 for the
ENTER key, 65 for the letter A, 69 for the letter E, etc.

By using IF statements, you can check which key was
pressed and branch accordingly. You can also GOTO the
CALL KEY statement for other keys to make the computer act
as if it is ignoring all responses except the keys allowed. Here
is a sample using arrow keys:

100 CALL KEY(0,K,S)
110 IF K=69 THEN 1000 (up arrow)
120 IF K=&8 THEN 2000 (right arrow)
130 IF K=88 THEN 3000 (down arrow)

140 IF K=183 THEN 4000 (left arrow)
ELSE 100 (any other key will

be ignored)

Remember, there are several ways to program the same proce
dure; this is just one way. You may prefer to use "not equal"
signs or a split keyboard and an ON-GOTO statement.

A split keyboard approach scans half the keyboard using
CALL KEY(1,K1,S1) or CALL KEY(2,K2,S2). The key codes re
turned for up, right, down, and left are 5, 3, 0, and 2. A
sample program using the split keyboard is:

100 CALL KEY(1,K,S)
110 IF (K<0)+(K>5) THEN 100

120 ON K+l GOTO 3000,100,4000,2000,100,1000 "^

Line 110 makes sure the K value is in the right range; the key
value must be from 0 to 5. All other keys are ignored. Line ^
120 branches according to which key was pressed. The keys I
corresponding to 1 and 4 were not acceptable, so they return
to the CALL KEY statement. If you want to try out either of «,
these programs, add the following lines, then run and try J
pressing various keys.

*Sfepi

12 I

r?&S^n

r%iS)
1000 PRINT "UP"

1010 BOTO 100

2000 PRINT "RIGHT"

2010 GOTO 100

3000 PRINT "DOWN"

3010 GOTO 100

4000 PRINT "LEFT"

4010 GOTO 100

Getting Started

There is a slight problem in testing for zero on the TI-
99/4A console. Use logic such as IF K+lol rather than IF
KoO. Also, some of the split keyboard codes are different for
the TI-99/4A than for the TI-99/4. It's better not to use the
comma, period, semicolon, slash, space bar, ENTER, SHIFT, B,
and G so that programs may be used on either console.

13

C. Regena

If you use these editing keys and built-in programmers'
commands, you'll soon discover how fun and easy-to-use the '*te»
TI-99/4A can be.

You are writing a program or keying one in from this book or
COMPUTE! magazine when—oops!—you make an error. Hold
it! Don't type the whole line over! Take advantage of the easy-
to-use editing capabilities built into the TI-99/4A.

Take a look first at the arrow keys (found on letters
E,S,D,X). You thought they were just for games? They will
probably be the most frequently used editing keys once you
get used to them. Suppose you have typed lines 100-150 and
look up at the screen and notice you want to change the num
ber in line 130:

130 CALL SCREEN(14)

Type in 130 then hold the function key (FCTN) down while
you press the down arrow (1). (It might be best to follow
through this article as you sit at your TI-99/4A.) You'll notice
line 130 comes up at the bottom of the screen with the cursor
at the first position. Now press FCTN and the right arrow. The
cursor will go toward the right. You may go one space at a
time, or hold the key and it will repeat. Go over to the 4 in
14. Stop right over the 4 and type 6. Press ENTER, and the
line will now be:

130 CALL SCREEN(16) ^

Any characters you don't want to change you can just
pass over with the arrow key. Change the character you want, «•*»
then press ENTER—you don't need to go to the end of the >
line either.

Now suppose you don't like color 16 (white) and decide -^
you want color 6. Type 130 then FCTN I. Use FCTN-* to get 1
over to the 1 in 16. Stop right on top of the 1. Now press
FCTN and 1, which is DEL, for DELete. Now press ENTER „
and you should have: I
130 CALL SCREEN(6)

14 "I

rv^*4

Getting Started

Try another function key. Type 130 then FCTNi. Use
FCTN-* to go on top of the 6 and type 2. Just a second,
though. You don't want screen 2; you want 12. Use FCTN«- to
back up one spot (cursor on 2). Press FCTN 2 for INSert. You
won't notice anything right away, but now type 1—you have
color 12. Press ENTER and your line has been changed.

Automatic Repeats
The left arrow, right arrow, and DELete keys repeat automati
cally when you hold the key down. The INSert key needs to
be pressed just once and characters will keep being inserted as
you type until you press ENTER, DELete, or one of the arrow
keys. To delete or get rid of a whole line, type the line num
ber and then press ENTER.

Two more handy editing keys are the up arrow and down
arrow. Let's assume you have the following lines:

200 CALL HCHAR(3,5,42)
210 CALL HCHAR(3,B542)
220 CALL HCHAR(3,20,33)

You run your program and discover the graphics need to be
a line lower—the row value needs to be changed from 3 to 4.

Type 200, press FCTNi, and use the right arrow to
change the 3. Instead of pressing the ENTER key, press
FCTNI. After line 200 has been edited, the very next line, line
210 in this case, will appear for editing. Likewise, the up ar
row will give you the line just before the one on which you
were working.

Two other editing keys you should be aware of are
ERASE (FCTN 3) and CLEAR (FCTN 4). You may already be
familiar with CLEAR. If you are running a program and want
to stop, FCTN 4 will interrupt the program. (QUIT, FCTN =,
will stop the program, erase it from memory, and return to the
TI title screen; CLEAR stops the program but retains it in
memory and you may either CONtinue or RUN.)

CLEAR has another function while you are programming.
If you start typing a line and decide you don't want that line
after all, press CLEAR. The cursor will go to the next line and
the line you were working on is ignored. ERASE will erase the
line that you are working on.

The other function keys you see along the top row of
your keyboard are used in some of the command modules and
are described in the manuals accompanying the modules.

15

Getting Started

Some helpful commands for programmers are LIST, -fc»
NUM, and RES. As you are writing a program, each command
needs a line number. When the program is run, the computer
executes each line in numerical order. The command LIST will •**}
list your complete program in order. As your program lists, the
lines scroll off the top if the program is too long for one
screen. If you want to stop the listing, press CLEAR. If you "^
want to list only part of yourprogram, just list the lines you •'
wish:

Command Lists:

LIST Whole program
LIST-200 All lines up to and including line 200
LIST 100-300 Lines 100 to 300 inclusive
LIST 300- Lines 300 to the end

When you're typing in a program, it will save time and
reduce the chance for error if you let the computer type the
line numbers. Type in the command NUM (for NUMBER).
The computer will automatically start with line 100. Now type
in CALL CLEAR and press ENTER. The computer enters line
100 and starts you on line 110. The NUM command automati
cally increments the line numbers by 10.

You may start anywhere—for example, type NUM 3220
and press ENTER. Your program starts with line 3220 and in
crements by 10.

Yes, you can change the increments also. Type NUM
200,5 and you'll start with line 200 and increment by 5 (line
200,205,210, etc.). The general form is: NUM initial line,
increment.

If you want the program to start with line 100 but the in
crements to be 7 instead of 10, you may use NUM ,7.

To get out of the automatic numbering, just press ENTER "^
after the line number or CLEAR. You'll also notice that if you
have a program in the computer and type NUM the computer
will show you what is on that line. If you want to keep the —1
line as is, just press ENTER. '

Complete Renumber "^
RES is a command that stands for RESEQUENCE. You've
been programming and adding lines here and there and want
it to look nice again, all numbered by tens. Type RES and
press ENTER. As soon as the cursor reappears, your program

16

I

pSStai

Getting Started

is resequenced or renumbered, including all line numbers ref
erenced in other lines. Try this sample:

12 CALL SCREEN(14)

20 FOR 1=1 TO 8

30 CALL SOUND(500.-I.2)

35 NEXT I

Now type RES and press ENTER, then LIST. The lines are
resequenced, starting with 100 and incrementing by 10. Like
the NUM command, you may specify the starting line number
and the increment: RES initial line, increment.

Try RES 10 then LIST.
Try RES 1,1 or RES ,5 and experiment with your own

numbers.
Quite often I like to start writing programs with line num

bers incrementing by 10. Type in NUM and start program
ming. If the program has several branches, I may start one
branch at 1000 (NUM 1000), another at 2000, etc. Leaving
gaps in the line numbers makes it easier to add lines later.

For example, if I have a line 200 and the next line is line
210,1 may easily add lines in between by numbering them
202, 204, etc. But what if I had to add 15 lines between lines
that are only ten apart? RES ,50 will spread the lines apart and
allow more numbers in between. Of course, when I'm through
with the program, I RES so the program starts at 100 and in
crements by 10, and you can't tell where I planned poorly and
had to add lines.

17

Michael A. Covington

This brief outline of the TI character set explains how the
computer recognizes each character. The author discusses
some uses of the characters' numeric codes and indicates
which characters' graphic representations can be assigned or
changed.

Chances are you've never given your computer's character set
much thought. You press keys on the keyboard and the
characters appear on the screen; that's all there is to it, or so it
seems. But there's a lot more going on than meets the eye.

Inside the computer, each character is represented by a
numeric code—a number between 0 and 255 inclusive. For in
stance, the code for capital E is 69; the code for an exclama
tion mark is 33; the code for a blank (a blank is a character
just like all the others) is 32. To associate these codes with the
characters you see on the screen, the computer has to know
two more things about each of them: a graphic representation
that describes how the character is supposed to look on the
screen, and a key assignment that indicates what key or
combination of keys you can hit on the keyboard to type the
character. For instance, the character string "HELLO THERE!"
(not counting the quotation marks) is represented as shown in
Table 1.

Table 1. Representation of the String
"HELLO THERE!"

Graphic
representation:

Numeric code:

Key
assignment:

18

H E L L O

72 69 76 76 79 32

H

key
E

key
L

key
L

key
O

key
space
bar

Graphic
representation:

Numeric code:

Key
assignment:

Getting Started

T H E R E i

84 72 69 82 69 33

T

key
H

key
E

key
R

key
E

key
shift &

1 keys

Statements Using Numeric Codes
Normally (when you type characters in response to a string
INPUT statement or when you type them as part of a pro
gram) you enter characters by hitting the keys that correspond
to them. That is, you access them by means of their key
assignments, and within the program you treat them as
character-string data. But there are ways of referring to charac
ters by their numeric codes and treating them as numbers. For
instance, the CALL HCHAR and CALL VCHAR statements,
which you meet at an early stage as you work through the
manuals that come with the computer, refer to characters by
their numbers. The statement:

CALL HCHAFUS, 3, 69, 20)

will place a row of 20 capital E's (character number 69) on the
screen beginning at row 3, column 3.

Also, you can input characters as numeric codes. The
CALL KEY statement senses whether a particular key on the
keyboard is up or down; when a key is pressed, CALL KEY
gives you the numeric code corresponding to it. For instance,
here is a program which will tell you the numeric code of any
key on the keyboard:

10 PRINT "PRESS ANY KEY..."

20 CALL KEY (5..C0DE,STATUS)
30 IF STATUS <> 1 THEN 20

40 PRINT CODE

50 GO TO 10

The heart of the program is lines 20 and 30. Line 20 tells
the CALL KEY subroutine to look at the keyboard and report
what's going on. The variable STATUS will equal 1 only if the
condition of the keyboard has changed since the last time the
routine looked at it. If STATUS does not equal 1, we simply
go back to line 20, since we don't want to do anything more if

19

Getting Started

the user hasn't pressed a key or hasn't yet let go of the one al- ^^
ready looked at. The variable CODE contains the numeric
code associated with the key being pressed, if any. (The first
parameter of CALL KEY, the number5, simply indicates that me^
we want the usual BASIC set of codes; specifying other num
bers there instructs the computer to use other sets of key
assignments for various special purposes.) aBS&a

The ASC and CHR$ functions allow you to convert back j
and forth between numeric codes and character strings. If A$
is a character string, ASC(A$) is the numeric code of its first
character; thus ASC("E") is 69. Conversely, if N is a number,
CHR$(N) is a one-character string of which N is the numeric
code; thus CHR$(69) is E. If we want the program above to
print the characters themselves rather than their codes, we can
convert the codes into characters by changing line 40 to:

40 PRINT CHR*<CODE)

The CALL CHAR subroutine allows you to alter graphic
representations using a hexadecimal code that the manual de
scribes in detail. For instance, if you want to change the dollar
sign ($) into a British pound sign (£), just execute this
statement:

CALL CHAR<36,"001C22207C20207E")

That will do it, at least as long as the program is running: The
key assignment and numeric code will be the same, but the
dollar sign will look like a pound sign. (It will revert to its
original appearance when your program stops executing.)

What's Not in the Manual
Those are the preliminaries; now we get to the really interest- ^
ing part (the part that isn't in the manual, at least not en
tirely). Internally, the computer can use any number from 0 to
255 as a character code; any such code can be an element in a _
character string and can be referred to by CALL VCHAR, !
CALL HCHAR, and CHR$. (In fact, CALL VCHAR, CALL
HCHAR, and CHR$ will actually take numbers up to 32767; mm^
multiples of 256 are subtracted as necessary to get a number j
in the 0 to 255 range.) But not all the codes have key assign
ments or graphic representations. The breakdown (by numeric ^
codes is as follows: !

20

Getting Started

r^i 0—Undefined (no key assignment, no graphic
representation).

1-15—Function keys (Table 2). Most of these characters
F» can be input by means of the CALL KEY statement, but they

cannot be typed in normal contexts (for example, in response
to an INPUT) because there they are interpreted as requests to

r^i perform cursor movements or the like. They have no graphic
representations (if you print them, you get blanks or garbled
patches).

16-29—Undefined (like 0, these codes have no key
assignments and no graphic representations, and there is no
straightforward way of giving them either).

30—The graphic representation of this character is the
black square that marks the cursor; thus, CHR$(30) is handy if
you want a black square. No key is assigned to it.

31—This is the screen border character—a blank that is
the color of the border rather than the typing area. No key is
assigned to it.

32-126—Standard ASCII character (Table 3). These are
the characters you use every day, including the alphabet, the
numbers, and all the punctuation marks and mathematical
symbols. Their graphic representations can be changed with
CALL CHAR but will revert to their original form when the
program ends.

127-159—User-defined characters (Table 4). These start
out with no graphic representations, but you can define them
with CALL CHAR, and, contrary to what the TI manual says,
such definitions remain in effect after the program stops run
ning (though most are disrupted when another program is
loaded).

1*3 What most people don't realize is that these characters
' can be typed—they have key assignments and are acceptable

in the same context as any other character (that is, in response
« to an INPUT or CALL KEY, or within quotes in a program).

All but one of them require you to hold down the CTRL key
(at the lower-left corner of the keyboard) when typing them;

p=» character number 127 uses the FCTN key instead.
I_ 160-175—Undefined

176-198—These characters have key assignments (Table
r5), but no graphic representations and no direct way of giving

them any. They can be used as special function keys of some

21

Getting Started m

sort (in response to either CALL KEY or INPUT), but not as ••«
displayable characters.

199-255—Undefined.

Even the undefined character codes (those that cannot be —••
typed on the keyboard or displayed on the screen) are not
completely useless. You can refer to them by means of CHR$
and ASC and use them as special markers of various kinds -^
when manipulating character strings. They also may come into
play when you are transmitting data to other devices (for
example, printers or other computers) that have definitions for
characters that are undefined on the TI-99.

Finally, consider this possibility. Each character in a
character string has a code between 0 and 255 inclusive, acces
sible through CHR$ and ASC. Also, the SEG$ function allows
you to address individual characters in a string, and the &
(concatenation) operator allows you to construct strings out of
individual characters. This means that a character string gives
you a compact way of storing a set of integers between 0 and
255—each element occupies only one byte in memory, as
compared to the eight bytes normally needed to store a num
ber. So if you have a program that needs to keep track of
thousands of small integers—more than will fit in available
memory in numeric form—then character strings may be the
answer.

Table 2. Function Key Codes
(None of these characters have graphic representations, nor
can they be given them. They can be typed only through the
CALL KEY statement, not in response to a string INPUT state
ment, or within a program.)
Code Key ***»
1 FCTN 7("AID") >
2 None usable. The key definition associated with this code is

FCTN4, but in BASIC, hitting that key interrupts the program. «|
3 FCTN 1("DELETE") »
4 FCTN 2('TNSERT")
5 None usable. The key definition associated with this code is «=n

FCTN —, but hitting that key forces a machine reset and the J
program in memory is lost.

6 FCTN 8("REDO")
7 FCTN 3("ERASE") ""^
8 FCTN S(left arrow) '
9 FCTN D(right arrow)

22

••Cl

ri.ii.wisBsJ

PS33

pmpsJi

Getting Started

10 FCTN X(down arrow)
11 FCTN E(up arrow)
12 FCTN 6("PROC'D")
13 ENTER
14 FCTN 5("BEGIN")
15 FCTN 9("BACK")

Table 3. ASCII Graphic Characters on the
TL-99/4A
(This table gives the numeric codes and graphic representa
tions; the key assignments are marked on the keyboard. The
graphic representations can be changed by the CALL CHAR
statements but revert to their original form when the program
stops running.)

Code

Representation
Code Graphic

Representation
Code Gi

Re

32 (space) 53 5

33 i 54 6

34
//

55 7

35 # 56 8

36 $ 57 9

37 % 58 i

38 & 59 i

39
/

60 <

40 (61 =

41) 62 >

42 * 63 ?

43 + 64 @
44 / 65 A

45 —(minus) 66 B

46 . 67 C

47 / 68 D

48 0 69 E

49 1 70 F

50 2 71 G

51 3 72 H

52 4 73 I

74 J 97 a

75 K 98 b

76 L 99 c

77 M 100 d

78 N 101 e

79 0 102 f

80 P 103 g

23

Getting Started ee==£

81 Q 104 h

82 R 105 i

83 S 106 j
84 T 107 k

85 U 108 1

86 V 109 m

87 W 110 n

88 X 111 0

89 Y 112 P
90 Z 113 q
91 [114 r

92 \(back slash) 115 s

93] 116 t

94 A 117 u

95 _ (underline) 118 V

96 ' 119 w

120 x

121 y
122 z

123 {
124

1

1

125 }
126

^^Ei?r\

ESPT)

(Elvl

Table 4. User*Definable Graphics Characters
These characters can be typed using the key combinations
listed and are acceptable in any context (that is, they can be
input using the CALL KEY or INPUT statements and can ap
pear between quotes within a BASIC program).

Graphic representations can be given to these characters
with the CALL CHAR statement. Contrary to TI documenta
tion, such representations, once assigned, will persist after the .*_
program stops running. I

24

mms[
• i

Mbi

••Crj

Code Key Code Key
127 FCTN V 144 CTRLP
128 CTRL ,(comma) 145 CTRLQ
129 CTRL A 146 CTRLR
130 CTRLB 147 CTRLS
131 CTRLC 148 CTRLT
132 CTRLD 149 CTRLU
133 CTRLE 150 CTRLV
134 CTRLF 151 CTRLW
135 CTRLG 152 CTRLX
136 CTRLH 153 CTRLY
137 CTRL I 154 CTRLZ
138 CTRL J 155 CTRL .(period)
139 CTRLK 156 CTRL;
140 CTRLL 157 CTRL =
141 CTRLM 158 CTRL 8
142 CTRLN 159 CTRL 9
143 CTRLO

Table 5. Characters with Key Assignments But
No Graphic Representations
These characters are not mentioned in TI documentation. They
can be typed in any context (that is, in response to an INPUT
or CALL KEY statement or between quotes in a program), but
they have no graphic representations and cannot be given any.
Code Key
176 CTRL 0
177 CTRL 1

178 CTRL 2
179 CTRL 3
180 CTRL 4
181 CTRL 5

182 CTRL 6
183 CTRL 7

184 FCTN , (comma)
185 FCTN . (period)
186 FCTN /
187 CTRL /

Code Key

188 FCTN 0 (zero)
189 FCTN;
190 FCTN B
191 FCTN H

192 FCTN J
193 FCTN K

194 FCTN L
195 FCTN M
196 FCTN N
197 FCTN Q
198 FCTN Y

25

n

(fff!^

Fft$%m}

fiflfflsSHfll

0

i^iiiny«i

Michael A. Covington

The BASIC DEF statement can become a powerful tool in
your programmer's bag of tricks. Here's how to use it.

If you've been programming in BASIC for any time at all,
you've surely come across, and used, some of the built-in
functions that the language provides, such as INT, SIN, COS,
TAN, ATN, and LOG. But did you know that you can use the
DEF statement to create functions of your own? Defining your
own functions lets you type a complicated formula only once,
and it allows you to build complex functions out of simple
ones in a most efficient way.

Suppose, for instance, that your LOG function gives you
natural (base e) logarithms, and you want base 10 logarithms.
(If you're not sure which you've got, type PRINT LOG(IO)—if
the answer is 1, you're in base 10, and if it's about 2.3026,
you're in base e.) You can convert base e logarithms to base
10 by dividing them by 2.302585093, so one of the options
open to you is obviously to write LOG(X)/2.302585093 (or
whatever) every time you need a base 10 log. But there's an
easier way.

Creating Functions
To create your own function—let's call it LOG10, though
some computers may insist that you name it something like
FNL—just include, early in your program, a statement like
this:

10 DEF LOG10(X)=LOG(X>/2.302585093

From then on, you'll be able to use the new function
LOG 10 to get base 10 logarithms. Try it out with a program
like this:

10 DEF LOG10(X)=LOG(X)/2.302585093

20 FOR 1=1 TO 10 STEP 0.1

30 PRINT I,LOG10(I)

40 NEXT I

29

The Basics

and compare the results against a table of logarithms.
The DEF statement is different from most BASIC state

ments in that it can't refer to variables. (The X in it—it could
be any variable name—is used only as a placeholder for the
number within the parentheses; it is completely separate from
any variable named X that you may use elsewhere in the pro
gram.) You can refer only to numbers or other functions.
Some computers require that the name of the function be
three letters and that the first two be FN—FNA, FNB, FNL,
and so forth—although the TI-99, and many other micro
computers, allow you to name functions with the same type of
names you use for variables.

Sample One-Liners
So that's how it's done. Now let's look at some practical
examples.

1. Base 10 logarithms. That's what we've just discussed.
For reference, here is the statement:

DEF LOG10(X)=LOG<X)/2.302585093

(assuming your machine's LOG function gives you base e
logs).

2. Base 2 logarithms. For a machine on which the LOG
function gives base e logarithms, you can get base 2 loga
rithms by using:

DEF L0G2<X)=L0G<X)/0.6931471806

If your machine's LOG function gives base 10 logarithms,
you'll need to use DEF LOG2(X)=LOG(X)/0.3010299957
instead.

3. Degrees to radians. If X is the measure of an angle in de
grees, then RAD(X) will be the same angle measured in radi
ans, if you define the following function:

DEF RAD(X)=X/57.29577951

4. Radians to degrees. The opposite function, converting X
in radians to DEG(X) in degrees, is:

DEF DEG(X)=X*57.29577951

5. Arcsine (in radians). The following definition will give
you the arcsine function (which is not usually provided in im
plementations of BASIC, although the arctangent is).

30

The Basics

DEF ASN(X)=2*ATN(X/(1+SQR<1~X^2>))

If you look through a table of trigonometric identities, you
may find an apparently equivalent, but simpler, formula that
would lead to the statement DEF ASN(X)=ATN(X/SQR
(1—XA2)). But note that this version won't do ASN(l) correctly
(it will try to divide by zero). Hence the first version is
preferable.

6. Arccosine (in radians). If you have the arcsine function,
you can get the arccosine, as follows:

DEF ACS(X)=1.570796327-ASN<X)

Remember that the DEF statement for ASN must precede the
DEF statement for ACS (you can't refer to a function until
you've defined it).

7. Rounding to a particular number of decimal places. Where
n stands for the number of decimal places you want, use the
definition:

DEF ROU(X)=INT(((10^N)*X>+0.5)/(10~N>

Note that you must substitute a number for n; in most im
plementations, n cannot be a variable. Hence, if you want to
round to three decimal places, your statement will read DEF
ROU(X)=INT(((10*3)*X)+0.5)/(10A3). The number of decimal
places can be negative, of course; if you want to round to the
nearest 20, ask for —1 decimal place, and if you want to
round to the nearest 1000, ask for —3 decimal places.

8. Rounding to a particular number of significant digits.
Often, you'll find that the most convenient type of rounding
involves coming up with a particular number of significant
digits rather than a particular number of decimal places. You
can accomplish this with the definition:

DEF RSFl(X>=<N-1)-INT(LOG10<X))

DEF RSF(X)=INT(< <10~RSF1 <X))*X)+0.5)/<10~RSF

1 (X))

Here the definition is so complex that it is best done in two
stages: first we define RSFl, which is a function used in
ternally in RSF, and then we define RSF, which is the function
we actually use. The character n stands for the number of
significant digits you want; as before, you must substitute a
number for it when typing the definition into the computer.

31

The Basics =

A word of warning: RSF (with its subsidiary calls to RSFl, ^
which in turn calls LOG10) can take quite a bit of time to exe
cute (about half a second of realtime on the TI-99).

9. Sexagesimal output: minutes. Our practice of expressing "^
time in hours, minutes, and seconds, and angles in degrees,
minutes, and seconds, is a remnant of an ancient Babylonian
base-60 (sexagesimal) number system. Often, in a computer "H
program dealing with time or with angles, it's necessary to ex- J
press the output in terms of units, minutes, and seconds. The
units are derived by taking INT(X); thus the units part of 2.5
hours = INT(2.5) = 2 hours. Here is a function that gives the
minutes part:

DEF MNT<X)=INT<60*(X-INT<X>>>

the INT of that.

10. Sexagesimal output: seconds. The seconds part of the
value, in turn, is given by:

DEF SCD(X)=60* <60*<X-INT<X> >-MNT<X))

That is, we subtract the integer part and the minutes; what's
left gets multiplied by 60 twice.

The sexagesimal output functions can be tested by means
of a program such as the following:

10 DEF MNT(X)=INT(60*(X-INT(X)))

20 DEF SCD(X)=60*(60t(X-INT(X))-MNT<X))
30 FOR H=0 TO 2 STEP 0.01
40 PRINT

50 PRINT H,"HOURS"
60 PRINT INT(H),MNT<H),SCD(H)
70 NEXT H _^

From this we learn, for example, that 0.01 of an hour is 36 J
seconds, and that 0.5 of an hour is 30 minutes. (If your com
puter uses binary, rather than BCD or Radix-100, internal ~*j
representations of numbers, you may get odd errors due to
rounding or lack of it. The solution would be to round the
number of hours to some reasonably small number of decimal ""^
places before invoking the conversions, and perhaps to insert
some rounding in the definitions of MNT and SCD
themselves.) —••»

Incidentally, for sexagesimal input, you don't need any '
special functions, only a bit of multiplication. For instance, the
statements: •mm\

32

i t ••-.•»*• «i. iiiijiiiacap! i The Basics

p^i 10 PRINT "TYPE HOURS, MINUTES, SECONDS"
-I 20 INPUT H,M,S

30 H=H+M/60+S/3600

I"* will give you (as H) the number of hours expressed as a
1 decimal.

11. Modulo 12 arithmetic. In dealing with hours, you'll
P^ often want to reduce numbers to modulo 12. For instance, if
• it's 11 a.m., then you can calculate the time four hours later

by adding 11+4 (which gives you 15) and then taking the
resulting modulo 12. The function definition is:

DEF M0D12(X)=12*<X/12-1 NT<X/12))

(unless, of course, your computer has a built-in MOD function,
which is even simpler to use). This particular function is likely
to be bothered by rounding and truncation errors. On the TI-
99, I get accurate results for numbers under 1000 or so, but
larger numbers give slightly erroneous answers.

12. Modulo 60 arithmetic. The same function, giving mod
ulo 60 answers (for dealing with minutes and seconds), is:

DEF MOD60(X)=60*(X/60-INT<X/60>)

(as if you couldn't have guessed). The following program
starts with a time expressed as H hours M minutes, and adds
Ml minutes:

10 DEF M0D12<X)=12* <X/12-INT (X/ 12))

20 DEF MOD60(X)=60*(X/60-INT<X/60))

30 INPUT H,M
40 INPUT Ml

50 M=MOD60(M+Ml)

60 H=H+INT(Ml/60)

(•» 70 PRINT H,M

Line 50 adds the right number to the minutes part, and line 60
adds to the hours part if necessary.

33

Roger Lathrop

CALL KEY is often used in programs, but there are a num
ber ofways to use CALL KEY which are rarely seen and easy
to use.

If you use a TI-99/4A and do your own programming you al
ready know how to use the CALL KEY routine. In fact you
probably use it in just about all your programs. However there
is something they don't tell you in the user's manual that you
may find very useful. First let's look at a typical use of CALL
KEY, then let's see how it can be improved:

10 PRINT " KEY R TO REPEAT KEY E TO END"
20 CALL KEY<0,A„B>
30 IF A=69 THEN 50

40 IF A=82 THEN 10 ELSE 20
50 END

This kind of program is often used to get information
from the user: "Do you want to play another game Y or N?" It
works fine as long as uppercase letters are entered. You know
why it won't work with lowercase letters so you can quickly
correct your mistake and go on. It's just a minor nuisance.
Now change line 20 to read:

CALL KEY<3,A,B>

With this simple change you have eliminated the problem
altogether. Using a three as the first argument returns upper
case characters only, so there is no chance of error. You may
remember reading this in the users manual, maybe you even
use it sometimes. But now let's go a step further, into some
thing they don't tell you in the manual. Try this simple
program:

10 INPUT A*

20 PRINT A*

30 CALL KEY(3,A,B)
40 INPUT B*

50 PRINT B*

60 GOTO 10

34

"•%!»• h The Basics

Run this program using lowercase letters (it doesn't matter
what you enter). You will see that your first input will be
lowercase, just as you typed it, but all the following entries
will be returned as uppercase characters. Line 30 puts the
computer in key unit three, and it will stay in that mode even
when it performs an INPUT statement. Now add this line, and
run it again:

55 CALL KEY(5,A,B)

You are now switching back and forth between key units three
and five. Key unit five is the mode the computer is in nor
mally. You can use this to ask a question, such as YES or NO,
and have it come back as uppercase to simplify verification, no
matter how it is entered. You may then switch back to key
unit five to enter information such as names, where both upper-
and lowercase letters may be desired. Note that control keys
are inactive in key unit three, and that numeric and punctua
tion keys work normally with the SHIFT key.

If you need to switch back and forth often in a program
you may wish to make the CALL KEY statements a separate
subroutine. You can use dummy CALL KEYs, as we did in
lines 30 and 55, or you can use an active CALL KEY using the
key unit you wish. Any following INPUT statements will react
accordingly. Once you have the keyboard mapped the way
you wish, any following CALL KEYs may use a key unit of
zero. Key unit zero will not change the keyboard mapping.

Take the time to learn this simple programming trick. It's
easy to learn, will help make your programs easier to run, and
in many cases can make them simpler to write and debug.

35

C. Regena

One of the functions of a computer is to organize data. You
may want to alphabetize lists, arrange events by date, or list
a class in order by test scores. There are a variety ofsort
routines or algorithms to arrange data.

Computer programmers and analysts often enjoy looking at
sort routines and comparing speed and efficiency. Usually the
amount of time it takes a computer to sort depends on how
many items are in the list and how out-of-order the items are.
Different computers vary in speed also. (Although the TI-
99/4A computer is slower than other microcomputers in
PRINTing or LISTing, it's just as fast or faster in calculations
and comparisons.)

Here are four different sort routines written in BASIC for
you to try, and to implement in your own programs. They will
work on a TI with regular or Extended BASIC.

In the listings, line 100 tells the type of sort being used.
Lines 110-170 randomly choose 50 integers from 1 to 100. Or
dinarily, you would INPUT, READ, or calculate the numbers
used. The actual sorting starts at line 200. Lines 500 to the end
print the final sorted list of numbers in the example.

Bubble Sort

The Bubble Sort (or simple interchange sort) is probably the
most common and easy to understand sort. It's fine for small
numbers of items or for a list of items that is not much out of
order. The program compares each number to the next num
ber and exchanges numbers where necessary.

If one switch has been made during a pass through all the
numbers, the loop of comparisons starts over. In this example,
if the 50 numbers happened to be in exact opposite order, the
maximum number of passes would be necessary, and the pro
cess would take longer than if only a few numbers were out of
place. For larger numbers of items, this sort can seem to take
forever.

36

•BSE!?!

ipsa

The Basics

[Shell Sort
The Shell Sort is considerably faster than the Bubble Sort. In

—a general, for a random order of 50 numbers, the shell sort is
I about two or three times as fast as the Bubble Sort. The Shell

Sort speeds up execution because the number of comparisons
fSm that need to be made is reduced.
I In an array ofN numbers, it first determines Bso that

2B<N<2B+1 and then the variable B is initialized to 2B+1. The
loop varies the counter I from 1 to N — B. First, it checks if
A(I)<A(I+B). If so, it increments I and continues with the
comparisons. If not, it exchanges A(I) and A(I+B) and changes
the subscript.

When I reaches the value of N, it reduces B by a factor of
two and starts the loop again. When B = 0 the sort is com
plete. I've used a couple of extra variables in the example for
clarity.

SortC

The third kind of sort routine offered here is also faster than
the Bubble Sort if the numbers are quite mixed up. The pro
gram goes through all the numbers and places the minimum
value in the first spot of the array. The loop keeps finding the
minimum of the numbers remaining and replaces it in order.

Sort D

This sort is similar to the previous one, except that with each
pass through the numbers, both the minimum and the maxi
mum numbers are found and placed at the appropriate end
spots.

The way these sorts are listed, the given numbers will be
f"** arranged in ascending order. To change to descending order,

simply exchange the less than or greater than signs in the sort
comparisons.

r^m If you are alphabetizing, the variable terms will be string
variables, such as A$(I).

You may have several items which need to be associated
r^> as they are sorted. For example, suppose you have names and

scores to be arranged by score. The names and scores are first
arranged as N$(l), S(l); N$(2), S(2); etc. In the interchange

,9aa you would need to sort the S values, and then switch both
terms, like this:

37

The Basics

SS=S(I)

NN*=N* <I)

S(I)=S(I+1)

N*(I)=N*<I+1)

S(I+1)=SS

N* < I-H)=NN*

Program 1. BASIC Bubble Sort

100 REM TI BASIC BUBBLE SORT
110 DIM A (50)

120 FOR 1=1 TO 50

130 RANDOMIZE

140 A(I)=INT(RND*100+1)

150 PRINT A(I):

160 NEXT I

170 PRINT : :

200 LIM=49

210 SW=0

220 FOR 1=1 TO LIM

230 IF A<I><=A<1+1)THEN 290

240 AA=A(I>

250 A(I)=A(I-H>

260 A(I+1)=AA

270 SW=1

280 LIM=I

290 NEXT I

300 IF SW=1 THEN 210

500 FOR 1=1 TO 50

510 PRINT A(I);

520 NEXT I

530 END

Program 2. BASIC Shell Sort

100 REM TI BASIC SHELL SORT

110 DIM A(50) **]
120 FOR 1=1 TO 50

130 RANDOMIZE

140 A(I)=INT(RND*100+1> ^
150 PRINT A(I) ;
160 NEXT I

170 PRINT : :

200 B=l mmx\
210 B=2*B

220 IF B<=50 THEN 210

230 B=INT<B/2)

240 IF B=0 THEN 500

250 FOR 1=1 TO 50-B

38

<^^

Bdj

I#s

imu«iliM,i„ii„„M,„>»»"g '=»-mi The Basics

rafte 260 C=I
I. 270 D = C + B

280 IF A(CX=A(D)THEN

[WRfciJ
290 AA=A<C)

300 A<C)=A(D)

310 A(D)=AA

320 C=C-B

flWS»J 330 IF C>0 THEN 270

i 340 NEXT I

350 GOTO 230

500 FOR 1=1 TO 50

510 PRINT A<I);
520 NEXT I

530 END

340

(™feft?J

Program 3. BASIC Sort C

IC SORT C100 REM<3 SPACES3TI BAS

110 DIM A(50)

120 N=50

130 FOR 1=1 TO N

135 RANDOMIZE

140 A(I)=INT(RND*100+1)

150 PRINT A(I);
160 NEXT I

170 PRINT : :

200 M=A(1)

210 IM=1

220 FOR 1=2 TO N

230 IF A<I)<M THEN 260

240 M=A(I)

250 IM=I

260 NEXT I

270 AA= A <N>

280 A<N)=A <IM>

290 A<IM)=AA

300 N = N-1

310 IF N>1 THEN 200

500 FOR 1=1 TO 50

510 PRINT A(I);

520 NEXT I

530 END

Program 4. BASIC Sort D

100 REMC4 SPACES3TI BASIC SORT D

110 DIM A<50)

120 N=50

130 FOR 1=1 TO N

39

The Basics

135 RANDOMIZE

140 A(I)=INT<RND*100+1>

150 PRINT A <I) :

160 NEXT I

170 PRINT : :

200 S=l

210 MN=A<S)

220 IMIN=S

230 MX = MN

240 IMAX=S

250 FOR I=S TO N

260 IF A(IX=MX THEN 29

270 MX = A < I)

280 IMAX=I

290 IF A<I)>MN THEN 320

300 MN=A <I)

310 IMIN=I

320 NEXT I

330 IF IMINON THEN 350

340 IMIN=IMAX

350 AA = A <N>

360 A(N)=A<IMAX>

370 A(IMAX)=AA

380 N = N-1

390 AA=A<S)

400 A<S)=A(IMIN)

410 A<IMIN)=AA

420 S = S+1

430 IF N>S THEN 210

500 FOR 1=1 TO 50

510 PRINT A(I):

520 NEXT I

530 END

IflBWl

40

/flPi^W

Doug Hapeman

Searching through data using BASIC can be very slow. Some
searching algorithms can be much faster than others.

The word algorithm is derived from Al Khuwarizmi, a ninth-
century Arabic mathematician. He was interested in solving
certain problems in arithmetic, and devised a number of meth
ods for doing so. These methods were presented as a list of
specified instructions, and eventually his name became at
tached to such methods.

An algorithm is simply a formula to use for getting done
what you want to accomplish. It's a sequence of operations that,
when applied to given information, will produce a desired result.
Algorithms are used unknowingly everyday. For instance, the
instruction sheet for assembling your child's new bicycle,
directions for opening a combination lock, kitchen recipes for
cooking, the rules for playing a game, and road maps are all
examples of algorithms. An algorithm, then, is a precisely de
scribed set of directions to follow in order to accomplish a
stated task. The algorithms we have in mind are the set of
procedures that can be used in searching through data lists.

In many program applications you will be storing a wide
variety of information, from inventory management, member
ship and address files, genealogical records, meteorological
data—the list is endless! Most lists are stored in a data struc
ture called a one-dimensional array, or subscripted variable.

Storing Information
An array is a block of storage locations in computer memory
which is reserved for a collection of variables. Each variable in
the list is called an element of the array. TI BASIC permits
you to use one-, two-, or three-dimensional arrays, in addition
to simple variables.

If you assign a numeric value or string expression to a
simple variable, then a specific memory location with an ad
dress that is unique is set aside. For example, LET A=12; the

41

The Basics

value of 12 is placed in a memory location and its address is
the variable A. If you ask the computer to PRINT A, it will
print 12, the value assigned to it. If you assign a second value
to A, LET A = 100, the first value is then forgotten. A simple
variable can hold only one value or expression at a time.

An array brings new dimensions to the variable. In an ar
ray the variable is subscripted, A(I)=12, and you may assign
many values or expressions to it. TI BASIC permits 11 ele
ments without any special dimensioning. If the number of ele
ments exceeds 11, then extra room must be allocated with the
use of the DIMension statement. The array then sets aside a
big enough block of memory locations for the number of ele
ments you set in the DIM statement.

What is in the space set aside for these elements? Try
these two short programs:

100 FOR 1=0 TO 10

110 PRINT "A<";I;")=";A<I)
120 NEXT I

100 FOR 1=0 TO 10

110 PRINT "A*(";I;")=";A*(I)
120 NEXT I

Notice that each element in the string array is a null string
and each element in a numeric array is a zero until you re
place them with values during the program. When the array is
accessed, each element within the block must be given an ad
dress that is unique. For example, A(l)= 12; A(2)=100. The A
is the name of the array, and the specific address is the
subscripted number given to the array A. As an illustration of
a one-dimensional string array, let's set up an array called
NAME$ that will hold the names of people. To INPUT a
number of names and fill in the array, you can key in the
following code:

100 CALL CLEAR

110 1=0

120 INPUT "ENTER THE NAMESs":NAME*<I>

130 1 = 1 + 1

140 GOTO 120

This program will fill array NAME$ until 11 names are
entered and then end with an ERROR MESSAGE**BAD SUB
SCRIPT, because we did not DIMension a larger array.

42

ilBBs*

i$?%™!wi

f^a

a The Basics

The one-dimensional array is often called a list, and has
only one integer value following its name A(6). The two-
dimensional array is referred to as a table, or matrix, because it
can represent any two-dimensional condition, such as charts,
graphs, or any tabular display that uses rows and columns. It
is described with two integer values which define the number

f^ of rows and columns A(12,3). The three-dimensional array has
three integer values defining its characteristics A(5,2,ll).

Comparing Using ASCII Codes
A very common problem in working with lists stored in one-
dimensional arrays is the need to search the array to access a
particular item or to determine whether it is in the array.
Some of the slowest procedures in BASIC (and other computer
languages) are searching and sorting, because the process in
volves time-consuming comparisons, whether string or
numeric.

In order to understand how strings are processed, some
background about ASCII character codes is necessary. ASCII
stands for American Standard Code for Information Inter
change, and it is an established standard for computers. There
are 128 different codes defined in the ASCII standard to repre
sent alphabetic, numeric, special characters, and control codes
(see "All About the Character Set" elsewhere in this book).

The way the ASCII codes are ordered—the space (32),
punctuation, numbers and other special characters (33-64),
uppercase alphabet (65-90), more special characters (91-96),
and then the lowercase alphabet (97-122)—makes it possible
to compare strings by using the same relational operators that
are used to compare numbers. The computer compares two
strings by comparing one character at a time, moving in a left-
to-right direction until a difference is found. Here are some
examples:

Is JORDEN greater than JORDAN?
J ORDEN> J ORDAN?
74 79 82 68 69 78 74 79 82 68 65 78

69 is greater than 65, therefore JORDEN is greater than JORDAN.
Is GREENE equal to GREEN?
GREENE=GREEN ?
71 82 69 69 78 69 71 82 69 69 78 32

69 is greater than 32, so GREENE is not equal to GREEN.
(Note that 32 is ASCII for a space.

43

frJBJ:)

The Basics

In data processing most of the time you will be working j
with alphabetically ordered lists of information. There are
times though when you will have to work with unordered mm^
lists. The program listing at the end of the article will dem- |
onstrate how much faster a list can be searched when the
information is ordered (alphabetized).

The Linear Search
When processing unordered data the most common algorithm
is the linear search. The linear search takes the item you are
searching for and compares it with each succeeding item in
the list until it finds a match (this process can be very time
consuming). If the item is not in the list, the search cannot de
tect it without passing through the entire array. Only then can
it verify that the item is not present. Line 340, IF C$=B$(I)
THEN 660, where C$ is the item you are searching, is com
pared to each element in the array until it finds the item being
searched.

The time required to search unordered data varies
depending on the length of the list and where exactly in the
list the item being searched for is located.

If you want to reduce the searching time, the first step
would be to order the list. How do you get an ordered list?
You could INPUT all the information alphabetically when
using the given application program, but that would not be
feasible or practical. Much easier would be to include a sorting
routine in the program. A sorting routine will alphabetize or
arrange numerics in ascending or descending order (see "All
Sorts of BASIC Sorts" elsewhere in this book).

The Alphabetical/Linear Search
How can an ordered list be searched efficiently? Once the list
is alphabetized it immediately becomes easier to process,
particularly when searching for items that are not in the list.
In the case of the unordered list, the entire list had to be
searched to determine that an item was not there. For a list of
one hundred items that meant one hundred comparisons. But
when the list is ordered, the search only needs to move for
ward until an item is found whose value is greater than the
item being searched. This is done in line 400, IF C$= B$(I)
THEN 660, and line 410, IF C$<B$(I) THEN 640. These two
lines make comparisons with each item in the array until the
item is located or an item of greater value is detected.
44

1

f*wra53

The Basics

' The Binary Search
The third search routine in the program listing is called a bi
nary search and is a very efficient search for long lists of

P^ ordered data. It is called binary not because it uses machine
code, but because the maximum number of comparisons that it
needs to make is represented by the power of 2 that results in

f*" a number greater than the number of items in the list. For ex
ample, in the program listing, there are 100 names taken from
the phone book. 2T7 is the next power of 2 larger than 100;
therefore, the binary search will take a maximum of seven
comparisons to locate the item in the list.

The first comparison is made with the middle item in the
list. If the item being searched is greater than that item, then
the upper half of the list becomes the new list. The second
comparison is then made with the middle item of the upper
section. This procedure of dividing the list in half is repeated
until the item is located.

Here is an example of how it works. Suppose you want to
locate the name "Usher" from the data in the program listing.
There are 100 items in the list.

1. Comparison at item 50.
Usher>Jones, so the new range is 50 to 100.

2. Comparison at item INT((100-50)/2 + .5)+50 = 75.
Usher>Peverill, so the new range is 75 to 100.

3. Comparison at item INT((100-75)/2 + .5)+75 = 88.
Usher>Stewart, so the new range is 88 to 100.

4. Comparison at item INT((100-88)/2 + .5)+ 88 = 94.
Usher<Ward, so the new range is 88 to 94.

5. Comparison at item INT((94-88)/2 + .5)+ 88 = 91.
,-#£> Usher>Thomas, so the new range is 91 to 94.

6. Comparison at item INT((94-91)/2 + .5+91 = 93.
Usher<Vickruck, so the new range is 91 to 93.

n«i 7. Comparison at item INT((93-91)/2 + .5)+91 = 92.
Usher=Usher, so GOTO 660.

Either of the linear searches would have required 92
"*** comparisons to locate Usher. You can see, therefore, that the

binary search is quite powerful. You will discover that as lists
become longer and longer, the binary search algorithm be-

r*r> comes much more powerful and efficient than the linear
methods.

45

The Basics

Explanation of the Program "*]
100-220 Read and Display Data
230-300 Print Main Menu _,
310-360 Linear Search Routine i
370-430 Alphabetical/Linear Search Routine
440-620 Binary Search Routine ^g.
630-760 Common Print Routines j
770-840 Data Statements

Searching Algorithms

100 REM **SEARCHING ALGORITHMS**
120 DIM B*<100)

130 N=100

140 REM **READ AND DISPLAY DATA**

150 CALL CLEAR

160 FOR 1=1 TO N

170 READ A*

180 B*(I)=A*

190 PRINT B*(I),

200 NEXT I

210 FOR T=l TO 400

220 NEXT T

230 REM **PRINT MAIN MENU**

240 CALL CLEAR

250 PRINT " **SEARCHING ALGORITHMS**": : :
: :"PRESS<3 SPACESJFOR": : : " 1 = LIN
EAR SEARCH": :

260 PRINT 2 ALPHA/LINEAR SEARCH": :"

3 = BINARY SEARCH": :" 4 FINISH

SESSION": : : : : :

270 CALL KEY(0,KEY,S)
280 IF KEY<49 THEN 270

290 IF KEY>52 THEN 270 ^
300 IF KEY=52 THEN 750 ELSE 700

310 REM **LINEAR SEARCH**

320 FOR 1=1 TO N

330 PRINT I; —*»
340 IF C$=B*(I)THEN 660 •

350 NEXT I

360 GOTO 640 ^^
370 REM **ALPHABETICAL LINEAR SEARCH**

380 FOR 1=1 TO N

390 PRINT I;
400 IF C*= B*(I)THEN 660 -»i

410 IF C*<B*<I)THEN 640

420 NEXT I

430 GOTO 640

46

(fiii^j

r

SX23KSB2) The Basics

440 REM **BINARY SEARCH**

450 LOW= 0

460 HIGH=N

470 K=l

480 X=INT(N/2+.5)

490 X=INT(X/2+.5)

500 K = K+1

510 IF X>1 THEN 490

520 1=0

530 FOR J=l TO K

540 1 = 1 + 1

550 X=INT(<HIGH-LOW)/2+.5)+LOW

560 PRINT X;

570 IF C*=B*(X)THEN 660

580 IF C$<B$<X)THEN 610

590 LOW=X

600 GOTO 620

610 HIGH=X

620 NEXT J

630 REM **GENERAL PRINT ROUTINES**

640 PRINT : : : :"SORRY,";C*:"IS NOT
LIST. "

650 GOTO 670

660

ISONS."

670 PRINT : :"*PRESS ANY KEY TO CONT

680 CALL KEY<0,KEY,S>
690 IF S=0 THEN 680 ELSE 240

700 CALL CLEAR

710 PRINT "THE NAME YOU ARE SEARCHIN

720 INPUT C$

730 PRINT : :"COMPARING WITH NAME #"

740 ON KEY-48 GOTO 320,380,450,750

750 CALL CLEAR

760 PRINT "{6 SPACES3HAVE A NICE DAY

IN THE

COMPAR

765 STOP

770 DATA ACKER,AINSLIE,ALLEN,ANDERSON,ARMSTR
ONG,BANCROFT,BAULD,BEATON,BEATTIE,BLACK,
BOWER,BROOKS,BROWN

780 DATA BURKE,CHANG,CHRISTIAN,CHU,COCHRANE,
CODNER,COLLINS,COMEAU,COOK,COOPER,COX,DA
RROW,DAVIS,DAY

790 DATA DELONG,DICKIE,DOGGETT,DOUGLAS,EBBET
T,ELLIS,EMBREE,EULOTH,FIELD,FIFIELD,FOY,
GAMMON,GREENE,HAPEMAN

800 DATA HARPELL,HARTLIN,HILL ,HUBLEY,HUSKINS
,JAMES,JAMIESON,JOHNSON,JONES,KENDALL ,KE
TCHAM,KILLAWEE,KILLORAN

47

The Basics w«wm

810 DATA LAMFORTH,LANGILLE,LERUE,LLOY,LYSEN, «*1
MACDONALD,MACFADYEN,MACFAWN,MACLACHLAN,M >
AILLET,MARSHALL,MASKELL

820 DATA MATTHEWS,MCCONNELL,MCDOWELL,MERCER,
MOULTON,NAGLE,NAPER,NICKERSON,PEVERILL,P |
RESTON,PRICE,PROCTOR,RODDAM

830 DATA RONALDS,RUSSELL,SCHOEMAKER,SCHOFIEL
D,SHERIDAN,SMITH,STARRATT,STEVENS,STEWAR
T,SYKES,TAYLOR,THOMAS

840 DATA USHER,VICKRUCK,WARD,WEBB,WHITE,WHIT
ING,WILBUR,WINTER,ZACHARY

/**$»

•"*»

mten

48

^n
Patrick Parrish

Variables can be passed from one program to another in most
microcomputers by POKEing them into memory. But on the
TI-99/4A, standard PEEKs and POKEs can't be used. Here's
a way to transfer variables in TI Extended BASIC that uses
redefined characters.

The TI-99/4A has outstanding graphic capabilities. With its
subprogram CHAR, you can readily redefine characters within
the standard ASCII character set (character codes 32-126). Or,
you can create additional characters using codes 127-159
(codes 127-143 in Extended BASIC).

But there's a potentially more powerful application for the
CHAR subprogram. Variable data can be passed from one pro
gram to another using CHAR and CHARPAT, an Extended
BASIC subprogram. So, if you use up the TI's memory, it's
now possible to write a program in two parts and send vari
ables to a second program. Even the user's name could be
among the variables transferred. But first let's take a brief look
at the traditional use of the CHAR subprogram.

Defining Characters
On the TI-99/4A, characters are defined by a 16-character
hexadecimal string expression known as a pattern-identifier.
Pattern-identifiers are dot codes for depicting each character in
an eight by eight grid (see the TI-99/4A User's Reference Guide
pp. 11-76 through 11-79 for more).

Changing the pattern-identifier in memory for a character
enables you to define that character to suit yourself. For ex
ample, suppose you wanted to represent the ASCII character
65 (normally, an A) as a box in a program. You could do this
with the CHAR subprogram as:

CALL CHAR(65,"FFFFC3C3C3C3FFFF")

49

The Basics
J

i*Wh

Within the parentheses following CALL CHAR is the ASCII —n
character number (65) and the new pattern-identifier for the '
character ("FFFFC3C3C3C3FFFF"). By redefining characters in
this manner, you can produce figures which greatly enhance •—i
and enliven screen displays in your programs. I

Protected Memory ^
CHAR, within a program, can also be used to store variable J
data in the form of a pattern-identifier. Once stored, a second
program can fetch this variable data with the CHARPAT
subprogram.

CHARPAT is the converse of CHAR. Rather than specify
ing the pattern-identifier for an ASCII character, it returns
from memory the pattern-identifier assigned to a particular
character. For instance, CALL CHARPAT (65,A$) returns the
pattern-identifier for ASCII character 65 as A$.

When you interrupt a TI program using redefined char
acters, certain character codes retain their redefined con
figuration while others return to their standard definitions. If
you haven't seen this before, enter and run the following
program:

100 CALL CLEAR

110 CALL CHAR(126,"FFFFFFFFFFFFFFFF">
120 CALL CHAR (127, "FFFFC3C3C3C3FFFF")
130 PRINT CHR*<126),CHR*(127)
140 FOR 1=1 TO 1000

150 NEXT I

Here, we redefined character 126 (it's normally a tilde) in
line 110 as a solid block and defined character 127 in line 120
as a hollow box. Next, we PRINTed both characters in line 130.

When you run this program, the two characters we've de- "*!
fined will appear on the screen momentarily. Once the pro
gram ends, the block character will change to a tilde while the
box character remains. *™^

Why does this happen? When a program is interrupted,
only the standard character set on the TI (ASCII characters
32-126) is restored. Pattern-identifier data stored in ROM for T
characters 32-126 is copied to RAM (this process also occurs
when the TI is first powered up or reset). As a result, ASCII
character 126, seen as a block during program execution, be- •*!
comes a tilde when our program ends. But character 127 (the
box) retains its redefined shape.

50

vrtmwi

The Basics

r Indeed, all characters above 127 will keep their defined
form even if another program is run (provided these characters
are not defined differently by this subsequent program).

r Normally, the RUN command clears all variables in mem
ory—both numeric and string. That is, all numeric variables
become zero while string variables are set to null. So, if you

f» chain to another program with RUN "device.program-name",
the variables will be cleared. The fact that certain character
codes remain intact even after a RUN will enable us to pass
variables between programs by storing them as pattern-
identifiers.

Storing Variable Data
The variable data that we wish to pass must be in hexadecimal
form so that it can be stored as a pattern-identifier. Once it
has been converted to hexadecimal form, it can be placed in
the character codes beginning at 127 for retrieval by a second
program.

Program 1 is a sample program which demonstrates the
necessary routines for storing variable data in character codes.
In this program, variables to be passed are generated in the
main portion of the program (lines 100-798). In this case,
we've simply assigned values to the three variables we want
to transfer (line 500).

Two of these variables are numeric (X and Y) while the
third is a string variable (NAME$). In line 800, the numeric
variables are converted to string variables, and then all three
variables are stored in the array D$. (Note in line 100 that
we've DIMensioned D$ for the number of variables we intend
to pass.) In line 900, we concatenate all values of D$() and

ran store them in E$.
Seventeen character codes (codes 127-143) are available

for variable storage. Each pattern-identifier is 16 hexadecimal
roe* characters in length, so we have room to store 272 (17 X 16)

hexadecimal characters. Since 2 hexadecimal digits will be re
quired to encode each character of E$, the length of E$ is lim-

mm ited to 136 characters (actually, 135 characters because the end
of E$ is marked with an additional CHR$(255) in line 930).

After each D$() is concatenated to E$ and CHR$(255) is
r*j added as a separator between variables, a check of E$'s length

is made in line 910. If the last variable added to E$ causes it
to exceed 135 characters in length, the program will terminate,

51

The Basics

and the computer will display the number of variables you are
allowed to transfer.

As mentioned, pattern-identifiers must be stored as hexa
decimal code. Our best approach here is to represent each
character of E$ by its ASCII value before converting it to
hexadecimal.

Lines 1000 to 1020 contain routines for doing this. In line
1010, each character of E$ is converted to its ASCII equiva
lent. These ASCII values are, in turn, converted to a hexa
decimal string expression, Ml$, in line 1020.

Once Ml$ reaches a length of 16 characters (or the end of
E$ is reached), it is assigned as a pattern-identifier (line 1025).
At this point, if Ml$ is less than 16 characters long, TI Ex
tended BASIC automatically fills the remaining characters in
the pattern-identifier with zeros.

Recovering Variable Data
Variable data stored with Program 1 can be recovered with
Program 2. Both programs serve as examples.

Again, you would place the main portion of your program
in lines 100-798. Be sure to DIMension D$() and D() in line
100 for the number of variables you stored with Program 1.

Lines 800 to 980 contain routines for recalling each vari
able. In line 800, each pattern-identifier used to store data is
assigned as A$ using CHARPAT. In line 910, if the end of
variable data is detected as signified by "FFFF" (sequential
CHR$(255)'s), a flag variable FL is set to 1.

Line 920 looks for the delimiter "FF" (CHR$(255)) follow
ing each variable D$. If a delimiter is seen, the length of the
prior D$() is calculated as D().

Two characters of A$ are set equal to M$ in line 930. The
two-digit hexadecimal number contained in M$ is sub
sequently converted to a decimal value in line 940. These
decimal values are then converted to CHR$s in line 960 and
stored as F$.

In line 1000, F$ is divided into D$()'s using lengths D().
As before, D$() represents the string form of each variable.
Finally, as a demonstration, our original variables are
PRINTed in line 1030. Of course, this may not be necessary in
your program.

52

ibi|b'ib»wmmmk The Basics

Program 1. Passing Variables

10 REM PROGRAM 1 (VARIABLE ORIGIN PROGRAM)
99 REM IE-, LINES 100-798 = MAIN PORTION OF

j" YOUR PROGRAM
100 OPTION BASE 1 :: DIM D*(3):: REM DIMENSI

ON D* FOR NUMBER OF VARIABLES TO TRANSFE
JJj#SJ p,

i 499 REM VARIABLES IN LINE 500 ARE ASSIGNED W

ITHIN THE MAIN PROGRAM

500 X=100 :: Y=-5.05 :: NAME*="JEFF TUDOR"

799 REM DEFINE STRING AND NUMERIC VARIABLES
AS D*()

800 D*(1)=STR* (X) : : D$(2)=STR*(Y):: D*(3)=NA

ME*

810 HEX*="0123456789ABCDEF"

899 REM CONCATENATE D*()*S TO E* AND DELIMIT

WITH CHR*(255)

900 E*="" :: FOR 1=1 TO 3 :: E*=E*&D*(I)&CHR

*(255)

909 REM CHECK TO MAKE SURE LENGTH OF E* DOES

NOT EXCEED 136(272/2)

910 IF LEN(E*)>135 THEN E*=SEG*(E*,1,LEN(E*)
-LEN(D*(I))-1) : : PRINT "ONLY " ; I - 1 :: PR

INT "VARIABLES CAN BE TRANSFERRED." :: S

TOP

920 NEXT I

929 REM PLACE ADDITIONAL CHR*(255) AT END OF

E*

930 E*= E*8<CHR* (255)

999 REM CONVERT E* TO ASC'S AND THEN TO HEX

- CONCATENATE EVERY 16 AS Ml* OR END OF

E*

1000 J=127 :: Ml*="" :: FOR K=l TO LEN(E*)

1010 D=ASC(SEG*(E*,K,1))
^ 1020 MH=INT(D/16):: ML=D-MH*16 :: M*=SEG*(HE

X*, MH+1 . 1)&SEG* (HEX*, ML + 1 , 1) : : M1* = M
1*&M*

1024 REM STORE HEX STRING Ml* AS CHAR PATTER

r*" N-IDENTIFIER

1025 IF (LEN(Ml*)=16)+((LEN(E*)*2)=(J-127)*1

6+LEN(Ml*))THEN CALL CHAR(J,M1 *) : : J=J +
, , 1 : : Ml*=""

1030 NEXT K

1040 CALL CLEAR :: PRINT "NOW RUN PROGRAM 2.

53

The Basics e==s

Program 2. Receiving Variables

10 REM PROGRAM 2 (VARIABLE RECEPTOR PROGRAM)

99 REM IE., LINES 100-798 = MAIN PORTION OF
THE PROGRAM

100 OPTION BASE 1 :: DIM D(3),D*(3):: REM Dl
MENSION D AND D* FOR NUMBER OF VARIABLES

TO RECEIVE

110 GOSUB 800 :: STOP

799 REM RECALL PATTERN IDENTIFIERS USED FOR

VARIABLE STORAGE

800 K=l :: P=l :: FOR L=127 TO 143 :: CALL C

HARPAT(L,A*)
899 REM SEPARATE A*'S INTO M*7S AND CONVERT

BACK TO D*()'S

900 FOR 1=1 TO LEN(A*)STEP 2

909 REM CHECK FOR END OF STRING AND SET FLAG

910 IF SEG*(A*,I,4)="FFFF" THEN FL=1
919 REM CHECK FOR DELIMITER . FROM THIS, DET

ERMINE LENGTH OF EACH D*() - STORE AS D(

)

920 IF SEG*(A*, I,2) = "FF" THEN D(K) = (L-127)* 1
6+I-P :: K = K+1 :: P=(L-127>* 16+ 1+2 :: IF

FL=1 THEN I=LEN(A*):: GOTO 970

929 REM TAKE TWO CHARACTERS OF A* AND CALL T
HEM M*

930 M*=SEG*(A*,I,2)
939 REM CONVERT HEX STRING TO DECIMAL, THEN

TO CHR*'S

940 M=0 :: FOR J=l TO 2 :: M1=ASC(M*):: M1=M
l-48+(Ml>64)*7 :: M*=SEG*(M*,2,1):: M=16
*M + M1

950 NEXT J

959 REM CONCATENATE ALL CHR*?S TO F*
960 F*=F*&CHR*(M)

970 NEXT I

975 IF FL=1 THEN L=143

980 NEXT L

999 REM DEFINE D*()'S USING DO'S AND F*, TH
EN PRINT EACH D*().

1000 P=0 :: FOR 1=1 TO 3 :: D*(I)=SEG*(F*,P+
l,D(I)/2):: P=P+D(I)/2+l

1010 NEXT I

1020 X = VAL (D* (1)) : : Y = VAL(D*(2)) : : NAME*= D*(
3)

1030 PRINT X,Y,NAME*
1040 RETURN

54

ES3

J

"1

I^WW

©

III

Richard D. Jones and Howard Alvir

Use your microcomputer to create effective visuals.

We give many presentations to groups of all sizes and have
found that good graphics increase understanding of theoretical
concepts and capture the interest of the audience. Recently the
TI-99/4A joined the overhead projector and flipchart in our
arsenal of visual aids.

Because of its small size, the TI-99/4A is very portable. A
briefcase holds the computer, power cord, RF modulator, por
table cassette recorder and cable. Rigging a snap connection
for the RF cable and an extension cord will make setup a little
easier. The television monitor is not as easily transported, so
it's best to arrange to have it at the meeting site before you
arrive.

Usually it takes 5-10 minutes prior to the meeting to set
up (it usually takes that long to set up an easel tripod!). Make
a few connections, load your program and begin. Since a 25-
inch monitor can be easily seen from 30 feet, we have used
the microcomputer with audiences of up to 75 people. Mul
tiple monitors work well for larger audiences.

There are several advantages to using the computer
visuals. First, visuals can be changed frequently and easily.
(We are always changing presentations). Second, information
is presented one point at a time. Third, since our presentations
usually focus on technology, we practice what we preach.
Fourth, the system is inexpensive and of high quality.

The following is a simple program illustration for present
ing visuals. The routine organizes ten screens of information
with words stored in DATA statements. Each screen can be
called up a line at a time or the entire screen at once. The title
screen is displayed initially and is set for full screen display.
Each of the following screens is displayed in this sequence,
unless called by the "F" key.

During display there are several function keys. These are
as follows:

C—clear screen

F—display entire screen

55

The Basics

space—scroll up ^1
T—input additional words during display
1-9—calls appropriate screen
0—calls title screen "H

All other keys advance the screen a line at a time.
Color is added by the CALL COLOR command. As a re- „_

suit any character in character set 2 is displayed as color. j
Thirty-two characters will display a colored line.

Experiment with numerous screen variations (e.g., color
combinations, larger letters, and speech to introduce major
points). We have even experimented with using the speech
synthesizer to open the presentation. Adding commands in
Extended BASIC can improve graphics but it adds complexity
to the equipment.

Generating visuals by computer opens exciting possibil
ities for the future. Certainly improvements in video display
and microcomputers will expand the application of computer
visuals. In the meantime, you can enter a new arena of pro
fessional computer use and discard your image as a hobbyist.

Computer Visuals

100 REM ********************

110 REM * COMPUTER VISUALS *
120 REM ********************
130 REM

140 REM

150 REM

160 REM

170 CALL CLEAR

180 PRINT TAB(4);"PRESS ANY KEY TO BEGIN"
190 CALL KEY<0,K.S)
200 IF S=0 THEN 190

210 CALL CLEAR

220 CALL C0L0R(2,5,5)
230 CALL SCREEN(12)

240 RESTORE 1050

250 REM FULL SCREEN ROUTINE

260 CALL CLEAR

270 READ LINE*

280 IF LINE*="END" THEN 500

290 IF LINE*="#" THEN 970

300 IF LINE$="3" THEN 510

310 L=LEN(LINE*)

320 M = L/2

330 I=15-M

56

iMMwrgjiMKca The Basics

PTpK?)

P"9 340 PRINT TAB(I);LINE*
350 PRINT

360 GOTO 270

frpgjv 370 REM
[380 REM LINE ROUTINE

390 CALL CLEAR

400 READ LINE*

P^ 410 IF LINE*="END" THEN 500

420 IF LINE*="#" THEN 970

430 IF LINE*="5>" THEN 370

440 L=LEN(LINE«)

450 M=L/2

460 I=15-M

470 PRINT TAB(I);LINE*
480 PRINT

490 GOTO 510

500 END

510 CALL KEY(0,K,S)
520 IF K=32 THEN 530 ELSE 550

530 PRINT

540 GOTO 5 10

550 IF K=67 THEN 560 ELSE 580

560 CALL CLEAR

570 GOTO 510

580 IF K=84 THEN 590 ELSE 640

590 PRINT

600 INPUT LINE*

610 GOTO 4 10

620 PRINT

630 GOTO 510

640 IF K=70 THEN 270

650 IF K=48 THEN 240

660 IF K=49 THEN 920

670 IF K=50 THEN 900

680 IF K=51 THEN 880

690 IF K=52 THEN 860

700 IF K=53 THEN 840

710 IF K=54 THEN 820

720 IF K=55 THEN 800

f^ 730 IF K=56 THEN 780
740 IF K=57 THEN 760

750 IF S=0 THEN 510 ELSE 950

pa 760 RESTORE 1590
i 770 GOTO 400

780 RESTORE 1530

790 GOTO 400

I**1, 800 RESTORE 1470
810 GOTO 400

820 RESTORE 1410

I^P^

57

The Basics

830 GOTO 400 •*

840 RESTORE 1350 !
850 GOTO 400

860 RESTORE 1290 mm
870 GOTO 400 j
880 RESTORE 1230

890 GOTO 400

900 RESTORE 1170 -==1

910 GOTO 400 !

920 RESTORE 1110

930 GOTO 400

940 GOTO 950

950 IF S=0 THEN 510

960 GOTO 400

970 CALL SOUND(100,294,5)
980 GOTO 5 10

990 REM DATA FOR SCREENS
1000 REM

1010 REM

1020 REM

1030 REM

1040 REM TITLE SCREEN
1050 DATA

.,COMPUTER VISUAL

S,USING THE

1060 DATA TI 99 4A COMPUTER,
1070 DATA -

1080 DATA

1090 DATA #,3>
1100 REM SCREEN 1

1110 DATA ADVANTAGES
1120 DATA

1130 DATA EASY TO ED IT, INEXPENSIVE,ORGANI ZED
,EFFICIENT,COLORFUL.PORTABLE,ATTENTION
GATHERING .bq

1140 DATA J
1150 DATA #,5>

1160 REM SCREEN 2

1170 DATA EQUIPMENT NEEDED, <aaB|
.TI 99 4A,CASSETTE RECORDER, '

TELEVISION OR MONITOR.

1180 DATA REALLY THAT IS ALL !! J
1190 DATA

1200 DATA

1210 DATA #,S> ^
1220 REM SCREEN 3 '

1230 DATA HOW TO USE

1240 DATA

58

pa

The Basics

1250 DATA OUTLINE PRESENTATI ON,ENTER KEY POI
NTS IN DATA,SAVE THE PROGRAM,SET UP YOU
R COMPUTER AND TV

1260 DATA LOAD AND RUN PROGRAM,IMPRESS YOUR
AUDIENCE,

1270 DATA #,5>

1280 REM SCREEN 4

tmm 1290 DATA SCREEN 4

1300 DATA

1310 DATA

1320 DATA

1330 DATA #,3

1340 REM SCREEN 5

1350 DATA SCREEN 5

1360 DATA

1370 DATA

1380 DATA

1390 DATA #. S>

1400 REM SCREEN 6

1410 DATA SCREEN 6

1420 DATA

1430 DATA

1440 DATA

1450 DATA «,3

1460 REM SCREEN 7

1470 DATA SCREEN 7

1480 DATA

1490 DATA

1500 DATA

1510 DATA 4»,5>
1520 REM SCREEN 8

1530 DATA SCREEN 8

1540 DATA

1550 DATA

1560 DATA

^ 1570 DATA *,3
1580 REM SCREEN 9

1590 DATA SCREEN 9

1600 DATA

<*» 1610 DATA

1620 DATA

1630 DATA #,S>

1640 DATA END

59

C. Regena

These tips will give you a good start on adding a printer to
the TI-99/4A. Here are the fundamentals, from the RS-232
Interface to PRINT # statements. J

Texas Instruments has a thermal printer which attaches to the
side of the TI. It's a small unit which uses a special thermal
printer paper and can print a 30-column line. A number of
other printers may also be used with your TI. The price de
pends on whether the printing is dot-matrix or letter quality,
on various options available, and on how the printer is built.

To connect your printer to yourTI-99/4A, you will need
the RS-232 Interface. You may use either the "old-style" in
dividual RS-232 Interface peripheral or the RS-232 Interface
Card which fits in the TI Peripheral Expansion Box. You will
also need a cable to go from the interface to the printer, and
the cable should be sold with the printer. If you want to wire
your own cable, the plug is a standard DB-25, and the pin
connections are given in the manual that comes with the RS-
232 Interface.

Configurations
Manuals are important. The manual that comes with the RS-
232 Interface describes how you list parameters for your
"printer configuration" so you can give instructions to your
computer to access the printer through the RS-232. The man
ual that comes with the printer should describe how to *^
achieve various type styles (fonts) and how to set margins, '
line lengths, and the top of the form. Be prepared to spend
some time experimenting with the different switches and fea- "^j
tures of your printer. '

When you use the printer configuration in a command, it
is set off in quotes. Parameters may be chosen for baud rate, ^
stop bits, and number of nulls. Some examples are: J
"RS232.TW.BA=110" (teletype)
"RS232.BA=600" (TI 825 or TI 840 printer) H
"RS232.BA=9600.DA=8" (Epson MX 80)

60 J

The Basics

One of the primary uses of a printer is to obtain a
hardcopy listing of a program. Using your own printer
configuration in the quotes, the following commands may be
used:

LIST "RS232.BA=600"
Lists whole program

LIST "RS232.BA=600":-250
Lists program lines up to line 250

LIST "RS232.BA=600":300-330
Lists program lines 300 to 330

LIST "RS232.BA=600":700-
Lists program from line 700 to end

Another valuable use for a printer is to print a report from
your program. Before you print, an OPEN statement is nec
essary. The OPEN statement designates a device number and
your printer configuration. You may have several devices, and
you may number your devices in any order. An example state
ment is:

120 OPEN #1:"RS232.BA=600"

After the OPEN statement, you may print to the printer
by a statement such as:
130 PRINT #1:"MY NAME IS REGENA."

When you've finished printing or you're at the end of the
program, you should close all devices. This can be done with
the following statement:
550 CLOSE #1

Here is a short sample program that illustrates printing to
a printer:

100 OPEN #1:"RS232.BA=600"
Opens device 1 for printer.

110 OPEN #2://SPEECH///OUTPUT
Opens device 2 for speech (Terminal Emulator II required).

120 PRINT "HERE IS A SAMPLE/'
Prints message on screen.

130 PRINT #1://TEST REPORT
Prints on printer.

140 PRINT #2://HELLO,/
Speaks the word using synthesizer.

150 CLOSE #1
Closes device 1.

61

The Basics

160 CLOSE #2 «•*
Closes device 2. !

170 END

The print list following the colon in a PRINT # statement
follows the same rules as regular printing to the screen. Since
the length of lines may be longer on the printer (the screen
has 28 columns in a print line), you may use the TAB function
to arrange your printing:
100 OPEN #1:"RS232.BA=600"
110 PRINT #l:TAB(25):"MONTHLY PAYMENTS"

You may use a variable in the TAB function:
200 PRINT #l:TAB(T+A);MONTH$;X

You may also use colons to print blank lines:
220 PRINT #1:::

If you have adjusted your printer properly for vertical
tabs, you may go to the top of the next page by using:
300 PRINT #1:CHR$(12)

n

62

ftfe*l

Doug Hapeman

This program can be used for developing small mailing lists,
F^ for families or for organizations. There are ten options,
• including printing a single label or an entire alphabetized

mailing list.

Have you ever kept a file of addresses on index cards, hoping
to organize them someday in an orderly fashion? It sounds
simple, but in practice you know how difficult it is to organize
and update a paper-based filing system. "Mailing List" offers
you an easy method of creating, maintaining, and utilizing a
mailing list file.

Without any programming experience you can keep an
up-to-date, well-organized file. The program will prompt you
step-by-step through the entry of names, addresses, and
phone numbers. Then, with a few simple keystrokes, you can
update your file, print lists in two different modes, or save
your file on a storage device. It's that easy.

Mailing List is designed specifically as a family mailing
list, but is flexible enough to accommodate a number of
applications. The program will store last names, first names,
children's names, addresses, and phone numbers.

The program is written in a Canadian format—that is,
province and postal code. However, the format can be easily
adjusted to the American system as you type in the program.

r^ Program Environment
'. The program is set up for 45 entries. After 45 entries you will

be given the message *DATA FILE IS FULL*. This feature will
<m* prevent your program from crashing with a MEMORY FULL

error message. If you have more than 45 addresses to enter,
you may easily divide your list into two or more files—for ex-

imn ample: (A-L) and (M-Z).
When you run the program, the initial title screen ap

pears. The next display permits you to initialize the printer. Be
r$m sure to enter the proper name and spelling of the device

you're using, because an improper name will cause the pro
gram to break when you attempt to address the device later in

jass, the program.
65

Applications

Ten Options «*-i
Once the computer "environment" is established, you are '
taken to the Main Index. Here you will discover ten options:

1 View Names List """I
2 Search for a Name
3 Add Names
4 Change Names *"**[
5 Delete Names
6 Alphabetize List
7 Save Data File
8 Load Data File
9 Print Labels/List

10 Finish Session

Of course, to create a mailing list you would first choose "
option 3 (Add Names). The other options will enable you to
update, maintain, and utilize an existing file. The program will
guide you step-by-step through the procedure for each option.
There are many helpful features, such as the Search, Change,
and Delete. You can also enter names and addresses in any
order, and then, by choosing the Alphabetize option, have the
computer sort them for you.

The Data File
The program is written to both save and load data files for
either cassette or disk storage. When you choose either the
Save or Load option, you will be given any further step-by-
step instructions.

Print Options
The program offers you two print options—one for mailing
labels, and the other for the mailing list. ""J

The Print Labels option will print the first name, followed
by the last name, and then the address on lines two and three.
For example: ""1
John Doe
1234 Street Address
City Province Postal Code

The Print Mailing List option will print the last name first,
followed by the first name and children's names, with the ad- ""*]
dress on line two, and the phone number on line three. For •
example:

66 ""1

•n

Applications

F* Doe, John Mary Joe Sally
; 1234 Address City Province Postal Code

(p)-444/4456

fStei

Line spacing between addresses is flexible via a minor pro
gram change. If you wish to alter the line spacing, program
lines 497 (labels) and 517 (list) may be adjusted by either
increasing or decreasing the number of colons (:) at the end of
each line. Each colon represents one line space. For example:
497 PRINT #2:TAB(5);NA$(I);" ";LN$(I):TAB(5);AD$(I):TAB(5);

CP$(I);" ";PC$(D:::: (Add or delete colons here.)

In the Print Labels option, you may wish to print two la
bels per line instead of one. If so, you should adjust the line
listing as follows:

Change line 487 to:
87 FOR 1=1 to N STEP 2

Change line 497 to:
497 PRINT #2:TAB(5);NA$(I);// ";LN$(I);TAB(45);NA$(I+D;

////;LN$(I+l):TAB(5);AD$a);TAB(45);AD$(I+l)

Add line 498:

498 PRINT #2:TAB(5);CP$(I);// //;PC$(I);TAB(45);CP$(I+1);
" ";PC$(I+D::::

The Search option permits the printing of a single mailing
label. After finding the name you are seeking, the display asks
if you would like a mailing label printed. If yes, the program
branches to the print routine and then returns to the search
option.

r-> Mailing List Program Structure
1-21 REMs and computer environment.
23-47 Main loop, main index.

lassj 49-73 Subroutine to view names.
75-109 Subroutine to search for a name.
111-181 Subroutine to add names.

p^g, 183-285 Subroutine to change data.
287-331 Subroutine to delete names.
333-423 Subroutine to alphabetize list.
425-441 Subroutine to save data.

"** 443-471 Subroutine to load data.
473-521 Subroutine to print.
523-533 Subroutine to finish session.

pssa

67

Applications ess

Mailing List «j

5 REM **COMPUTER ENVIRONMENT**

7 DIM LN*<45>,NA*<45>,CH*<45>,AD*<45),CP*(45
>,PC*<45>?TP*<45> *^]

9 CALL CLEAR

11 PRINT " *<3 SPACES>99/4A MAILING LIST

£3 SPACES!*": ::::::::::

13 INPUT "€4 SPACES*PRESS ENTER TO BEGIN": X*

15 CALL CLEAR

17 PRINT "€5 SPACESJWHAT IS THE NAME OF":"

<4 SPACESJYOUR PRINTING DEVICE?": :" <EX

AMPLE: RS232.BA=4800)": :::::::::

19 INPUT P*

21 G*="{7 SPACESJPLEASE WAIT...C7 SPACES2WHI

LE THE PRINTER IS WORKING"

23 REM **MAIL LIST MENU**

25 CALL CLEAR

27 PRINT "C8 SPACES>MAIN INDEX": : : :

29 PRINT "PRESS<:3 SPACES>TO": : :

31 PRINT " 1 = VIEW NAMES LIST":" 2

SEARCH FOR A NAME":" 3 = ADD NAMES":"

4 = CHANGE NAMES"

33 PRINT " 5 = DELETE NAMES":" 6 = ALP

HABETIZE LIST":" 7 = SAVE DATA FILE":"

8 =» LOAD DATA FILE"

35 PRINT 9 = PRINT LABELS/LIST":" 10 =

FINISH SESSION": : : :

37 INPUT P

39 IF P>10 THEN 37

41 IF P<1 THEN 37

43 CALL CLEAR

45 ON P GOSUB 51,77,113,185,289,335,427,445,
475,525

47 GOTO 25

49 REMC3 SPACES>**VIEW NAMES LIST**

51 T = 0

53 FOR 1=1 TO N

55 T=T+1 «a

57 PRINT NA*<I>,LN*<I>:CH*<I>:AD*<I):CP*<I>: |
PC*<I>:"<P>-";TP*<I): : :

59 IF T<2 THEN 69

61 PRINT " *PRESS ENTER TO CONTINUE*":" *" "R *1
"",ENTER FOR MAIN INDEX*" J

63 INPUT X*

65 IF X*="R" THEN 73

67 T=0

68

^=*i

fSpwSsl

r^^i

(^55l

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

Applications

NEXT I

INPUT " €7 SPACES>*END OF FILE*<:9 SPACES>*

PRESS ENTER TO CONTINUE*":X*

RETURN

REM<3 SPACESJ**SEARCH NAMES**

INPUT "LAST NAME? " : Y*

FOR 1=1 TO N

IF LN*<I)OY* THEN 103

PRINT : : :" IS THE PERSON:": :" ";NA*<
I) : " ";LN*(I) : :

INPUT " <Y/N)?":X*

IF X*="N" THEN 103

PRINT : : :NA*<I),LN*<I):CH*(I):AD*(I):CP
<I> :PC<I>:"<P>-";TP*<I) : : :
INPUT "<3 SPACES3DO YOU WISH TO PRINT

C6 SPACES>A MAILING LABEL?

IF 1*<>"V" THEN 97

GOSUB 495

INPUT "SEARCH MORE

IF X*="Y" THEN 77

GOTO 109

NEXT I

PRINT : : :" THE "

ING FOR":" IS NOT

GOTO 97

RETURN

REM<3 SPACESJ**ADD

A=N+1

FOR I=A TO 45
CALL CLEAR

PRINT : : : :"ENTER

X:45>": : :

PRINT " *LAST NAME:"

INPUT LN*(I)

PRINT :" *FIRST NAME(S):

INPUT NA*(I)

PRINT :" (CHILDREN:":" <3

O NOT USE COMMAS!"

INPUT CH*(I)

PRINT :" *STREET ADDRESS

INPUT AD*(I)

PRINT :" *CITY/PROVINCE:

TE DO NOT USE COMMAS!"

NAMES'

(Y/N)":Z*

< Y / N) " : X *

; Y*: "

IN THIS

YOU ARE

FILE.":

SEARCH

INPUT

PRINT

INPUT

PRINT

INPUT

V=I

CP* (I)

:" *POSTAL

PC*(I)

:" tPHONE:1

TP* <I)

NAMES**<5 SPACES>

DATA: <MA

SPACES>NOTE D

€3 SPACES>NO

CODE:

69

Applications i^%*v^-

151

153

155

157

159

161

163

165

167

169

171

173

175

177

179

181

183

185

187

189

191

193

195

197

199

201

203

205

207

209

211

213

215

217

219

221

223

70

REM **VERIFY ENTRIES**

CALL CLEAR

PRINT "ENTRY";"#";V: : :
PRINT "YOU ENTERED:": :" "5LN*<V);", ";
NA*(V):" ";CH*<V>:" ";AD*<V>:" ";CP*(
V)

PRINT " ";PC*<V):" PHONE: ";TP*(V): :

INPUT "CHANGE ANYTHING? (Y/N)":X*

IF X*<>"Y" THEN 171

C=N+1

CALL CLEAR

GOSUB 201

INPUT "ADD MORE NAMES? (Y/N)":X*

N=N+1

IF X*="N" THEN 181

NEXT I

INPUT "{4 SPACES>*DATA FILE IS FULL*

<6 SPACES!*PRESS ENTER TO CONTINUE*":X*

RETURN

REM{3 SPACES>**CHANGE DATA**

PRINT " LAST NAME OF THE PERSON

<3 SPACES1WHOSE DATA IS TO BE CHANGED:"

INPUT C*

CALL CLEAR

FOR C=l TO N+l

IF LN*(C)=C* THEN 195 ELSE 239
PRINT "IS THE PERSON:":" ";NA*<C>:" " ;
LN*(C): :

INPUT " <Y/N)?":X*

IF X*="Y" THEN 201 ELSE 239

PRINT :::::: :"PRESSt3 SPACES>TO CH

ANGE": :

PRINT 1 LAST NAME":" 2

NAME(S)":" 3 =

REET ADDRESS"

R=C

R*=" *ENTER THE NEW DATA:"

PRINT 5 = CITY/PROVINCE":" 6 = P

OSTAL CODE":" 7 = PHONE":" 8 = NO

CHANGE": ::::::

INPUT P

CALL CLEAR

IF P<1 THEN 211

IF P>8 THEN 211

IF P=8 THEN 229

ON P GOSUB 245,251,257,263,269,275,281
PRINT : :"MORE CHANGES FOR:":" ";NA*(R>
.» »=LN*(R): :

CHILDREN":

FIRST

ST

f**mO\

Applications

i**i 225 INPUT " <Y/N)?":Y*

227 IF Y*<>"N" THEN 201

229 PRINT : : :"CHANGE DATA FOR OTHER NAMES?
" • a •

J1**1 231 INPUT " <Y/N>":Z*
1 233 CALL CLEAR

235 IF Z*<>"N" THEN 185

fm 237 RETURN
I 239 NEXT C

241 RETURN

243 REM **CHANGE LOOPS**

245 PRINT "LAST NAME WAS:": :LN*(R): : :R*

247 INPUT LN*(R)

249 RETURN

251 PRINT "FIRST NAME<S) WERE:": :NA*(R): :

:R*

253 INPUT NA*<R)

255 RETURN

257 PRINT "CHILDREN WERE:": :CH*(R): : :R*

259 INPUT CH*(R)

261 RETURN

263 PRINT "ADDRESS WAS:": :AD*<R): : :R*

265 INPUT AD*(R)

267 RETURN

269 PRINT "CITY/PROVINCE WAS:": :CP*<R): : :

R*

271 INPUT CP*(R)

273 RETURN

275 PRINT "POSTAL CODE WAS:": :PC*<R): : : R*

277 INPUT PC*(R)

279 RETURN

281 PRINT "PHONE NUMBER WAS:": :TP*<R): : :R

«

283 INPUT TP*<R)

285 RETURN

287 REMC3 SPACES!**DELETE NAMES**

I** 289 INPUT "LAST NAME? ":X*
291 FOR 1=1 TO N

293 IF LN*<I)OX* THEN 325

295 PRINT : : :"IS THE PERSON:":" ";NA*(I):
";LN*(I): :

297 INPUT " <Y/N)?":Y*

299 IF Y*<>"Y" THEN 325

301 A=I

303 FOR D=A TO N-l

305 LN*(D)=LN*(D+1)

307 NA*(D)=NA*(D-t-l)

309 CH*<D)=CH*<D+1)

311 AD$(D>=AD*(D-i-l)

313 CP*(D)=CP*<D+1)

71

|'.r™l

r^fe)

Applications a

315 PC*<D)=PC*<D+1) •*)
317 TP*(D)=TP*<D+1) j
319 NEXT D

321 N=N-1

323 GOTO 327

325 NEXT I

327 INPUT "MORE DELETIONS? (Y/N)":X*

329 IF X*="Y" THEN 289

331 RETURN

333 REM **ALPHABETIZE LIST**<3 SPACES!

335 PRINT "{.7 SPACES!PLEASE WAIT.-.": : :" T

HE LIST IS BEING ARRANGED": ::::::

337 B=l

339 B=2*B

341 IF B<=N THEN 339

343 B=INT(B/2)

345 IF B=0 THEN 369

347 FOR Y=l TO N-B

348 X=Y

349 I=X+B

351 IF LN*<X)=LN*<I)THEN 363

353 IF LN*(XXLN*<I)THEN 365
355 GOSUB 381

357 X=X-B

359 IF X>0 THEN 349

361 GOTO 365

363 GOSUB 373

365 NEXT Y

367 GOTO 343

369 RETURN

371 REM **ORDER FIRST NAMES**C3 SPACES!

373 IF NA«<XXNA*<I)THEN 377
375 GOSUB 381

377 RETURN

379 REM **CHANGE ORDER**

381 N*=LN*(X)

383 LN*(X)=LN*<I)

385 LN«<I)=N*

387 N«=NA*<X>

389 NA*(X)=NA*(I)

391 NA*(I)=N*

393 N*=CH*<X)

395 CH*(X)=CH*(I)

397 CH*(I)=N*

399 N*=AD*<X)

401 AD*(X)=AD*(I>

403 AD*(I)=N*]
405 N*=CP*(X)

407 CP*(X)=CP*(I)

72

1

••IT I

Applications

f*5* 409 CP*(I)=N*
1 411 N*=PC*(X)

413 PC*(X)=PC*(I>

_ 415 PC*(I)=N*

| 417 N*=TP*<X)
419 TP*(X)=TP*<I)

421 TP*(I)=N*

tssa 423 RETURN

! 425 REM **SAVE DATA FILE**<5 SPACES!
427 GOSUB 467

429 OPEN #1:L*.INTERNAL,OUTPUT,FIXED 150
431 PRINT #1:N

433 FOR 1=1 TO N

435 PRINT #1:LN*<I>,NA*(I),CH*(I),AD*(I),CP*
<I>,PC*<I),TP*<I)

437 NEXT I

439 CLOSE #1

441 RETURN

443 REM<3 SPACES!**LOAD DATA FILE**

<6 SPACES!

445 GOSUB 467

447 OPEN #1:L$,INTERNAL,INPUT ,FIXED 150

449 INPUT #1:N

451 FOR 1=1 TO N

453 INPUT #1:LN*<I),NA*<I),CH*<I>,AD*(I),CP*
(I>,PC*(I),TP*<I)

455 NEXT I

457 CLOSE #1

459 CALL CLEAR

461 PRINT " " ;L*: :" THIS FILE HAS";N;"ENT
RIES.": :" *45 ENTRIES IS MAXIMUM*": :

463 INPUT " *PRESS ENTER TO CONTINUE*":X*

465 RETURN

467 PRINT "C5 SPACES3WHAT IS THE NAME OF":"

f^ <4 SPACES}YOUR STORAGE DEVICE?": :" (EXAM
PLE: CS1 OR DSK1.FILE)": ::::::::

^^ 469 INPUT L*
47 1 RETURN

473 REM **SUB TO PRINT LABELS/LIST**

475 PRINT "PRESSC3 SPACES3TO PRINT": : :" 1

r*> <5 SPACES3MAILING LABELS": :" 2

<5 SPACES3-MAILING LIST": :::::::

477 INPUT P

479 IF P<1 THEN 477

^ 481 IF P>2 THEN 477
483 PRINT ::::::::::: :6$: : : : :

fv^^?|

73

Applications

485 IF POl THEN 505

487 FOR 1=1 TO N

489 GOSUB 495

491 NEXT I

493 RETURN

495 OPEN #2:P*

497 PRINT #2:TAB<5);NA*(I);" ";LN*<I):TAB(5)
:AD*<I):TAB(5):CP*<I);" ";PC*<I): : : :

499 CLOSE #2

501 RETURN

503 REM<3 SPACES!**PRINT MAIL LIST**
505 FOR 1=1 TO N

507 GOSUB 513

509 NEXT I

511 RETURN

513 OPEN #2:P*

515 PRINT #2:TAB<5>;LN*<I>;". ";NA*<I) ; "

C6 SPACES!":CH*(I) :TAB<5) ;AD*<I> ; "

C3 SPACES!";CP*(I>;" ";PC*<I)

517 PRINT #2:TAB(60);"(P>-";TP*<I): :
519 CLOSE #2

521 RETURN

523 REM **FINISH SESSI0N**C5 SPACES!

525 INPUT " (.7 SPACES3D0 YOU WISH TO

il0 SPACES3TERMINATE THIS SESSION?

<5 SPACES!<Y/N)":X*

527 CALL CLEAR

529 IF X*<>"Y" THEN 25

531 PRINT "{6 SPACES!HAVE A NICE DAY!": : :

533 STOP

74

J

1

•*ra

A. Burke Luitich
TI Translation by Patrick Parrish

Basic statistical methods can help you make logical decisions
in everyday situations.

For the most part, elementary statistical methods measure a
group of similar things to see how these measurements vary
when compared to some standard. Another use for statistics is
to see how creating a group of objects can cause variations in
these objects.

This program, "Statistics," takes your raw data and re
turns figures which you can use to make everyday decisions,
for example, about the best way to build a wall or how much
cash you'll need when you go shopping.

As a first example, let's look at two ways to cut a two-by-
four by using a power table saw and a handsaw. We set the
table saw guide to one foot and cut five pieces. We cut five
more pieces using a handsaw, then measure the actual lengths
of all ten pieces to see how accurately we made the cuts.

If nothing unusual is allowed to affect the cutting, we can
expect the length of the pieces to vary depending on the pro
cess used. Statisticians call this an unbiased random sample.

Assume the measurements are as follows:

=, Table saw lengths Handsaw len§;ths

(feet) (feet)
1.05 1.22

m 0.98 0.91

1.03 0.80

1.07 1.28

0.96 0.88

The Same Mean
A look at the values alone suggests that cutting with the
handsaw is a far less consistent method than using the table
saw. However, if you add up the lengths for each method and

75

Applications

divide by 5 (the total cuts for each) you will find that both =^
methods give the same mean (average) length of 1.018 feet.

Just finding an average length doesn't tell us much. What
we need to know is how widespread the values are likely to ""^
be, and which method gave us the most lengths that were *
nearer our standard of one foot. In statistical terms, we need
to calculate the range and the standard deviation. «]

We find the range by subtracting the shortest length from '
the longest, for each cutting method. For the handsaw the
range is .48 feet (1.28—0.80), and for the table saw the range
is .11 feet (1.07—0.96). Immediately, we can see that the table
saw cut more consistently, because the range, or variation, is
smaller.

We can use the standard deviation and the mean length
to predict how often a given length is likely to occur. You
don't have to worry about how to calculate a standard de
viation: The program does this for you. If you type in the
above lengths for the handsaw, the program will return a
standard deviation of 0.217 feet. The standard deviation for
the table saw is 0.047 feet.

Degree of Accuracy
If we made a large number of cuts, then measured and
graphed the lengths, the graph would form a bell curve, or
normal distribution. By combining the standard deviation and
the mean length, we get a range of lengths that includes 68.3
percent of all lengths (again, you don't have to know the the
ory; just use the number). To illustrate, first take the mean
length, 1.018 feet, and subtract from it the standard deviation
for the handsaw, 0.217 feet, to get 0.801 feet. Then add the
standard deviation to the mean length to get 1.235 feet. This «==j
means that 68.3 percent of our lengths fall in the range be- '
tween 0.801 and 1.235 feet.

By adding and subtracting the standard deviation (0.047
feet) with the mean length of the table saw cuts (1.018 feet),
we find that 68.3 percent (roughly two-thirds) of these lengths
fall in the range from 0.971 to 1.065 feet.

If you want a wider sample, you must increase the num
ber of standard deviations. To include 95.4 percent of all
lengths, use two standard deviations. For the handsaw, we
now have 0.434 feet, two standard deviations. Combining it
with the mean length, we get a range of 0.584 to 1.452 feet.

76

fw^SEI

pjW*tf£|

\<3$ty&il

pY?Wl

pjUM^flJ

3 Applications

Our table saw range becomes 0.924 to 1.102 feet (1.018 ±
0.094).

Food For Thought
You can use the same methods to calculate a food budget. In
this case, your data consists of the amounts you spent on
groceries over a 13-week period (one-fourth of a year):
Week Amount Week Amount

1 $42 8 47

2 50 9 65

3 75 10 49

4 37 11 43

5 51 12 52

6 45 13 54

7 56

If you type this data into the Statistics program, you will find
that your mean amount spent was about $51; that your spend
ing varied from $37 to $75, for a range of $38; that you spent
more than $50 (your medium amount) as often as you spent
less than that; and your standard deviation is about $10.

Applying the Statistics
Combining one standard deviation and the mean (or average)
amount spent, we find that two-thirds of the weeks you spend
between $41 and $61 at the grocery store. One-sixth of the
time you spend less than $41; one-sixth of your bills are more
than $61. So, if you budget $61 for groceries, you'll have
enough 84 percent of the time.

less

than

$41

$10

one standard

deviation

minus

$10

one standard

deviation

plus

more

than

$61

$41 $51
(mean)

$61

77

Applications

If you want to be sure you'll have enough in case prices
rise, you might want to use two standard deviations. By add
ing two standard deviations ($20) to the mean amount ($51),
you will find that, to be about 98 percent sure, you should
budget $71 each week.

There are other factors to be considered, of course, such
as vacations, birthday parties, or visiting relatives, that can af
fect your food budget. The Statistics program does not take
these kinds of things into account. But it does give you a tool
which takes some of the guesswork out of everyday decision
making.

Statistics

100 DIM SA(300)

110 CALL CLEAR

120 PRINT TAB(10):"STATISTICS"

130 PRINT : : :

140 PRINT TAB(13):"FOR"

150 PRINT : : :

160 PRINT TAB(7):"NON-STATISTICIANS"
170 PRINT

180 FOR K ==1 TO 400

190 NEXT V

200 CALL CLEAR

210 PRINT "THIS PROGRAM CALCULATES THE": :
220 PRINT "FOLLOWING VALUES FROM DATA": :
230 PRINT "YOU INPUT:"

2 40 PRINT : :

250 PRINT TAB(4) : "1 - MEAN"

260 PRINT : :

270 PRINT TAB<4>:"2. STANDARD DEVIATION"
280 PRINT : :

290 PRINT TAB(4);"3. MEDIAN"
300 PRINT : :

310 PRINT TAB <4> ; "4. RANGE"
320 PRINT : : :

330 PRINT TAB<2>;"PRESS ANY KEY TO CONTINUE
340 PRINT :

350 GOSUB 2170

360 SUM=0

370 MEAN=0

380 DFF= 0

390 SDDEV==0

400 RG= 0

410 REM INSTRUCTIONS REQUEST
420 PRINT TAB<6);"INSTRUCTIONS <Y/N>?"
430 PRINT :::::::•••

78

1

1

Applications

pw 440 GOSUB 2170
450 IF <K<>B9)*<K<>78>THEN 440

460 IF K=78 THEN 490

470 GOSUB 1330

P 480 REM DATA ENTRY
490 CALL CLEAR

500 PRINT TAB (3) : "ENTER SAMPLE SIZE ":

pa 510 INPUT N
I 520 IF (N>300)+<N<=1)THEN 490

530 CALL CLEAR

540 PRINT TAB<3);"ENTER YOUR DATA ONE VALUE"

550 PRINT "AT A TIME, THEN PRESS": :
560 PRINT "RETURN.": : : :

570 PRINT TAB(3);"IF YOU MAKE AN ERROR,": :
580 PRINT "CONTINUE WITH DATA ENTRY.": :

590 PRINT "YOU WILL BE ABLE TO MAKE": :

600 PRINT "CORRECTIONS LATER.": : : : :
610 PRINT TAB(2);"PRESS ANY KEY TO CONTINUE"

620 GOSUB 2170

630 FOR 1=1 TO N

640 CALL CLEAR

650 PRINT "DATA ENTRY #";I;
660 INPUT R$

670 SA<I)=VAL<R$)

680 NEXT I

690 REM ERROR CORRECTION REQUEST

700 CALL CLEAR

710 PRINT TAB(3);"ANY CORRECTIONS <Y/N) ?"
720 PRINT ::::::::::

730 GOSUB 2170

740 IF K<>89 THEN 770

750 GOSUB 1800

760 REM CALCULATION OF MEAN AND STD. DEVIATI

ON

l^1 770 PRINT TAB(9);"PLEASE WAIT": : :
780 PRINT "STATISTICS BEING CALCULATED"

790 PRINT :::::::::

mm 800 FOR 1=1 TO N

810 SUM=SUM+SA(I)

820 NEXT I

830 MEAN=SUM/N

mm 840 FOR 1=1 TO N
850 DFF=DFF+<SA<I)-MEAN)A2

860 NEXT I

pm, 870 SDDEV=SQR(DFF/<N-1))
880 REM SORT OF DATA INTO NUMERIC ORDER

890 FL=0

900 FOR 1=1 TO N-l

79

Applications

910 IF SA(IX=SA<I +1)THEN 960 ^
920 Q=SA(I) I
930 SA<I)=SA(I+1)
940 SA(I+1)=Q

950 FL=1 "1
960 NEXT I J
970 IF FL=1 THEN 890

980 REM CALCULATION OF RANGE «

990 RG=SA(N)-SA(1) J
1000 LR=SA(1)

1010 HR=SA<N)

1020 REM CALCULATION OF MEDIAN

1030 IF N/2<>INT(N/2)THEN 1090

1040 IF SA(N/2)<>SA(N/2+l)THEN 1060
1050 MDD=SA(N/2)

1060 IF SA(N/2)=SA(N/2+l)THEN 1080

1070 MDD=<SA<N/2)+SA<N/2-H))/2
1080 GOTO 1110

1090 MDD=SA(INT<N/2-«-l) >

1100 REM PRINT RESULTS TO SCREEN
1110 CALL CLEAR

1120 PRINT TAB<5);"CALCULATION RESULTS": :
1130 PRINT "ft***************************"- :

1140 PRINT "SAMPLE SIZE";TAB(19);N: :
1150 PRINT "MEAN (X BAR)";TAB<19);INT(MEAN*1

0000+.5)/10000: :

1160 PRINT "STD. DEVIATI0N";TAB<19);INT<SDDE
V*10000+.5)/10000; :

1170 PRINT "MEDIAN";TAB(19);INT(MDD*10000+.5
)/10000: :

1180 PRINT "RANGE";TAB<19>;INT<R6*10000+.5)/
10000: :

1190 PRINT "LOWEST VALUE";TAB(19);LR: :
1200 PRINT "HIGHEST VALUE";TAB(19);HR: : : :
1210 PRINT TAB(8);"PRESS ANY KEY"
1220 GOSUB 2170

1230 REM REQUEST TO CONTINUE OR END
1240 PRINT " WISH TO PROCESS MORE DATA": :
1250 PRINT TABC12) : " <Y/N)?»: :::::::: •—*

8)
1260 GOSUB 2170

1270 IF K=7S THEN 1320
1280 FOR 1=1 TO N "1
1290 SA(I)=0 S
1300 NEXT I

1310 GOTO 360

1320 END I
1330 PRINT TAB(3);"THE MAXIMUM NUMBER OF EN-

80

fTS??)

(7ri^*s^|

Applications

1340 PRINT

1350 PRINT

1360 PRINT

"TRIES YOU CAN MAKE IS 300.":

"THE MINIMUM NUMBER IS 2.": :

TAB<3);"THE MEAN IS THE ARITH-

1370 PRINT "METIC AVERAGE OF THE NUMBERS":
1380 PRINT "YOU ENTER.": : :

1390 PRINT TAB<3);"STANDARD DEVIATION IS A

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

"MEASURE OF HOW WIDELY YOUR": :
"NUMBERS SPREAD FROM THE": :

"AVERAGE.": : :

2160

CLEAR

TAB(3);"SINCE THE VALUES YOU ENTE

"TEND TO FORM A BELL CURVE": :

"(NORMAL DISTRIBUTION). THE": :

"STD. DEVIATION IS A MEASURE": :

"OF THE AREA UNDER THE BELL": :

"CURVE.": : :

TAB(4):"N0. OF STD.<4 SPACES37. AR

PRINT

PRINT

PRINT

GOSUB

CALL

PRINT

R" : :

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

EA"

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

GOSUB

PRINT

T" : :

TAB(5);"DEV

TAB(4);"

(+/-)

TAB(8)

TAB(8)

TAB(8)

TAB(8)

2160

TAB(3)

1 Cll

2<1 1

Zil 1

4<1 1

<4 SPACES3

SPACESJ68

SPACES>95

SPACES>99

SPACES>99

3"

5"

7"

9"

"THE MEDIAN IS THE VALUE A

1600 PRINT "THE MID-POINT OF YOUR DATA.

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

GOSUB

RETURN

REM DI

GOSUB

IF (K<

TAB (3

"FERE

"DATA

"IT I

"EST I

"STAN

"RELI

TAB(3

2170

SPLAY

2170

>67) *

);"THE RANGE IS THE DIF-":
NCE BETWEEN YOUR LOWEST":

VALUE AND THE HIGHEST.":

S A QUICK-AND-DIRTY": :

MATE OF THE SPREAD.": :

DARD DEVIATION IS MORE":

ABLE, HOWEVER.": : : :
); "PRESS ANY KEY TO START

CORRECTION OPTION

(K<>78) * (K<>8!) THEN 172)

81

Applications

1740 FL=0 ^
1750 IF K<>78 THEN 1780
1760 FL=1

1770 GOTO 1980

1780 IF K=81 THEN 770 "™)
1790 REM ERROR CORRECTION SUBR

1800 PRINT "REMEMBER INCORRECT SAMPLE #": :
1810 PRINT TAB(ll) ;" (Y/N) ?"::::::::

1820 GOSUB 2170

1830 IF K=78 THEN 1980

1840 INPUT "WHAT IS THE SAMPLE # ? ":EN*
1850 EN=VAL(EN*)

1860 IF (EN>N) + (EN<l) + <ENOINT(EN))THEN 1840
1870 PRINT : :

1880 PRINT "SAMPLE";EN;"iZ SPACES>";"VALUE="
;SA(EN)

1890 PRINT : :

1900 PRINT "ENTER YOUR NEW VALUE : "
1910 INPUT SA(EN)

1920 PRINT ::::::

1930 PRINT TAB(3);"ANY MORE CHANGES (Y/N)?":

1940 GOSUB 2170

1950 CALL CLEAR

1960 IF K=78 THEN 770
1970 GOTO 1800

1980 IF FL=1 THEN 2020
1990 PRINT "THESE ARE THE FIRST TEN": :
2000 L=l

2010 GOTO 2040

2020 CALL CLEAR

2030 PRINT "THESE ARE THE NEXT TEN": :
2040 PRINT "VALUES.": : :

2050 PRINT TAB(5);"ENTRY";TAB(15);"VALUE": •
2060 FF=0

2070 FOR L = L TO L + 9 *•"»
2080 FF=FF+1 I
2090 IF L>300 THEN 770

2100 PRINT TAB(5);L;TAB(15):SA(L) __»
2110 NEXT L 1
2120 PRINT : : '
2130 PRINT "C=CHANGE DATA<3 SPACES>N=NEXT TA

BLE": : —m

82
•^^1

I^^l

Applications

fl» 2140 PRINT TAB(12);"Q=QUIT"
2150 GOTO 1720

2160 PRINT TAB(3>;"PRESS ANY KEY FOR MORE";
2170 CALL KEY(0,K,S)

P^ 2180 IF S=0 THEN 2170
2190 CALL CLEAR

2200 RETURN

83

Raymond J. Herold
tiSZ^l

Spreadsheets are exceptionally useful tools: for calculating,
modeling, or predicting. This program creates a spreadsheet —*\
of ample size (26 rows by 14 columns). For the TI-99/4A J
with Extended BASIC.

"TIcalc" is an electronic spreadsheet program for the TI-99/4A
computer with Extended BASIC. Electronic spreadsheets, use
ful and popular programs, allow the user to answer a mul
titude of "what if" questions in areas such as budgeting, sales
projections, cost estimating, scheduling, and more.

Spreadsheets allow you to enter a set of values and
calculation rules for a given application, such as budgeting.
The program will then calculate the projections, estimates, to
tals, or whatever, based on the calculation rules. Changing one
or more of the original values results in a complete recalcula
tion of the figures. The special utility of spreadsheet programs
lies in their ability to do, in a few seconds, what a human—
with pencil, paper, and calculator—would need hours, or even
days, to do.

Program Requirements
Before explaining how to use TIcalc, let's establish the ground
rules for the program. First, it requires at least a 16K TI-99/4A
with Extended BASIC. Although the TIcalc spreadsheet is 26
rows by 14 columns, with 16K of memory built into the TI
console, you are limited to roughly 150 "slots." For example, m
you could have a spreadsheet that is 12 X 12, 15 X 10, I
20 X 7, or 10 X 14. You will find this adequate for almost all
applications. Those of you who have the 32K memory expan- —^
sion can use the complete 26 X 14 spreadsheet. When using 1
the program, you should leave the ALPHA LOCK key
depressed.

Spreadsheets can be saved and loaded from tape. If you
have a disk drive, you can change the OPEN statements in
lines 1950 and 2000 accordingly. The use of a printer is op- «
tional, but the program does provide the option ofmaking a I
printout of your results.

84 1

n

Whr^w7ilTi Applications

***> The TIcalc spreadsheet is 26 rows by 14 columns (see Fig
ure 1). The rows of the spreadsheet are defined by the letters
A-Z. The columns are defined by A-N. Note that any slot in

p»i the spreadsheet is referred to by row and column. For ex
ample, slot CD would be the entry at row 3, column 4; AF
would be row 1, column 6. It's important that you keep this

p"« sequence in mind.
The TI-99/4A is not capable of displaying the entire 26 X

14 array. What will appear on your screen is a 10 X 3 "win
dow" on the spreadsheet. Just as looking into different win
dows of a house shows different things, the computer's
window shows different "views" of the spreadsheet, depend
ing on where the window is positioned. A window's position
is defined by its top-left slot. Looking again at Figure 1, notice
that the shaded area marked A is the 10 by 3 spreadsheet
window at AA (remember, row and column). The shaded area
marked B is the window at IH. By moving the window, the
entire 364-slot spreadsheet is accessible 30 slots (a window) at
a time.

The best way to demonstrate TIcalc is by example. You
should spend a few minutes getting acquainted with the com
mand summary shown in Table 1. Also, you might want to
examine the list of major program variables shown in Table 2.
The following paragraph will detail a somewhat simplistic sce
nario for our demonstration.

Starting a Business
We are starting a small manufacturing business and want to
estimate our net profit or loss for the first four months. We are
anticipating sales of $2,700 the first month and a 10 percent

psi growth rate for each succeeding month. Space is being leased
for $800 a month, and there are two employees making a total
of $1,200 a month. Cost for materials is based on sales and is

psw expected to be 30 percent, while utilities are expected to run at
roughly 5 percent of sales.

When the program begins, it displays the window with a
fsw HOME position of AA. That is, it is displaying rows A through
1 J and columns A, B, and C. The COMMAND —> prompt is

displayed, and the program is awaiting your reply. Since the
rssj first thing we want to do is enter spreadsheet data, reply IN

SERT. This places the cursor (actually two sprites at line 860)
at the top-left slot in the window, in this case AA. The prompt

ry$£i

85

Applications

Figure 1: Windows on the Spreadsheet

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

ABCDEFGHI JK LMN

'/

V
V

/

'

'

'

/

'/
'/
'*/

/

/

/

/

/

/

t

asks for an INSERT COMMAND?. Figure 2 shows the data we
plan to enter (refer to it as we go along). As you can see, there
isn't any data for AA, so we press X(J-) to move the cursor
down to CA.

At this point we want to place the label SALES in the CA
slot, so we press L. The prompt then asks us what the label is
and we type SALES. When we press ENTER, the label is
placed in CA. We then press X(l) again to get to DA and enter
the label RENT. Continue this for all the labels in column A.
Then use the arrow keys (really E, S, D, and X) to place the
cursor at AB, where you enter the label JANUARY. Then
move the cursor down to CB.

86

CS3vJ

~!

1

•-«—j»i Applications

f^*1 This slot is to be the amount of our first month's sales, so
press N for numeric value. The prompt asks for the number;
respond 2700 and press ENTER. Do the same for RENT at DB

f*1 and SALARY at EB. At FB we come to the first calculation, so
press C. Remember that material costs are expected to be 30
percent of monthly sales. Therefore, we need to multiply

n"0 SALES by .30. The .30 will have to be stored as a value in a
"workfield" outside the main body of the spreadsheet. We will
arbitrarily make this BJ and make a note to ourselves to add
the value after finishing the main portion of the spreadsheet.
So, the calculation becomes JANUARY SALES (CB)*.30(BJ) or
CB*BJ. Refer to Table 3 for examples of valid calculations. An
error detection routine enforces valid syntax.

We then position the cursor at GB, which is January util
ity costs. This is similar to material costs, and we make a note
to store the 5 percent figure at CJ. Press C and then enter
CB*CJ. The cursor is then positioned at IB, which is the slot
for total January expenses. This is again a calculation, so press
C. Enter the calculation command SUMCOLDG, which means
sum this column starting at row D (RENT) and ending with
row G (UTILITY) and place the result in this slot. The cursor
is then placed at JB, which is the NET PROFIT/LOSS for
January. This is simply SALES (CB) minus TOTAL
EXPENSES(IB) or CB-IB.

Next, position the cursor at AC and enter the February la
bel. When you position the cursor at February SALES, you'll
see that you no longer have a number, but rather a calcula
tion. Sales are assumed to be 10 percent greater than each pre
vious month, so make a note to store 1.10 at AJ and enter the
calculation CB*AJ, which is January SALES*1.10. The remain-

pa der of the column is entered in a manner similar to the entries
for January, adjusting for the proper row/column designators.

At this point, all the slots for the window being displayed
p» have been entered, so you'll need to move the window. First

press Q to exit from INSERT mode. When the command
prompt is displayed, enter HOME and press ENTER. When

rs» asked for row and column, enter AD. The window will be
moved to view rows A through J, columns D, E, and F. Type
INSERT and press ENTER to get back into INSERT mode. The

ffl*n columns for March and April can now be entered as were the
columns for January and February. Column F, the total col
umns of the calculation, is a little different. The SUMROWBE

fj'ifrKS

87

0
0

o
o

F
ig

u
re

2.
E

x
a

m
p

le
S

p
re

a
d

sh
e
e
t

A
B

c
D

E
F

G
H

I
J

JA
N

U
A

R
Y

F
E

B
R

U
A

R
Y

M
A

R
C

H
A

P
R

IL
-T

O
T

A
L

-
%

S
A

L
E

S
1

.1
0

.3
0

S
A

L
E

S
2

7
0

0
C

B
'A

J
C

C
'A

J
C

D
*

A
J

S
U

M
R

O
W

B
E

.0
5

R
E

N
T

8
0

0
8

0
0

8
0

0
8

0
0

S
U

M
R

O
W

B
E

C
F

%
D

F

S
A

L
A

R
Y

1
2

0
0

1
2

0
0

1
2

0
0

1
2

0
0

S
U

M
R

O
W

B
E

C
F

%
E

F

M
A

T
E

R
IA

L
C

B
'B

J
C

C
*B

J
C

D
'B

J
C

E
'B

J
S

U
M

R
O

W
B

E
C

F
%

F
F

U
T

IL
IT

Y
C

B
'C

J
C

C
'C

J
C

D
'C

J
C

E
'C

J
S

U
M

R
O

W
B

E
C

F
%

G
F

T
O

T
E

X
P

S
U

M
C

O
L

D
G

S
U

M
C

O
L

D
G

S
U

M
C

O
L

D
G

S
U

M
C

O
L

D
G

S
U

M
C

O
L

D
G

C
F

%
IF

N
E

T
+

/
-

C
B

-I
B

C
C

-I
C

C
D

-
I
D

C
E

-I
E

C
F

-I
F

C
F

%
JF

S
!

I
o

> T
3

iiiyssiSfflJl

fr^mj

f0iftj

Applications

command tells TIcalc to total the row starting at column B
(January) and ending at column E (April), and place the result
in the current slot.

We have again filled the window being displayed, so
press Q to exit INSERT mode. Typing the HOME command
and then AG gives us slot AG in the top left of the screen.
Type INSERT again and enter the calculation rules to give
each expense, the total expense, and net as a percent of sales.
Finally, exit (Q), HOME on AJ, INSERT, and enter the
workfield values for AJ, BJ, and CJ. Type Q to get back to
command mode. At this point, you've completed your work
ing copy (MODE1) of the spreadsheet.

Procedures

Now you can use the CALC command to calculate the result
of the working copy. The calculation will take anywhere from
a few seconds to a few minutes, depending on the size of the
working copy and the number of calculations. When the
calculation is complete, the program will automatically go into
MODE2 and set the HOME row and column to AA. You can
then view the results by moving the window, using the
HOME command. Figure 3 shows the results from the sample.
If you want to see the calculation that gave a particular result,
you can type MODE1 to see the original working copy as
shown in Figure 2. Typing MODE2 will return you to the "re
sult copy." This is particularly useful in finding errors.

Figure 3. Printout of Example Worksheet

JANUARY FEBRUARY MARCH APRIL -TOTAL- % SALES

SALES 2700 2970 3267 3593.7 12530.7
RENT 800 800 800 800

SALARY 1200 1200 1200 1200
MATERIAL 810 891 980.1 1078.11

UTILITY 135 148.5 163.35 179.68

TOT EXP 2945 3039.5 3143.45 3257.79 12385.74 98.84
NET +/- -245 -69.5 123.55 335.91 144.96 1.15

The Daisychain Effect
Anytime TIcalc encounters a calculation it cannot complete
when in its calculation mode, it will fill the current slot with
all *. This kind of error is usually caused by one of two con
ditions. The first is when a calculation refers to a slot which is
not defined as a number or calculation. For example, if our

3200 25.53
4800 38.3

1759.21 30
626.53 4.99

89

Applications ess

sample had a calculation CB*AH, the result would be an error
because slot AH has no value. If a slot contained a label, the
same error would occur. The second type of error occurs when
a current calculation points to a slot that contains a calculation
which previously contained an error. In this case, the current
calculation is correct, but the calculation it refers to must be
corrected. This type of error tends to have a daisychain effect.

All calculations are taken to a maximum of two decimal
places. There is no provision for rounding. Also, all calcula
tions are carried out in row/column sequence. That is, AA is
processed first, then AB, AC, AD, then BA, BB, BC, and BD.
This is very important to understand since errors will be gen
erated if you reference a slot which has not yet been pro
cessed. For example, if slot AC contains the calculation
AB*BC, an error will occur since BC has not yet been pro
cessed. Thus, the selection of AJ, BJ, and CJ for workfields is
not as arbitrary as it first appears.

Printing and Saving
You can print the result of the calculation by using the PRINT
command. It will print all rows for the beginning and ending
columns you specify. Figure 3 was produced by PRINTing for
columns A through G. You may have to adjust the OPEN
command at line 2070 for your particular printer.

You may save a spreadsheet or load one from tape. Note
that if you load a spreadsheet from tape, only the working
copy is loaded. You will have to issue the CALC command to
compute a result copy.

The usefulness of TIcalc may be demonstrated by using
our sample. If, after the first month, there were any deviations
from the assumptions made at the outset, or if you wanted to
see what a higher or lower sales figure would do, you would
merely need to change the desired variable(s) and recalculate.

Table 1. TIcalc Command Summary |

Command Action

HOME Aligns the TIcalc window to the desired row/column. *H
INSERT Places TIcalc in INSERT mode; defaults to MODE1 (see J

subcommands below).
MODE1 Displays the working copy; automatic for INSERT.
MODE2 Displays the result copy; automatic after CALC

command.

90

n

"1

"1

(:"V$^&4

Applications

CALC Calculates the results for the values and calculations in
the working copy; invokes MODE2 at completion.

LOAD Load a spreadsheet from tape.
SAVE Save a spreadsheet to tape.
PRINT Print spreadsheet.

INSERT Subcommands

Subcommands Action

*-<S) Move cursor left.
->(D) Move cursor right.
TflE) Move cursor up.
i(X) Move cursor down.
L Indicates a label is to be placed in the current cursor

position.
N Indicates a numeric value is to be placed in the cur

rent cursor position.
C Indicates a calculation is to be placed in the current

cursor position.
Q Quit; return to command mode.

Table 2. Major Program Variables
Variable Use

A$(r,c) Working copy array
B$(r,c) Result copy array
COMM$ Command entered
ROW Row shown at top left of window
COL Column shown at top left of window
RC$ A through Z values
MODE MODE1 or MODE2 indicator
LOC$ Row/column desired by HOME command
R Loop control—row
C Loop control—column
X Row DISPLAY AT position
Y Column DISPLAY AT position
SR Cursor row position
SC Cursor column position
L$ Label entered
N$ Number entered
C$ Calculation entered
RM Highest row number used
CM Highest column number used
RLIM Row limit for display window
CLIM Column limit for display window

91

Applications

Table 3. Valid TIcalc Calculations

OPERATORS +,-,*,//%
SUMROWXY Where X is the beginning column and Y is the end

ing column
SUMCOLXY Where Xis the beginning row and Y is the ending

row

Examples

AB*CG
AL-AI

EF+AH

BC/CA
AB + CB*BC

AB+ CB+ CA Processed left to right
CB/AB-CH
SUMROWCF

SUMCOLAH

TIcalc

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

92

DIM A*(26,14),B$(26,14)
CALL CHAR(96,"FFFFFFFFFFFFFFFF")
COLOR(9, 13, 1)

ROW=l :: COL=l :: RLIM=10 :: CLIM=3

RC*="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

CALL CHAR(104,"FFFFE0E0E0E0FFFF"):: CALL
CHAR(105,"FFFF07070707FFFF"):: CALL COL

OR(10,7, 1)
CALL CLEAR :: CALL SCREEN(9)

DISPLAY AT(5,7):"E A S Y C A L C" :: DIS
PLAY AT(9,9) : "ELECTRONIC" :: DISPLAY AT (
11,9):"SPREADSHEET"
FOR DELAY=1 TO 2000 :: NEXT DELAY

CALL CLEAR :: CALL SCREEN(8)

CALL HCHAR(4,3,96,29)
4,96,19)
13,96,19)

22,96,19)
MODE=i
1):"COMMAND: >"

CALL

CALL

CALL

VCHAR (5

VCHAR(5

VCHAR(5

BOSUB 340 ::

DISPLAY AT (1

T AT(1„ 15)SIZE(6)BEEP: COMM*

CALL

ACCEP

IF SEG*(COMM$

IF SEG$(COMM$

IF SEG*(COMM*

0 :: GOTO 240

IF SEG*(COMM$

0 :: GOTO 240

1 ,4)="HOME" THEN 410

1 ,6)="INSERT" THEN 720
1,5)="MODEl" THEN GOSUB 52

1 ,5)="M0DE2" THEN GOSUB 62 1

p^frl

misggffBn Applications

290 IF SEG*(COMM*,1,4)="CALC" THEN 1370
300 IF SEG*(COMM*,1,4)="SAVE" THEN 1950
310 IF SEG$(COMM*,1,4)="LOAD" THEN 2000
320 IF SEG$(CDMM$,1,5)="PRINT" THEN 2050
330 GOTO 240

340 FOR LOOP=2 TO 20 STEP 2
350 DISPLAY AT(3+L00P,1):SEG*(RC$,ROW+(LOOP/

2) -1 , 1) ;
360 NEXT LOOP

370 FOR L00P=6 TO 26 STEP 9
380 DISPLAY AT(3,LOOP):SEG*(RC*,COL-1+(LOOP/

8) , 1)

390 NEXT LOOP

400 RETURN

410 DISPLAY AT(1.1):"ROW/COL > .-" :: ACC
EPT AT (1 , 14)VALIDATE(RC$)SIZE(-2)BEEP:LO

C*

420 IF SEG*(LOC*.2,1)="." THEN 410
430 IF SEG*(L0C*,25i)>"N" THEN 410
440 ROW=(ASC (SEG*(LOC*, 1, 1))-64) : : IF R0W>17

THEN R0W=17

450 RLIM=R0W+9

460 COL=(ASC(SEG*(LOC*,2,1))-64):: IF C0L>12

THEN COL=12

470 CLIM= C0L-«-2

480 GOSUB 340

490 IF MODE=l THEN GOSUB 520

500 IF M0DE=2 THEN GOSUB 620

510 GOTO 240

520 X=5 :: FOR R=ROW TO RLIM

530 Y=3

540 FOR C=COL TO CLIM

550 DISPLAY AT(X,Y):"C8 SPACES!";
560 DISPLAY AT(X,Y):SEG$(A*(R,C),3,8);

570 Y=Y+9

580 NEXT C

590 X=X+2

600 NEXT R

610 MODE=l :: RETURN

620 X=5 :: FOR R=ROW TO RLIM

630 Y=3

640 FOR C=COL TO CLIM

650 DISPLAY AT(X,Y):"<:8 SPACES?.";
660 DISPLAY AT(X,Y):B*<R,C);

670 Y=Y+9

680 NEXT C

690 X=X+2

700 NEXT R

710 M0DE=2 :: RETURN

93

Applications la^-iJu-jumnegBa

720 IF MODE=2 THEN GOSUB 520

730 SR=32 :: SC=32 :: R=ROW :: C=COL :: X=5 mm
: : Y=3

740 GOSUB 860

750 DISPLAY AT(1,1):"INSERT COMMAND?" :: CAL «*
L SOUND(200,1100,4) !

760 CALL KEY(3,KEY,STATUS):: IF STATUS=0 THE
N 760

770 IF KEY=76 THEN 880 "H
780 IF KEY=78 THEN 930

790 IF KEY=67 THEN 1030

800 IF KEY=81 THEN CALL DELSPRITE(ALL):: GOT

0 240

810 IF KEY=83 THEN 1250

820 IF KEY=68 THEN 1280

830 IF KEY=69 THEN 1310

840 IF KEY=88 THEN 1340

850 GOTO 750

860 CALL SPRITE(#1,104,7,SR,SC,0,0,#2,105,7,
SR,SC+56,0,0)

870 RETURN

880 DISPLAY AT(1,1):"LABEL: >" :: ACCEPT
AT(1,13)SIZE(8)BEEP:L*

890 DISPLAY AT<X,Y):L*;
900 A*(R,C)="L:"&L*
910 RM=MAX(RM,R):: CM=MAX(CM,C>
920 GOTO 740

930 DISPLAY AT(1,1):"NUMBER: >" :: ACCEPT
AT(1,14)SIZE(8)VALIDATE("0123456789.-+"
)BEEP:N*

940 W*=»» •: W=0

950 FOR Z=8 TO 1 STEP -1

960 IF SEG*(N«, Z, DO"" THEN W* =SEG* (N* ,Z,1)
&W* ELSE W=W+1

970 NEXT Z

980 W*=RPT*(" ",W)&W*
990 DISPLAY AT(X,Y):W$; -^
1000 A*(R,C)="N:"&W* i
1010 RM=MAX(RM,R):: CM=MAX(CM,C)
1020 GOTO 740

1030 DISPLAY AT(1,1):"CALCULATION: >" :: "**)
ACCEPT AT(1,19)SIZE<8)BEEP:C*]

1040 IF SEG*(C*,l,6)="SUMROW" THEN 1190
1050 IF SEG*(C*, l,6)="SUMCOL" THEN 1190 —i
1060 AA*=SEG*(C*,3,1) j
1070 IF AA*=" + •• OR AA*="-" OR AA*="»" OR AA*

="/" OR AA$="%" THEN 1090

94 -"]

ps>

f-!W!U™df

Applications

1080 DISPLAY AT(1,1):"*»* ERROR ***" :: FOR
DELAY=1 TO 1200 :: NEXT DELAY :: GOTO 1

030

1090 AA*=SEG*(C*, 1, 1)

" THEN 1080

1100 AA*=SEG*(C*,2,1)

" THEN 1080

1110 AA*=SEG*(C$,4,1)
" THEN 1080

1120 AA*=SEG*(C*,5,1)
" THEN 1080

1130 AA*=SEG*(C*,6,1)
1140 IF (AA*="n OR AA*=" ")AND(SEG*(C*,7,2X

>•••• AND SEG*(C*,7,2)<>" ")THEN 1080
1150 IF AA*="" OR AA*=" " THEN 1210

1160 IF AA*="+" OR AA*="-" OR AA*="«" OR AA*

= "/" OR AA*="7." THEN 1170 ELSE 1080

1170 AA*=SEG*(C*,7,1):: IF AA*<"A" OR AA*>"Z
" THEN 1080

1180 AA$=SEG*(C*,8,1):: IF AA*<"A" OR AA*>"N
" THEN 1080

1190 IF SEG*(C*,4,3)="R0W" THEN IF SEG*(C*,7
,1)<"A" OR SEG$(C*,7,1)>"N" OR SEG*(C*,
8,1)<"A" OR SEG*(C*,8,1)>"N" THEN 1080

1200 IF SEG*(C*,4,3)="C0L" THEN IF SEG*(C*,7
,1)<"A" OR SEG*(C*,7,1)>"Z" OR SEG*(C«,
8,1)<"A" OR SEG*(C*,8,1)>"Z" THEN 1080

1210 DISPLAY AT(X,Y):C«;
1220 A* (R, C) ="C: "&C*
1230 RM=MAX(RM,R):: CM=MAX(CM,C)
1240 GOTO 740

1250 IF SC-72<32 OR C-Kl THEN 750

1260 SC=SC-72 :: C=C-1 :: Y=Y-9

1270 GOTO 740

1280 IF SC+72M76 OR C+l>26 THEN 750

1290 SC=SC+72 :: C=C+1 :: Y=Y+9

1300 GOTO 740

1310 IF SR-16<32 OR R-Kl THEN 750

1320 SR=SR-16 :: R=R-1 :: X=X-2

1330 GOTO 740

1340 IF SR+16>176 OR R+l>26 THEN 750

1350 SR=SR+16 :: R=R+1 :: X = X+2

1360 GOTO 740

1370 DISPLAY AT(1,1):"CALCULATION IN PROGRES
S"

1380 FOR R=l TO RM

1390 FOR C=l TO CM

NEXT DELAY

IF AA*<"A"

IF AA*<"A"

OR AA*>"Z

OR AA*>"N

IF AA*<"A" OR AA*>"Z

IF AA*<"A" OR AA*>"N

95

Applications ts

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

IF SEG*(A*(R,C),1
C),1,2)="N:" THEN
3,8)

IF SEG*(A*(R,C),1,2)="C:
70

NEXT C

DISPLAY

NEXT R

M0DE=2 :

GOTO 440

IF SEG*(A*(R,C),3,3)="SUM" THEN 1770
R1=ASC(SEG*(A*(R,C) ,3, 1))-64 :: C1=ASC(
SEG*(A*(R,C),4,1))-64
R2=ASC(SEG*(A*(R,C),6,1))-64 :: C2=ASC(
SEG*(A*(R,C),7,1))-64
IF SEG*(A*(R,C),9,1)>="A" THEN R3=ASC(S
EG*(A*(R,C),9,1))-64 :: C3=ASC(SEG*(A*(
R,C),10,1))-64

1

2)="L:" OR SEG*(A*(R,

B*(R,C)=SEG*(A*(R,C>,

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

96

AT(1,25):R

LOC*="AA'

IF SEG*(A*(Rl,C1).
*(R1,C1),1,2X>"C:"
***" :: RETURN

IF SEG*(A*(R2,C2),1
*(R2,C2),1,2><>"C:"
***" :: RETURN

IF SEG*(A*(R,C),9,1

IF SEG*(A*(R3,C3),1
*(R3,C3),1,2)<>"C:"
***" :: RETURN

ON ERROR 1920

W1=VAL(B*(Rl,CI))::
IF SEG*(A*(R,C),9

*(R3,C3))

W4=0 :: F*=(A*(R,C))
IF SEG*(F*,5,l)=»+»
IF SEG*(F*

IF

IF

IF

IF

IF

IF

IF

IF

IF

R*=STR*(W4)

FOR Z=8 TO

IF SEG*(R*, Z, 1X>"
)&W* ELSE W=W+1

NEXT Z

THEN GOSUB 14

2)<>"N:" AND SEG*(A

THEN B*(R,C)="***«*

2)<>"N:" AND SEG*(A

THEN B*(R,C)="*****

<"A" THEN 1550

2)<>"N:" AND SEG*(A

THEN B*(R,C)="*****

W2=VAL(B*(R2,C2))::
1)>"A" THEN W3=VAL(B

5,1) =

SEG*(F*,5,1)=

SEG*(F*,5

SEG* (F*,5
SEG* (F*!,8
SEG*(F*,8
SEG*(F*,8
SEG* (F*,8

SEG*(F*,8

1) =

1) =

1) =

1) =

1) =

1) =

1) =

/ "

7."

+ "

* "

/"

"/."

INT(W4)OW4 THEN

W*=" "

STEP -1

THEN W4=W1+W2

THEN W4=W1-W2

THEN W4=Wi*W2

THEN W4=W1/W2

THEN W4=W2/W1*100

THEN W4=W4+W3

THEN W4=W4-W3

THEN W4=W4*W3

THEN W4=W4/W3

THEN W4=W3/W4>100

W4=INT(U4*100)/100

: : W = 0

THEN W*=SEG*(R*,Z,1

*^32*l

flHP}

PskS\1

Applications

1730 W*=RPT*(" ",W)&W*
1740 B*(R,C)=W*
1750 ON ERROR STOP

1760 RETURN
1770 IF SEG*(A*(R,C),6,3)="ROW"
1780 IF SEG*(A*(R,C),6,3)="C0L"
1790 RETURN

1800 W4=0 :: ON ERROR 1920
1810 V=ASC(SEG*(A*(R,C),9,1))-64

G*(A*(R,C),10,1))-64
1820 FOR Z=V TO W

1830 IF SEG*(A*(R,Z),1,2)="N:" OR SEG*(A*
Z),1,2)="C:" THEN W4=W4+VAL(B*(R,Z))

1840 NEXT Z

1850 GOTO 1680

1860 W4=0 :: ON ERROR 1920
1870 V = ASC(SEG*(A*(R,C) ,9, 1))-64 :: W = ASC

G*(A*(R,C),10,1))-64
1880 FOR Z=V TO W

1890 IF SEG*(A*(Z,C),1,2)="N:" OR SEG*(A*
C),1,2)="C:" THEN W4=W4+VAL(B*(Z,C))

1900 NEXT Z

1910 GOTO 1680

1920 B*(R,C)="****»***"
1930 RETURN 1940

1940 RETURN

1950 CALL CLEAR :: OPEN #1:"CS1",OUTPUT,I
RNAL,FIXED 192

1960 PRINT #1:CM;RM
1970 FOR Z=l TO RM
1980 PRINT #1:A*(Z, 1) ;A*(Z,2> ;A*(Z,3) ;A* (

>;A*(Z,5);A*(Z,6);A*(Z,7);A*(Z,8);A*
9);A*(Z,10);A*(Z,11);A*(Z,12);A*(Z,1
A*(Z,14)

1990 NEXT Z :: CLOSE #1 ::

2000 CALL CLEAR :: OPEN #1

RNAL,FIXED 192
2010 INPUT #1:CM,RM
2020 FOR Z=l TO RM
2030 INPUT #1:A*(Z, 1) ,A*(Z,2) ,A*(Z,3) ,A* (

),A*(Z,5),A*(Z,6),A*(Z,7),A*(Z,8),A*
9) ,A*(Z, 10) ,A*(Z, 11) ,A*(Z, 12) ,A* (Z, 1
A*(Z,14)

2040 NEXT Z :: CLOSE #1 :: GOTO 180

2050 DISPLAY AT(1,1):"BEGIN/END COLUMN ..
: ACCEPT AT(1,18)SIZE(-2)BEEP:C*

2060 IF SEG*(C*, 1, 1X"A" OR SEG*(C*, 1, 1) >
OR SEG*(C*,2,1X"A" OR SEG*(C*,2,1)

" THEN 2050

THEN

THEN

1800

1860

GOTO

"CS1

W=ASC(SE

(R,

(SE

(Z ,

NTE

Z,4
<Z,
3) ;

180

,INPUT ,INTE

Z,4

(Z,

3) ,

Z"

"N

97

Applications

2070 OPEN #2:"RS232",OUTPUT,DISPLAY
2080 I=ASC(SEG*(C*,K1))-64 :: J=ASC(SEG*(C*

,2,1))-64
2090 FOR L=l TO RM

2100 FOR M=I TO J

2110 P*=RPT*(" ",10-LEN(B*(L,M)))&B*(L,M)
2120 PRINT #2:P*;
2130 NEXT M

2140 PRINT #2:" " :: PRINT #2:" "
2150 NEXT L

2160 CLOSE #2

2170 GOTO 240

^^^

98 **]

Doug Hapeman

Interest rates can be a disappointment or a pleasant surprise
if you are paying interest on a loan or earning interest on
your savings. "Financial Interests" can help you make sense
of such mysteries as amortization and compound interest
before you sign on that bottom line. You'll also learn a few
things about finance in general. For the TI-99/4A, with Ex
tended BASIC, and 16K memory.

"Financial Interests" allows you to calculate both the value of
investments and the cost of borrowing.

You may be considering a savings investment fund. This
program helps you examine savings and annuities with vari
ous compound periods and rates, letting you see the future
value of your money. Or, if you're considering a loan, you can
weigh the options of various amounts, rates, and amortization
periods, and then choose the best alternative.

Simple and Compound Interest
To understand finance, you must grasp the idea of interest.
There are two types: simple (or fixed) interest and compound
interest.

For instance, if you borrowed $1000 and agreed to repay
it with 12 percent interest, you would repay the principal
amount ($1000) plus the 12 percent ($120)—regardless of the
length of the repayment period. However, if you agreed to re
pay the loan at 12 percent per annum, the loan has compound
interest. Now, 12 percent interest will be added onto the
outstanding debt each year during the repayment period.

The more frequent the compounding, the more costly to
the borrower. Today, most banks compound the interest
monthly on personal loans for cars, household items, vaca
tions, etc.

For once, wouldn't it be nice to sit down with the loan
officer in the bank and know what your options are before
you sign on the dotted line? One of the frustrating things
about negotiating a loan is having to make a decision when
you don't fully understand all the options.

99

Applications

For instance, when you're buying a new car, contrasting
the differences between a 36-month and a 48-month repay
ment period can be helpful. How will the different periods
affect the size of the monthly payment? How much more in
terest is paid in a 48-month amortization than in a 36-month
period? What portion of each monthly payment is for interest?
For principal?

This program, Financial Interests, will help you examine
all those options and will even print them out on paper for
you. The calculations used in the program are based on the
assumption that the interest is compounded monthly and that
payments will be made monthly.

The Dead Pledge
The word mortgage comes from two French words, mort (dead)
and gage (pledge). The pledge becomes dead when the loan is
paid off. To amortize means to deaden. To amortize a mort
gage or a loan is to extinguish it by means of a "sinking
fund"—a series of payments over a period of time which will
reduce the debt to zero.

By the way, a mortgage deed is sometimes called an
indenture. The word simply means an agreement between two
or more parties, but its etymology is pretty interesting.

Many years ago, (before carbon paper and photocopiers)
such an agreement would be penned in two original copies.
The copies would be placed evenly, one on top of the other. A
wavy line, or indentation, would literally be cut along one side
of the copies. Each party would then receive one of the
papers. When the two were later placed together, the wavy
cutting would match. Thus, authenticity was established. The
indentation matched.

Loans Vs. Mortgages
Everyone knows the difference between a loan and a mort
gage, right? They're the same thing except you amortize a
mortgage over a longer period, such as a 20- or 30-year
period? No. Most personal loans compound the interest
monthly, but the Federal Interest Act (in Canada) requires
that, for a mortgage, interest can only be "calculated half-
yearly, or yearly, not in advance." Therefore, the primary dif
ference between a mortgage and a loan is that mortgage
interest cannot be compounded as frequently, which means

100

Applications

lower payments. Of course, there are other differences: Mort
gages usually offer much lower interest rates, they have stiff
penalties for paying against the principal in advance, and they
require the involvement and expense of a lawyer.

Financial Interests calculates mortgage payments on the
assumption that the interest is compounded semiannually, not
in advance. If you compare the figures from Financial Interests
with the figures from a mortgage interest guidebook, you may
find the figures vary slightly. This is because the 13-digit ac
curacy of the 99/4A gives a more exact calculation than most
guidebooks.

No More Than a Million
When either the Loans analysis or the Mortgage analysis is
chosen, the program first asks the size of the loan you are
considering. The program will accept amounts up to, but not
including, one million dollars. If you are considering more
than that, adjust the program to accept larger amounts by
changing the SIZE variable of the ACCEPT statement in line
420. Second, you are asked the annual interest rate, and third,
the length of the loan in months. The information is then cal
culated and the screen displays the monthly payment needed
to pay off the principal during the life of the loan.

At this point, you are given two options: a month-by-
month analysis of the loan, or return to the main index. When
you choose the analysis, you are asked whether you would
like the amortization schedule printed. If yes, the printer
configuration is requested. The printout shows the current
state of the loan after each payment. The information includes
the month number, the monthly payment, the monthly in
terest and principal, the remaining balance, total interest to
date, and total payments to date.

When the printer is bypassed, the monitor screen displays
one month at a time, and you can proceed month by month
by pressing any key other than M or T. Pressing M permits
you to jump ahead to any month you select, and pressing T
jumps to the final breakdown totals following the last
payment.

Savings Analysis
The Savings analysis lets you examine a combination of two
investment procedures: investments (the future value of a

101

Applications b=e

one-time deposit) and annuities (the future value of regular
deposits).

The Savings option first asks for the present amount in
your savings account, then the rate of interest and the number
of compound periods per year. Following this, you are asked
whether you wish to make regular deposits, and if so, how
often and how much. From there the calculations are per
formed and displayed, showing the beginning principal, the
total deposits, the accumulated balance, and the total interest.
Analysis is displayed on a yearly basis with the option of
returning to the main menu at any time.

The two procedures, annuities and investments, can be
analyzed in conjunction with each other, or individually. If
you wish to examine just the future growth of a one-time
investment, press N (No) in response to the question "Make
regular deposits?" Calculations will then be made based solely
on the future growth of a single deposit over a designated pe
riod of time. The growth of this fund depends upon the in
terest paid. The interest is compounded each period. This is
interest earned on interest.

If you wish to analyze only an annuity, enter 0 in re
sponse to "Present amount in savings:", and then continue
with the remaining information. This will give you calcula
tions for the future growth of a regular contribution to an
annuity fund, that is, the regular periodic investment, plus in
terest earned on the interest and on the continuing
investment.

These investment factors are all based on the assumption
that no funds will be withdrawn throughout the investment
period.

For Formula Buffs

In case you want to know how it is done or would like to
work it out the hard way, here are the formulae:
Compound Savings (Investment)
S =Amt*(l+I)AN

Amt = Amount deposited
S = The future value of amount deposited
I = Interest rate per period —«j
N = Number of compounding periods j

102

Applications

p$&ml

Annuities

S = Amt*(l+irN)-l

I

Amt = Amount deposited per period
S = The future value of amount deposited per period
I = Interest rate per period
N = Number of compounding periods

Loan Payments

FR = (1+R/1200)-1

Amt*FR

S = l-(l/l+FRfN)

FR = Loan amortization factor
R = Annual interest rate
S = The monthly payment
Amt = Amount to be borrowed
N = Length of loans in months

Mortgage Payments

FR = ((l+R/200)(l/6))-l

Amt*FR

S = l-(l/((l+FRrN))

FR = Mortgage amortization factor
R = Annual interest rate
S = The monthly payment
Amt = Amount to be borrowed
N = Length of mortgage in months

Program Outline

) 100-300 Initialization and title screen
310-340 Main menu
350-360 Finish session

p55 370-430 Get loan and mortgage information
440-510 Calculate and display monthly payment
520-560 Month-by-month analysis

rem 570-630 Analysis calculations
640-680 Print amortization schedule
690-790 Display calculations

, , 800-900 Get savings information
910-940 Savings analysis
950-970 Analysis calculations
980-1020 Display calculations

103

Applications

Main Program Variables a=n
Title Screen Variables

V = Vertical sprite motion
H = Horizontal sprite motion ••"!
R = Dot-row sprite location '
C = Dot-column sprite location
RR = Row-character position -an
CC = Column-character position i
J = Flag

Loan and Mortgage Calculation Variables
AMT = Beginning principal
R = Annual interest rate
M = Months in length of loan
FR = Working factor for mortgage and loan amortization
PA = Monthly payment
TP = Total payments
IN = Interest

TI = Total interest
BA = Remaining balance

Savings Calculation Variables
AMT = Amount in savings
R = Annual interest rate

C = Number of compound periods
D = Amount of deposits
ND = Number of deposits
Y = Number of years in analysis
CP = Interest rate per compound period
B = Future value of amount in savings
MA = Working variable for annuity
DE = Working variable for annuity
BP = Future value of annuity —""j
TD = Total amount of deposits '
BA = Accumulated balance
TI = Total interest —=*

Financial Interest

100 REM **FINANCIAL INTERESTS** J
110 REM EXTENDED BASIC REQUIRED

120 DIM A(5>

130 CALL CLEAR ""]
140 REM *******INITIALIZATION 8< TITLE SCREEN J

104

J^xRsnj

Applications

150 FOR 1=0 TO 10 :: READ C* :: B$<I)=C$::

CALL COLOR<I.2,8):: NEXT I

160 FOR 1=9 TO 14 :: CALL COLOR<I, I, I > : : NEX
T I :: CALL VCHAR<1,31,120,96):: CALL SC
REEN(12)

170 C=96 :: X=8 :: Y=10 :: GOSUB 180 :: C=12

0 :: X=12 :: Y=14 :: GOSUB 180 :: GOTO 1

90

180 FOR I=X TO Y :: DISPLAY AT<I,1):RPT*<CHR
* <C) , 10) ;TAB(18) ;RPT*(CHR*<C> , 1 1) : : C = C +
8 :: NEXT I :: RETURN

190 FOR 1=6 TO 16 ;: DISPLAY AT(I,12)SIZE<-5
) :B$ (1-6) : : NEXT I

200 DATA " * " ," **$ "," * * $"r"$ $ *"," $
* » , » $ », $$ »

2 10 DATA "% % %", "$ * $"," *$* "," $
220 CALL SPRITE (#1.36,2, 188, 120) : : CALL MAGN

IFY(2):: V = -14 :: H=-13 :: R=76 :: C=16

:: J=0 :: GOSUB 280

230 V = 0 :: H = 27 :: R=76 :: C=240 :: RR=11 ::

CC=3 :: J=l :: C*="FINANCIAL<3 SPACES**

<3 SPACES*INTERESTS" :: GOSUB 280

240 J=0 :: R=172 :: C=24 :: V=12 :: H=-27 ::
GOSUB 280

250 C=256 :: V = 0 :: H=27 :: RR=23 :: CC=4 ::

J=l :: C$="*PRESS ANY KEY TO BEGIN*" ::
GOSUB 280

260 CALL DELSPRITE(#1)

270 CALL KEY<0,K,S>:: IF S=0 THEN 270 ELSE 3

20

280 CALL MOTION(#1,V,H):: IF J=0 THEN 300
290 FOR 1= 1 TO LEN<C*):: X=ASC<SEG*<C$,I,1))

:: CALL HCHAR<RR,CC+I,X):: NEXT I
300 CALL C0INC<#1,R,C,12,Z):: IF Z=0 THEN 30

0 :: CALL MOTION<ft 1,0,0) : : CALL LOCATE<#
1,R,C):: RETURN

pw» 310 REM *******MAIN MENU*******

315 CALL VCHAR<1,3,32,672):: RETURN
320 GOSUB 315 :: DISPLAY AT<5,5)BEEP:"FINANC

IAL INTERESTS": : s :"PRESS<3 SPACES>FOR

^ ": : sM 1 LOAN ANALYSIS": :" 2
MORTGAGE ANALYSIS"

330 DISPLAY AT(16,3):"3 = SAVINGS ANALYSIS
mm " : : " 4 FINISH SESSION" :: CALL KEY

(0,K,S):: IF K<49 OR K>52 THEN 330
340 ON K-48 GOTO 380,400,810,360
350 REM *******FINISH SESSION*******

f^1 360 DISPLAY AT (14,7)ERASE ALL: "HAVE A NICE D
AY!" :: STOP

370 REM *******GET LOAN INFORMATION*******

105

Applications

380 B*<0)="THE AMOUNT OF LOAN:" :: B$(1)="TH

E RATE OF INTEREST:" :: B*(2)="LENGTH OF

LOAN IN MONTHS:" :: GOTO 410

390 REM *******GET MORTGAGE INFORMATION*****
**

400 B$<0)="THE AMOUNT TO BE MORTGAGED:" :: B

<1)="THE RATE OF INTEREST:" :: B(2)="M

ORTGAGE LENGTH IN MONTHS:"

410 GOSUB 315 :: J=0 :: FOR 1=5 TO 13 STEP 4

:: DISPLAY AT<I,1):B*(J):: J=J+1 :: NEX
T I

420 J=0 :: FOR 1=7 TO 15 STEP 4 :: ACCEPT AT
(I,3)SIZE(6)VALIDATE(NUMERIC)BEEP:A <J) : :
J = J + 1 :: NEXT I :: AMT= A(0>:: R = A< 1) : :

M=A(2)

430 IF K=49 THEN 470

440 REM *******CALCULATE MORTGAGE PAYMENT***

450 FR=(l+R/200)~(1/6)-1 :: PA=I NT<AMT*FR/<1

-1/((1+FR)AM))*100+.5)/100 :: GOTO 490

460 REM *******CALCULATE LOAN PAYMENT*******

470 FR=(l+R/1200)-1 :: PA=INT<<AMT*FR)/<1-<1

/(1+FR)^M))*100+.5)/100

480 REM *******DISPLAY LOAN AND MORTGAGE PAY

MENT*******

490 GOSUB 315 :: DISPLAY AT(5,3)BEEP:"TO BOR
ROW *";AMT: : " FOR";M;"MONTHS AT";R;"7. "
: : :"MONTHLY PAYMENT WILL BE:"

500 DISPLAY AT<12,2):USING "######.##»•PA ::
DISPLAY AT<22,5):"*PRESS I FOR INDEX*":

"*ANY OTHER KEY FOR ANALYSIS*"

510 CALL KEY<0,KEY,S):: IF S=0 THEN 510 :: I
F KEY=73 THEN 320

520 REM *******MONTH BY MONTH ANALYSIS******
*

530 GOSUB 315 :: DISPLAY AT<1,7):"MONTHLY AN
ALYSIS": : :"<7 SPACES3DO YOU WISH TO":"

PRINT THE AMORTIZATION? Y/N": :"PRINCIPA
L":"REMAINING

540 DISPLAY AT(10,3):"MONTHLY":" PAYMENT ="
: :" PAYMENTS":" TO DATE =": :" INTERES

T":"THIS MNTH =": :" INTEREST":" TO DAT

E ="

550 ACCEPT AT(5,28)SIZE(-1)VALIDATE("YN")BEE
P:C* :: CALL HCHAR(4,3,32,28) :: CALL HCH {
AR<5,3,32,28):: IF C$="N" THEN 580

560 DISPLAY AT<4,1):"ENTER PRINTER DEVICE NA
ME:" :: ACCEPT AT(5,3)BEEP:P$:: CALL HC
HAR(4,1,32,64):: OPEN #1:P*

570 REM *******ANALYSIS CALCULATIONS*******

106

j

1

1

Applications

m 580 F.TI,TP,MON=0 :: PA=PA*100 :: BA=AMT*100
590 FOR Z=l TO M
600 IN=INT(BA*FR+.5):: IF Z=M THEN PA=BA+IN
610 TP=TP+PA :: BA=BA-PA+IN :: TI=TI+IN

^ 620 IF BA>0 THEN 630 :: PA=PA+BA :: TP=TP+BA
:: BA=0

630 DISPLAY AT(4.1):"€4 SPACES3MONTH =
mm <7 SPACES!! ";Z :: IF C*="N" THEN 700 :: I
' F F=l THEN 670

640 REM *******PRINT AMORTIZATION SCHEDULE**

650 PRINT #1:TAB<27):"AMORTIZATION SCHEDULE"
: : :TAB(10);"PRINCIPAL:";AMT;TAB(35);"R
ATE: ";R;TAB(55) ;"MONTHS: " -, M: :

660 PRINT #1:" M0NTHC4 SPACES3PAYMENT
<4 SPACES3INTEREST<3 SPACES*PRINCIPAL

C5 SPACES1BALANCEC5 SPACES>TOT/INT

C3 SPACES3TOT/PAYMT": : :: F=l

670 A<0)=PA/100 :: A<1)=IN/100 :: A<2)=PA/10
0-IN/100 :: A(3)=BA/100 :: A(4)=TI/100 :

: A(5)=TP/100

680 PRINT ftl,USING "ftftftftft " : Z ; : : FOR 1=0 TO 5
:: PRINT #1,USING "ftftftftftftftftft .ftft " : A (I) ; :

: NEXT I :: PRINT ftl:"" :: GOTO 710

690 REM *******DISPLAY CALCULATIONS*******

700 IF Z=MON OR Z=M THEN 710 :: IF K=84 OR K

=77 THEN 760

710 A<0)=BA/100 :: A<1)=PA/100 :: A(2)=TP/10

0 :: A(3)=IN/100 :: A(4)=TI/100

720 J=0 :: FOR 1=8 TO 20 STEP 3 :: DISPLAY A

TO, 14) sUSING "ftftftftftftft.ftft": A(J) : : J = J + 1
:: NEXT I

730 IF Z=M THEN 770 :: IF C*="Y" THEN 760 ::

DISPLAY AT (23, DBEEP: "T= FOR TOTALS M = S

ELECT MONTH":"*ANY OTHER KEY TO CONTINU

E*"

l^1 740 CALL KEY(0,K,S):: IF S=0 THEN 740 :: IF
K<>77 THEN 760

750 DISPLAY AT(4,1):"SELECT WHICH MONTH:" ::
mm ACCEPT AT(4,21)VALIDATE(DIGIT)SIZE(3)BE

EP:MON :: IF MON<=Z THEN 750

760 NEXT Z

770 IF C*="N" THEN 780 :: CLOSE #1

•"^ 780 DISPLAY AT (23, 1)BEEP: "PRESS ANY KEY FOR
MAIN INDEX":RPT*(" ",28)

790 CALL KEY(0,K,S):: IF S=0 THEN 790 ELSE 3
20

800 REM *******GET SAVINGS INFORMATION******

*

f-i^sn^l

t^sw?8j

107

Applications

810 B*(0)="PRESENT AMOUNT IN SAVINGS:" :: B$

(1)="RATE OF INTEREST:" :: B*(2)="TIMES

COMPOUNDED PER YEAR:"

820 B*(3)="MAKE REGULAR DEPOSITS? (Y/N)" ::

B*(4)="H0W MANY DEPOSITS PER YEAR:" :: B

$(5)="H0W MUCH PER DEPOSIT:" :: GOSUB 31
5

830 J=0 :: FOR 1=3 TO 21 STEP 4

840 DISPLAY AT(I,1):B*(J):: J=J+1 :: IF I<>1
5 THEN 850 :: 1=17 :: GOTO 840

850 NEXT I

860 J=0 :: FOR 1=5 TO 23 STEP 4 :: IF I<>17
THEN 890

870 ACCEPT AT(15,23)VALIDATE("YN")SIZE(-1)BE
EP:C* :: IF C$="N" THEN 880 :: 1=19 :: G
OTO 890

880 A(3),A(4)=0 :: GOTO 900

890 ACCEPT ATO. 3)SIZE (6) VAL IDATE (NUMER IC)BE
EP:A(J):: J=J+1 :: NEXT I

900 AMT=A(0):: R=A(1):: C=A(2):: ND=A(3):: D
= A(4)

910 REM *******SAVINGS ANALYSIS*******
920 GOSUB 315 :: DISPLAY AT(3,7):"SAVINGS AN

ALYSIS": : :"YEARS IN THIS ANALYSIS?": :
:"BEGINNING":"PRINCIPAL =": :"

€4 SPACES>TOTAL":" DEPOSITS ="

930 DISPLAY AT(15,3):"ACCRUED":" BALANCE ="
: :"C4 SPACES3TOTAL":" INTEREST ="

940 ACCEPT AT(6,25)VALIDATE(DIGIT)SIZE(4)BEE
P:Y :: IF Y=0 THEN 940 :: DISPLAY AT(23,
2):"C3 SPACES>ONE MOMENT PLEASE...":RPT*
(" ",28>

950 REM *******ANALYSIS CALCULATIONS*******
960 CP=(1+R/(100*C))^ (Y*C) : : B=INT(AMT*CP*10

0+.5)/100 :: MA=(CP-1)/(R/(100*C)):: DE=
D*ND/C :: BP=INT(DE*MA* 100+.5)/100

970 TD=D*ND*Y :: BA=B+BP :: TI=BA-AMT-TD
980 REM *******DISPLAY CALCULATIONS*******
990 A(0)=AMT :: A (1)=TD :: A(2)=BA :: A(':r.)=T

I

1000 J=0 :: FOR 1=10 TO 19 STEP 3 :: DISPLAY
AT(I, 14) :USING "ftftftftftftftftftft.ftft":A (J) : :

J = J + 1 :: NEXT I

1010 DISPLAY AT(23,2)BEEP:"*M=MORE SAVINGS A
NALYSIS*":"ANY OTHER KEY FOR MAIN INDEX
ii

1020 CALL KEY(0fKEY,S):: IF S =0 THEN 1020 ::
IF KEY=77 THEN 940 ELSE 320 :: STOP

108

"1

jfSJM

pW^J

ffl'^sw;!

PS1

Raymond J. Herold

A Dflffl Base Management System (DBMS) is, in its simplest
form, a system for managing large amounts of diversified
data. These two programs will allow you to store, update or
delete records, sort data, save files to tape, and print reports.
Requires Extended BASIC.

This Mini Data Base Management System (DBMS), which ac
tually consists of two programs, was written for the TI-99/4A
in Extended TI BASIC. Most of the people who purchase a TI
computer are first-time computer owners. In addition, most TI-
99/4A owners do not have disk drives and memory expansion
for their systems. My purpose in writing "MINI-DBMS" was
to provide a useful software tool that was relatively powerful,
easy to use, and would run on a minimum TI-99/4A
configuration. This minimum configuration consists of the
basic 16K TI-99/4A, monitor or TV, cassette player and Ex
tended BASIC (which I consider essential).

Roadblocks
The first obstacle to writing a program such as this was the
16K memory limitation. How do you include all the features
the program should have to make it useful, yet still leave
enough memory for the data? The first trade-off required split
ting MINI-DBMS into two programs. The first, MINI-DBMS,
would be responsible for defining new files, adding and up
dating records and sorting the file. The second, "MINI-REPT,"
would handle the summarization and reporting requirements.

Then came the question of the records themselves. Trade
off number two: there would be a maximum of eight data
fields per record. This should be enough for most home
applications. In considering the data fields, a maximum of
20 characters per field seemed reasonable. The above two

109

Applications

trade-offs then determined the third: a maximum of 80 records
per file, depending on the record size. Again, this seemed
reasonable for the typical home application.

Consequently, the MINI-DBMS parameters break down
like this: two programs with the features deemed essential; up
to 80 records per file; 1 to 8 fields in each record; and 1 to 20
characters for each field. Not too bad for a 16K machine!

The programs are written so that they can easily be
merged if you have more memory and a disk drive. These two
items will allow you to expand the basic parameters of MINI-
DBMS. The major program subdivisions are outlined below in
Table 1. Should you decide to make modifications to the pro
gram, Table 2 lists the variable names and their use.

MINI-DBMS

Program 1 is MINI-DBMS. This program allows you to define
new DBMS files, add records to a file, display, update or de
lete records, sort a file, and save a file to tape. When you first
type in RUN the program displays the introduction banner
then displays the main menu:
1—DEFINE NEW DBMS RECORDS
2—LOAD RECORDS FROM TAPE
3—ENTER NEW RECORDS
4—DISPLAY/UPDATE RECORDS
5—SORT BY SPECIFIED FIELD
6—SAVE DATA ON TAPE

Define new DBMS records. This is where you define
what a particular file will look like. The information you must
supply includes: filename (up to eight characters); numbers of
data fields in each record (maximum allowed is eight); and de
fine each field. —=-,

Field definition involves a number of steps. To start, give I
each field a l-to-6-character field name. This name (including
the periods if you leave them in) will be used to identify the «=i
field when requesting functions such as search, sort, or sum- I
marize. You must then define the field length (maximum
length is 20 characters). Finally, you will tell the program -=-,
whether the field is alpha or numeric format. Alpha fields per- I
mit any character to be entered; numeric fields will only allow
0-9, comma, and period. In addition, only a numeric field can «
be summarized. Figure 1 is an example of field definition. I

110

Applications

ma Although the new file has now been defined this step is
i not quite complete. The program will allow you to set an ini

tial value, or mask, for each field. These masks allow you to
am format fields for data input. They will override the default val-
1 ues which are period for alpha fields and zeros for numeric

ones. You can see in Figure 2 that the DATE field was given a
a mask of 00/00/00 rather than periods, and the AMOUNT
! field was given a decimal point. The remaining fields use the

default value. You can override the periods with a mask of
blanks if you so desire, but the periods are useful in showing
whoever is entering data how many characters they have to
work with.

Figure 1. Create New DBMS Files

FIELD LENGTH TYPE

NAME (1-20) (N/A)

NAME.. 20 A

ADDR.. 20 A

CITYST 20 A

ZIP- 05 N

DATE.. 08 A

AMOUNT 08 N

FOR... 20 A

Figure 2 . Set Initial Values

SET INITIAL VALUES

NAME..

ADDR..

CITYST
Zip... 00000
DATE.. 00/00/00
AMOUNT 00000.00

FOR...

Load records from tape. This option will allow you to
load an existing file on tape into the MINI-DBMS program.
The program will first read the filename on the tape and ask
you if it is the one you wanted.

Enter new records. Here is where you begin with a
newly defined file, or add to an existing file loaded from tape.
The program will display a screen with the name of each field

111

Applications

in the record and its associated mask. You simply enter the
data you want for each new record. After the record is added
a display will show how many records are currently in the file
and the maximum number allowed for that file. At this point
you can add another record or return to the main program
menu. Figure 3 shows a record that has just been added.

Figure 3. Add New Record

ADD NEW RECORD

NAME.. COMPUTE!
ADDR.. P.O. BOX 5406
CITYST GREENSBORO NC
ZIP.. 27403

DATE.. 10/04/84
AMOUNT 00024.00
FOR... SUBSCRIPTION

Display/update records. There are two methods avail
able for displaying records. The first displays each record start
ing at the beginning of the file. Pressing the ENTER key
displays the next record. Pressing Mwill return you to the
program menu from anywhere in the file. Pressing U will put
the program in update mode for the record being displayed.
The cursor will appear in the leftmost position of the first data
field. You can change the data in the field or press ENTER to
put the cursor in the next field. This process continues until all
fields have been updated or bypassed.

If you want to completely delete the record from the file
enter $DEL into the first four positions of the first data field.
This assumes that the first field is alpha format and at least
four characters long. If you want to use a different control
code or field you can change the IF statement in line 4146.

Method two displays and updates the records in the same
manner as method one. The difference lies in which records
are displayed. This second method allows you to search the
file for a desired value in a particular field. Only records meet
ing the search criteria are displayed, thus eliminating the need
to scroll through unwanted records. The search argument may
be a generic value. That is, the argument "SMI" would display
records for SMITH, SMITHERS, SMILEY, etc.

Sort by specified field. You can sort the file into ascend
ing sequence on any field. Just provide the name of the field

112

(?pfflp»>

•avMCTCTiv-am.^ Applications

you want sorted. BASIC is a slow language for routines such
as sorts, but the exchange sort which starts at line 5000 will
sort most files in less than five minutes. The program will
continually display the number of sort passes left. You can
change the sort to descending sequence by changing the less
than sign in line 5065 to a greater than sign, and by changing
the A$ assignment in line 5050 to A$(0,Z)=" ".

Save data on tape. Depending on the size of the file,
saving data to tape may be even slower than the sort. But
then, no one purchases a home computer for its tape I/O
speed.

MINI-REPT

MINI-REPT handles the summarization and reporting
responsibilities of the MINI-DBMS system. The program menu
provides the following options:
1—LOAD RECORDS FROM TAPE
2—DISPLAY RECORDS
3—SUMMARIZE BY FIELD(S)
4—PRODUCE PRINTED REPORT

The first two options function the same way as in Pro
gram 1, except that there is no update capability for DISPLAY
RECORDS.

Summarize by field(s). You can summarize (total) a field
based on the value of one or two search fields. To summarize
using one search field you provide the name of the field to be
searched, the search argument (which may be generic), and
the name of the field to be summarized. The value of the
search field and summary field for all records meeting the
search criteria will be displayed. Once the entire file has been
searched, the program will display the number of records
meeting the search criteria and the total for the summary field.

It is possible to search on two fields. By providing the
>^m name of the two fields and their respective search arguments,

you can have the program summarize only those records
meeting the search criteria for both fields.

tm9 If you specify the second search field argument as $ALL,
the program will qualify all records meeting the first search
field criteria only. This allows you to display the second search

f*> field value as an identifier.
Produce printed report. This option is for those of you

with printers. It allows you to produce a report of the data in

113

fiSwft

Applications es

the field. You first provide the program with the number of «,
fields you want printed, and the name of the fields. You may I
summarize a field if desired, and you may selectively print
based on the value of a search argument. The report to be
printed may be given a title. The program checks for a maxi
mum 80 columns of print data, but allows you to print more if
desired.

If you request this option but don't have a printer you 1
will get a syntax error. Also, you may have to adjust the
OPEN statement in line 8006 to accommodate your particular
printer.

Table 1. Program Subdivisions
Line

Number

10-30 Introduction banner
100-190 Menu display
1000-1400 Define new DBMS file
2000-2060 Read data from tape
3000-3200 Add records to file
4000-4440 Display/update records
5000-5220 Sort routine
6000-6050 Write data to tape
7000-7450 Search, summarize and display
8000-8200 Produce printed report

Table 2. Program Variables
A$(s,s) File data array (record, field)
ARG$ First search argument
ARG2$ Second search argument
FIELDS Number of fields in record
FLD Field number of user-entered field name ""**]
FLD$ User-entered field name
FNM$(s) Field name array
KEY Value of key pressed tms)
LN(s) Field length array »
MASK$(s) Initial field value array
NAME$ Filename «
NF Number of fields to be printed !
NUMREC Maximum number of records in file
OPT$ User-entered option (Y or N)
P(s) Field to be printed J
P$(s) Name of field to be printed

114 "H

fflShJ

RECS Number of search fields
SF Number of search fields
STATUS CALL KEY status

SUM Number of field to be summarized
SUM$ Name of field to be summarized
TC Total characters per line in print function
TI Items selected in summary function
TOT Accumulator for summary field
TOTCHR Total characters per record
TYP$(s) Field type array
X,L,Z,Q Loop control

Program 1. MINI~DBMS

Applications

1 REM TI MINI-DBMS

2 REM

10 CALL CLEAR :: CALL 5CREEN(9)

20 DISPLAY AT(3.1):RPT*("*",28):: DISPLAY AT
(4,1):"*" :: DISPLAY AT(4,28):"*"

22 DISPLAY AT (5, 1):"*<:4 SPACES3M I N I - D B

M S<5 SPACES**"

24 DISPLAY AT(6,1):"*" :: DISPLAY AT(6,28):"
" :: DISPLAY AT (7, 1) :RPT("*",28)

30 FOR X=l TO 2000 :: NEXT X

40 DIM A*(81,8)
100 CALL CLEAR :: CALL SCREEN<8):: DISPLAY A

T (2, 10) : "** MENU **"
110 DISPLAY AT(6,1):"1 - DEFINE NEW DBMS REC

ORDS" :: DISPLAY AT(8,1):"2 - LOAD RECOR
DS FROM TAPE"

120 DISPLAY AT(10,1):"3 - ENTER NEW RECORDS"
:: DISPLAY AT(12,1):"4 - DI SPLAY/UPDATE
RECORDS"

130 DISPLAY AT(14,1):"5 - SORT BY SPECIFIED
FIELD"

140 DISPLAY AT(16,1):"6 - SAVE DATA ON TAPE"
150 DISPLAY AT(23.3):"ENTER SELECTION >" :

: ACCEPT AT(23,23)VALIDATE("123456")BEEP

:CHOICE

170 ON CHOICE GOTO 1000.2000,3000,4000,5000,
6000

190 GOTO 100

400 FOR X=l TO 2000 :: NEXT X

410 GOTO 100

1000 CALL CLEAR :: DISPLAY AT(3,1):"DEFINE R
ECORD FORMAT FOR" :: DISPLAY AT(4,1):"N
EW DBMS. YOU MAY DEFINE UP"

1005 DISPLAY AT(5,1):"T0 8 FIELDS IN THE REC

ORD. "

115

Applications ••«»«"»«—»»•»——•"-a

1006 IF RECS>0 THEN DISPLAY AT(8,1):"DELETE
CURRENT FILE? Y/N"

1007 IF RECS>0 THEN CALL KEY(3,KEY,STATUS)::
IF STATUS= 0 THEN 1007 ELSE IF KEYO
89 THEN 100

1010 DISPLAY AT(8,1):"NEW DBMS NAME:
." :: ACCEPT AT(8,16)SIZE<-8)BEEP:NAME*

1015 DISPLAY AT(9,1):"NUMBER OF FIELDS (1-8)
" ss ACCEPT AT(9,25)VALIDATE(DIGIT)SIZE
(2)BEEP:FIELDS

1016 IF FIELDS>8 THEN 1015

1018 DISPLAY AT(11,1):" FIELDC5 SPACES3LENG
TH{3 SPACESJTYPE" :: DISPLAY AT(12,1):"

NAMEC6 SPACES3(1-20){3 SPACES3(N>A)"
1020 FOR L=l TO FIELDS

1022 DISPLAY AT(13+L,1):M C6 SPACES3 0
0£7 SPACES} . "

1023 NEXT L

1030 FOR L=l TO FIELDS

1032 ACCEPT AT(13+L?3)SIZE(-6)BEEP: FNM*(L)
1034 ACCEPT AT(13+L, 15)VALIDATE(DIGIT)SIZE (-

2)BEEPsLN(L):: IF LN(L)<01 OR LN(L)>20
THEN 1034

1036 ACCEPT AT<13+L,24)VALI DATE("AN")SIZE(-1
)BEEP:TYP$(L):: IF TYP*(L)="." THEN
1036

1038 NEXT L

1040 CALL CLEAR :: DISPLAY AT(2,2):"** SET I
NITIAL VALUES **" :: DISPLAY AT(4,1):"K
EY IN THE DEFAULT VALUE FOR"

1042 DISPLAY AT(5,1):"EACH FIELD OR PRESS EN
TER TO" :: DISPLAY AT(6,1):"ACCEPT AS I
S. "

1050 FOR L=l TO FIELDS

1052 DISPLAY AT(10+L,1):FNM*(L)
1054 IF TYP$(L)="N" THEN GOSUB 1100 ELSE GOS

UB 1200

1056 NEXT L

1060 FOR L=l TO FIELDS

1062 IF TYP*<L)="N" THEN GOSUB 1300 ELSE GOS
UB 1400

1064 NEXT L

1070 TC=0 :: FOR L=l TO FIELDS
1072 TC=TC+LN(L)
1074 NEXT L

1076 NUMREC=INT (4300/TC) :: IF NUMREO80 THEN
NUMREC=80

1078 CALL CLEAR :: DISPLAY AT(4,1):"YOUR FIL
E WILL HOLD ";NUMREC;"RECORDS"

1080 FOR X=l TO 2000 :: NEXT X

116

AE^

1

r.^W^

r^^^^

1090

1100

1200

1300

1400

2000

2010

2020

2022

2024

2026

2030

2035

2040

2045

2050

2060

3000

3004

3005

3010

3020

3022

3024

3030

3032

3034

3036

3040

3042

3044

RECS=0 ;

DISPLAY

TURN

DISPLAY

TURN

ACCEPT AT(10+L,8)VALIDATE("0123456789,.
")SIZE(-LN(L))BEEP:MASK*(L) : : RETURN

ACCEPT AT(10+L,8)SIZE(-LN(L) >BEEP:MASK*
(L):: RETURN

CALL CLEAR

OPEN #1:"CS1",INPUT ,INTERNAL,FIXED 192
INPUT »1:NAME*,FIELDS,RECS, NUMREC
PRINT :: PRINT "INPUT FILE - ";NAME* ::

PRINT "CONTINUE? Y/N"

CALL KEY(3,KEY,STATUS) : : IF STATUS= 0 TH
EN 2024

IF KEYOS9 THEN 2050

FOR L=l TO FIELDS :: INPUT #1:FNM*(L),T

YP*(L),LN(L),MASK*(L):: NEXT L
FOR X=l TO RECS

INPUT #1:A*(X, 1) ,A*(X,2) ,A*(X,3) ,A*(X,4
) ,A*(X,5) ,A*(X,6) ,A*(X,7) ,A*(X,8)
NEXT X

CLOSE #1

GOTO 100

IF NUMREC<1

AT(4,1):"NO

RECS=RECS+1

IF RECS>NUMREC THEN CALL CLEAR :: DISPL

AY AT (4, 1) : "RECORD MAXIMUM EXCEEDED" ::
GOTO 400

CALL CLEAR :: DISPLAY AT(3,7):"** ADD N

EW DATA **"

FOR L=l TO FIELDS

DISPLAY AT(5 +L, 1)SIZE(LEN <FNM*(L))) :FNM
(L)s: DISPLAY AT(5 + L,9)SIZE(LEN(MASK (
L))):MASK*(L)

NEXT L

FOR L=l TO FIELDS

IF TYP*(L)="N" THEN

UB 3200

NEXT L

DISPLAY AT(17. 1)

C3 SPACES)MAX:":

CALL HCHAR<18

DISPLAY

RECORD"

Applications

: GOTO 100

AT(10+L,8):RPT*("0"

AT(10+ L,8) :RPT* (". "

LN(L))

LN(L))

RE

RE

THEN

FILE

CALL CLEAR

DEFINED."

DISPLAY

GOTO 4 00

GOSUB 3 100 ELSE GOS

"V RECORDS:":RECS;"
":NUMREC

1,95.31)

AT(20, l)s"1 - TO ENTER ANOTHER
:: DISPLAY AT<21,1):"2 - TO RET

3):"ENTERURN TO MENU" :: DISPLAY AT<2:

YOUR CHOICE >"

ACCEPT AT(23,26)VALIDATE <"12")BEEP:OPT

117

Applications s

3046

3048

3050

3100

3200

4000

4010

4015

4020

4030

4050

4100

41 10

41 15

4120

4130

4132

4134

4136

4138

4140

4142

4144

4146

4150

4155

4160

4200

4205

4210

4220

4221

118

IF OPT=l THEN

IF 0PT=2 THEN

GOTO 3044

ACCEPT AT(5+L,9)VALIDATE("0123456789,."
)SIZE(-LEN(MASK*(L)))BEEP:A*(RECS,L)::

RETURN

ACCEPT AT(5+L,9)SIZE(-LEN(MASK*(L)))BEE
P:A*(RECS,L):: RETURN
CALL CLEAR :: DISPLAY AT(3,2):"«* DISPL
AY/UPDATE DATA **"

DISPLAY AT(6,1):"1 - DISPLAY ALL RECORD
S" :: DISPLAY AT(7,1):"€4 SPACES}FROM B
EGINNING OF FILE."

DISPLAY AT(9,1):"2 - DISPLAY BY VALUE I
N" :: DISPLAY AT (10, 1) : " <!4 SPACES3SPECI
FIED FIELD"

DISPLAY AT(12,3):"ENTER YOUR CHOICE
>" :: ACCEPT AT(12,26)VALIDATE("12")BEE

P:OPT

ON OPT GOTO 4100,4200

GOTO 100

HOLD=RECS

FOR RECS=1 TO HOLD

IF RECS>HOLD THEN 4150

GOSUB 4300

CALL KEY(3,KEY,STATUS)

IF STATUS=0 THEN 4130

IF KEY=13 THEN 4150

IF KEY=77 THEN RECS=999 ::

IF KEYOS5 THEN 4130

FOR L=l TO FIELDS

IF TYP*(L)="N" THEN GOSUB

UB 3200

NEXT L

IF SEG*(A*(RECS,1),1,4)="*DEL" THEN GOS
UB 4400

NEXT RECS

RECS=HOLD

GOTO 100

CALL CLEAR :: DISPLAY AT(2.

AY BY FIELD VALUE **"

DISPLAY AT(5,1):"ENTER THE
DISPLAY AT(6,1)

AND THE"

AT(7,1):"SEARCH ARGUMENT (VALUE

3000

100

DATA" :

EARCHED

DISPLAY

) . "

DISPLAY AT(12,1):"FIELD
: : ACCEPT AT (12

*

FLD = 0

GOTO 4150

3100 ELSE GOS

1)

NAME

FIELD

** DISPL

OF

TO

THE

BE S

TO BE SEARCHED

22)SIZE(-6):FLD

1

Applications

P8 4222 FOR L=l TO FIELDS
4224 IF FLD*=FNM*(L)THEN FLD=L :: L=99

pm

(*aS|

4226 NEXT L

4228 IF FLD=0 THEN DISPLAY AT<14,1>:"NO SUCH
FIELD NAME." :: DISPLAY AT(15,1):"'R'

TO RETRY - ?M=" FOR MENU" ELSE GOTO 4250

4230 CALL KEY(3,KEY,STATUS)
4232 IF STATUS=0 THEN 4230

4234 IF KEY=82 THEN 4200 ELSE 100

4250 DISPLAY AT(14,1):"ENTER SEARCH VALUE

C5 SPACES}"

4252 ACCEPT AT(15,1):ARG*

4260 HOLD=RECS

4262 FOR RECS=1 TO HOLD

4264 IF ARG*=SEG*(A*(RECS,FLD),1,LEN(ARG*)>T
HEN GOSUB 4300 ELSE 4290

4270 CALL KEY(3,KEY,STATUS)

4272 IF STATUS=0 THEN 4270

4274 IF KEY=13 THEN 4290

4276 IF KEY=77 THEN RECS=999 :: GOTO 4290
4280 IF KEY085 THEN 4270

4282 FOR L=l TO FIELDS

4284 IF TYP*(L)="N" THEN GOSUB 3100 ELSE GOS
UB 3200

4286 NEXT L

4290 NEXT RECS

4292 RECS=HOLD

4294 GOTO 100

4300 CALL CLEAR :: DISPLAY AT(2,1):"«* DISPL

AY/UPDATE RECORDS **"

4310 FOR L=l TO FIELDS

4320 DISPLAY AT(5+L, 1) :FNM*(L) : : DISPLAY AT (
5+L,9):A*(RECS,L)

4330 NEXT L

4340 DISPLAY AT(20,1):"PRESS ENTER FOR NEXT
RECORD" :: DISPLAY AT(22,1):"PRESS 'W
TO UPDATE RECORD" :: DISPLAY AT(24,1):"
PRESS 'M> FOR MENU"

4350 RETURN

4400 CALL CLEAR :: DISPLAY AT(3,1)s"STAND BY
it

4410 FOR X=RECS TO HOLD :: FOR Y=l TO FIELDS
4420 A*(X,Y)=A*(X+l,Y)
4430 NEXT Y :: NEXT X

4440 RECS=RECS-1 :: HOLD=HOLD-l :: RETURN
5000 CALL CLEAR :: DISPLAY AT(3,9):"«* SORT

**" :: DISPLAY AT(6,1):"NAME OF SORT FI
ELD " :: ACCEPT AT(6,20)SIZE(-6)B
EEP:FLD*

119

Applications

=1 TO FIELDS

D*=FNM*(L)THEN FLD=L :: L=99

L

D=0 THEN DISPLAY AT(14,1):"NO
D NAME." :: DISPLAY AT(15,1):"
TRY - ' M* FOR MENU" ELSE GOTO

KEY(3,KEY,STATUS):: IF STATUS=
20

Y=82 THEN 5000 ELSE 100

AY AT(20, 1) : "SORT ING. . . "
: HX=0 :: FOR Z=l TO FIELDS ::

" " :: NEXT Z
:: DISPLAY AT (20, 1) : "SORT ING. .

5005 FLD=0

5010 FOR L

5012 IF FL

5013 NEXT

5015 IF FL

FIEL

TO RE

5020 CALL

EN 50

5030 IF KE

5040 DISPL

5050 Y=l :

0, Z> =
5055 SS= 0

ECS-Y

5060 FOR X

5065 IF A*

5070 NEXT

5075 IF SS

5080 Y = Y + 1

*(Y, Z
5085 IF Y<

5090 GOTO

5100 FOR Z

NEXT

5200 FOR Z

5210 H*= A*

>=H*

5220 NEXT

6000 CALL

6010 OPEN

6020 PRINT

6030 FOR L

YP* (L

6035 FOR X

6040 PRINT

) ; A* (

6045 NEXT

6050 CLOSE

SUCH

5040

0 TH

A* (

" ;R

=Y TO RECS

(X, FLDXA* (0, FLD) THEN GOSUB 5100
X

=1 THEN GOSUB 5200

:: FOR Z=l TO FIELDS :: A*(0,Z)=A

):: NEXT Z

RECS THEN 5055

100

=1 TO FIELDS :: A*(0,Z)=A*(X,Z)::
Z :: HX=X :: SS=1 :: RETURN

=1 TO FIELDS

(Y,Z):: A*(Y,Z)=A*(HX,Z):: A*(HX,Z

Z :: RETURN

CLEAR

#1:"CS1",OUTPUT,INTERNAL,FIXED 192
#1:NAME*;FIELDS;RECS;NUMREC

= 1 TO FIELDS :: PRINT =» 1 : FNM* (L) ; T

);LN(L);MASK*(L):: NEXT L
=1 TO RECS

#1:A*(X, 1);A*(X,2) ;A*(X,3) ;A* (X,4
X,5);A*(X,6);A*(X,7);A*(X,8)
X

#1 :: GOTO 100

Program 2. MINI-REPT

1 REM TI MINI-REPT

2 REM

10 CALL CLEAR :: CALL SCREEN(9)

20 DISPLAY AT(3,1>:RPT*<"*",28):s DISPLAY
(4,1)5"*" s: DISPLAY AT(4,28):"*"

22 DISPLAY AT(5, 1) : "*<:4 SPACES>M I N I - R
P T<5 SPACES}*"

120

AT

GS&fy

tmVS%

Rfafel

f.i^WIj

jusas?»

Applications

24 DISPLAY AT(6,1):"«" :: DISPLAY AT(6,28):"
" :: DISPLAY AT(7,1):RPT("*",28)

30 FOR X=l TO 2000 ss NEXT X

40 DIM A*(81,8)
100 CALL CLEAR :: CALL SCREEN(8):: DISPLAY A

T(2,10):"** MENU **"
110 DISPLAY AT<6,1):"1 - LOAD RECORDS FROM T

APE" :: DISPLAY AT(8,1):"2 - DISPLAY REC
ORDS"

140 DISPLAY AT(10,1):"3 - SUMMARIZE BY FIELD
(S)" :: DISPLAY AT(12,1):"4 - PRODUCE PR
INTED REPORT"

150 DISPLAY AT(23,3):"ENTER SELECTION >" :
: ACCEPT AT(23,23)VALIDATE("12345")BEEP:
CHOICE

170 ON CHOICE GOTO 2000,4000,7000,8000
190 GOTO 100

2000 CALL CLEAR

2010 OPEN #1:"CS1",INPUT ,INTERNAL,FIXED 192
2020 INPUT #1:NAME*,FIELDS,RECS,NUMREC
2022 PRINT :: PRINT "INPUT FILE - ";NAME* ::

PRINT "CONTINUE? Y/N"

2024 CALL KEY(3,KEY,STATUS):: IF STATUS=0 TH
EN 2024

2026 IF KEY089 THEN 2050

2030 FOR L=l TO FIELDS :s INPUT #1:FNM*(L),T
YP*<L),LN(L),MASK*(L):: NEXT L

2035 FOR X=l TO RECS

2040 INPUT #1:A*(X,1),A*(X,2),A*(X,3),A*(X,4
),A*(X,5),A«(X,6),A*(X,7),A*(X,8)

2045 NEXT X

2050 CLOSE #1

2060 GOTO 100

4000 CALL CLEAR :: DISPLAY AT(3,6):"«* DISPL
AY DATA **"

4010 DISPLAY AT(6,1):"1 - DISPLAY ALL RECORD
S" :: DISPLAY AT(7,1):"C4 SPACESJFROM B
EGINNING OF FILE."

iw» 4015 DISPLAY AT(9,1):"2 - DISPLAY BY VALUE I
N" :: DISPLAY AT(10,l)s"C4 SPACES}SPECI
FIED FIELD"

m 4020 DISPLAY AT(12,3):"ENTER YOUR CHOICE
>" :: ACCEPT AT(12,26)VALIDATE("12")BEE
P:OPT

4030 ON OPT GOTO 4100,4200
^ 4050 GOTO 100

121

Applications ess

4100 HOLD=RECS

4110 FOR RECS=1 TO HOLD

4115 IF RECS>HOLD THEN 4150

4120 GOSUB 4300

4130 CALL KEY(3,KEY,STATUS)
4132 IF STATUS=0 THEN 4130

4134 IF KEY=13 THEN 4150

4136 IF KEY=77 THEN RECS=999 :: GOTO 4150

4138 GOTO 4130

4150 NEXT RECS

4155 RECS=HOLD

4160 GOTO 100

4200 CALL CLEAR :: DISPLAY AT(2,1):"«* DISPL

AY BY FIELD VALUE **"

4205 DISPLAY AT(5,1):"ENTER THE NAME OF THE
DATA" s: DISPLAY AT(6,1):"FIELD TO BE S
EARCHED AND THE"

4210 DISPLAY AT(7,1):"SEARCH ARGUMENT (VALUE
) . "

4220 DISPLAY AT(12,1):"FIELD TO BE SEARCHED
" :: ACCEPT AT(12,22)SIZE(-6) :FLD

*

4221 FLD=0

4222 FOR L=l TO FIELDS

4224 IF FLD*=FNM*(L)THEN FLD=L :: L=99
4226 NEXT L

4228 IF FLD=0 THEN DISPLAY AT(14,l):"NO SUCH
FIELD NAME." :: DISPLAY AT(15,1):"*R*

TO RETRY - 'M' FOR MENU" ELSE GOTO 4250

4230 CALL KEY(3,KEY,STATUS)
4232 IF STATUS=0 THEN 4230

4234 IF KEY=82 THEN 4200 ELSE 100

4250 DISPLAY AT(14,1):"ENTER SEARCH VALUE
<5 SPACES}"

4252 ACCEPT AT(15,1):ARG*
4260 HOLD=RECS

4262 FOR RECS=1 TO HOLD

4264 IF ARG*=SEG*(A*(RECS,FLD),1,LEN(ARG*))T
HEN GOSUB 4300 ELSE 4290

4270 CALL KEY(3,KEY,STATUS)
4272 IF STATUS=0 THEN 4270

4274 IF KEY=13 THEN 4290

4276 IF KEY=77 THEN RECS=999 :: GOTO 4290

4280 GOTO 4270

4290 NEXT RECS

4292 RECS=HOLD

4294 GOTO 100

4300 CALL CLEAR :: DISPLAY AT(2,6):"«* DISPL
AY RECORDS **"

122

(

Applications

I 4310 FOR L=l TO FIELDS
4320 DISPLAY AT(5+L, 1) :FNM*(L) :: DISPLAY AT (

5+L,10):A*(RECS,L)
tma 4330 NEXT L
1 4340 DISPLAY AT(20,1):"PRESS ENTER FOR NEXT

RECORD" s: DISPLAY AT(24,1):"PRESS 'M*
FOR MENU"

P" 4350 RETURN
7000 CALL CLEAR :: DISPLAY AT(2,1):"»* SUMMA

RIZE BY FIELDNAME **"
7001 DISPLAY AT(4,1):"SEARCH 1 OR 2 FIELDS?

." :: ACCEPT AT(4 ,23)VALIDATE("12")BEEP
sSF

7005 TOT=0 :: TI=0
7010 DISPLAY AT(6,1):"FIELD TO BE SEARCHED .

» :s ACCEPT AT(6,22)SIZE(-6)BEEPsF
LD* 5: FLD=0

7015 FOR L=l TO FIELDS
7016 IF FLD*=FNM*(L)THEN FLD=L :: L=99
7017 NEXT L

7020 IF FLD=0 THEN DISPLAY AT(6,1):"N0 SUCH
FIELD NAME" :: DISPLAY AT(7,1):"*R' TO
RETRY - ' M* FOR MENU" ELSE GOTO 7028

7022 CALL KEY(3,KEY,STATUS)
7024 IF STATUS=0 THEN 7022
7026 IF KEY=82 THEN 7000 ELSE 100
7028 DISPLAY AT(7,1):"ENTER SEARCH VALUE" ::

ACCEPT AT(8,1):ARG*
7029 IF SF=2 THEN GOSUB 7300 :: IF FLD2=0 TH

EN 100

7030 DISPLAY AT(17,1):"FIELD TO BE SUMMED ..
. •• :s ACCEPT AT (17 ,20) SI ZE (-6) BEEP :S

UM* :: SUM=0

7035 FOR L=l TO FIELDS
7036 IF SUM*=FNM*(L)THEN SUM=L :: L=99

mm 7037 NEXT L

7040 IF SUM=0 THEN DISPLAY AT(17,1):"N0 SUCH
FIELD NAME" :: DISPLAY AT(19,1):"*R* T

O RETRY - ' M* FOR MENU" ELSE GOTO 7050

I""* 7042 CALL KEY(3,KEY,STATUS)
7044 IF STATUS=0 THEN 7042

7046 IF KEY=82 THEN 7030 ELSE 100

fas, 7050 IF TYP* (SUM) <>"N" THEN DISPLAY AT(17,1)
:"NOT A NUMERIC FIELD" :: DISPLAY AT(19

fl)5"'R' TO RETRY - *M* FOR MENU" ELSE
GOTO 7060

!*•"» 7052 CALL KEY (3, KEY ,STATUS)
7054 IF STATUS=0 THEN 7052

7056 IF KEY=82 THEN 7030 ELSE 100

^_ 7060 CALL CLEAR :: HOLD=RECS

123

Applications

7062 FOR RECS=1 TO HOLD

7064 IF ARG*=SEG*<A*(RECS,FLD),1,LEN(ARG*))T
HEN GOSUB 7400

7066 NEXT RECS

7068 RECS=HOLD

7070 PRINT :: PRINT :: PRINT USING "ITEMS ##

C4 SPACES}TOTAL #######.##":TI,TOT
7072 PRINT :: PRINT "PRESS ANY KEY FOR MENU"
7074 CALL KEY(3,KEY,STATUS):: IF STATUS=0 TH

EN 7074 ELSE 100

7100 H*="" :: FOR X=l TO LEN(A*(RECS,SUM))
7110 IF SEG*(A*(RECS,SUM),X,1)>="0" AND SEG*

(A*(RECS,SUM),X,1)<="9" OR SEG*(A*(RECS
,SUM),X,1)="." THEN GOSUB 7200

7120 NEXT X

7130 N=VAL(H*):: TOT=TOT+N :: TI=TI+1
7135 IF S=i THEN RETURN

7140 PRINT A*(RECS,FLD);" ";A*(RECS,SUM)
7145 IF SF=2 THEN PRINT
7150 RETURN

7200 H*=H*&SEG*(A*(RECS,SUM),X,1)
7300 DISPLAY AT(10,1):"2ND SEARCH

.." :: ACCEPT AT(10,18)SIZE(
2* :: FLD2=0

7310 FOR L=l TO FIELDS

7320 IF FLD2*=FNM*(L)THEN FLD2=L
7325 NEXT L

7330 IF FLD2=0 THEN DISPLAY AT(10,1):"NO
H FIELD" :: DISPLAY AT(11, 1) : "'R* TO
TRY - 'M7 FOR MENU" :: GOTO 7340

7332 DISPLAY

E"

7334 ACCEPT AT(12,1)BEEP:ARG2*
7336 GOTO 7350

7340 CALL KEY(3,KEY,STATUS)
7342 IF STATUS=0 THEN 7340
7344 IF KEY=82 THEN 7300
7350 RETURN

7400 IF SF=1 THEN GOSUB 7100 :: RETURN
7405 IF ARG2*="*ALL" THEN 7440
7410 IF ARG2*=SEG*(A*(RECS,FLD2) ,1,LEN(ARG2*

))THEN 7440

7420 RETURN

7440 PRINT A*(RECS,FLD2):: GOSUB 7100
7450 RETURN

8000 CALL CLEAR :: DISPLAY AT(2,1):
CE PRINTED REPORT **"

8005 TOT=0 :: P(0)=0

8006 OPEN #2:"RS232",OUTPUT,DISPLAY

124

: RETURN

FIELD ..

6)BEEP

L = 99

FLD

sue

RE

AT<11,1):"ENTER 2ND SEARCH VALU

** PRODU

Applications

8010 DISPLAY AT(5,1):"NUMBER OF FIELDS TO PR
INT? ." :: ACCEPT AT(5,28)VALI DATE("123
45678")BEEP:NF

8020 FOR L=l TO NF
8022 DISPLAY AT(6+(2*L),1):USING "NAME OF FI

ELD # - ":L :: ACCEPT AT(6+(2*L),
19)SIZE(-6)BEEP:P*(L)

8024 P(L)=0 :: FOR Z=l TO FIELDS
8026 IF P*(L)=FNM*(Z)THEN P(L)=Z
8028 NEXT Z

8030 IF P(L)=0 THEN L=L-1

8032 NEXT L
8036 DISPLAY AT(23,1>:"TOTAL A FIELD? Y/N ."

:: ACCEPT AT(23,20)VALIDATE("YN")SIZE(
-1) BEEP: OPT* :: IF 0PT*O"Y" THEN 8050

8040 DISPLAY AT(24, 1) :"NAME OF FIELD "
:: ACCEPT AT(24,15)SIZE(-6)BEEP:P*(0>

8042 FOR Z=l TO FIELDS
8044 IF p*(0)=FNM*(Z)THEN P(0)=Z

8045 NEXT Z

8046 IF TYP*(P(0))="N" THEN 8050
8048 DISPLAY AT(24, 1) : "* * INVALID OR NON-NUM

ERIC **" :: FOR Z=l TG 2000 :: NEXT Z :
: GOTO 8040

8050 GOSUB 8100 :: TC=0 :: FOR Z=l TO NF ::
TC=TC+LN(P(Z)):: NEXT Z

8052 TC=TC+(2*NF)-2

8054 IF TC<80 THEN 8060

8055 DISPLAY AT<3, 1):US ING "REPORT WILL OVER
FLOW BY ##":TC-30 :: DISPLAY AT(5,1):"*
P' TO PRINT - »M' FOR MENU"

8056 CALL KEY(3,KEY,STATUS)
8058 IF STATUS=0 THEN 8056

8059 IF KEYOB0 THEN 100

8060 CALL CLEAR :: DISPLAY AT(3,I):"ENTER RE
PORT TITLE" :: ACCEPT AT(4,1)BEEP:RT*

8062 DISPLAY AT (10, 1) : "PR INT IMG. . . "
8063 PRINT #2:RPT*<" ", (80-LEN<RT*) W2) ;
8064 PRINT #2:RT* :: PRINT #2:" " :: PRINT #

2:" " :: PRINT #2:" "

8070 FOR Q=l TO RECS

8071 IF OPT*="N" THEN 8074

8072 IF ARG*OSEG* <A* (O.FLD) , 1 ,LEN(ARG*))THE
N 8080

8074 L*="" :: FOR L=1 TO NF

8075 L* = L«&A* (Q,P(L)) : : IF L<NF THEN L* = L*8t"

8076 NEXT L

8078 PRINT #2:L*

8079 IF P(0)<>0 THEN GOSUB 8200

125

Applications
fWwTO

8080 NEXT Q «*}
8082 IF P(0)=0 THEN 8090 *
8084 PRINT #2:" " :: PRINT #2:" " :: PRINT #

2:"TOTAL FOR ";FNM*(P(0));" ";TOT «
8090 CLOSE #2 :: GOTO 100 J
8100 CALL CLEAR :: DISPLAY AT(3,1>:"SEARCH B

Y FIELD NAME? Y/N ." :: ACCEPT AT(3,27)
VALIDATE("YN")BEEP:OPT* :: IF OPT*="N" «>
THEN RETURN i

8110 DISPLAY AT(5,1):"SEARCH FIELD NAME
.." :: ACCEPT AT(5,19)SIZE(-6)BEEP:FLD*

8120 FLD=0 :: FOR L=l TO FIELDS

8125 IF FLD*=FNM*(L)THEN FLD=L
8130 NEXT L

8140 IF FLD=0 THEN 8110

8150 DISPLAY AT(6,1):"ENTER SEARCH VALUE" ::
ACCEPT AT(7,1):ARG*

8160 RETURN

8200 RECS=Q :: SUM=P(0>:: S=1 :: GOSUB 7100
:: S=0 :: RETURN

-"I

126

f!$^^1

I^WHrS)

James D. Baker

This menu-based word processor includes many of the basic
ps features of commercial word processors: text creation, addi

tion, deletion, modification, paragraphs, pagination, margin
control, page overflow, and text centering. Written for the 77-
99/4A with Extended BASIC, a disk drive, and printer, the
program runs with standard 16K memory.

Just like thousands of other TI users, I have added to my sys
tem since the original purchase of the computer and a TV set.
After I had purchased Extended BASIC, the Peripheral Expan
sion Box, disk drive and controller, RS-232 interface, and a
printer, my next choice was word processing capability. All
the word processor packages available required 32K memory
expansion, so I decided to write my own word processor.

This program runs with standard 16K memory because of
linked list access for text files: Only one line of text is in mem
ory at a time, with before and after indices pointing to the pre
vious or following line of text.

With this design, addition and deletion of text lines are
possible. The addition of a single line or an entire paragraph
of text is also possible and, therefore, updating text after the
initial input process is easy.

Automatic pagination, margins (top, bottom, left, and
right), page overflow, text centering, and text modification are
also included features.

*« The program is written in two distinct sections: first, the
create/edit section, then the print section. If additional fea
tures are added, it may be necessary to split the program into

nws. two separate programs in order to maintain the objective of
minimum memory usage.

^ Program Initialization
Upon initial execution of the program, the user will be asked
for a filename (assumed on DSK1) where text is stored. The

id*, subroutine called in line 140 sets characters in lowercase.
Next, a screen menu is displayed with these options:

£^>
P?

127

Applications ess

N—NEW DATA FILE
A—ADD TO END OF EXISTING FILE
C—CHANGE EXISTING FILE
P—PRINT FILE

New Data File

Upon selection of the first option, a header record is written to
the opened disk file. This record is used to maintain a pointer
to the last text record in the file. Initially, this record does not
contain any meaningful information, but will be updated at
the end of the program to contain the actual last record
number.

Control is then passed to the routine for entering new text
(lines 380-470). Original text is entered using the LINPUT
statement, which limits the length of a single entry to 128
characters. However, this is not a severe limitation; the pro
gram will simply cause wraparound of the text from one
record to the next. The computer will beep to remind you that
you have exceeded the length of the input string, and you
must then press ENTER to cause this record to be written to
disk and begin entry of the next record. Also, note that dur
ing text entry all the standard control key operations are al
lowed, including cursor left or right, character delete or insert,
erase, etc.

The pointers for previous and next record locations are
then updated, and a check for one of the special control func
tions, /E/, is performed. This is used to indicate the end of
text and must be entered as the last record of the text. If the
record justentered is not the end marker (/E/), the program
writes the text line to disk and returns for the next line of text.

When text entry is complete and the /E/ is entered, lines
490-510 update record 0 with the record number of the last
record on file. Finally, the option of printing the text is of
fered. If you answer Yfor yes, control is passed to the print
routine (line 2400); otherwise the program ends.

Other special control functions are also included for
editing. By entering /C/ as the first three characters of the text
line, the print program will automatically center the text that
follows on that line. By entering /P/ as the first three charac
ters of a text line, the printprogram will automatically indent
five spaces for a new paragraph. Also, by entering /N/ as the
only three characters on a text line, the print program will

128

f$^p

f?wWfl

f!S^S^

PSS§»

Applications

automatically cause a top-of-page routine to be executed.
These special control functions can be entered as upper- or
lowercase letters.

Appending
When this second menu option is selected, control is passed to
program line 600. This routine simply uses the pointer ob-

!** tained from the first record on file to retrieve the last record
on file (the /E/ record). Then the last actual text record is re
trieved by using the previous record pointer from the /E/
record.

The last actual text record on file is then displayed, and
control is passed to the routine used for original text entry.

Changing an Existing File
With this option, the program retrieves the first text record,
using the pointer obtained from the first record on the file.
This line of text and a change menu are then displayed:
1=NEXT LINE 5=ADD BEFORE
2=LAST LINE 6=ADD AFTER
3=FWD X LINES 7=CHANGE
4=BKW X LINES 8=DELETE

9=QUIT

Next Line. This option displays the next text line. If se
lected, program execution is transferred to line 900. This rou
tine first sets the number-of-records-forward counter to one.
The loop in lines 940-980 follows the next record pointer
through the file until the requested number of records forward
has been read.

A check is made to insure that a READ past the end of
file does not occur. If this is attempted, the program displays

^ the last line of text, a warning message, and returns to the
main change menu. Upon completion of the loop, program
control is returned to the main change menu.

'*** It should be noted that the loop is not necessary in order
to display the next line. However, it is also used to advance
any number of records by using the third option discussed
below.

Last Line. This option displays the previous line of text.
The routine starting at line 1000 provides for stepping back
ward through the text file. This routine is the same as the
prior routine except that the previous record pointer is used in
order to proceed to the previous record.

129

Applications

FWD X Lines and BKW XLines. Both of these options (3
and 4) are handled in the routine beginning at line 1100. The
program asks for the number of lines to be read either forward
or backward. This value is then placed in the appropriate
counter, and control is transferred to the Next Line or Last
Line routine.

Add Before and Add After. These options (5 and 6), ini
tially handled by the same routine (at line 1100), allow for
adding text; option 5for adding before the current line, option
6 for adding after it. The program displays the current record
and, based on which type of add was requested, prompts you
to add before or after.

The new line of text is then entered and the record point
ers from the current record are saved. The /E/ is retrieved in
order to determine the next available location in the file to
store a record (next record pointer). This value is saved, and
then the /E/ record is rewritten with the next record pointer
incremented. Based on the type of add being done, control is
transferred to the appropriate routine.

If you select Add Before (option 5), control is passed to
line 1350.

If you select Add After (option 6), control is passed to line
1450. r

Control is then transferred to line 1430 and processing
continues as discussed above.

Change. This option allows you to change an existing line
of text. The routine for this option begins at line 1540. The
text line is broken into 14 lines of "equal" length. Using the
DISPLAY AT and ACCEPT AT statements allows the setting of
default values for each of the subtext lines to their initial string
value. This eliminates the necessity of retyping the entire line
to make a minor correction.

The length of each of the subtext lines is calculated and
the first 13 lines are displayed. Note that a special character is
added to the end of each line. This is done so a space is not
lost at the end of the subtext line.

Line 1650 determines if there isany text remaining for the
fourteenth line. This is necessary to avoid an error if the string
happens to be less than 13 times the rounded length of a single
subtext line length. The fourteenth line is then displayed in
preparation for change.

130

fq-rrenrnm}

Applications

The 14 lines are then "looped" through, allowing any
changes desired. Note that the maximum length of any subtext
line is limited to 26 characters and that if the special end

m character is accidentally deleted, the program will restore this
I character. The length of the new text line is recalculated since

this length could now exceed the maximum string length
f*te permitted by the computer.

After the text has been changed, the new text length is
checked to see if it exceeds 225 characters. If the length is less
than 226 characters, the text line is reconstructed and control
is transferred to line 2050.

If the length of the new text line exceeds 225 characters, a
menu offering two choices is displayed: either update as modi
fied and create a new record on disk or reupdate the line. If
the reupdate choice is selected, control is transferred to the
beginning of the change routine with no changes made.

If the choice is made to update and create a new record,
lines 1900-1940 establish two new text strings consisting of
the first seven and last seven subtext lines respectively. The
current record being changed is then replaced on disk by the
first new text string created. The second new text string is then
added to the file using the Add After routine. Note that the re
turn switch has been set in line 1950 causing control to return
to this routine after the add is completed.

The first of the new records is retrieved, and control is re
turned to display this as the current record and to display the
main change menu.

If the change process did not cause a new record to be
added, lines 2050-2130 display the changed text and offer
three choices: perform more updates, update the record as dis
played, or exit with no updating.

Delete. The routine for this option, which allows you to
delete a line of text, begins at line 2180. You will be asked for
confirmation before the delete is executed. If the choice is

made not to delete the line, control is passed back to line 780
where the current line is redisplayed and the main menu
choices are available.

If you choose to delete the line, the previous and next
record pointers from this "to be deleted" record are saved. The
previous record is then read and updated with the next record
pointer from the deleted record. The record after the deleted
record is then read and updated with the previous record

131

Applications

pointer from the deleted record. Note that the record just ,-s^
deleted is only deleted from the standpoint that the record)
pointers no longer allow access to the record.

A check is then made to insure that this delete has not «
caused all text to be deleted. If this is the case, the program I
displays a message to that effect and terminates. Otherwise, if
a record still exists before the deleted record, control is passed ^
to line 1000 and the previous record is displayed. If the record i
prior to the deleted record is the header record, control is
passed to line 900, and the record following the deleted record
is displayed.

Print File

The print routine begins at line 2400. Lines 2480-2540 estab
lish the default values for top margin (TM), bottom margin
(BM), left margin (LM), page length (PL), lines per page (LPP),
and maximum line length (MAXWID). Print control infor
mation is then requested, including mode of print (draft or fi
nal), spacing (single or double), and optional page numbering.

The input file is then "restored" to restart from the first
record on file, and the printer output file is opened. Note that
the parallel port is used in this program. If you are using the
serial port for your printer, the OPEN statement in line 2730
will require appropriate changes.

The first record on file is read to retrieve the next record
pointer for the first text record. The main print "loop" begins
at line 2820 where the next text record is read using the next
record pointer from the previous record.

If draft printing was requested, control is passed to that
routine (line 2880). If the current record is a forced new page
request (/N/), the subroutine at line 3900 causes a page eject .
and the top margin to be printed. Control is then returned to j
the main print loop.

Line 2850 passes control to the ending routine if this is
the last text record. Otherwise, control is passed to the print fi- j
nal routine (line 2980).

Print Draft. This routine (lines 2870-2930) simply prints
the lines of text in sequence exactly as entered. This includes *
printing any special print commands, but does not effect these
commands. This is useful if you want to see what was entered
for verification purposes and do not want pagination, etc. This
print mode is also faster than final printing as the special print
commands are not executed. —^

132 !

Applications

Print Final. This routine begins at line 2980 and prints as
much text as will fit on the remainder of the print line, then
prints character by character until a space is encountered.

The Print Final routine first checks for any special print
commands. If a blank line, centered line, or new paragraph is
requested, control is passed to the appropriate routine. If the
last character on the text line is a period, two spaces are added
to the end of the line to insure proper spacing.

The centering routine begins at line 3550 by printing any
unfinished print line and checking for overflow. The length of
the text to be centered (excluding the centering command) and
the number of spaces required to center the text are then cal
culated. The line is then printed and control is passed to read
the next record.

The routine to print a blank line begins at line 3700. This
routine simply prints the preceding line, a blank line, checks
for overflow and returns to read the next record.

The routines for top and bottom margins begin at line
3800 and simply loop for the necessary number of blank lines.
Page numbering is handled on line 3940.

Lowercase Definition
Finally, the DATA statements in lines 3980-4240 represent
lowercase letters. These values are assigned according to stan
dard lowercase ASCII characters and are read using the loop
in lines 4250-4290.

TI Word Processor

100 REM WORD PROCESSING

130 DIM Al$ <14)

140 GOSUB 4250

150 CALL CLEAR

160 DISPLAY AT<10.7):"WORD PROCESSING"
170 DISPLAY ATdl.3) :"- ENTRY/UPDATE PROGRAM

•)

180 INPUT "FILENAME -DSK1-":F*

190 DISPLAY AT<6.8)ERASE ALL:"SELECT OPTION"

200 DISPLAY AT<9,6):"N - NEW DATA FILE"

210 DISPLAY AT<11.6):"A - ADD TO END OF"

220 DISPLAY AT<12.10):"EXISTING FILE"

230 DISPLAY AT(14,6):"C - CHANGE EXISTING"
240 DISPLAY AT<15,10):"FILE"

250 DISPLAY AT<17.6):"P - PRINT FILE"

260 DISPLAY AT<20,10):"CHOICE"

133

Applications

270 ACCEPT AT(20,17)BEEP VALIDATE<"NACP"):C* _

280 IF LEN<C$)=0 THEN 260 \
290 OPEN #1:"DSK1."&F$,RELATIVE,INTERNAL,UPD

ATE,FIXED 250

300 IF C*="P" THEN 2410 "H
310 IF C*="N" THEN 320 ELSE 340 -I
320 PRINT #1,REC 0:"EOF=";0;1
330 NXTREC=1 :: GOTO 400 m^
340 RECNO=0]
350 INPUT #1,REC RECNO:A$,EOFREC,NXTREC
360 IF C*="A" THEN 600 ELSE 670

370 REM

380 REM NEW ROUTINE

390 REM

400 CALL CLEAR

410 LINPUT A*

420 LSTREC=CURREC

430 CURREC=NXTREC

440 NXTREC=NXTREC-H

450 IF SEG*(A*, 1,3>="/E/" OR SEG*<A*,1,3>="/
e/" THEN PRINT #1,REC CURREC:A*;LSTREC;N
XTREC :: EOFREC=CURREC :: GOTO 490

460 PRINT #1,REC CURREC:A*;LSTREC,NXTREC
470 GOTO 410

480 REM UPDATE HEADER

490 RECNO=0

500 INPUT #1,REC RECNO:A*,HRECNO,NXTREC
510 PRINT #1,REC RECNO:A*,EOFREC,NXTREC
520 DISPLAY AT(12,1)ERASE ALL:"DO YOU WANT T

O PRINT THE"

530 DISPLAY AT<13,1):"REPORT NOW - Y/N"

540 ACCEPT AT<13,18>BEEP SIZE<1>VALI DATE<"YN
yn"):P*

550 IF P*=»Y" OR P*="y" THEN 2410
560 CLOSE #1

570 END

580 REM

590 REM ADD ROUTINE

600 REM

610 INPUT #1,REC EOFREC:A$,CURREC,NXTREC —
620 INPUT #1,REC CURREC:A*,LSTREC,DUMMY J
630 CALL CLEAR

640 DISPLAY AT<10,1):"LAST RECORD ON FILE IS
: " l^=\

650 DISPLAY AT<12,1):A*
660 LINPUT A* :: LSTREC=CURREC :: CURREC=EOF

REC :: GOTO 450

670 REM |
680 REM UPDATE ROUTINE

690 REM

134 I

Applications

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

CALL CLEAR

RECNO=NXTREC

INPUT #1,REC RECNO:A*,LSTREC,NXTREC

AT(2,1):"CURRENT LINE
TO 13

AT(I,1):" "

AT(4,1)
AT(14, 1)

AT(16,1)

A$

DISPLAY

FOR 1=4

DISPLAY

NEXT I

DISPLAY

DISPLAY

DISPLAY

=ADD BEFORE"

DISPLAY AT(17

=ADD AFTER"

DISPLAY AT(18

E"

DISPLAY AT(19

E"

DISPLAY AT(20

DISPLAY AT(22

SELECT

1=NEXT

CHOICI

line*

LINE DOES NOT EXIST"

"LAST LINE OF TEXT"

RECNO=NXTREC

INPUT #1,REC

NEXT I

GOTO 730

REM

REM

REM

NBRBACK=1

FOR 1=1 TO NBRBACK

IF LSTREC=0 THEN DISPLAY AT(2
DOES NOT EXIST" :: DISPLAY A

RST LINE OF TEXT" :: GOTO 740
RECNO=LSTREC

INPUT #1,REC RECNO:A$,LSTREC,NXTREC

: DISPLA

.GOTO 74

4 SPACESJ5

1):"2= LAST LINEC4 SPACES>6

1):"3=FWD X LINES 7=CHANG

1):"4=BWK X LINES 8=DELET

16):"9=QUIT"

1):"YOUR CHOICE:"

ACCEPT AT(22,13)BEEP VALIDATE("123456789
") : C*

DISPLAY AT(24,1):" "
IF LEN(C*)=0 THEN 840

C=VAL(C*)

ON C GOTO 900,1000,1100,1100,1180,1180,1
540,2180,490
REM

REM DISPLAY NEXT

REM

NBRFWD=1

FOR 1=1 TO NBRFWD

IF NXTREC=EOFREC THEN DISPLAY AT(24, 1) : "

Y AT(2, 1) :

0

960

970

980

990

1000

1010

1020

1030

1040

1050

RECNO: A*,LSTREC,NXTREC

1060

1070

1080

1090

DISPLAY LAST

NEXT

GOTO

I

730

4,1):"LINE
T (2 , 1) : " F I

135

Applications

100

110

120

130

140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

1570

1580

136

REM

REM FOWARD/BACK X LINES

REM

DISPLAY AT(22,16):"NBR LINES"
ACCEPT AT(22,26)BEEP:NBRLNS
IF C=3 THEN NBRFWD=NBRLNS

NBRBACK=NBRLNS

GOTO 1040

REM

REM ADD BEFORE/AFTER

REM

CALL CLEAR

IF C=6 THEN

ELSE PRINT

PRINT

PRINT A*

PRINT

PRINT "ENTER

LINPUT AN*

HREC=RECNO

HLST=LSTREC

HNXT=NXTREC

INPUT #1,REC
HADD=ADDREC

PRINT #1,REC

GOTO 940

PRINT "ADD NEW LINE AFTER:

"ADD NEW LINE BEFORE:"

NEW LINE

EOFREC:A*,LSTREC,ADDREC

EOFREC:A*

OR RETSW=1 THEN

ADDREC+1

IF C=6

REM

REM ADD

REM

PRINT

INPUT

PRINT

INPUT

PRINT

BEFORE

LSTREC

1450

REM

REM

PRINT

INPUT

PRINT

INPUT

PRINT

GOTO

REM

REM CHANGE

REM

CALL CLEAR

LENA1=INT(LEN(A*)/14)+1

#1,REC HADD:AN*,HLST,HREC
#1,REC HLST:A*,LSTREC,NXTREC
#1,REC HLST:A*,LSTREC,HADD
#1,REC HREC:A*,LSTREC,NXTREC
#1,REC HREC:A*,HADD,NXTREC

NXTREC=HADD

IF RETSW=1 THEN 2010 ELSE GOTO 700

REM

ADD AFTER

#1

#1

#1

#1

#1

1430

REC

REC

REC

REC

REC

HADD:

HREC:

HREC:

HNXT:

HNXTi

AN*,HREC,HNXT
A*,LSTREC,NXTREC
A*,LSTREC,HADD
A*,LSTREC,NXTREC
A*,HADD,NXTREC

CE5m

"1

"1

"=1

L

Applications

1590 FOR 1=1 TO 13

! 1600 Al* (I)=SEG* (A*,LENA1* (I-l)+l,LENAl)8c"

(3sj 1610 DISPLAY AT(I, 1) :"C "
l 1620 DISPLAY AT(I,2):Al*(I)

1630 DISPLAY AT(I,28):"3"
1640 NEXT I

P" 1650 IF LEN(A*X = 13*LENA1 THEN A1*(14)="C,> "
:: GOTO 1670

1660 Al*(14)=SEG*(A*,LENA1*13+1,LEN(A*)-LENA
1 * 1 3) 8c" C , 3 "

1670 DISPLAY AT(14,1):"C"

1680 DISPLAY AT(14,2):Al*(14)
1690 DISPLAY AT(14,28):"3"

1700 LENA=0

1710 FOR 1=1 TO 14

1720 ACCEPT AT(I,2)BEEP SIZE(-26) :A1* (I)

1730 IF LEN(A1*(I))=0 THEN A1*(I)="{,>" ELSE
IF SEG*(Al*(I),LEN(A1*(I)),1)<>"C,>" T

HEN Al*(I)=Al*(i)&"C,J"
1740 LENA=LENA+(LEN(A1*(I))-1)

1750 NEXT I

1760 IF LENA>225 THEN 1820

1770 A*=""

1780 FOR 1=1 TO 14

1790 A*= A*8cSEG* (Al* (I) , 1 ,POS(Al* (I) ,"{,}", 1)
-1)

1800 NEXT I

1810 GOTO 2050

1820 DISPLAY AT(16,1):"NEW LINE TOO LONG"
1830 DISPLAY AT(18,1):"SELECT CHOICE:"
1840 DISPLAY AT(19,1):"1=UPDATE/CREATE NEW L

INE"

1850 DISPLAY AT(20,1):"2=RE-UPDATE"
1860 DISPLAY AT(22,1):"YOUR CHOICE"

msi 1870 ACCEPT AT(22,13)BEEP VALIDATE("12">:C*
1880 IF LEN(C*)=0 THEN 1860

1890 IF C*="2" THEN 1540

1900 A2*="" :: A3*=""

f*3 1910 FOR 1=1 TO 7
1920 A2*= A2*8cSEG* (Al* (I) , 1 ,POS (A 1* (I) , " <, > " ,

1)-l)

nan 1930 A3*= A3*8cSEG* (Al * (I+7) , 1 ,POS (A 1* (I+7) , "
c, y " , l) -1 >

1940 NEXT I

1950 RETSW=1

^ 1960 HLDCUR=RECNO

1970 A*=A2*

1980 PRINT #1,REC RECNO:A*,LSTREC,NXTREC
^ 1990 AN*=A3*

137

Applications

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

138

GOTO 1280

INPUT #1,REC HLDCUR:A*,LSTREC,NXTREC
RETSW=0

CALL CLEAR

GOTO 720

CALL CLEAR

DISPLAY AT(2,1):"CURRENT LINE"
DISPLAY AT(4,1):
DISPLAY AT(14,1)
DISPLAY AT(16,1)
DISPLAY AT(17,1)
DISPLAY AT(18,1)

DISPLAY AT(22,1)
ACCEPT AT(22,13)BEEP VALIDATE(
IF LEN(C*)=0 THEN 2080

ON VAL(C*)GOTO 1540,2160,720
PRINT #1,REC RECNO:A*,LSTREC,NXTREC
GOTO 720

REM

REM DELETE LINE

REM

DISPLAY AT(24,1):"CONFIRM DELETE - Y/N"

ACCEPT AT(24,22)BEEP VALI DATE("YyNn"):D
*

IF D*="N" OR

1):"LINE NOT

HLST=LSTREC

HNXT=NXTREC

INPUT #1,REC
PRINT #1,REC
INPUT #1,REC

PRINT 4»1,REC
LSTREC=HLST

NXTREC=HNXT

DISPLAY AT(24,1):" "

IF LSTREO0 THEN GOTO 1000

IF NXTREC=EOFREC THEN 2350 ELSE 900

CALL CLEAR

PRINT "TEXT NO LONGER EXISTS"

PRINT

CLOSE #1

END

REM

REM WORD PROCESSING

REM PRINT PROGRAM

REM

CALL CLEAR

REM

REM SET-UP DEFAULTS

REM

"CURRENT

A*

:"SELECT

:"l=MORE

D*="n" THEN

DELETED" ::

CHOICE:"

UPDATES"

"2=UPDATE AS IS"

"3=EXIT-N0 UPDATE"

"YOUR CHOICE:"

123"):C*

DISPLAY AT(24

GOTO 780

HLST:A*,LSTREC,NXTREC

HLST:A*,LSTREC,HNXT
HNXT:A*,LSTREC,NXTREC
HNXT:A*,HLST,NXTREC

n

p3

fSSI

KPBRI

r^^&si

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

TM=6

BM=6

LM=1

PL= 66

LC=0

LPP=PL-BM

MAXWID=68

DISPLAY AT(10,7)

DISPLAY AT(11,6)

DISPLAY AT(18,1)
DISPLAY AT(20,1)
DISPLAY AT(22,1)
DISPLAY AT(24,1)
ACCEPT AT(20,20)SIZE(1)BEEP

Fdf"):M*

IF LEN(M*)=0 THEN 2610

IF M*="d" THEN M*="D"

IF M*="f" THEN M*="F"

ACCEPT AT(22,20)SIZE(1)BEEP VALIDATE(
Dsd"):SPG*

IF LEN(SPG*)=0 THEN 2650

IF SPG*="b" THEN SPG*="S"

IF SPG*="d" THEN SPG*="D"

ACCEPT AT(24,20)SIZE(1)BEEP VALIDATE(
Nyn"):PGNO*
IF LEN(PGNO*)=0 THEN 2690

IF PGNO*="y" THEN PGNO*="Y"
RESTORE #1

OPEN #2:"PIO"

GOSUB 3800

REM

INITIAL RECORDREM

REM

INPUT

REM

REM READ

REM

INPUT #1,REC NXTREC:A*,LSTREC,NXTREC
IF M*="D" THEN 2850

IF SEG*(A*,1,3)="/N/" OR SEG*(A*,1,3)='
/n/" THEN PRINT #2 :: LC=LC+1 :: GOSUB

3900 :: GOTO 2800

IF SEG*(A*,1,3)="/E/" OR SEG*(A*,1,3)=
/e/" THEN 2940

IF M*="F" THEN 2980

REM

REM PRINT DRAFT

REM

PRINT #2:A*

LC=LC+1

READ

Applications

"WORD PROCESSING"

"- PRINT PROGRAM

"FILENAME - DSK1.";F*

"PRINT MODE - D/F"

"SPACING - S/D"

"PAGE NUMBER (Y/N)"

VALIDATEC'D

#1:A*,LSTREC,NXTREC

2850

2860

2870

2880

2890

2900

2910

INPUT FILE

139

Applications

2920 IF LC= LPP THEN GOSUB 3900 amm

2930 GOTO 2800 I
2940 PRINT #2

2950 GOSUB 3910

2960 CLOSE #1 :: CLOSE #2

2970 END

2980 REM

2990 REM PRINT FINAL

3000 REM

3010 IF LEN(A*)=0 THEN 3690

3020 IF SEG* (A*, LEN(A*) , 1)=" . " THEN A* = A*8c"

3030 IF SEG*(A*,1,3)="/P/" OR SEG*(A*,1,3)="
/p/" THEN 3140

3040 IF SEG*(A*,1,3)="/C/" OR SEG*(A*,1,3)="
/c/" THEN 3540

3050 IF PC+ LEN(A*X=MAXWID THEN 3110

3060 NPOS=MAXWID-PC

3070 STRT=1

3080 INIT=NPOS+l

3090 IF INIT<1 THEN INIT=1

3100 GOTO 3300

3110 PRINT #2:A*;

3120 PC=PC+LEN(A*)

3130 GOTO 2800

3140 REM

3150 REM **NEW PARAGRAPH**

3160 REM

3170 IF POLM THEN PRINT #2 :: LC=LC-»-l :: PR

INT #2:RPT*(" ",LM);
3180 IF SPG*="D" AND POLM THEN PRINT #2 ::

LC=LC+1 :: PRINT #2:RPT*(" ",LM);
3190 PC=LM

3200 IF LO= LPP THEN GOSUB 3900

3210 PRINT #2:"C5 SPACES}";

3220 IF LEN(A*)+LM+2>MAXWID THEN 3260

3230 PRINT #2:SEG*(A*,4,LEN(A*)-3); "H
3240 PC=LEN(A*)+2+LM !
3250 GOTO 2800

3260 NP0S= MAXWID-5-LM «.

3270 STRT=4 '
3280 INIT=NP0S+4

3290 REM _»

3300 REM **PRINT PARTIAL LINE** |
3310 REM

3320 IF POMAXWID THEN 3380

3330 PRINT #2:SEG*(A*,STRT,NPOS); "™1
3340 PC=MAXWID '
3350 REM

3360 REM

140

Applications

I**1 3370 REM

3380 FOR I=INIT TO LEN(A*)

3390 PC=PC+1

3400 A2*=SEG*(A*,I,1)

J " 3410 IF PC=1+LM AND A2*=" " THEN PC=LM :: GO
TO 3440

3420 IF A2*=" " THEN 3460

!**» 3430 PRINT #2:A2*;

3440 NEXT I

3450 GOTO 2800

3460 INIT=I :: PRINT #2 :: LC=LC+1 :: PRINT

#2:RPT*(" ",LM);
3470 IF SPG*="D" THEN PRINT #2 :: LC=LC+1 ::

PRINT #2:RPT*(" ",LM);

3480 IF LO= LPP THEN GOSUB 3900

3490 PC=LM

3500 IF INIT=LEN(A*)THEN 2800

3510 IF SEG*(A*,INIT,1)=" " THEN INIT=INIT+1
:: GOTO 3500

o «J J. 0 A*=SEG*(A*.INIT,LEN(A*)-INIT+1)

od30 GOTO 3050

3540 REM

3550 REM CENTERING ROUTINE

3560 REM

3570 IF POLM THEN PRINT #2 :: LC=LC + 1 :: PR

INT #2:RPT* (" ",LM) ;

3580 IF POLM AND SPG*="D" THEN PRINT #2 ::

LC=LC+1 :: PRINT #2:RPT*(" ",LM);
3590 PC=LM

3600 IF LO= LPP THEN GOSUB 3900

3610 CLEN=LEN(A*)-3

3620 SP=INT ((MAXWID-LM-CLEN) /2)

3630 PRINT #2:RPT*(" ",SP+LM>;
3640 PRINT #2:SEG*(A*,4,LEN(A*))
3650 LC=LC+1 :: PRINT #2:RPT*(" ",LM);

3660 IF SPG*="D" THEN PRINT #2 :: LC=LC+1 ::

PRINT #2:RPT*(" ",LM);
3670 IF LO= LPP THEN GOSUB 3900

3680 GOTO 2800

3690 REM

3700 REM PRINT BLANK LINE

3710 REM

3720 IF PC=LM THEN 3750

3730 PRINT #2 :: LC=LC+1
3740 IF SPG*="D" THEN PRINT #2 :: LC=LC+1
3750 PRINT #2 :: LC=LC+1 :: PRINT #2:RPT*("

",LM);

3760 IF SPG*="D" THEN PRINT #2 :: LC=LC+1 ::
PRINT #2:RPT*(" ",LM>;

-rc-.-^i

141

Applications

3770

3780

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

3920

3930

3940

3950

3960

3970

3980

3990

4000

4010

4020

4030

4040

4050

4060

4070

4080

4090

4100

41 10

4120

4130

4140

4150

4160

4170

4180

4190

4200

4210

4220

4230

4240

142

IF LO=LPP THEN GOSUB 3900 earn,
PC= LM

GOTO 2800

REM

REM PRINT TOP MARGIN ""^
REM

FOR LC=1 TO TM

PRINT #2 «*,
NEXT LC j
LC=TM

PRINT #2:RPT*(" ",LM);
PC=LM

RETURN

REM

REM PRINT BOTTOM 8c TOP MARGINS
REM

FOR LCT=LC+1 TO PL

IF PGNO*="Y" AND LCT=PL-3 THEN PGNO=PGN
0+1 :: PRINT #2:RPT*(" ",38);"PAGE ";PG
NO ELSE PRINT #2

NEXT LCT

GOSUB 3800

RETURN

REM RE-DEFINE LOWER CASE CHARACTERS
DATA 00000038043C443C

DATA 0040407844444478
DATA 0000003C4040403C
DATA 0004043C4444443C

DATA 000000384478403C
DATA 0018242020702020
DATA 0000304838082810

DATA 0040404078444444
DATA 0010001010101010

DATA 0004000404042418
DATA 0040485060504848
DATA 0010101010101010

DATA 0000002854444444 "^
DATA 0000007844444444
DATA 0000003844444438
DATA 0000704870404040

DATA 00001C241C040404
DATA 0000005864404040
DATA 0000003C40380478
DATA 0000207020202418 *"H
DATA 0000004444444438
DATA 0000004444442810
DATA 0000004444546C44 mam
DATA 0000004428102844 >
DATA 0000442418102040
DATA 0000007C0810207C

r

r

4250 FOR 1=97 TO 122

4260 READ A*

4270 CALL CHAR(I,A*)
4280 NEXT I

4290 RETURN

Applications

143

1

Larry Michalewicz

Each player must avoid the walls while trying to force his
f^ opponent to collide with him or a wall. It gets tricky. A two-
1 player game, joysticks required.

"Trap," written for the TI-99/4 and 4A, runs in TI or Ex
tended BASIC. The object is to force your opponent to collide
with a wall while you avoid hitting any walls yourself. If you
cause your opponent to crash into your wall, his own wall, or
a boundary wall, you receive a point. The first player to get
five points wins the game.

Program Description
The playing field for the game is set up in lines 200-280.
Lines 250 and 260 draw the top and bottom barriers, and lines
270 and 280 draw the left and right walls.

The variables for player movement are initialized in lines
290-380. The beginning coordinates for player 1 are CI and
Dl; for player 2, C2 and D2.

Lines 410 and 470 examine input from the two joysticks.
If a joystick has not been moved or has been moved in a diag
onal direction, the player will continue to move in the direc
tion he or she was last going. The CALL GCHAR statements
in lines 520 and 570 determine the ASCII value of the charac
ter in the next screen location. If this value is anything but a
32 (which is a space), then II or 12 is assigned the value of 1

pa* depending on which player has collided.
'. Line 620 checks for a collision between players and walls.

If II (but not 12) is equal to 1, meaning the player on the left
side has crashed, the right side wins and is awarded a point.
Likewise, if 12 (but not II) is 1, the left side wins and receives
a point. If both players collide (II and 12 = 1) with a wall

f^Rj simultaneously, each player is awarded a point.
When either player gets five points, the game is over.

Lines 830-840 then prompt for another game.

p™™^!1

147

Recreation

Trap «

100 p=0 J
110 Q=0

120 CALL CHAR(120,"") mm
130 CALL CHAR(135,"") J
140 CALL CHAR<136,"")
150 CALL CLEAR

160 CALL SCREEN(3)

170 CALL COLOR(13,1,7)
180 CALL COLOR(14,1,5)
190 REM SET UP PLAYING FIELD

200 PRINT "PLAYER #1 ";P,"PLAYER #2 ";Q
210 FOR 0=1 TO 22

220 PRINT

230 NEXT O

240 CALL C0LOR(12,2,2)
250 CALL HCHAR(2,2,120,30)
260 CALL HCHAR(24,2,120,30)
270 CALL VCHAR(2,2,120,23)
280 CALL VCHAR(2,31,120,23)
290 Cl=12

300 C2=12

310 Dl=4

320 D2=28

330 R1=0

340 Sl=l

350 R2=0

360 S2=-l

370 11=0

380 12=0

390 REM MAIN LOOP(MOVEMENT)

400 CALL JOYST(1,B1,Al)
410 IF ABS(A1)-ABS(Bl)=0 THEN 440

420 Rl=Al/4

430 Sl=Bl/4

440 C1=C1-R1 «**

450 D1=D1+S1 j
460 CALL JOYST(2,B2,A2)
470 IF ABS(A2)-ABS(B2)=0 THEN 500

480 R2=A2/4 *"*[
490 S2=B2/4 }
500 C2=C2-R2

510 D2= D2+ S2 —»

520 CALL GCHAR(C1,D1 ,G) j
530 IF G=32 THEN 550

540 11=1

550 CALL VCHAR(C1,Dl,135) "*l
560 CALL SOUND(1,262^0) *
570 CALL GCHAR(C2,D2,G)

148

f$$M>

f^ffl^

ftes^

Recreation

580 IF G=32 THEN 600

590 12=1

600 CALL VCHAR(C2,D2,136)

610 CALL SOUND(1,290,0)

620 IF 11+12=0 THEN 400

630 IF <(I1 = 1*I2=1)) + ((I2=D* (Dl+D2= 32)) THEN

710

640 IF 11=1 THEN 680

650 H$="LEFT SIDE WINS"

660 P = P+1

670 GOTO 740

680 H$="RIGHT SIDE WINS"

690 Q = Q+1

700 GOTO 740

710 H*="IT?S A TIE"

720 P = P+1

730 Q = Q+1

740 PRINT H*

750 FOR 1=1 TO 200

760 NEXT I

770 FOR H=l TO 23

780 PRINT

790 NEXT H

800 IF (P<>5) * (QOS)THEN 150

810 REM PLAY AGAIN?

820 PRINT "PLAYER 1";P,"PLAYER 2";Q
830 PRINT "DO YOU WANT TO PLAY AGAIN (Y/N)?"

840 CALL KEY(0,KEY,ST)

850 IF ST=0 THEN 840

860 IF (KEY=89)+(KEY=121)THEN 100

870 END

149

Douglas E. Smith and Douglas W. Smith
tf8R|

This is no time to be feather-brained or daffy. There are
hunters lurking in the maze of reeds ahead, and ifyou make •*]
a wrong turn, you and your friends will be duck soup. Two *
skill levels, ten difficulty ratings.

This game will challenge your skill and memory. Your assign
ment, as the leader of a squadron of 30 ducks, is to direct
them through a series of marsh mazes to the safety of a duck
sanctuary.

You must swim through five different mazes, each of
which has invisible reed patches and hidden hunters. The
reeds will send you back to the beginning of the maze. If you
find a hunter, you will lose a duck. Save as many ducks as
possible for a high score. Lose your squadron and it's all over.

Favorite Duck

After typing in the program, it's a good idea to list the pro
gram, check for errors, and then save a copy to tape or disk
before running the program.

When you start the game, the title graphics will appear,
followed by several questions.
1. LEVEL=?(1=HELP/ 2=NO HELP)

Enter 1 until you have gained confidence in your memory
and problem-solving ability. With level 1 you may use the H
key to quickly view the location of the reeds and hunters in
the marsh (up to five times during one game).]

Level 2 will double your possible score, but you cannot
use the H key for help. ^
2. DIFFICULTY=(1-10) I

For your first game, enter 1. After some practice try the
other difficulty ratings. Ratings 1-4 are easy, 5-7 are hard, *^|
and 8-10 are very challenging. The difficulty rating deter- i
mines the complexity of the maze.

"1

150 J

fvmnOzi

i^e>

b Recreation

3. INSTRUCTIONS ? (Y/N)

Enter Y to read the instructions before the game begins.
This screen briefly describes the game and the functions of the
appropriate keys used for the game. It also shows the graphic
characters used for the reeds, hunters, and the marsh exit.

4. FIRST NAME OF THE LEAD DUCK?

Type in your first name or the name of your favorite
duck, and press ENTER. The game will then begin.

If you entered Y for instructions, they will appear first. Hit
the 1 key to begin play.

At first the outline of the marsh appears, and then the
positions of the reeds and hunters are indicated. You have 15
seconds to study the locations before the reeds and hunters
become invisible.

Successful Maneuvers
The duck on the left side of the marsh represents your squad
ron. Move the duck by using the arrow keys (E, S, D, and X).
You do not have to press ENTER or use the FCTN key.

If you hit the sides of the marsh or the invisible reed,
your ducks will bounce back to the starting position, but you
do not lose any ducks.

Meeting a hunter will result in gunfire and the loss of a
duck, with the survivors returning to the start again.

The positions of the reeds and hunters do not change un
til you reach the exit to the next marsh.

Your goal is to maneuver your squadron to the right side
of the marsh and out the exit to the next marsh. Once you
have passed through the five marshes to safety, the program

j*5* will congratulate you, show you the remaining ducks, and
print your score.

The highest possible score is 6000 and can be achieved
f^ only at level 2 with the difficulty rating 10. Nobody has

achieved this score to date.

The marsh border color changes to red if the squadron is
depleted to ten or fewer ducks. Losing all the squadron will
put you in Duck Soup, and give you a zero score.

After the score is printed, the program will ask PLAY
AGAIN? (Y/N). Enter Y to play again at the last selected level
and difficulty. Enter N to choose a different level and
difficulty.

151

Recreation

The Hkey may be used if you selected level 1. Pushing ***[
the H key while playing the game will give you a quick look
at the marsh. Using this key does not change the position of
the duck. You are limited to only five helps per game. **1
Remember the highest score using level 1 will be half that of
level 2.

On occasion, the program will generate a maze which is ^1
impossible to cross. (Ducks don't always have it easy, do
they?) Press the N key and you will move to a new marsh.
The change in marshes will cost the squadron five ducks, so
use the N key only if there is no way out.

Some Noteworthy Routines
The "Duck Leader" program employs several very useful TI
BASIC routines. Creation of the maze is accomplished using
the RND function to place the reeds and hunters (lines
620-670). The CALL GCHAR in line 800 tests the randomly
determined position for characters already present on the
marsh.

Line 800 checks to see if an empty space is present and, if
not, calls for a new set of coordinates to be generated.

The CALL KEY routine (line 890) is used to move the
duck through the marsh. Keys 68, 69, 83, and 88 determine
the direction of the move. Once again the CALL GCHAR is
used to test for an empty space. If found, the duck is printed
in that position. If a reed or hunter is found, lines 1250-1260
execute the proper action.

Several loops and counters pause the program and keep
track of the ducks. Lines 690-720 give you time to view the
maze before the characters become invisible. The H key sends
the program to lines 1140-1220, making the maze visible. The *®1
ducks left are counted in lines 980 and 1310. The number of
marshes traversed is counted in line 1380. The score is cal
culated in line 1550 and the ducks saved in line 1540. ^

Changing the Difficulty
You may wish to make the game less difficult by making one "•"]
or more of the following changes: *
1. Set the final value in the FOR-NEXT loop in line 690 to a

higher value to increase the length of time you have to view j
the maze.

152

Recreation

j*^ 2. Increase the final value for Xin the FOR-NEXT loop begin
ning in line 1170 to give you a longer look when you use
the H key.

P*5 3. Change the 5 in line 1150 to a greater number to increase
the number of times you can use the H key.

j*** Program Summary
Lines

120-170 Reset random generator, define graphic characters and
colors.

180-320 Print title graphics and questions.
330-410 Duck animation GOSUB. Routine for title and game end.
420-500 Instructions.

510-610 Marsh and borderline.
620-670 Print reeds and hunters.
680-720 Allow view of the maze.
730 Make the reeds and hunters invisible.
740 Transfer control of the program to the call key routine.
750-820 Subroutine which randomly selects the positions for

reeds and hunters.

830-980 Use the call key routine to read the keyboard and to
branch the program for the desired action.

910 Check for the H key.
920 Check for the N key.
980-1030 Reset game for a new marsh.
980 Add five to total ducks lost (DL).
1040-1050 Sound for hitting reeds.
1060-1130 Reset value for position of the duck.
1140-1220 Reveal maze when H key is used.
1140 Check for level (1) input.
1150 Check for HELP limit.

!#», 1190 Count H key use.
1230-1270 Check the duck position for contact with reeds or hunters

or the Exit.
1280-1360 Print gunfire graphic, call sound, and increase DL by one.

f*^ 1320 Check for DL=20 and change border color if true.
1370-1410 Return program for creation of a new marsh, and count

marshes completed.
f8981 1420-1460 Screen color change routine used to signify the beginning

and end of the game and of the completion of a marsh.
1470-1710 Print end-of-game message and play again prompt.

F5S3 1540 Calculate ducks saved (DS).
1550 Calculate score.
1610 Print saved ducks.

ppb, 1670-1690 Set DL, HELP, and MARSH to 0.

153

Recreation

1720-1800 Subroutine which defines the graphic characters. "**[
128,129 Duck.]
136 Border.

137 Exit.

112 Reeds.
113 Hunter.

120 Gun Shot.

Duck Leader

120 RANDOMIZE

130 GOSUB 1720

140 CALL COLOR<13,2,1)
150 CALL C0L0R<14,5,16)
160 CALL COLOR<11,13,1)
170 CALL C0L0R<12,10,1)

180 CALL CLEAR

190 CALL SCREEN<12)

200 FOR X=l TO 19

210 PRINT " DUCK LEADER DUCK LEADER"

220 NEXT X

230 PRINT

240 GOSUB 330

250 GOSUB 1420

260 INPUT "LEVEL=?<1=HELP/2=N0 HELP)":LEVEL

270 INPUT "DIFFICULTY=?<1-10)":DIF

280 IF <DIF<1)+(DIF>10)THEN 270

290 INPUT "INSTRUCTIONS?<Y/N)":INS*

300 INPUT "FIRST NAME OF LEAD DUCK?":NAME*

310 IF INS*="Y" THEN 420

320 GOTO 520

330 FOR Y=12 TO 14 STEP 2

340 FOR X=l TO 32

350 CALL HCHAR<Y,X,129)
360 CALL SOUND<25„-5,15) ,*qn
370 CALL HCHARtY,X,128) j
380 CALL HCHAR<Y,X,32)
390 NEXT X

400 NEXT Y

410 RETURN

420 CALL CLEAR

430 PRINT NAME*: : ^
440 PRINT "YOU ARE THE LEADER OF A": :"SQUAD {

RON OF THIRTY DUCKS.": :"PADDLE THROUGH

FIVE MARSHES": :

450 PRINT "TO SAFETY!!": :"USE ARROW KEYS TO

MOVE": :"H-KEY FOR HELP(ONLY FIVE)": :"

N-KEY=NEW MARSH(-5 DUCKS)": :

154

H

I

rt0H£t

raftsi

Vmmi

[mini

s Recreation

460 PRINT "WATCH OUT FOR REEDS..": :"AND HUN

TERS!!": :"REEDS":"HUNTERS":"EXIT"

470 CALL HCHAR(21,12,112)
480 CALL HCHAR(22,12,113)

490 CALL HCHAR(23,12,137)
500 INPUT "ENTER 1 TO START":SRT

510 GOTO 520

520 REM MARSH

530 CALL SCREEN(15)

540 CALL CLEAR

550 PRINT TAB(10);"MARSH #";MARSH+1
560 CALL HCHAR(2,3,136,28)
570 CALL HCHAR(22,3,136,28)
580 CALL VCHAR(2,3,136,20)
590 CALL VCHAR(2,30,136,20)
600 CALL VCHAR(6,7,136,12)
610 CALL VCHAR(9,30,137,7)
620 FOR X=l TO (DIF*5)

630 GOSUB 750

640 CALL HCHAR(ROW,COL,112)

650 GOSUB 750

660 CALL HCHAR(ROW,COL,113)
670 NEXT X

680 CALL HCHAR(12,5,128)

690 FOR X=l TO 50

700 CALL COLOR(13,9,1)

710 CALL C0L0R(13,2,1)

720 NEXT X

730 CALL SCREEN(13)

740 GOTO 830

750 REM RAN ROW+COL

760 R0W=INT(22*RND)

770 IF R0W<3 THEN 760

780 COL=INT(30*RND)

790 IF C0L<4 THEN 780

800 CALL GCHAR(ROW,COL,GRC)

810 IF GRC032 THEN 760

820 RETURN

830 REM MOVE DUCK

840 R=12

850 C=5
860 CALL HCHAR(R,C,129)
870 CALL SOUND(25,-5,15)
880 CALL HCHAR(R,C,128)
890 CALL KEY(0,KEY,ST)
900 IF (KEY=68)-MKEY=69) + (KEY=72)-MKEY=78>-M

f» KEY=83)+(KEY=88)THEN 910 ELSE 890

! 910 IF KEY=72 THEN 1140
920 IF KEY=78 THEN 980

^ 930 CALL HCHAR(R,C,32)

155

Recreation

940

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

140

150

160

170

180

190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

156

IF KEY=68 THEN 1060

IF KEY=69 THEN 1080

IF KEY=83 THEN 1100

IF KEY=88 THEN 1120

DL=DL+5

IF DL>19 THEN 1000 ELSE 1040

CALL C0L0R(14,5,9>
IF DL>=30 THEN 1020 ELSE 1040

DL= 30

GOTO 1470

CALL SOUND(100,500,0)
GOTO 520

C = C + 1

GOTO 1230

R = R-1

GOTO 1230

C=C-1

GOTO 1230

R=R+1

GOTO 1230

IF LEVELOl THEN 890

IF HELP=5 THEN 1210

CALL SCREEN(15)

FOR X=l TO 50

NEXT X

HELP=HELP+1

CALL SCREEN(13)

CALL SOUND(5,1000,1)
GOTO 890

CALL GCHAR(R,C,GR)
IF GR=32 THEN 860

IF (GR=136)+(GR=112)THEN 1350
IF GR=113 THEN 1280

IF GR=137 THEN 1370

CALL HCHAR(R,C,120)
CALL SOUND(1,200,1)
CALL HCHAR(R,C,113)
DL=DL+1

IF DL=20 THEN 1330 ELSE 1340

CALL C0L0R(14,5,9)
IF DL=30 THEN 1470 ELSE 840

CALL SOUND(50,-1,10)
GOTO 840

REM NEW MARSH

MARSH=MARSH+1

IF MARSH=5 THEN 1470

GOSUB 1420

GOTO 520

FOR SC=4 TO 16

CALL SCREEN(SC)

rf^Ki

n

r$$fe}

r.v^wij

(1?$&J

a Recreation

1440 CALL SOUND(1,3000,1)
1450 NEXT SC

1460 RETURN

1470 REM END OF GAME

1480 CALL CLEAR
1490 CN=INT((28-LEN(NAME*))/2)
1500 PRINT TAB(CN);NAME*: :
1510 IF DL=30 THEN 1640
1520 GOSUB 1420

1530 GOSUB 1420

1540 DS=30-DL

1550 SCORE=LEVEL*DIF*DS*10
1560 PRINT "CONGRATULATIONS YOU SAVED ": :TA

B(10):DS;"DUCKS!": :TAB(5);"F0R A SCORE
OF ";SCORE

1570 FOR X=l TO 12

1580 PRINT

1590 NEXT X

1600 CL=INT((32-DS)/2)

1610 CALL HCHAR(6,CL,128,DS)
1620 GOSUB 330

1630 GOTO 1660

1640 REM DUCK SOUP
1650 PRINT "OH NO!! YOU'RE DUCK SOUP": :TAB (

11)5"SCORE=0": :
1660 INPUT "PLAY AGAIN?(Y/N)":PLAY*

1670 DL=0

1680 HELP=0

1690 MARSH=0

1700 CALL COLOR(14,5,16)
1710 IF PLAY*="Y" THEN 520 ELSE 1810
1720 REM CALL CHAR
1730 CALL CHAR(128,"00040B04FE7C8800")
1740 CALL CHAR(129,"00081608FE7C4400")
1750 CALL CHAR(136,"00AAAAAAAAAAAAAA")
1760 CALL CHAR(137,"00080C7E0C080000")

1770 CALL CHAR(112,"00AAAAAAAAAAAAAA")
1780 CALL CHAR(113,"0000609090677C64")
1790 CALL CHAR(120,"8142241818244281")

1800 RETURN

1810 END

157

John B. Dorff

Dare you cross the freeway of the future? You better have all
your wits together, for this is one grueling highway. It will "*1
take all the cunning and speed you can muster to cross this '
ten-lane roadway. Requires Extended BASIC and joysticks. A
Speech Synthesizer is optional.

If you've been trying to write games in BASIC, you have prob
ably found out that it can be difficult to design fast-action
games. Creating a game with many moving objects on the
screen, moving in all directions, is next to impossible; BASIC
is just too slow. Still, with TI's great graphic and sprite
capabilities, there are ways to create fun and exciting games
once you learn to work with BASIC'S limitations. Extended
BASIC is the best way to create such a game.

"Freeway 2000" is just such a game. It takes advantage of
TI's graphics and sprites. To save program space, there are no
REM statements or instructions for the game included in the
program. For the same reason, and to increase speed, almost
all the lines in the program are multistatement lines. Save the
program after you have typed it in and before you run it.

Some speech has been added to enhance the game, so if
you have a speech synthesizer, connect it before you play.
There is nothing like a game that compliments you when
you've made a good run, or chides you when you goof.

Crossing the Road **"i
The object of the game is to get across the ten-lane highway,
using a joystick to guide your runner, without getting hit. Each
time you make it across successfully, the level ofdifficulty in- ""]
creases. At the start of the game, you score ten points for each
lane passed, one thousand points for making it all the way. As
the levels increase, the points per lane increase. You start off "^j
with six runners, gaining an extra one at six thousand point !
intervals. The game is for one or two players, so challenge a
friend! Remember to have the ALPHA-LOCK key up when "H
playing. '

158 n

rKrcEil

tjyjffnfij

f^^n^J

[TCwJmzJ

Recreation

Here's a short explanation of the program:
Line # Comment

10-30 Call up needed speech words, construct the suffix "s" and
add it to certain words.

40-150 Title screen, definition of characters, and initialization of
variables. Many variables are used to save space and to in
crease program speed. The more important ones are:
L(l), L(2)—Player levels;
E(l), E(2)—Score that must be reached to gain an extra
runner;

W(l), W(2)—Number of runners the players have left;
Z(l), Z(2)—Players' scores;
B(l), B(2)—Bonus points;
P—Player number.

160 Input one- or two-player game.
170-220 Set up the playing screen.
230-320 Define sprites (cars and runners).
330 Randomly select the cars' speeds for each lane, dependent

on the variable L(P)—player level.
340-430 Set cars in motion.
440-460 Main control loop.
470-560 Sorry, you got hit! These lines play appropriate sound ef

fects and find the runner's position for scoring.
580-690 You made it across! These lines add the appropriate points

and check to see if an extra runner should be awarded.
Also increase the player's level.

700-720 Main control loop. (This is used when the runner is on top
of the screen and must come down to cross the freeway.)

730-780 Same as 470-560.
790-800 Input to play again; reinitialize.
810-820 Input to continue the same game or start a new one;

reinitialize.
p*fc 830 This subroutine waits for you to press a key to answer.
i 840-850 This subroutine creates varied car sounds, dependent on

the variable O.
860-920 These lines check to see if the game is over. If not, they

subtract a runner and change the player number in a two-
player game. They also award an extra runner at 6000 point
intervals.

930 Data for constructing the suffix "s".

Freeway 2000
10 RANDOMIZE :: CALL SP6ET("SET".S$):: CALL

SPGETC'GOOD" SG$) :: CALL SPGET("MOVE",M*):
: CALL SPGETCWELL", W*)

159

Recreation

20 CALL SPGET("WHAT",WH$):: FOR 1=1 TO 29 ::
READ A :: SS$=SS*&CHR*(A):: NEXT I

30 J = LEN(M*)-13 :: M* =SEG$ (M$, 1 ,2 >&CHRS (J)S<S
EG*(M*,4,J>:: J = LEN (WH*) - 13 :: WH*=SEG*(W
H*, 1,2)&CHR* (J)8<SEG*(WH*,4,J)

40 CALL CLEAR :: 0=1800 :: GOSUB 840 :: DISP

LAY AT(3,4) : "* * **FREEWAY 2000****" :: L(l

).,L(2)=5 :: Vl=-2.5 :: V2= 2.5 :: Q = 33 ::
01=138

50 CALL SOUND(80,570,5.356,5):: E(1),E(2)=60
00 : : W(1) ,W (2)=5

60 SND1(0)=430 :: SND1(1)=514 :: SND1(2)=470

:: SND1(3)=395 :: SND2(0)=300 :: SND2(1)

=359 :: SND2(2)=390 :: SND2(3)=241

70 CALL CHAR(96,"003C"):: CALL CHAR(97,"0000
003C">:: CALL CHAR(104,"000000FFFFFFFFFF"
):: CALL CHAR(99,"00000000003C")

80 CALL SOUND (150,570,5,356,5) : : CALL CHAR(1
05,""):: CALL CHAR(100."000000000000003C"

):: CALL CHAR(130,"191AFEBC983C4484")
90 CALL CHAR(128,"0066C9DDDDDDC966006693BBBB

BB9366"):: CALL CHAR(132,"000CE43F3FE40C0
0"):: P=l :: Z(1),Z(2)=0 :: B (1) ,B(2)=100
0 :: U=110

100 CALL SOUND(50,430,3,300,3) : : DISPLAY AT (
12,1):"DARE YOU CROSS THE FREEWAY" :: Dl

SPLAY AT(13,1):"OF THE FUTURE??????"
110 CALL SOUND(80,430,3, 300, 3) :: 0 =2400 :: G

OSUB 840 :: DI SPLAY AT(13, 1) : "

€18 SPACES*" :: DISPLAY AT(12,1):"ARE YOU
INTREPID ENOUGH..."

120 0=1600 :: GOSUB 840 :: DISPLAY AT(13,1):
"ADROIT ENOUGH...." :: CALL SOUND(150,47
0,5,390,5):: FOR X=l TO 150 :: NEXT X

130 CALL SOUND(150,470.5,390,5;:: FOR X=l TO
200 :: NEXT X :: DISPLAY AT(14,1):"INSA

NE ENOUGH TO TRY?!" :: 0=2200 :: GOSUB 8
40

140 CALL CLEAR :: DISPLAY AT '12,5) :"GOOD LUC
K,FRIEND...." :: FOR D=l TO 100 :: NEXT
D :: CALL SOUND(400,514,3,359,3)

150 FOR D=l TO 300 :: NEXT D :: DISPLAY AT (1
4,5):"YOU'LL NEED IT!!!!!!" :: 0=1800 ::
GOSUB 840

160 CALL CLEAR :: DISPLAY AT(12,8)BEEP SIZE(
15):"1 OR 2 PLAYERS?" :: GOSUB 830 :: IF
K = 49 THEN A=1 ELSE A=0

170 CALL CLEAR :: CALL COLOR(2,2, 13) : : CALL
COLOR(3,2, 13) :: CALL COLOR(4\2, 13) :: CAL
L COLOR(8.2,13):: CALL COLOR(13,2,13)

160

"1

Recreation

|%*mwl

ima 180 CALL COLOR(10- 13. 16) :: CALL COLOR(9, 15,1
I 6):: CALL COLOR(7,2, 13) :: CALL COLOR (1,2

,13):: CALL COLOR(5,2,13):: CALL COLOR(6
, 2,13)

P51 190 CALL HCHARd ,1,32, 160) :: CALL HCHAR(19,1
,32,192):: CALL HCHAR(6,1,105,32):: CALL
"HCHAR(7,1,96,32):: CALL HCHAR(8,1,97,32

H™ 200 CALL HCHAR(9.1.99,32):: CALL HCHAR(10,1,
100,32):: CALL HCHAR(11,1,105,32):: CALL
HCHAR(12, 1,96,32) :: CALL HCHAR (13, 1,97,

32)

210 CALL HCHAR(14.1.99,32):: CALL HCHAR(15,1
.100.32):: CALL HCHAR.(16 ,1,105 ,32):: CAL
L HCHAR(17, 1,96,32) :: CALL HCHAR(18, 1, 10
4,32)

220 DISPLAY AT(1,1)SIZE(8):"PLAYER 1" :: IF
A=0 THEN DISPLAY AT(2,1)3IZE(8):"PLAYER

2"

230 CALL SPRITE(#1,128,2,41,12,#2,128,5,41,6

3.#4,128,3.41,187)
240 CALL SPRITE(#5,129,6,51,100,#6,129,7,51,

200.#7.129,15,51,224)
250 CALL SPRITE(#3. 129. 2.61 .60,#9, 129,3,61, 1

88)

260 CALL SPRITE (#10. 128. 14, 7 1 ,90,#1 1 , 128, 7,7
1. 190.#12. 128,9. 71 ,220)

270 CALL SPRITE (#13, 129,5,81 ,79.#14. 129, 13, 8
1 , 109,#3. 129. 2,81 ,235)

280 CALL SPRI TE (#15. 12S.7.91, 123.#19, 128, 15,
91 .250,# 56, J28,4. 101 .30,#17, 128,7.10
1,60,#18, 128.6, 101, 17 9 >

290 CALL SPRITE(#20,129,5,111,115,#21,129,2,
111,145,#22,129,14,111,175)

300 CALL SPRITE(#23,128,15,121,84,#24,128,9,
12 1,168,#25,128,7,121,235)

P^ 310 CALL SPRITE(#26,129,5,131,68,#27.129,2.1
31,184)

320 DISPLAY AT(22,1):"PLAYER";P :: CALL SPRI
pss, TE (#28. 130,2, 160, 127)
' 330 DISPLAY AT(5.10):"GET READY!!" :: CALL H

CHAR(24.3.130.W(P)):: CALL SAY("GET",S*)
:: FOR N=l TO 10 :: S (N)= INT (RND *L (P)> <-1

I™51 0 : : NEXT N
340 HH=INT(RND*4) :: CALL MOT ION(#1 .0, -S (1 >,#

2. 0. -S(1) .#4, 0, -S(J))
PH., 350 CALL MOTION (#5, 0, S(2) ,#6,0, S<2! ,#7, 0, S(2

))

360 CALL MOTION (#8, 0,S (3) .#9. £>. 5 (3) >
370 CALL MOTION(#10,0,-S(4).#11,0,-S(4),#12,

ps» 0 ,-S (4))
161

Recreation

380 CALL MOTION(#13,0,S(5),#14,0,S(5),#3,0,S
(5))

390 CALL MOTION(#15,0,-S(6),#19,0,-S(6))
400 CALL MOTION(#16,0,-S(7>,#17,0,-S(7),#18,

0,-S(7)>:: DISPLAY AT(5,10):"{4 SPACES3-G ^
0!«" s: CALL BAY("GO") J

410 CALL MOTION(#20,0,S(8),#21,0,5(8),#22,0,
S(8))

420 CALL MOTION(#23,0,-S(9) ,#24,0,-S(9) ,#25, ""]
0,-S(9)) J

430 CALL MOTION(#26,0,S(10),#27,0,S(10)):: D
ISPLAY AT(5,10):"C12 SPACES]•" ":: IF 0=1 T
HEN 700 ELSE 0=0

440 CALL JOYST(P,X,Y) : : CALL CO INC(ALL,C) : :
IF C THEN 470

450 CALL M0TI0N(#28,Y*V1,X*V2):: CALL POSITI
0N(#28,R,V)s: CALL JOYST(P,X,Y):: CALL C
OINC(ALL,C):: IF C THEN 470

460 CALL M0TI0N(#28,Y*V1,X*V2):: IF R>Q THEN
440 ELSE 570

470 CALL SOUND(800,SND1(HH),5,SND2(HH),5)::
CALL MOTION(#28,0,0):: CALL PATTERN(#28,
132)

480 CALL SOUND(10,554,1):: CALL SOUND(10,523
,2):: CALL SOUND(10,494,3):: CALL SOUND(
10,466,4):: CALL SOUND(10,440,5)

490 CALL SOUND(10,415,6):: CALL SOUND(10.392
,7):: CALL SOUND '.10, 37«, 8) :: CALL SOUND (
10,349,9):: CALL SOUND(10,330,10)

500 CALL POSITI0N(#28,R,V):: ON HH+1 GOTO 51
0,520,530,540

510 CALL SAY(,WH*&SS*,"THAT"):: GOTO 550
520 CALL SAY("SORRY"):: GOTO 550
530 CALL SAY("OH",W*):: GOTO 550
540 CALL SAY (, WH*S<SS*, "THAT")
550 FOR D=133 TO 43 STEP -10 :: IF R<D THEN

Z(P)=Z(P)+L(P)+L(P):: U=U+8 :: CALL SOUN
D(5,U,0):: DISPLAY AT(P,9):Z(P)ELSE 870

560 NEXT D :: GOTO 870

570 CALL MOTION(#28,0,0):: IF R>170 OR R<20
THEN Z(P)=0 :: DISPLAY AT (20, 12) :"NO FAI ""H
R!" :: CALL SOUND(500,-3,0):: GOTO 860

580 DISPLAY AT(20,9)SIZE(13):"NICE RUNNING'"
:: DISPLAY AT'(21,6) SIZE(19):STR* (B(P)): —n

" BONUS POINTS!!" :: 0=0-4-1 |
590 ON HH+1 GOTO 600,610,620,630
600 CALL SAY("MEAN",M*&SS*):: GOTO 640
610 CALL SAY("VARY",G*):: GOTO 640
620 CALL SAY(,W*,"DONE"):: GOTO 640
630 CALL SAY(,G*,"GOING")

162

P55jwi

uaiiii

•HLwil

n

lflW?^|

r

Recreation

640 FOR D=l TO 10 :: U=U+8 :: Z(P)=Z(P)+L(P)

+L(P):: CALL SOUND(5,U,0):: DISPLAY AT(P

,9):Z(P):: NEXT D :: U=110
650 L(P)=L(P)+1 :: Z(P)=Z(P)+B(P):: CALL SOU

F^ ND(50,SND1(HH),3,SND2(HH),3):: CALL SOUN
! D(100,SND1(HH),3,SND2(HH),3)

660 DISPLAY AT (P, 9) : Z (P) : : IF Z(PXE(P)THEN
r680

670 W(P)=W(P)+1 :: E(P)=E(P)+6000 :: CALL HC

HAR(24,W(P)+2,130):: CALL SOUND(10,3
49,0):: CALL SOUND(10,523,0)
680 CALL HCHAR(20,9,32,50):: IF L(P)=11 OR L

(P)=16 OR L(P>=21 THEN B(P)=B(P)+1000

690 GOTO 330

700 CALL JOYST(P,X,Y):: CALL COINC(ALL,C)::

IF C THEN 730

710 CALL MOTION(#28,Y*V1,X*V2):: CALL POSITI
0N(#28,R,V):: CALL JOYST(P,X,Y):: CALL C
OINC(ALL,C):: IF C THEN 730

720 CALL MOTION(#28.Y*V1.X*V2):: IF R<Q1 THE

N 700 ELSE 570

730 CALL SOUND(800,SND1(HH),5,SND2(HH),5)::
CALL MOTION(#28,0,0)

740 CALL PATTERN(#28,132):: CALL SOUND(10,55
4,1):: CALL SOUND(10,523,2):: CALL SOUND
(10,494,3):: CALL SOUND(10,466,4):: CALL
SOUND(10,440,5)

750 CALL SOUND(10,415,6):: CALL SOUND(10,392
,7):: CALL SOUND(10,370,8)s: CALL SOUND(
10,349,9):: CALL SOUND(10,330,10)

760 CALL SAY("SORRY"): : CALL POSITI ON(#28,R,

V)

770 FOR D=40 TO 130 STEP 10 :: IF R>D THEN Z

(P)=Z(P)+L(P)+L(P):: U=U+S :: CALL SOUND

(5,U,0):: DISPLAY AT(P,9):Z(P)ELSE 870

780 NEXT D :: GO TO 870

psi 790 CALL SAYC'TRY AGAIN"):: DISPLAY AT(5,7)B

!. EEP: "PLAY AGAIN? (Y ,N) " :: GOSUB 830
800 IF K=110 THEN CALL SAY("GOODBYE"):: CALL

CLEAR :: STOP

H*80 810 W(1),W(2)=5 :: P=l :: O,Z(1),Z(2>=0 :: D
ISPLAY AT(5,7)BEEP:" CONTINUE GAME?" ::

GOSUB 830

p^s, 820 IF K=121 THEN 160 ELSE E (1) , E (2) =6000 ::

B(1),B(2)=1000 :: L(1),L(2)=5 :: GOTO 1
60

830 CALL KEY(0,K.SS):: IF SS=0 THEN 830 ELSE

^ RETURN

840 FOR X=18 TO 0 STEP -1 :: CALL SOUND(60,2
00, 30, 200, 30, O, 30,-8, X) : : NEXT X

163

850 FOR X=0 TO 18 :: CALL SOUND(60,200,30,20 —
0,30,0,30,-8,X):: NEXT X :: RETURN j

860 DISPLAY AT(P,9) :Z(P) : : FOR D=l TO 100 ::
NEXT D :: CALL HCHAR(20,14,32,8)

870 U=110 :: IF Z(P)>E(P)-1 THEN W(P)=W(P)+1

:: CALL HCHAR(24,W(P)+2,130):: E(P)=E(P
)+6000 :: CALL SOUND(10,349,0):: CALL SO
UND(10,523,0) _

880 0=0 :: IF W(P)THEN W(P)=W(P)-1 :: GOTO 9]
10

890 DISPLAY AT(22,11):"GAME OVER" :: FOR D=l
TO 200 :: NEXT D :: IF A THEN 790

900 CALL HCHAR(22,11,32,9):: IF P=i THEN P=2
:s A=l ELSE P=l :: A=l

910 CALL HCHAR(24,3,32,10):: IF A THEN 320
920 IF P=l THEN P=2 :: GOTO 320 ELSE P=l ::

GOTO 320

930 DATA 96,0,26,14,56,130,204,0,223,177,26,
224,103,85,3,252,106,106,128,95,44,4,240
,35,11,2,126,16,121

164

n

n

"i

j^lfj^v

PvJfP^

Dennis M. Reddington

"The Chase" is a challenging action game. It's a relatively
pra fast-moving game written in TI BASIC.

Watch out for those ghosts. If they catch your jewel collectors
the price can be quite costly: Once all six of your collecters are
caught, the game ends.

The object of "The Chase" is to collect jewels. The play-
field for The Chase is a 7 X 11 grid. Move your jewel collec
tors around by moving the joystick or by using the keyboard's
arrow keys (E, up; X, down; S, left; and D, right). If you man
age to gather all the jewels you'll move to the next level of
play. Be careful—don't let a ghost catch your jewel collector,
for if he's caught all the jewels will be placed back onto the
playing grid.
Design Considerations
The Chase is of interest to a TI-99/4A programmer because it
demonstrates some ways to develop a relatively fast moving
game in BASIC that pressures the player to keep moving. Sev
eral of the game design and programming considerations used
in The Chase can be used in other BASIC games to speed up
the action. They include:

• The use of color changes to give the appearance of fast game
action;

• Limiting the playing grid's size to a relatively small portion
p^ of the screen so that, in a game like The Chase, captures and

escapes can take place quickly;
• Randomly generating each game to add variety to the game's

play;
• Checking first for the more common joystick movements and

thus reducing the amount of time required to react to the
player's request to move;

• Changing character patterns on the screen to give the player
the feeling of action;

• Minimizing the time-consuming task of displaying the score
and other text;

• Coordinating the sound with joystick movement;
• Increasing the difficulty level as the game progresses to

higher levels.
& 165

fv|P£*

Recreation

Game Scoring
Play continues until all six jewel collectors are captured. Each
time you clear the playing board, you will advance to the next
level of play. Scoring is based on the level of play: For each
jewel collected you'll get a number of points equal to ten times
the level. For example, level 1 scores 10 points for each jewel
collected, level 8 scores 80, and so on.

The Chase
100 CALL CLEAR

110 PRINT "T H E CHASE"

120 PRINT

130 PRINT "Joystick 1? 1/ENTER"
140 PRINT "Joystick 2? 2/ENTER"
150 PRINT "Keyboard ? 3/ENTER"
160 PRINT

170 INPUT JTSW

180 PRINT

190 PRINT "== = = = = = = = = = = = =•'

200 IF JTSW=1 THEN 230

210 IF JTSW=2 THEN 230

220 IF JTSW03 THEN 100 ELSE 250

230 PRINT "ALPHA LOCK Off"

240 GOTO 260

250 PRINT "ALPHA LOCK On"

260 PRINT "==============»

270 PRINT

280 PRINT "Please Press ENTER"

290 PRINT "To BEGIN ..."

300 CALL KEY<0,X,Y)
310 Z=Z+1

320 IF Y=0 THEN 300

330 IF Z<100 THEN 360

340 Z=Z-90

350 GOTO 330

360 RANDOMIZE Z

370 CALL CLEAR

380 H$="FF" _

390 V$="1010101010101010"]
400 P$="00001818"

410 PO*="00"

420 G1*="183C5AFFFF919191"

430 G2*="183C5AFFFF242424"
440 S1*="003C5A5A5A7E3C"

450 S2*="003C7E42427E3C"

El*="0000001818"]460

470 E2*="000024181824

480 E3*="0200249818240048"

166
"1

f^Hi

J/l-mrfEj

ffill^

490 E4*=''4A8142810024814A"

500 E5*='•0004008000040081"

510 CALL SCREEN(2)

520 CALL COLOR(14,16,1)

530 CALL COLOR(13,14,1)

540 CALL COLOR(12,5,1)

550 CALL CHAR(136,H$)

560 CALL CHAR(128,H$)

570 CALL CHAR(120,H$)

580 CALL CHAR(137,V*)

590 CALL CHAR(129,V*>

600 CALL CHAR(121,V$)

610 CALL CHAR(138,P*)
620 CALL CHAR(130,P$)

630 CALL CHAR(122,P*)
640 CALL COLOR (11 '„ 11,1)
650 CALL CHAR(112,SI*)

660 SM=1 iL2

670 CALL CHAR(113,P0«)
680 P0=1 113

690 CALL COLOR(10,8,1)

700 CALL CHAR(104,G$)

710 G=104

720 CALL CHAR(105,El*)

730 CALL CHAR(106,E2*)
740 CALL CHAR(107,E3*)
750 CALL CHAR(108,E4«)
760 CALL CHAR(109,E5*)
770 EB=105

780 CALL HCHAR(1,3.136, 28)

790 CALL HCHAR(2,4,128, 26)

800 CALL HCHAR(3.5,120, 24)

810 CALL HCHAR(22,5,120 ,24)

820 CALL HCHAR(23,4,128 ,26)
830 CALL HCHAR(24,3,136,28)
840 CALL VCHAR(2,2,137, 22)

850 CALL VCHAR(2,31,137 ,22)
860 CALL VCHAR(3,3,129, 20)

870 CALL VCHAR(3,30,129 , 20)
880 CALL VCHAR(4,4,121, 18)

890 CALL VCHAR(4,29,121 , 18)
900 FOR X=ll TO 21 STEP 2

910 CALL HCHAR(16,X,SM)

920 NEXT X

930 Sl = l 1

940 S2= 21

950 FOR >1= 3 TO 8

960 CALL COLOR(X,14,1)
970 NEXT X

980 CALL HCHAR(19,9,83)

m Recreation

167

Recreation

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1 130

1 140

150

160

170

180

190

100

1

1

1

1

1

1

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

168

CALL HCHAR(19,10,67)
CALL HCHAR(19,11,79)

HCHAR(19

HCHAR(19

HCHAR(19

CALL

CALL

CALL

MX = 2

LX=LX+i

IF MX=5 THEN 1080

MX=MX+1

PILLS=76

S=S+(10*LX)

M1=0

M2 = 0

01=138

02=138

FOR X=8 TO 14

FOR Y=ll TO 21

Z=(INT(3*RND)+1)*8+114

CALL HCHAR(X,Y,Z)

CALL SOUND(150,-4,1)
GOSUB 2700

NEXT Y

X

HCHAR(11

NEXT

CALL

L=l 1

C=16

CALL

Ll=8

Cl = ll

CALL HCHAR(14,21
L2=14

C2= 21

CALL SOUND(300,-5,0)
SMC=SMC+1

IF SMC=1 THEN

SMC= 0

CALL CHAR(112

CHAR(104

1400

CHAR(112

CHAR(104

12,82)

13,69)

14,58)

16,SM)

HCHAR(8,11,G)

G)

1380

SI*)

Gl*)

S2*)

G2*>

CALL

GOTO

CALL

CALL

CALL

NL= L

NC= C

IF JTSW=3

XX = 0

CALL KEY(0,XX,YY)
IF XXOASC (" S")THEN

IF XXOASC ("D") THEN

IF XXOASC ("E") THEN

SOUND(1,3000,5)

THEN 1440 ELSE 1500

1470

1480

1490

ELSE 1530

ELSE 1560

ELSE 1590

fi=*?i

)

n

|w?*wm|

iMmMn'paiigMriaoBMiial Recreation

*™ 1490 IF XXOASC ("X") THEN 1860 ELSE 1620

1500 CALL JOYST(JTSW,XX,YY)
1510 XX=(10*XX)+YY

^ 1520 IF XXO-40 THEN 1550
1530 NC=C-1

1540 GOTO 1630

1550 IF XXO40 THEN 1580

<^si 1560 NC=C+1

1570 GOTO 1630

1580 IF XX04 THEN 1610

1590 NL=L-1

1600 GOTO 1630

1610 IF XXO-4 THEN 1860

1620 NL=L+1

1630 IF NL<8 THEN 1860

1640 IF NL>14 THEN 1860

1650 IF NC<11 THEN 1860

1660 IF NC>21 THEN 1860

1670 CALL GCHAR(NL,NC,X)
1680 FOR Z=122 TO 138 STEP 8

1690 IF XOZ THEN 1730

1700 S=S+(10*LX)

1710 PILLS=PILLS-1

1720 GOTO 1750

1730 NEXT Z

1740 IF X=PO THEN 1750 ELSE 2440

1750 CALL HCHAR(L,C,PO)
1760 CALL HCHAR(NL,NC,SM)
1770 L=NL

1780 C=NC

1790 IF PILLSO0 THEN 1850

1800 NLSW=1

1810 FOR X=3500 TO 3300 STEP -20

1820 CALL SOUND(1,X,0)
1830 NEXT X

urn 1840 GOTO 2520
1850 GOSUB 2700

1860 Z=INT(LX*3*RND)+1

1870 IF Z=l THEN 1320

F® 1880 X1=(ABS(L1-L)+ABS(C1-C))
1890 X2=(ABS(L2-L)+ABS(C2-C))

1900 HIT=1

1910 IF Xl=l THEN 2010

1920 IF X2=l THEN 2230

1930 HIT=0

1940 IF MIOMX THEN 1970

F*» 1950 M1=0

! 1960 GOTO 2230
1970 IF M20HX THEN 2000

1980 M2=0

F^Sl

169

Recreation

1990 GOTO 2010

2000 IF X1>X2 THEN 2230

2010 M1=M1+1

2020 NL1=L1

2030 NC1=C1

2040 IF L1=L THEN 2100

2050 IF L1>L THEN 2080

2060 NL1=L1+1

2070 GOTO 2140

2080 NL1=L1-1

2090 GOTO 2140

2100 IF CKC THEN 2130

21 10 NC1=C1-1

2120 GOTO 2140

2130 NC1=C1+1

2140 CALL GCHAR(NL1,NC1,01X)

2150 IF 01X=G THEN 1320

2160 CALL HCHAR(L1,C1,01)

2170 oi=oix

2180 CALL HCHAR(NL1,NCI,G)

2190 L1=NL1

2200 C1=NC1

2210 IF HIT=1 THEN 2440

2220 GOTO 1320

2230 M2=M2+i

2240 NL2=L2

2250 NC2=C2

2260 IF C2=C THEN 2320

2270 IF C2<C THEN 2300

2280 NC2=C2-1

2290 GOTO 2360

2300 NC2=C2+1

2310 GOTO 2360

2320 IF L2>L THEN 2350

2330 NL2=L2+1

2340 GOTO 2360

2350 NL2=L2-1

2360 CALL GCHAR(NL2,NC2,02X)
2370 IF 02X=G THEN 1320

2380 CALL HCHAR(L2,C2,02)
2390 02=02X

2400 CALL HCHAR(NL2,NC2,G)
2410 L2=NL2

2420 C2=NC2

2430 GOTO 2210

2440 CALL SOUND(500,-5,1)
2450 FOR X=0 TO 4

2460 CALL SOUND(150,-4,0)
2470 CALL HCHAR(16,SI,EB+X)

2480 NEXT X

170

fiwi

H

PiSSl

0M&H

2490 CALL SOUND(150,-4,0)
2500 CALL HCHAR(16,Sl,PO)
2510 Sl=Sl+2

2520 T*=STR*(S)

2530 Z=LEN(T*)

2540 FOR X=l TO Z

2550 TX*=SEG*(T*,X.1)
2560 Y=VAL(TX*)

2570 CALL HCHAR(19,16+X,Y+48)
2580 NEXT X

2590 FOR X=8 TO 14

2600 CALL HCHAR(X,11,PO,11)
2610 NEXT X

2620 IF Sl=S2+2 THEN 2660

2630 IF NLSWOl THEN 1080

2640 NLSW=0

2650 GOTO 1050

2660 FOR X=l TO 3000

2670 NEXT X

2680 CALL CLEAR

2690 END

2700 Z=INT(3*RND)+1

2710 ON Z GOTO 2720,2740,2760
2720 Zl = 14

2730 GOTO 2770

2740 Zl=5

2750 GOTO 2770

2760 Zl = 16

2770 Z=INT(3*RND)+12

2780 CALL COLOR(Z,Zl,1)
2790 RETURN

'""»""=»»• Recreation

171

Andy VanDuyne
TI Version by Patrick Parrish

"Thinking"—and its advanced version, "Thinking Harder"— "H
is agame of pattern recognition and memory that tests your
ability to think logically.

You have nine black boxes labeled from 1 to 9 in front ofyou.
Your job is to make them all light up with a purple glow.

The trouble is, you can't get to them directly. Instead, you
have a set of six switches, numbered from 1 to 6. Each switch
controls three of the boxes. When you choose switch 1, for ex
ample, boxes 1, 4, and 8 might change condition. If they were
all dark, then they'll all glow; if they were all glowing purple,
then they'll go dark. And if 1 and 4 were purple and 8 was
black, then 1 and 4 will go dark and 8 will glow purple.

The trouble is figuring out which switches control certain
boxes. You know that there is a correct combination—three of
the switches, toggled at once, will make all nine boxes glow.
But which three? That's where luck and genius combine. It's
possible to guess right with your first three choices. But if you
aren't concentrating, it's also possible to get such a mishmash
of purple and black boxes that it could take a hundred tries
before the puzzle is solved.

How to Play
After you have typed in "Thinking" and saved it on tape or
disk, run it and the game will begin. A title screen and two "H
screens of instructions appear first. Press any key to go on.

Nine black boxes lettered from 1 to 9 appear in the center
of the screen. Below the boxes you can see the number of ""1
purple boxes, which is 0 at the beginning of the game. At the
top of the screen is the number of turns you have taken,
which is 1 at the start of the game.

The input line just above the black boxes asks you for a
number from 1 to 6. Hit a number and press ENTER. Three
boxes will immediately turn purple. The turn number will
change to 2 and the count ofpurple boxes will change to 3.

172

iisustei

tf^wfrii}

FJJ^jSj

Recreation

Suppose you enter the number 5, and the 1, 2, and 8
boxes glow purple. You don't know about any of the other
numbers, but you know that from then on, in that game,
number 5 will toggle boxes 1, 2, and 8. The pattern for each
switch is randomly assigned at the beginning of each game,
so that each time you play there'll be a new set of patterns.
But the pattern for a particular switch will never change during
a game.

If you choose a number and don't like what it did, choos
ing the same number again toggles the same three boxes and
restores them to the way they were originally. It will cost you
a turn each time, though, just as if you had entered a new
number.

When all nine boxes turn purple, the computer congratu
lates you, tells you how many turns you took, and asks if you
want another game. If you choose to play again, a new set of
patterns is randomly created.

Strategy and Frustration
At the beginning of every game there are always two perfect
solutions. The puzzle can always be solved. Winning in three
or five tries is entirely a matter of luck. Students in my school
average between 9 and 25 turns—slightly better than the
teachers. If you become totally lost, however, it can take doz
ens or even a hundred tries to solve the puzzles.

But if you think logically, you shouldsoon become quite
good at the game. I won't give away the whole strategy, but
you might keep in mind that any two patterns that overlap
(that change the condition of the same box) cannot possibly be
in the same winning combination. And in the last turn before
you win, you must always have exactly six purple boxes and
three black ones.

Is It Too Easy?
If you become a master at Thinking, you might want to try
"Thinking Harder." In this version of the game, you have nine
possible patterns instead of six. This makes it possible to get
much more confused, and getting it right by luck alone is
much less likely.

^ To play Thinking Harder, remove the word REM in lines
210-240. If Thinking Harder is too difficult, you can always
reverse the changes and go back to Thinking again.

1 173

Recreation

Thinking
100 GOTO 150

110 FOR U=l TO LEN(D«)

120 CALL HCHAR(ROW,COL+U,ASC(SEG*(D*,U,1)))
130 NEXT U

140 RETURN

150 CALL CLEAR —

160 CALL SCREEN(6) I

170 PRINT TAB(7);"T H INKING"::

180 G=6

190 Bl=2

200 B2=17

210 REM G=9

220 REM Bl=3

230 REM B2=26

240 REM PRINT TAB(9);"H A R D E R"
250 PRINT :::::::::::

260 FOR 1=1 TO 250

270 NEXT I

280 G*=STR*(G)

290 GOSUB 1640

300 CALL CLEAR

310 CALL SCREEN(14)

320 GOSUB 2030

330 DD=1

340 CALL CLEAR

350 FOR N=l TO G

360 CH(N>=0

370 NEXT N

380 FOR N=l TO 9

390 C(N)=0

400 CALL COLOR(N+5,2,2)
410 NEXT N

420 CO=0

430 GOSUB 2210

440 FOR N=l TO G ""l
450 RANDOMIZE '
460 Z=INT(RND*G)+1

470 IF CH(Z)<>0 THEN 460 -o
480 CH(Z)=N {
490 NEXT N

500 FOR B=l TO Bl

510 FOR N=l TO 9 -*1
520 RANDOMIZE ;

530 Z=INT(RND*9)+1

540 IF Y(Z)<>0 THEN 530

550 Y(Z)=N 1

560 NEXT N

570 FOR N=l TO 9

174 i

rnggOT-MMg.*.»*..».jn Recreation

p=» 580 X=Y(N)
590 X*= SEG*(STR* (X) „ 1, 1)

600 P*(B)=Pt(B)&X*

610 NEXT N

!*** 620 FOR N=l TO 9
630 Y(N)=0

640 NEXT N

pea 650 GOSUB 2210
660 NEXT B

670 H*=P*(1)&P*(2)

680 IF G<>9 THEN 700

690 H*=P*(1)&P*(2)&P*(3)

700 FOR N=l TO B2 STEP 3

710 P$(INT(N/3)+1)=SEG$(H*,N,3)

720 NEXT N

730 CALL SCREEN(15)

740 FOR 1=9 TO 23

750 CALL VCHAR(4,1,64,15)

760 NEXT I

770 Cl=72

780 R=6

790 FOR S=l TO 3

800 J=ll

810 FOR Q=C1 TO Cl+16 STEP 8

820 FOR I=R TO R+2

830 CALL HCHARd ,J,0,3)
840 NEXT I

850 J=J+4

860 NEXT Q

870 R = R + 4

880 Cl=Cl+24

890 NEXT S

900 KH=49

910 FOR T=12 TO 20 STEP 4

920 CALL HCHAR(7.T,KH)

930 CALL HCHARdl ,t,KH+3)
f* 940 CALL HCHAR(15,T,KH+6)

950 KH=KH+1

960 NEXT T

aes 970 Q = 0
980 R0W=2

990 COL=10

1000 D*="# (1 - " 8<G*S<")

*^ 1010 GOSUB 1 10

1020 ROW=20

1030 COL=10

fc, 1040 D*=",. *& # . •»

1050 GOSUB 110

1060 R0W=22

175

Recreation

1070 D«=" ' . *'7."&CHR* (34)&"+ : "

1080 GOSUB 110

1090 FOR N=l TO 9

1100 IF C(N)<>14 THEN 1130

1110 CALL C0L0R(5+N,14,14)
1120 GOTO 1140

1130 CALL C0L0R(5+N,2,2)
1140 NEXT N

1150 FOR 1=1 TO 9

1160 IF C(IX>14 THEN 1180
1170 CO=CO+l

1180 NEXT I

1190 CALL HCHAR(22,21,C0+48)
1200 IF C0=9 THEN 1450
1210 CO=0

1220 Q=Q+1

1230 D*=STR*(0)

1240 ROW=20

1250 C0L=19

1260 GOSUB 110

1270 CALL HCHAR(2,21,30)
1280 CALL KEY(0,K,ST)
1290 IF ST=1 THEN 1310

1300 CALL HCHAR(2,21,32)
1310 IF (K<49)+(K>48+G)THEN 1270
1320 CALL SOUND(50,440,4)
1330 CALL HCHAR(2,21,K)
1340 SE=CH(K-48)

1350 FOR N=l TO 3

1360 W=VAL(SEG*(P*(SE) ,N, 1))
1370 IF C(W)<>0 THEN 1400
1380 C(W)=14

1390 GOTO 1420

1400 IF C(W)<>14 THEN 1420
1410 C(W)=0

1420 NEXT N ^
1430 GOTO 1090 j
1440 REM YOU WIN!
1450 Ll=2

1460 L2=15 -*)
1470 Sl=l I
1480 FOR U=l TO 3

1490 FOR I=L1 TO L2 STEP SI
1500 CALL SOUND(-l,110+1*10,3) "H
1510 CALL SCREEN(I) '
1520 NEXT I

1530 S1=S1*-1 mm.
1540 NEXT U I
1550 R0W=24

1560 C0L=12

176

CSS!$1

f$$m™.i|

f^*£)

J&kJSI^

i^|^|

{•.-.y^l

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

'•*•«-«"'—mmmsm Recreation

D$="!/!*& 7"

GOSUB 110

CALL KEY(0,K,ST)
IF ST=0 THEN 1590

IF (K<>78)*(K<>89)THEN 1590

IF K=89 THEN 330 ELSE 2240

REM INSTRUCTIONS

CALL CLEAR

CALL SCREEN(ll)

PRINT "YOU WILL SEE 9 BLACK

PRINT

PRINT

PRINT

PRINT "1 AND ";G$

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

GOSUB 1970

CALL CLEAR

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT "YOU CAN.

FOR 1=1 TO 10

PRINT

NEXT I

PRINT

PRINT TAB(3)

CALL KEY(0,K
IF ST=0 THEN

BLOCKS

BY ENTERING A NUMBER BETWEEN"

YOU CAN CHANGE"

SOME OF THEM TO PURPLE

"BUT, SOME PURPLE ONES MIGHT

TURN BACK TO BLACK

"EACH NUMBER YOU ENTER WILL"

"CHANGE THE COLORS IN ITS OWN

"WAY

"TRY TO CHANGE ALL THE BLOCKS"

TO PURPLE IN AS FEW TRIES AS"

"PRESS

ST)

1990

RETURN

REM DEFINE COLORS AND CHARS

FOR 1=72 TO 136 STEP 8

CALL CHAR(I,"")

NEXT I

FOR 1=1 TO 12

A KEY TO CONTINUE"

177

G3£v:'|

Recreation ?=====——==>

2070 READ LL,L* ^
2080 CALL CHAR(LL,L*) !
2090 NEXT I

2100 CALL COLOR(5,5,l)
2110 FOR 1=6 TO 14 —"|
2120 CALL C0L0R(I,2,2) \
2130 NEXT I

2140 RETURN -

2150 DATA 33,003844447C444444,34,007C4040784 I
0407C

2160 DATA 47,003C40405C444438,36,00381010101
01038

2170 DATA 37,004040404040407C,38,00446464544
C4C44

2180 DATA 39,0078444478404040,42,00784444785
04844

2190 DATA 43,0038444038044438,44,007C1010101
01010

2200 DATA 46,0044444444444438,64,FFFFFFFFFFF
FFFFF

2210 DD=DD+2

2220 CALL SCREEN(DD)
2230 RETURN

2240 END

"1

178 ""]

ffftrj

rc$$Pto

Joseph Ganci
TI Translation by Patrick Parrish

l*"9 Now you can go bowling without the expense of renting spe
cial shoes or suffering the embarrassment of rolling a gutter
ball in front of dozens of people. "Bowling Champ" is a game
for one to four players.

Some games, such as Pac-Man or Adventure, create their own
unique fantasy worlds, while others are simulations of reality.
"Bowling Champ" is an example of the latter.

It's not easy to take a game with countless physical vari
ables (such as bowling) and reduce it to numbers so it can be
re-created by a computer—especially a microcomputer. Com
promises must be made. Usually the game must be modified
in major ways to make it possible to program. The result is a
hybrid game, an approximation of reality, that resembles the
original but has new aspects of its own.

Bowling Champ is a reasonable simulation of a game of
ten pins, given the limitations imposed by a BASIC program
which must remain short enough to publish. The elements of
skill and luck have been preserved, and the scoring is
authentic.

Up to Four Players
When you first run Bowling Champ, the program asks for the
number of players. Up to four people can play.

r*» Next you enter the players' names. All names of more
than eight characters long will be truncated to eight characters.

Now you're ready to bowl the first frame. The bowling
p^ ball rapidly moves up and down across the alley until you

press the space bar. This rolls the ball down the alley and
knocks over the pins—unless you've thrown a gutter ball. The

«*•» trick is to time your release so the ball rolls down the center of
the alley to score a strike.

In case you're unfamiliar with how a game of ten pins is
r»w scored, here's a brief summary:

A game consists of ten frames or turns. Each player gets
one or two balls per frame. If you roll a strike—knocking

^rS\

179

Recreation

down all ten pins with the first ball—you don't get a second
ball, but the current ball's score is ten plus the total of your
next two throws.

If some pins are left standing after your first ball, you get
a second ball. If you knock down all the remaining pins, it
counts as a spare, and the current ball's score is ten plus your
next throw.

If any pins remain after your second ball (no strike or
spare), the number of pins knocked down in that frame is
added to your previous score.

Rolling a spare in the tenth (last) frame gains you one ex
tra ball; rolling a strike in the tenth frame gains two extra
balls.

Therefore, a perfect game—ten strikes during regular play
plus two strikes with the extra bowling balls—scores 300
points. Needless to say, this doesn't happen very often, either
in real bowling or in Bowling Champ.

Is It Too Hard?

You can make the game easier with just two simple changes.
Remove STEP 2 from line 1660 and delete line 1740 entirely.

Bowling Champ

100 GOTO 150

110 FOR 1=1 TO LEN(H*>

120 CALL HCHAR(R,C+I,ASC(SEG*(H$, I, 1)) >
130 NEXT I

140 RETURN

150 GOSUB 2440

160 DIM NAME*(3>,SS(3),TT(3)
170 G=15

180 H=23

190 CALL CLEAR

200 CALL SCREEN(6)

210 PRINT TAB(8);"B OWL I N G": :
220 PRINT TAB(9);"C H A M P !" : : : s :

230 PRINT TAB(3);"H0W MANY PLAYERS (1-4)
240 CALL KEY(0,A,S)
250 IF S=0 THEN 240

260 IF (A<49)+(A>52)THEN 240

270 A=A-48

280 CALL CLEAR

290 CALL SCREEN(13)

180

on

SrSra

[lW;'*3Kj

Recreation

fm^^3

f*51 300 X*="NAMES"
310 IF AOl THEN 330

320 X*="NAME"

330 PRINT "TYPE IN YOUR ";X*;H:": : :
340 FOR 1=0 TO A-l

350 PRINT :

360 PRINT TAB(4);"PLAYER #";I+1;" ";
f» 370 INPUT NAME* (I)

380 NAME*(I)=SEG*(NAME*(I),1,8)
390 NEXT I

400 REM DRAW GAME SCREEN

410 CALL CLEAR

420 CALL SCREEN(12)

430 H*=" 1 2 3 4 5 6 7 8 9 10"
440 R=l

450 C=l

460 GOSUB 110

470 R=2

480 H*= "x x >: x x x >: x
490 GOSUB 110

500 FOR J=l TO A

510 h*=" yyyyyyyyy"
520 R=2*J+1

530 GOSUB 110

540 H*="x x x xx xxxxxxxxxx xx xxxx xx x x x xxx x
550 R=2*J+2

560 GOSUB 110

570 NEXT J

580 R=13+(A>2)*2

590 FOR J=l TO A

600 C=l-((J=2)+(J=4))*15

610 R=R-(J=3)*2

620 H*= NAME*(J-1)&": "

630 GOSUB 110

640 NEXT J

pBfc, 650 REM INITIALIZE SCORE STATE
I 660 FOR J=0 TO A-l

670 SS(J)=1

680 TT(J)=0

|*™» 690 NEXT J
700 REM PUT DOWN ALLEY

710 CALL COLOR(13,1,1)
720 FOR J=G TO H

• 730 CALL HCHAR(J,2,E,30)
740 NEXT J

750 CALL HCHAR(14,2,120,30)

fsb 760 CALL HCHAR (24, 2, 120,30)
770 REM MAIN LOOP

780 FOR Q=l TO 10

790 FOR RR=0 TO A-l

fw^3

181

i

Recreation i-—*•

800 CC=(RR+1)*3

810 IF RR<>3 THEN 830

820 CC=14

830 CALL C0L0R(13,2,CC)
840 CALL COLOR (11, 15, CO
850 B1=0

860 GOSUB 1320

870 IF Jl=10 THEN 900

880 Bl=l

890 GOSUB 1450

900 IF QO10 THEN 920

910 ON S GOTO 920,1040,1040,920,1160
920 NEXT RR

930 NEXT Q

940 R=19

950 C=7

960 H*="PLAY AGAIN (Y/N) ?"
970 GOSUB 110

980 CALL KEY(0,K,ST)
990 IF ST=0 THEN 980

1000 IF (K<>89)*(K<>78)THEN 980
1010 IF K=89 THEN 170
1020 STOP

1030 REM 10TH FRAME-EXTRA BALLS
1040 R=19

1050 C=2

1060 H*="TAKE 2 MORE BALLS, "&NAME*(RR)

1070 GOSUB 110

1080 FOR 1=1 TO 300

1090 NEXT I

1100 CALL HCHAR(19,2,E,29)

1110 SS(RR)=S-1

1120 Bl=l

1130 GOSUB 1320

1140 IF J=10 THEN 1230

1150 GOTO 1270

1160 C=3 ^
1170 R=19 '
1180 H*="TAKE 1 MORE BALL, "&NAME*(RR)
1190 GOSUB 110 -=!
1200 FOR 1=1 TO 300 I
1210 NEXT I

1220 CALL HCHAR(19,3,E,28)
1230 SS(RR)=1 "1
1240 Bl=2

1250 GOSUB 1320

1260 GOTO 920 _

1270 SS(RR>=1 J
1280 Bl=2

1290 GOSUB 1450

182 ~l

p-

P^Sw^

] Recreationi ^^11..;^^^;:^^^^,^,^^^

1300 GOTO 920

1310 REM FIRST BALL

1320 FOR 1=16 TO 22 STEP 2

1330 CALL VCHAR(I,30,112)
1340 NEXT I

1350 FOR 1=17 TO 21 STEP 2

1360 CALL VCHAR(I,29,112)
pwo 1370 NEXT I

1380 CALL HCHAR(18,28,112)

1390 CALL HCHAR(20,28,112)
1400 CALL HCHAR(19,27,112)
1410 PS=-1

1420 J1=0

1430 GOTO 1460

1440 REM SECOND BALL

1450 PS=0

1460 GOSUB 1580

1470 T=TT(RR)

1480 S=SS(RR)

1490 T=T+J

1500 ON SS(RR)GOSUB 2200,2250,2300,2340,2390
1510 TT(RR)=T

1520 SS(RR)=S

1530 R=13+(A>2)*2-(RR>l)*2

1540 C=10-((RR=1)+(RR=3))*15

1550 H*=STR*(TT(RR))

1560 GOSUB 110

1570 RETURN

1580 IF (Q=l)*(PS=-1)*(RR=0)THEN 1650

1590 C=30

1600 FOR HH=C TO 3 STEP -1

1610 CALL HCHAR(15,HH+1,E)
1620 CALL HCHAR(15,HH,B)
1630 NEXT HH

1640 CALL HCHAR(15,HH+1,E)
1650 C=3

1660 FOR R=G TO H STEP 2

1670 CALL HCHAR(R,C,B)
1680 CALL KEY(0,K,ST)

Fa 1690 CALL HCHAR(R,C,E)
1700 IF ST=0 THEN 1730

1710 ROW=R

1720 R=H

ra 1730 NEXT R
1740 G=15-(G=15)

1750 IF ST=0 THEN 1660

F&m 1760 R=ROW
1770 3=0

1780 FOR C=3 TO 25

1790 CALL HCHAR(R,C,E)

183

J^^^CrCcllXvUX [^355iE^5^5^^^^^E

1800 CALL HCHAR(R,C+1,B)
1810 CALL S0UND(-1,130,2)

1820 NEXT C

1830 CALL GCHAR(R,C+1,X)
1840 IF (XOH2) * (C03DTHEN

1850 IF C=31 THEN 2060

1860 IF XOH2 THEN 2020

1870 CALL SOUND(10,-7,5)
1880 J=J + 1

1890 C = C+1

1900 FOR D=-l TO 1 STEP 2

1910 Y1=R

1920 X1=C

1930 X1=X1+1

1940 Y1=Y1+D

1950 CALL GCHAR(Yl,XI,X)

1960 IF XOH2 THEN 2010

1970 J = J + 1

1980 CALL HCHAR(Y1,X1,E)

1990 CALL SOUND(10,-7,5)
2000 GOTO 1930

2010 NEXT D

2020 CALL HCHAR(R,C-1,E, 2)

2030 C = C+1

2040 CALL HCHAR(R,C,B)

2050 GOTO 1830

2060 CALL HCHAR(R,C,E)

2070 J1=J1+J

2080 R=3+RR*2

2090 C=-2+3*Q+Bl

2100 Gl=J+48

21 10 IF J1O10 THEN 2150

2120 Gl=47

2130 IF PS=0 THEN 2150

2140 Gl=88

2150 IF B1=0 THEN 2170

2160 Gl=Gl+50

2170 H*=CHR*(Gl)

2180 GOSUB 110

2190 RETURN

2200 IF J1O10 THEN 2240

2210 S = 5

2220 IF PS=0 THEN 2240

2230 S = 2

2240 RETURN

2250 T = T-*-J

2260 S = 4

2270 IF JO10 THEN 2290

2280 S = 3

2290 RETURN

184

!020

•CS1

i

—i

n

|'.WS?J

Recreation

2300 T=T+J*2

2310 IF J=10 THEN 2330

2320 S=4

2330 RETURN

2340 T=T+J

2350 S=l

2360 IF J1O10 THEN 2380

2370 S=5

2380 RETURN

2390 T=T+J

2400 S=l

2410 IF JO10 THEN 2430

2420 S=2

2430 RETURN

2440 FOR 1=97 TO 107

2450 READ C*

2460 CALL CHAR(I,C*)

2470 NEXT I

2480 FOR 1=112 TO 128 STEP 8

2490 READ C*

2500 CALL CHAR(I,C*)
2510 NEXT I

2520 CALL CHAR(121,"0010101010101000")

2530 CALL CHAR(138,"FFBBBBD7EFD7BBBB")
2540 E=129

2550 CALL CHAR(129,"")
2560 B=128

2570 RETURN

2580 DATA FFFFFBF7EFDFBFFF,FFC7BBBBBBBBBBC7,
FFEFCFEFEFEFEFC7,FFC7BBFBF7EFDF83

2590 DATA FFC7BBFBE7FBBBC7,FFF7E7D7B783F7F7,
FF83BF87FBFBBBC7

2600 DATA FFE7DFBF87BBBBC7,FF83FBF7EFDFDFDF,
FFC7BBBBC7BBBBC7

2610 DATA FFC7BBBBC3FBF7CF

2620 DATA 1C1C081C3E3E3E1C,000000FF00000000,

003C7E7E7E7E7E3C

185

BB|

^^^^^^^^ Stephen D. Fultz
TI Translation by Patrick Parrish ""]

Nerm the worm is lost in Bemer Castle and needs your help ""]
to get home. You must guide him through 11 rooms and help
him find magic mushrooms to eat along the way. The journey
is a navigator's nightmare, because you never know where
the next mushroom will grow, and if Nerm hits a wall or
gets trapped by his tail, he loses one of his lives.

"Worm of Bemer" is a fast-paced arcade game in which Nerm
the Worm travels through rooms eating magic mushrooms.
Nerm is lost in Bemer Castle and wants to return home. Guide
Nerm to a mushroom using the keyboard arrow keys (E, S, D,
and X) so he can keep up his strength for the journey. After
eating five mushrooms in a room, Nerm can exit to the next
room. You must guide Nerm through 11 rooms before he
finds his home. You start out with four lives. If you touch
anything besides a mushroom you will lose a life.

At the top of the screen you will see the current score,
what room Nerm is in, how many mushrooms Nerm must eat
to open the exits, and how many lives Nerm has left, includ
ing the current life. You get 100 points, plus bonus points, for
every mushroom you eat. Nerm gets a bonus life after
completing the first two rooms and another for every third
room thereafter.

Adding More Features •=)
You can learn a lot about programming and games by modify- '
ing the action and settings in Worm of Bemer. Some features
you might add include a routine to save the high score to disk, """i
adding more players, or having Nerm go to a different room '
depending on which exit he takes. Simpler enhancements
would be changing the number of mushrooms that Nerm must —=|
eat or changing his speed. '

Worm of Bemer

3 DIM NN(29),RANK*(12)
5 GOSUB 11000

186

r.^w^j

fWftEi

fS*^)

mm Recreation

10 GOTO 5000

20 FOR 1=1 TO LEN(H*)

30 CALL HCHAR(ROW,COL + I,ASC(SEG*(H*, I
35 NEXT I

40 RETURN

100 CALL KEY(0,K,ST)

105 IF (K<>68)+(OD=2)THEN 1 10

106 DX = 1

107 DY = 0

108 DI = 1

110 IF (K<>83) «-(OD=l)THEN 1 15

111 DX = -1

1 12 DY= 0

113 DI=2

115 IF (K<>69) +(0D=3)THEN 120

1 16 DY = -1

1 17 DX = 0

1 18 DI=4

120 IF (K<>88)+(0D=4)THEN 140

125 DY=1

130 DX = 0

135 DI=3

140 CALL HCHAR(YA,XA,136)
145 OD=DI

150 XA=XA+DX

152 YA=YA+DY

154 L=LEN(XA*)

156 XA*=XA*&CHR* (XA)

158 YA*=YA*&CHR*(YA)

160 CALL GCHAR(YA,XA,Z)
162 IF Z<>32 THEN 200

164 CALL HCHAR(YA,XA,128)
166 CALL SOUND(1,622,2)

168 IF L<WO THEN 100

170 CALL HCHAR(ASC(YA*),ASC(XA*),32)
172 LL=LEN(XA*)-1

174 XA*=SEG*(XA*,2,LL)
176 YA*=SEG*(YA*,2,LL)
180 GOTO 100

200 CALL SOUND(100,311,2)
201 CALL HCHAR(YA,XA,128)
203 GOSUB 6600

205 IF ZOMUSH THEN 260

210 WO=WO+15+2*LO

212 IF W0<185 THEN 215

214 W0=185

215 RANDOMIZE

216 XX=RND*28+3

218 X=RND*19+4

220 CALL GCHAR(X,XX,HI)

1)))

187

Recreation iio^»M^«^JWMiH..~n

222 IF Hl<>32 THEN 216 e=^l
224 SC=SC+100+LO*7

228 HI=HI-1

230 GOSUB 6600

232 IF HI>0 THEN 245

234 CALL HCHAR(3,17,104)
236 CALL HCHAR(13,2,104)
238 CALL HCHAR<13,31,104)
240 CALL HCHAR(23,17,104)

241 FOR 1=3 TO 30 STEP 3

242 CALL SOUND(100,1900,I)
243 NEXT I

244 GOTO 100

245 CALL HCHAR(X,XX,MUSH)
250 GOTO 100

260 IF Z=104 THEN 270

261 IF LI=1 THEN 7500

264 GOSUB 7500

266 GOTO 290

270 CALL HCHAR(YA,XA,136)
272 GOSUB 7000

275 FOR DE=110 TO 880 STEP 32

277 PRINT

279 CALL S0UND(1,DE,2)
280 CALL SOUND(-l,DE,2)
281 NEXT DE

282 LO=LO+l

283 IF L0=12 THEN 1200

284 W0=5

285 L1=L1-H

286 IF LO>EX THEN 9100

287 CALL COLOR(14,Ll,1)
288 CALL CLEAR

289 GOSUB 1300

290 GOSUB 6600

300 ON LO GOTO 5080,400,500,550,600,700,800,
450,550,1000,1100,1200

399 GOTO 5080

400 REM SECOND SCREEN

410 CALL HCHAR(13,5,120,24) *^
420 GOTO 5080 »

449 REM SCREEN

450 CALL VCHAR(7,15,120,16) —

455 CALL HCHAR(9,6,120,22) |
460 GOTO 5080

499 REM FOURTH SCREEN

500 CALL HCHAR(6,5,120,24) "*]
505 CALL HCHAR(20,5,120,24) !
510 GOTO 5080

549 REM FIFTH SCREEN mmm
H

188

l*n 550 CALL HCHAR (7 ,6 , 120 ,22)
555 CALL VCHAR(8,15,120,16)

560 GOTO 5080

599 REM FRAME 6

^ 600 CALL HCHAR(12,3,120,13)
610 CALL HCHAR(12,19,120,12)
620 GOTO 5080

fmm 699 REM FRAME 7

700 FOR 1=8 TO 18

710 CALL HCHAR(I,7,120,7)
715 CALL HCHAR(I,18,120,8)
720 NEXT I

725 GOTO 5080

799 REM FRAME 8

800 CALL HCHAR(8,3,120,13)
805 CALL HCHAR(14,12,120,19)
810 CALL HCHAR(18,3,120,13)
815 GOTO 5080

999 REM FRAME 9

1000 GOSUB 1400

1015 FOR T=5 TO 21

1020 CALL HCHAR(T,4,32,16)
1025 NEXT T

1030 GOTO 5080

1100 GOSUB 1400

1110 FOR T=5 TO 21

1115 CALL HCHAR(T,4,32,20)
1120 NEXT T

1125 GOTO 400

1199 REM YOU WIN!!

1200 CALL CLEAR

1205 CALL SCREEN(3)

1206 FOR 1=4 TO 8

1207 CALL COLOR(I,2,1)
1208 NEXT I

1210 PRINT TAB(9);"NERM'S HOME!"
^ 1220 PRINT

1230 PRINT

1240 PRINT TAB(10);"THANK YOU!"
pm 1250 FOR T=l TO 9

1260 PRINT

1270 NEXT T

1275 FOR T=l TO 3

^m 1280 FOR 1=110 TO 880 STEP 30

1283 CALL SOUND(1,1,2)

1284 CALL SOUND(-l,1,2)
1285 NEXT I

1286 FOR 1=880 TO 110 STEP -30

1287 CALL SOUND(1,1,2)
1288 CALL SOUND(-1,I,2)

f$®m&

Recreation

189

Recreation

1289 NEXT I

1290 NEXT T ,
1291 CALL SCREEN(2)

1293 GOTO 7700

1300 CALL CLEAR —"J
1305 PRINT "SCORE :";TAB(20);"ROOM :"

1310 PRINT "MUSHROOMS :";TAB(20);"LIVES :"
1320 FOR T=l TO 21

1330 PRINT I
1340 NEXT T '
1350 RETURN

1400 FOR T=5 TO 21

1410 CALL HCHAR(T,4,120,26)
1420 NEXT T

1430 RETURN

4999 REM UP THE GAME

5000 GOSUB 10000

5005 MUSH=112

5010 LI=4

5015 SC=0

5020 LO=l

5035 HI=5

5040 WO=5

5045 EX=2

5050 Ll=3

5055 GOSUB 5500

5060 CALL CLEAR

5065 CALL SCREEN(2)

5066 FOR 1=3 TO 8

5067 CALL COLOR(I,16,1)
5068 NEXT I

5070 GOSUB 1300

5075 GOSUB 6600

5080 XA*=""

5081 YA*=""

5085 XA=17

5086 YA=18 «n

5091 DX=0 |
5093 DY=-1

5103 IF HK6 THEN 5107

5105 HI=5 "^l

5107 IF HI>-1 THEN 5110 '
5109 HI=0

5110 DI=4 —~

5115 FOR 1=2 TO 31 STEP 29 I
5120 CALL VCHAR(3,I,120,21)
5125 NEXT I

5130 FOR 1=3 TO 23 STEP 20 *^
5135 CALL HCHAR(I,3,120,28) '
5140 NEXT I

190

*SSi

f*f!ii!Wi

f.^^j

i •/.-.'.v.'^mn

rpH&aJ

5145 CALL HCHAR(24,3,137,28)
5150 IF HI>0 THEN 5174

5155 CALL HCHAR(3,17,104)
5160 CALL HCHAR(12,2,104)
5165 CALL HCHAR(12,31,104)
5167 CALL HCHAR(23,17,104)
5171 GOTO 150

5174 RANDOMIZE

5175 XX=RND*28+3

5178 X=RND*19+4

5180 CALL GCHAR(X,XX,HI)
5185 IF Hl<>32 THEN 5174

5190 CALL HCHAR(X,XX,MUSH)
5200 GOTO 150

5500 CALL CLEAR

5505 PRINT TAB(10);"GET READY!"
5510 FOR T=l TO 12

5515 PRINT

5520 NEXT T

5525 FOR 1=1 TO 14

5530 CALL SOUND(100,NN(I),2)
5535 NEXT I

5540 RETURN

6599 REM PRINT SCORE

6600 H* = STR* (SO

6603 ROW=l

6604 COL=10

6605 GOSUB 20

6607 H*=STR*(LO)

6608 C0L=28

6609 GOSUB 20

6610 H*=STR*(HI)

6611 R0W=2

6620 COL=14

6625 GOSUB 20

6630 H*=STR*(LI)

6635 C0L=29

6640 GOSUB 20

6650 RETURN

6999 REM NERM LEAVES

7000 SP=SP-5

7005 GOSUB 6600

7010 HI=5

7015 L=LEN(XA*)

7020 FOR 1=1 TO L

7025 CALL S0UND(2,110+1*2,2)
7030 CALL HCHAR(ASC(YA*),ASC(XA*)
7035 LL=LEN(XA*)-1

7040 XA*=SEG*(XA*,2,LL)
7045 YA*=SEG*(YA*,2,LL)

Recreation

32)

191

Recreation gb

7050 NEXT I

7060 RETURN

7499 REM OOP!!

7500 CALL CLEAR

7505 PRINT TAB(13);"OOPS"
7510 FOR 1=1 TO 12

7515 PRINT

7520 NEXT I

7525 LI=LI-1

7547 FOR 1=14 TO 24

7549 CALL SOUND(10,I*40,2)

7551 NEXT I

7553 FOR 1=1 TO 30

7555 NEXT I

7560 IF LK1 THEN 7700

7575 GOSUB 1300

7600 RETURN

7699 REM THE GAME ENDS

7700 CALL CLEAR

7704 FOR 1=3 TO 8

7705 CALL COLOR(I,16,1)
7706 NEXT I

7710 IF HS>SC THEN 7750

7720 HS=SC

7721 FOR 1=1 TO 5

7722 PRINT

7723 NEXT I

7725 PRINT TAB(8);"NEW HIGH SCORE"
7728 FOR T=110 TO 1760 STEP 50

7729 CALL S0UND(2,T,2)

7730 NEXT T

7740 FOR 1=1 TO 5

7743 PRINT

7745 NEXT I

7750 PRINT TAB(7);"YOUR SCORE: ";SC
7755 PRINT

7760 PRINT TAB(7) ;"HIGH SCORE: ";HS *^f
7770 FOR 1=1 TO 3 '

7775 PRINT

7780 NEXT I mmw[
7785 PRINT TAB(5);"YOUR NEW RANK IS :"]
7790 PRINT

7795 PRINT TAB(9);RANK*(LO)
7796 FOR 1=15 TO 29

7797 CALL SOUND(100,NN(I),2)

7798 NEXT I

7800 PRINT

7805 PRINT

7806 PRINT

7810 PRINT "(C TO CONTINUE Q TO QUIT)"

192

"I

OBI|

fi^Wyi

f$$!Pnl

n Recreation

7815 FOR T=l TO 4

7816 PRINT

7817 NEXT T

7820 CALL KEY(0,K,ST)

7830 IF ST=0 THEN 7820

7840 IF (K<>67)*(K<>81)THEN 7820

7845 IF K=67 THEN 5000

laan 7850 STOP
9099 REM EXTRA LIFE

9100 CALL CLEAR

9110 PRINT TAB(11);"BONUS LIFE"
9120 FOR 1=1 TO 12

9125 PRINT

9130 NEXT I

9132 FOR 1=1 TO 30 STEP 2

9134 CALL SOUND(100,1175,I)

9136 NEXT I

9140 EX=EX+3

9145 LI=LI+1

9150 GOTO 287

10000 CALL CLEAR

10001 FOR T=3 TO 8

10003 CALL C0L0R(T,2,1)

10006 NEXT T

10010 CALL COLOR(14,3,1)
10015 CALL SCREEN(IS)

10020 PRINT TAB(10);"WELCOME TO"
10021 FOR T=l TO 4

10022 PRINT

10023 NEXT T

10025 PRINT TAB(8);"NERM OF BEMER"
10028 FOR T=l TO 9

10030 PRINT

10032 NEXT T

10034 PRINT "USE E,S,D, & X KEYS TO MOVE"
10036 PRINT

P* 10040 CALL HCHAR(21,3,136,4)
10042 CALL HCHAR(21,8,128)
10045 FOR 1=1 TO 22

«••> 10047 CALL HCHAR(21 ,6+1 , 136)
J 1*050 CALL HCHAR(21,7+I,128)

10052 CALL SOUND(10,622,2)

10055 CALL HCHAR(21,2+I,32)

F^ 10057 FOR T=l TO 20
10058 NEXT T

10060 NEXT I

10065 FOR T=l TO 100

10070 NEXT T

10075 RETURN

10999 REM REDEFINE CHARS

' 193

Recreation

11000

11015

11020

11025

11030

11032

11033

11035

11040

11045

11050

1060

1065

1070

1075

1080

1085

11090

11092

1 1094

1 1 100

11110

11120

11130

11135

11140

194

FOR 1=104 TO 136 STEP 8
READ A*

CALL CHAR(I,A*)
NEXT I

DATA FFFFFFFFFFFFFFFF,187EFFFF18181818
,FF81BDA5A5BD81FF

DATA 8142243C7E5A3C18,387CFEFEFEFE7C38
CALL COLOR(10,2,2)
CALL COLOR(11,14,1)
CALL C0L0R(12,2,10)
CALL C0L0R(13,7,1)
CALL CHAR(137,"FFFFFFFFFFFFFFFF")
FOR 1=1 TO 9

READ RANK*(I)
NEXT I

FOR 1=10 TO 12

RANK*(I)="HALL OF FAME"
NEXT I

DATA ZERO,ROOKIE,NOVICE,AVERAGE
DATA MASTER,GRAND MASTER,WIZARD,GRAND
WIZARD

DATA SUPER STAR
FOR 1=1 TO 29

READ NN(I)

NEXT I

DATA 262,349,40000,349,392,40000,392,4
40,523,440,523,440,349,40000
DATA 349,40000,40000,262,247,262,294,2
94, 262, 40000, 40000, 40000!, 330^.330* 349
RETURN

tfBE^I

MMH

fitiWMEa-1

n^Si

fi^^j

ftfwMIW)

Lyle O. Haga

There is a better way of figuring out pattern-identifier code
than that presented in the TI manual

The TI screen is divided up into a giant grid of 24 rows and 32
columns for graphics. This grid, shown in your TI manual in
the CALL CHAR section, makes 768 positions, or squares, for
you to put your graphics in. Each square of the grid is divided
into an 8 X 8 grid consisting of 64 dots to be turned on or off.
Each 8X8 grid is divided into a "left block" and a "right
block."

Left

Block

Right
Block

Each time you define a pattern-identifier, you use all 64
dots whether or not you so stipulate. Thus, the statement
CALL CHAR(100,"FF") covers all 64 dots even though you
stipulated only the top row of eight dots to be turned off; the
remaining dots stay turned on. This can be seen by a simple
little exercise. Make a box outline, 4X4.

On the surface this sounds like a pretty simple exercise,
and it is. The problem is that many people probably won't
think it through, and will come up with the following:
10 CALL CLEAR

20 CALL CHAR(100."FF")

30 CALL CHAR<101,"8080808080808080">

197

Sound and Graphics ess

40 CALL HCHAR<12,8,100,4)
50 CALL HCHAR<16,8,100,4)
60 CALL HCHAR(12,8,101,4)
70 CALL HCHAR(12,12,101,4)
80 GOTO 80

No matter what you do, this won't work; there will al
ways be a gap somewhere. Remember that even though you
didn't stipulate all 64 dots in CHAR 100, you still have them
to deal with.

F F

IHiHllillH

On top of this you put the following:

You should be able to see where the gap comes in now.
When you put CHAR 101 on top of CHAR 100, the dots you
left turned on cover the dots you turned off, thus the gap.

Here's one solution to the problem:

"00000000000000FF")
»FF..,

"8080808080808080")

"0101010101010101")

8,102,4)
11,103,4)
8,100,4)
8,101.4)

10 CALL CLEAR

20 CALL CHAR(100,

30 CALL CHAR<101.

40 CALL CHARC102,

50 CALL CHAR(103,

60 CALL VCHAR<12,

70 CALL VCHAR(12,

80 CALL HCHARC11,

90 CALL HCHAR<16,

100 GOTO 100

198

n

i

Sound and Graphics

There's an easier way of defining graphics? The new
method is one your kids learned in school, called base 16.
Using base 16, you write the numbers 8,4,2,1,8,4,2,1 across
the top of each 8X8 grid. Let's see how this works in defin
ing the heart; we will make it two positions high and two wide.

If you are planning to do many graphics, you should get
some graph paper—this will make it easier. Let each square
on the graph paper represent one dot; this gives you 16
squares wide and 16 squares high. Make the outline with a
heavy line. Count horizontally from the left 4, 8, and 12 lines;
make these heavier than the other lines, and make the eighth
line even heavier and have it extend beyond the outline. This
will mark off your left and right blocks and one position from
another. Now, counting vertically, go down eight and darken
this line, going beyond the outline. Across the top, put your
base 16 numbers 8, 4, 2, 1, 8, 4, 2, 1, and your paper should
look like this:

8421842184218421

With this, let's make our heart. First, color in all the
squares making your heart. Then, starting at the top row, add
up the numbers over the squares you darkened. If the total is
under ten, your pattern code will be that number, and if it is
over nine, you see the letters A-F. You do the one complete
grid and then move to the right; when you are through, move

199

Sound and Graphics

down to the next line. You should come up with the following
results:

8421842184218421

• m
8

a
• m

• •

m
m

r • •
•

•

m

m

_

m

• 1
m

I
•

•

A = 10

B = 11

C = 12

D = 13

E = 14

F = 15

Row one has no darkened squares, so the code is zero for
both left and right blocks. You get the same results with row
two. In row three, a square under the number 1 is darkened in
the left block of grid one, so the code is 1. In the right block,
squares under the 8 and 4 are darkened, so the code is C. In
row four, the squares under the 2 and 1 are darkened; the
code is 3. Row four of the right block has darkened squares
under 8, 4, and 2, so the code is E. Just keep this up, and you
will come up with the following:

CALL CHAR(100,"00001C3E7F7F7F7F")

CALL CHAR(101,"0000387CFEFEFEFE")
CALL CHAR(102,"3F1F0F0703010000")
CALL CHAR <103, "FCF8F0E0C0800000")

Using base 16 is easier.

200

BES|

f$®£?T\

^mmx

I^W^a^

Jim Schlegel

Fast animation is possible with TI BASIC through efficient
coding and the use of a few tricks. "Marbles," a game writ
ten in TI BASIC, demonstrates some of these techniques.

Sprites can be used to create very smooth moving animation.
The problem with sprites is that they require the Extended
BASIC module. If you don't already have Extended BASIC, it
can be a very difficult item to find. It's possible, though, to
write animated games using just TI BASIC.

BASIC'S CALL and the Hardware
When writing animated programs for the TI-99/4A home
computer, an understanding of its architecture will lead to
easier coding and faster program execution. In particular, the
relationship between the TI's display hardware and the BASIC
language CALL instructions used to control this hardware is
important. The 99/4A uses Texas Instruments's TMS9918
video display processor to generate the screen display. The
display processor functions independently of the TMS9900,
the 16-bit microprocessor used in the 99/4A, but is controlled
by the TMS9900. This removes the job of generating the dis
play from the microprocessor, allowing it to execute the BASIC
program faster.

The TMS9918 allows more flexible displays than the
owner of the TI has access to without purchasing additional
software modules. Sprites are 8 X 8, 16 X 16, or 32 X 32
pixel patterns created and controlled by the Extended BASIC
program. A pixel is the smallest point that can be changed on
the display. The sprites are then moved by the TMS9918 in
dependent of, but under control of, the BASIC program. Ani
mated displays can be created without sprites, but it takes a

201

Sound and Graphics ebb

little more work. Here is where the knowledge of the
TMS9918 architecture comes in handy!

The display created by the TMS9918 is controlled by
three tables which are modified by the BASIC program. These
tables and their interrelationships are shown in Figure 1.

Figure 1. TI-99/4A Display Mapping
These tables control the display generated by the TMS9918
video display processor.

row col

1 1

1 2

9 20

24 31

24 32

CHARACTE
TABLE

R

32

33

128

158

159

PATTERN
TABLE

1

2

13

16

COLOR

TABLE

number pattern color

f b

128 001.. 00

011.. 10

2 1

128

Character Table
The first table, the Character Table, is a list of the 768 charac
ters (24 rows by 32 columns) to be displayed. The numbers
stored in this table represent the characters to be displayed at
each row and column position. The letter A is represented by
the number 65, B by 66, C by 67, etc. Numbers 32-127 are
defined by the ASCII character set but can be redefined by the
BASIC program. ASCII characters 128-159 are also available
for defining special characters. This table is accessed by four
CALL instructions:

CALL CLEAR

CALL HCHAR(row, column, character[,repetitions])
CALL VCHAR(row, column, character[,repetitionsj)
CALL GCHAR(row, column, character)

CALL CLEAR sets all numbers in the table to 32 (a space
character). CALL HCHAR and CALL VCHAR are used to put
numbers into the Character Table while CALL GCHAR is used

202

—I

j*™©

a Sound and Graphics

to get numbers from the table. Note that the repetitions argu
ment for the CALL HCHAR and CALL VCHAR instructions is
optional. If this argument is omitted, one character is written
to the position defined by the row and column arguments. If
this argument is used, a row or column of characters is written
to the display. The argument "repetitions" defines the length
of the row or column. For example, CALL HCHAR(1,1,65,10)
will print ten letter A's horizontally starting at row one, column
one.

Pattern Table
The second table, the Pattern Table, is a list of 128 8-byte
character patterns. The first entry in the list represents the pat
tern for character number 32, the second entry is for character
number 33, and so on. The last pattern, entry 128, represents
the pattern for character number 159. Each character is an 8 X 8
pixel, 2-color pattern where each 1-pixel represents the fore
ground color,and each 0-pixel represents the background
color. This table is modified by one CALL instruction:
CALL CHAR(character, pattern)

CALL CHAR defines which pixels are to be displayed as
the foreground color and which are to be displayed as the
background color. An example of a CALL CHAR instruction is
shown in Figure 2.

Figure 2. CALL CHAR Instruction

CALL CHAR(128,"1898FF3D3C3CE404")

Pattern Binary Hexadecimal
• 00011000 18

10011000 98

11111111 FF

00111101 3D

00111100 3C

00111100 3C

1110 0100 E4

0000 0100 04

I H ,

i a • • m : m •::

• m : ; m

• m m s
• i. m •

• B :\ •
•

Color Table
The color table is a list of 16 foreground and background color
combinations to be used when displaying the characters. The
characters defined in the Pattern Table are arranged in sets of

203

Sound and Crannies '"*"""i-w'-MJ»-^-ftj»«^mi

eight for determining which colors to use. The first eight
characters use the first foreground/background color combina
tion, the second eight characters use the second combination,
etc. This table is modified by the CALL COLOR instruction:
CALL COLOR(set, foreground-color, background-color)

Fifteen colors plus transparency are available. Any
combination of these colors can be selected by the CALL
COLOR instruction.

Table 1. Colors Available on the TI-99/4A

Number Color Number Color

1 Transparent 9 Medium red
2 Black 10 Light red
3 Medium green 11 Dark yellow
4 Light green 12 Light yellow
5 Dark blue 13 Dark green
6 Light blue 14 Magenta
7 Dark red 15 Gray
8 Cyan 16 White

Creating Animation
Most computer games use animated players to liven up the ac
tion during play. To do this, the program running the game
must change the pattern of the player to make them move.
Munchman and TI Invaders are good examples of games using
animated players. Two or more patterns representing different
positions of the player are built using the CALL CHAR
instruction. The patterns are then alternately displayed creat
ing animation. Also, using and changing colors can add to the
effect of animation.

By using the BASIC instructions for creating displays, sev
eral different methods can be used to create the same display.
Some methods, however, are preferable because they are easier
to write and run faster. The faster a program can run, the bet
ter the animated display will be.

Many games display the same type of player several times
and move each of these players simultaneously. TI Invaders is
a good example. Several rows of about ten aliens move

204

jOCSS{

4BETJ

1

~1

R$sP*l

Sound and Graphics

about, each moving its legs and/or arms. Each row is made of
only one type of alien; all of the aliens in a row move their
arms and legs the same way. This type of animation can be
created two different ways on the 99/4A.

Both methods will use a common subroutine to animate
the players:

F^ 800 REM * N = Number of Players
' 810 REM * RP = Array of Row Positions of Players

820 REM * CP = Array of Col Positions of Players
830 REM * C = Character Number of Player Pattern
840 FOR I = 1 TO N
850 CALL HCHAR(RP(I),CP(I),C)
860 NEXT I

870 RETURN

The first method uses this subroutine when the player
changes their row and column positions and when the players
move their arms and/or legs:
100 REM * Define Player Patterns
110 CALL CHAR(128,"1898FF3D3C3CE404")
120 CALL CHAR(129,"1819FFBC3C3C2720")

330 REM * Erase Players
340 C=32

350 GOSUB 800

360 REM * Calculate New Rows/Cols

400 REM * Display New Positions
410 C=128

420 GOSUB 800

520 REM * Move Arms/Legs
<«*, 530 C=129

540 GOSUB 800

610 C=128

620 GOSUB 800

680 IF whatever THEN 520
690 GOTO 330

205

GBSviil

Sound and Graphics

The second method uses subroutine 800 only to change *•*
the row and column positions of the players. To move the >
arms and legs, the character pattern defining the player is
changed. Lines 120, 530, and 610 are deleted, lines 540 and ***
620 are changed to: j

540 CALL CHAR(128,"1898FF3D3C3CE404")
620 CALL CHAR(128,"1819FFBC3C3C2720") «j

In the first method, characters 128 and 129 are used,
while in the second method only character 128 is used. Re
ferring back to Figure 1, the differences in these methods can
be seen. Method one changes the Character Table while
method two changes the Pattern Table when moving the arms
and legs. Method one changes each player's location in the
Character Table to point to a new pattern entry in the Pattern
Table. Method two just changes the pattern. If ten players
were displayed, method one would execute 66 instructions to
move the arms and legs while method two would execute only
2 instructions. Method one uses so many more instructions be
cause the loop in subroutine 800 must be executed once for
each player.

Using Color
In addition to moving players to create animation, changing
colors adds to the visual effect. Again, different approaches
will produce the same display but the programming and
execution time will vary. The CALL COLOR instruction lets
the program change the foreground/background color
combination for any character. It's important to remember that
each CALL COLOR changes colors for eight character pat
terns. Care must be used to insure that players and objects are
grouped properly for coloring. "^j

Making players and objects appear and disappear can be
accomplished three different ways.

First, move the character number of the player or object to ***]
the Character Table to make it appear. Overwriting the player '
or object with a space character would make it disappear. If
several players/objects needed to be changed, this would ~")
mean executing many instructions.

Second, the CALL CHAR instruction could be used to
change the Pattern Table to create this effect. Setting all the *•*>
pixels in the pattern to 0 would make the object disappear. ;

206 n

3 Sound and Graphics
fi!j)rmj!&r

f^ Defining the object pattern would make the object reappear.
This requires execution of only one instruction.

Third, the CALL COLOR instruction could be used to
f5™ change the Color Table. By defining both the foreground and

background colors the same, the object is no longer visible. If
the object is on a game board, the color of the board should

P3 be used. Setting both the foreground and background colors to
transparent (1), the color defined by the CALL SCREEN
instruction would be used. One advantage of using the CALL
COLOR instruction is that up to eight distinct objects could be
made to appear and disappear with one instruction, while the
CALL CHAR instruction would have to be executed once for
each distinct object. A single object composed of up to eight
character patterns could be changed with a single CALL
COLOR instruction.

Example Animated Program
The following BASIC program uses the techniques described
in this article to produce an animated game. The object of the
game is to maneuver the marble into the hole at the opposite
corner of the display. Between the marble and the hole are
two to five kids trying to catch the marble. The kids can only
be seen at the start of the game or when one is close to the
marble. The arrow keys on the keyboard are used to maneu
ver the marble.

Marble

100 REM *

110 REM * DEFINE PLAYERS

120 REM *

130 BGC=8

J* 140 SQUARE=128
150 SQR$="0000000000000000"
160 CALL CHAR(SQUARE,SQR*>

<***» 170 CALL COLOR<13,1,BGC)

' 180 KID=136
190 KD1*="1898FF3D3C3CE404"

200 KD2*="1819FFBC3C3C2720"

210 CALL CHAR(KID,KD1$)

220 CALL COLOR(14,2,BGC)

230 MARBLE=144

240 MRB*="003C7E7E7E7E3C00"

250 CALL CHAR(MARBLE,MRB$)
260 CALL COLOR(15,16,BGC)

fiwniBj

ps^sj

207

Sound and Graphics

270 H0LE=152 *4m

280 H0L$="FFC381818181C3FF" \
290 CALL CHAR(HOLE,HOL*)

300 CALL C0L0R(16,2,1)

310 REM * "^
320 REM * DISPLAY BOARD

330 REM *

340 CALL CLEAR «,
350 CALL SCREEN(10) J
360 C=7

370 L=20

380 FOR R=3 TO 22

390 CALL HCHAR(R,C,SQUARE,L)
400 NEXT R

410 REM *

420 REM * POSITION KIDSC3 SPACES*

430 REM *

440 DIM KR(10) ,KC (10)

450 RANDOMIZE

460 KN=INT(4*RND)+2

470 FOR N=l TO KN

480 KR(N)=INT(20*RND)+3

490 KC(N)=INT(20*RND)+7

500 CALL HCHAR(KR(N),KC(N),KID)
510 NEXT N

520 REM *

530 REM * POSITION H0LE{3 SPACES!
540 REM *

550 HR=4

560 HC=8

570 CALL HCHAR(HR,HC,HOLE)
580 REM *

590 REM * POSITION MARBLE

600 REM *

610 MR=21

620 MC=25

630 CALL HCHAR(MR. MC. MARBLE) •*}
640 REM *C3 SPACES!

650 REM * WAIT FOR KEYC5 SPACES!
660 REM *<!3 SPACES! .«.
670 CALL KEY(1.KEY,STATUS)
680 IF STATUS=0 THEN 670

690 CALL COLOR(14.BGC.BGC)
700 REM * —J
710 REM * BEGIN GAME *•
720 REM *

730 CALL CHAR(KID,KD1*> ^„
740 CALL KEY(1.KEY,STATUS) !
750 IF STATUS=0 THEN 970
760 J=l

208 1

NHHhs)

Sound and Graphics

770 IF STATUS:0 THEM 790

780 J=2

790 IF KEY>5 THEN 970

800 REM *

P* 810 REM * MOVE MARBLE

I 820 REM *

830 CALL HCHAR(MR.MC,SQUARE)
_, 840 ON KEY+1 GOTO 850.970.370,890.970,910
I 850 MR=MR+0

860 GOTO 920

870 MC=MC-J

880 GOTO 920

890 MC=MC+J

900 GOTO 920

910 MR=MR-J

920 IF (MR=HR)*(MC=HC)THEN 1210

930 CALL HCHAR(MR.MC,MARBLE)

940 REM *

950 REM * MOVE KIDS

960 REM *

970 CALL CHAR (KID,KD2$)

980 FOR 1=1 TO KN

990 CALL HCHAR(KR(I),KC(I).SQUARE)

1000 IF KR(I)=MR THEN 1050

1010 IF KRIIXNR THEN 1040

1020 KR (I)=KR(I) -1

1030 GOTO 1050

1040 KR(I)=KR(I)+1

1050 IF KC<I)=MC THEN 1100
1060 IF KCdXMC THEN 1090

1070 KC(I)=KC(I)-1

1080 GOTO 1100

1090 KC(I)=KC(I)+1

1100 CALL HCHAR(KRd) ,KC(I) ,KID)
1110 IF (KR(I)=MR)*(KC(I)=MC)THEN 1320

1120 R = ABS (KR(I)-MR)

<•« 1130 C = ABS (KC (I) -MC)

1140 IF (R+C>4)THEN 1160

1150 CALL COLOR(14,2,BGC)
|€fc) 1160 NEXT I

1170 GOTO 730

1180 REM *

1190 REM * PLAYER WINS

ffes> 1200 REM *
1210 CALL COLOR(16,2,16)
1220 FOR 1=0 TO 1

1230 FOR J=-l TO -4 STEP -1

P^ 1240 CALL SCREEN(I*8-J*2)
1250 CALL SOUND(500,J,1)
1260 NEXT J

209

Sound and Graphics «*—~«

1270 NEXT I ^
1280 GOTO 100 I

1290 REM *

1300 REM * PLAYER LOSES
1310 REM * ^
1320 CALL C0L0R(15,7,BGC) J
1330 CALL HCHAR(MR,MC,MARBLE)
1340 FOR J=-5 TO -7 STEP -1 mi.
1350 CALL SOUND(100,J, 1) j
1360 NEXT J

1370 GOTO 100

210

Ml UJli

Patrick Parrish

A powerful feature of the T1-99/4A is its ability to redefine
<*** the character set. With "SuperFont," a comprehensive

character definition program, you can harness this capability.
Requires Extended BASIC and Memory Expansion.

The character graphics capabilities of the TI-99/4A are well
known. To redefine a character on the TI by the usual means
(see the TI User's Reference Guide, pages 11-76 to 11-79), a
tedious, multistep procedure must be followed. First, you plot
the prospective character in an 8 X 8 grid. Next, you convert
each row of the grid into a two-digit hexadecimal number and
then sequentially combine the numbers from each row to gen
erate a pattern-identifier, or coded representation of the charac
ter. To complete this task, you place this pattern-identifier
along with a chosen ASCII value for the character in a CALL
CHAR statement. Anyone who has repeatedly endured this
process can attest to its drudgery.

Fortunately, this process is easily computerized, and sev
eral character definition programs have been written for the
TI. Most character definition programs, though, have not taken
full advantage of the TI's capabilities. By using "SuperFont"
(Program 1) the task of character manipulations can now be
undertaken with ease.

Nineteen Commands

^ The original SuperFont was written for the Atari by Charles
' Brannon. The Atari version first appeared in the January 1982

issue of COMPUTE! magazine and featured 18 commands for
ph» redefining characters. After using this outstanding program on
__ several occasions, I was convinced that the TI user deserved

the pleasure and convenience it provided. So, I set about
ftm converting the program for the TI.

In converting SuperFont, a few commands with less value
to the TI user were eliminated while certain more practical

r** commands were added. The final product offers the following
19 commands or modes:

211

o DOODLE

E EDIT

N INPUT

R RESTORE CH

H RESTORE CHSET

F COPY

X SWITCH

M MIRROR

V REVERSE

A ROTATE

C CLEAR

I INSERT

D DELETE
W WRITE DATA

Y QUIT
L LOAD FONT
S SAVE FONT
P PRINT CH

T PRINT CHSET

When the program is run, these commands are displayed
in menu form on the screen. Above the menu is an 8 X 8 grid
which serves as a work space for redefining each character. To
the right of the grid, the current mode and, in some cases, a
prompt will be displayed. Below this is printed the entire TI
character set (codes 32-143) with each color subset (eight
characters) depicted by a different background color. (The
colors can be toggled off and on with the Z key.)

Several commands require that you pick a character from
the character set. In these instances, a box-shaped sprite,
CHR$(143), will appear over the last character referenced from
the set (defaults to space). To choose a character move the
joystick over the desired character and press the fire button.

Unless indicated otherwise, each command will return
you to the EDIT mode upon completion. Let's now examine
each command beginning with EDIT (the ALPHA-LOCKkey
should be up).

EDIT is the basic editing command. When selected from
the menu, you will be requested to choose a character from
the character set. The character selected is copied into the grid
and the box-shaped sprite will be homed in the grid. Move
this sprite about the grid with the joystick. Pressing the fire
button will set or clear the point depending on its present
state. You can draw lines by holding down the button while

212

Sound and Graphics
/^sisS^

f" moving the joystick. When you're pleased with the appearance
of the character in the grid, press ENTER to redefine the cho
sen character. You'll then be prompted for another command.

f^ To completely redesign a character from scratch, use the
CLEAR command.

INPUT lets you type in a pattern-identifier and assign it to
f" a particular character code. When INPUT is selected, choose a

replaceable character from the set with the joystick and then
type in the hexadecimal code for the proposed character. The
hexadecimal code can be typed in upper- or lowercase. A rou
tine at line 1260 automatically converts the code to uppercase.
The INPUT command is handy when attempting to associate a
pattern-identifier with a CHR$ in someone's BASIC code.

RESTORE CH restores the current character to its original
configuration. This command is useful if you wish to start over
defining a character or if you changed the wrong one.

RESTORE CHSET restores the entire character set to its ini

tial appearance.
COPY copies a character to a second location in the

character set. You will be prompted for the first (character to
be moved) and second (destination) character. This command
is handy for arranging your customized characters to fit the
various color codes.

SWITCH swaps the location of two characters in the set.
As with COPY, you will be prompted for two characters.

MIRROR produces a mirror image of the current character
in the grid.

REVERSE puts the current character in the grid in reverse
field: all dots become blanks, and all blanks become dots.

ROTATE turns the current character 90 degrees clockwise.
^^ CLEAR completely clears out the current character.

INSERT places a row of blanks in the current character.
Move the sprite in the grid with the joystick to the row where

"^ you wish to insert the blanks and press ENTER. All rows be
low that will scroll down and the bottom row will be lost.

DELETE is the opposite of INSERT. Position the sprite on
^ a row in the grid and press ENTER. The row will be elimi

nated and all other rows will scroll upward. DELETE and IN
SERT can be used in conjunction with ROTATE to scroll

p*1 characters left or right in the grid (of course, one row will be
lost in both cases).

WRITE DATA displays the pattern-identifier for each
P*:-!!-!-!-K3ffi|

213

Sound and Graphics

selected character along with its ASCII value. When finished, ^
a prompt for another command will be issued. This is handy '
when comparing characters or for providing a few character
codes for another program. t*te]

QUIT simply terminates the program.
LOAD FONT loads a previously SAVEd character set (a

font) from tape or disk. You will be prompted for the device "^
and filename. Be sure that this is typed in the standard format]
(CS1 or DSK1.FILENAME). Again, capital letters need not be
used. The routine that converts from lower- to uppercase
lettering takes care of this for you. If you're using a cassette,
the screen will be restored after the tape system messages
have been printed (the same occurs with SAVE FONT dis
cussed below). When loading is complete, a command prompt
is given.

SAVE FONT saves to tape or disk in a data file format
only those characters in the set which have been altered since
the program was run. Since each character code is saved as a
separate record, you may need 30 minutes of tape to save a
large set if you use cassette. As with LOAD FONT, you will
be prompted for the device and filename. If you accidentally
hit L (for LOAD FONT) or S from the main menu, simply
press ENTER to abort the errant command when prompted for
the device and filename.

Once saved, character sets can be loaded into any pro
gram where they're needed (we'll consider this in greater de
tail shortly). As with LOAD FONT, you'll see a prompt for
another command when the SAVE is complete.

PRINT CH prints the current character in an 8 X 8 grid
along with its ASCII and pattern-identifier codes, then returns
you to the main menu. Be sure that you modify line 1660 to "••
correspond to the specifications of your printer.

PRINT CHSET is the same as the previous command ex
cept that it prints every character which has been modified. -™|

fust For the Fun of It
The first command in the menu, which we overlooked until
now, is the DOODLE mode. By choosing this mode, you can
use your redefined character set to design a playfield or simply
draw for the fun of it. Your completed playfield or drawing
can even be saved and loaded back in from tape or disk for
further modification.

214

Sound and Graphics
{•^ftfffrp^

P" After redefining some characters, go into the DOODLE
1 mode by typing O. The screen will clear except for the charac

ter set at the bottom. The following one-line menu will be dis-
P^ played at the top of the screen:

C F B M=MENU L S=SAVE

am First select the character you wish to locate somewhere on
I the screen by positioning the box-like sprite with the joystick

over this character and pressing the fire button. The chosen
character will become a sprite and automatically scroll up to
the row above the displayed character set. You can move this
character sprite to a desired location with the joystick and
print it there by hitting the fire button. If you hold the fire
button down while moving the character sprite, a line of
characters will be printed.

Now, referring to the above one-line menu, press C to
change the screen color, F to change the foreground color of
the current character subset, and B to change its background
color (as before, all character colors can be toggled off or on
with the Z key). When you wish to draw with another charac
ter, just press ENTER. The box-like sprite will once again be
placed in the character set at the bottom of the screen for an
other selection. When you've finished drawing, type M to re
turn to the main menu, or if you wish to save the screen
(actually, the program saves only rows 2-20), type S. (L lets
you load a screen and will wipe out any existing screen.)

Typing L or S while in the DOODLE mode results in a
prompt for the device and filename. As with font LOAD and
SAVE FONT, carefully type in the device and filename. If you
use tape for storage, the screen will be restored (stored in the

p-, array Zl) after the tape system messages scroll the screen. If
you hit L or S by mistake, just press ENTER to return to the
above one-line menu.

p-s, When a screen is saved from the DOODLE mode, the
screen color, and all foreground and background colors are
saved as well.

mm The commands offered by SuperFont are versatile, but
you may want to add others. Since the program is modular in
structure (just follow the branching IF statements from line

w 520 to 1220 for the current commands), you can insert addi
tional command routines following line 1220.

215

Sound and Graphics

Retrieving a Font or Screen «,
After you have saved a newly created character set or a set ;
and a screen, how do you go about recovering these for use in
another program? Program 2 is a sample program showing -*]
how to do this. J

Since line 120 dimensions for the screen array (Zl), the
foreground colors (FR), and background colors (B), it must be —^
included in your retrieval program. In line 130, the device and
filename for the character set file and the screen file are de
fined as B$ and C$, respectively (the filenames used here are
font and screen). If you used tape to store these files, line 130
should read B$,C$ = "CS1". When loading these from tape, be
sure to load them in the proper order.

Lines 140-160 load in the new character set while lines
180-210 load the screen and color codes. In line 220, the
screen previously SAVEd from SuperFont is recreated. The de
lay in line 230 allows you to see it.

If you only wish to retrieve a font, modify lines 120 and
130 to:

120 CALL CLEAR

130 B$="DSKl.FONT"

and eliminate lines 170-220. Of course, you may wish to re
cover the font along with its foreground and background
colors. If so, change line 120 and 190 to:
120 DIM FR(14)rB(14):: CALL CLEAR
190 FOR 1=2 TO 20 :: INPUT #1:P$:: NEXT I

and delete line 220.

A Super Utility
With SuperFont, you can perform many chores with ease. You -••
can customize your character set (ever wished for a true J
lowercase?), create graphics characters and animated figures
(space creatures!), create composite pictures from characters,
design playfields, or just play around. The uses of this utility
are endless. I'm sure you'll find discovering them as much
fun as I have.

Program 1. SuperFont
100 'MEMORY EXPANSION REQUIRED

110 DIM A* (11 1) ,C$(15) ,N*(112) ,D(15) ,V(8,8) ,
FR (14) ,B(14) ,Zl (20,32) : : L=32

216

p!B¥l

Sound and Graphics

120 TT=2 :: E=15 :: Q$="DEVICE(DSK1.FILE OR
CS1)?" :: GOSUB 1630 :: GOTO 410

130 !ERASE

140 p=0 :: GOSUB 150 :: GOTO 490

150 CALL HCHAR(5,14,L,16):: RETURN
160 CALL HCHAR(3,17,L,E):: CALL HCHAR(7,17,L

,16):: RETURN
170 FOR 1=5 TO 7 :: CALL HCHAR(I,13,L,17)::

NEXT I :: RETURN

180 CALL HCHAR(8,14,L,E):: CALL HCHAR(20,2,L
,27):: RETURN

190 IDISPLAY A GRID CHAR

200 Z$=N*(W-L)

210 FOR 1=0 TO 15 :: D(I)=ASC(SEG*(Z$,I+1,1)
)-48 :: D(I)=D(I)+(D(I)>9)*7

220 NEXT I :: J=0 :: FOR 1=0 TO 7 :: DISPLAY

AT(2+1,1):C$(D(J));:: DISPLAY AT(2+I,5)
:C*(D(J+l));:: J=J+2 :: NEXT I :: RETURN

230 !CONVERT GRID PAT TO HEX STRING

240 CALL DELSPRITE(#1):: DISPLAY AT(5.15):"P

LEASE WAIT"

250 FOR R=l TO 8 :: FOR C=1 TO 8

260 IF M=109 THEN CALL GCHAR(R+1,11-C.H):: G
OTO 290

270 IF M=97 THEN CALL GCHAR(10-C,R+2,H):: GO
TO 290

280 CALL GCHAR(R+l,2+C,H)
290 V(R,C)=H-141 :: NEXT C :: NEXT R
300 H*="0123456789ABCDEF" :: IF M=118 THEN H

$="FEDCBA9876543210"

310 Z*="" :: FOR R=l TO 8 :: LO=V(R,5)*S+V(R

,6)*4+V(R,7)*2+V(R,8)+l
320 HI=V(R,1)*8+V(R,2)*4+V(R,3)*2+V(R,4)+1
330 Z*=Z«&SEG«<H«,Hi,1>&SEG«(H*,LO,1>:: NEXT

R

340 IF (MO100) * (MO105) THEN 380

350 IF MO100 THEN 370

360 Z$=SEG* (Z$, 1 ,ROW*2-2) 8<SEG$ (Z$,ROW*2+1 , 14
)&"00" :: GOTO 380

F55i 370 Z*= SEG* (Z$, 1 ,ROW*2-2) & "00 "«<SEG$ (Z$, R0W*2
-1,16-R0W*2)

380 CALL CHAR(W,Z$):: N*(W-L)=Z$:: IF (M=10
0)+(M=105)THEN GOSUB 200

^^ 390 GOSUB 150 :: RETURN
400 'CREATE BLOCK CODES

410 F*="000000010010001101000101011001111000

RSJ 1001101010111100110111101111"

420 FOR 1=0 TO 15 :: Z$=SEG*(F$,I*4+1,4):: D

217

Sound and Graphics

430 FOR J=l TO 4 :: T=VAL(SEG*(Z*,J,1))+141 ==i
:: D*= D*&CHR$ (T) : : NEXT J :: C*(I)=D* :: J
NEXT I

440 CALL CHAR(141,"",142.RPT*("F",16),143,"F
F818181818181FF"):: FOR 1=141 TO 143 :: ~]
CALL CHARPAT(I,A*(I-L)):: N*(I-L)=A«(I-L '
):: NEXT I

450 CALL DELSPRITE(#1):: CALL CLEAR :: FOR I «

=2 TO 14 :: FR(I)=2 :: B(I)=I+2 :: CALL j

COLOR(I,2,1+2):: NEXT I :: FR(1)=2 :: B(
1) =1

460 FOR I=L TO 143 :: PRINT CHR$(I);:: NEXT

I :: DISPLAY AT(1,11):"SUPERFONT" :: GOS
UB 1420 :: IF W5=l THEN CALL C0L0R(14,2,
16)

470 FOR R=l TO 8 :: CALL HCHAR(R+1,3,141,8):
: NEXT R

480 BR=20 :: BC=2 :: W=L

490 CALL SOUND(100,800,2):: DISPLAY AT(3,15)
:"WHICH MODE?"

500 CALL KEY(0.M,S):: IF S=0 THEN 500

510 IF MO 122 THEN 520 ELSE GOSUB 1780 :: GO
TO 490

520 IF MO 101 THEN 670

530 D$="EDIT MODE" :: T=l :: GOSUB 1580 :: G

OSUB 1290 :: IF (F=1)* (KO112)THEN 140 E

LSE IF K=112 THEN M=K :: GOSUB 150 :: GO
TO 1200

540 GOSUB 200 :: Z=l

550 CALL SPRITE(#1,143,10,9,17):: R=1 :: C=2
:: CALL GCHAR(R+1,C+1,CAR)

560 CALL KEY(0,K,S):: IF (K=13)+<K=112>THEN
ROW=R :: GOSUB 240 :: GOSUB 1540 :: IF K
0 112 THEN ON Z GOTO 490,760

570 IF (K>13) * (KOI 22) THEN M = K :: GOTO 520 E
LSE IF K=122 THEN GOSUB 1780

580 CALL JOYST(l.X.Y):: IF ABS(X)+ABS(Y)=8 T "™!
HEN 580 '

590 CALL KEY(1,KK,S) : : IF (KKO 18)* (ABS (X)+A
BS(Y)=0)THEN 560 —=i

600 OK=0 :: IF ABS(X)+ABS(Y)=4 THEN OK=l I
610 C=C-(X=4)+(X=-4):: R=R-(Y=-4)+(Y=4)
620 C=C-(C=1)*8+(C=10)*8 :: R=R-(R=0)#8+(R=9

)*8 "H
630 CALL LOCATE(#l ,8*R+1 ,8*C+1) '•
640 IF (KK=18)*(OK=0)THEN CALL GCHAR(R+1?C+1

.CAR):: CAR=283-CAR
650 IF (OK=l) * (KK018) THEN CALL GCHAR(R + 1,C+ '

l.CAR)

218

p$!HB|

Sound and Graphics

I-IKSS&WjJ

pm 660 CALL HCHAR(R+lfC+l,CAR):: CALL SOUND(-l,
294.3):: GOTO 560

670 IF MO 110 THEN 740
680 T=l :: D*="INPUT MODE" :: GOSUB 1580 ::

p^ GOSUB 1290 :: IF F=l THEN 140
690 IF W5=0 THEN CALL COLOR(3,2,15,4,2,15,9,

2. 15)

700 DISPLAY AT(5,12):"CHAR HEX CODE?" :: ACC
EPT AT(6,11)SIZE(16)BEEP:D* :: IF LEN(D$
)<>16 THEN 700

710 GOSUB 170 :: GOSUB 1260

720 N$(W-L)=Z* :: GOSUB 210 :: CALL CHAR(W,Z

*)

730 GOSUB 150 :: IF W5=0 THEN CALL C0L0R(3,F
R(3) ,B(3) ,4,FR (4) ,B(3) ,9,FR(9) ,B(9)): : G
OTO 760 ELSE 760

740 IF MO 114 THEN 770

750 D*="RESTORE CHAR" :: GOSUB 1580 :: CALL

CHAR(W,A*(W-L)):: N*(W-L)=A*(W-L)
760 Z=l :: GOSUB 150 :: GOSUB 200 :: M=101 :

: GOSUB 1540 :: DISPLAY AT(3, 15) : "ED IT M
ODE" :: CALL SOUND(50,880,3):: GOTO 550

770 IF MO 104 THEN 810

780 D*="RESTORING SET" :: GOSUB 1580

790 DISPLAY AT(5,15):"PLEASE WAIT"

800 FOR I=L TO 143 :: CALL CHAR(I,A*(I-L)) : :
N*(I-L)=A*(I-L):: NEXT I :: GOTO 760

810 IF MO102 THEN 860

820 D*="COPY MODE" :: GOSUB 1580

830 DISPLAY AT(5,15):"FIRST CHAR?" :: GOSUB
1290 :: IF F=l THEN 140 ELSE TM=W

840 GOSUB 200 :: DISPLAY AT(5,15):"SECOND CH
AR?" :: GOSUB 1290 :: IF F=l THEN 140 EL

SE CALL DELSPRITE(#1)

850 CALL CHARPAT(TM,Z$):: CALL CHAR(W,Z$)::
N*(W-L)=Z* :: GOTO 760

860 IF MO 120 THEN 920

870 D$="SWITCH MODE" :: GOSUB 1580

880 DISPLAY AT(5,15):"FIRST CHAR?" :: GOSUB
1290 :: IF F=l THEN 140 ELSE TM=W

890 GOSUB 200 :: DISPLAY AT<5,15):"SECOND CH
AR?" :: GOSUB 1290 :: IF F=l THEN 140 EL

SE TM2= W :: CALL DELSPRITE (#1)

i*" 900 CALL CHARPAT (TM, D$) : : CALL CHARPAT (TM2 ,F
):: CALL CHAR(TM2.D):: CALL CHAR<TM,F$

)

910 N*(TM-L)=F$:: N*(TM2-L)=D* :: GOTO 760

F~^1 920 IF MO 109 THEN 940

fvSiaJ

P$5*3^1

219

Sound and Graphics

930 D*="MIRROR MODE" :

240 :: GOTO 760

940 IF MO 118 THEN 960

950 D$="REVERSE MODE"

240 :: GOTO 760

960 IF M097 THEN 1000

970 D*="ROTATE MODE" ::
980 GOSUB 240 :: GOSUB

220

GOSUB 1580 GOSUB

GOSUB 1580 GOSUB

GOSUB 1580

00 :: GOSUB 1540 ::
T=0 :: D*="AGAIN (Y/N)?" :: GOSUB 1600 :
: GOSUB 150 :: IF T=l THEN 980

990 GOTO 760

1000 IF M=99 THEN D$="CLEAR MODE" :: GOSUB 1
580 :: D*=RPT*("0",16):: CALL CHAR(W,D*
):: N*(W-L)=D$:: GOTO 760

1010 IF M=105 THEN D*="INSERT MODE"
1580 :: Z=2 :: GOTO 550

1020 IF M=100 THEN D*="DELETE MODE"
1580 :: Z=2 :: GOTO 550

1030 IF MOH9 THEN 1100

1040 IF W5=0 THEN CALL COLOR(3,2,15,4,2,15,5
,2,15)

1050 D*="WRITE MODE" :: T=l :: GOSUB 1580 ::
GOSUB 1290 :: IF F=l THEN F =0 -.-. GOTO
1090 ELSE GOSUB 200

1060 DISPLAY AT(7,16):"CHAR=";W :: DISPLAY A
T(9, 1 1) :N*(W-L)

1070 Dt="AGAIN(Y/N) ?" :: GOSUB 1600
1080 CALL HCHAR(9,11,L.18):: IF T=l THEN GOS

UB 150 :: GOTO 1050

1090 GOSUB 170 :: IF W5=0 THEN CALL COLOR(3,
FR(3),B(3),4,FR(4),B(4),5.FR(5),B(5>)::
GOTO 490 ELSE 490

1100 IF M=121 THEN STOP
1110 IF MO 108 THEN 1150
1120 D*="LOAD FONT" :: GOSUB 1580
1130 GOSUB 1230 :: OPEN #1:D*,INTERNAL,INPUT

,FIXED

1140 INPUT #1:T,N*(T> :: IF TOH2 THEN CALL
CHAR(T+L,N*(T)):; GOTO 1140 ELSE CLOSE
#1 :: GOSUB 180 :: IF ASC(D*)=67 THEN 4
50 ELSE 490

1150 IF MO-115 THEN 1200
1160 D*="SAVE FONT" :: GOSUB 1580 :: GOSUB 1

230

1170 OPEN #1:D*,INTERNAL,OUTPUT,FIXED :: FOR
I=L TO 143

1180 IF N$(I-L) OA* (I-L) THEN PRINT #1:I-L.N*
(I-L)

GOSUB

GOSUB

I^ESl

1 190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

NEXT I :

F* :: CL

$)=67 TH

IF M=112

490

IF M=116

490

IF MO 11

#1):: GO

DISPLAY

D$:: IF

90 ELSE

RETURN

!CONVERT

Z$="" ::

$, I , 1) : :
HEN F$ = C

Z* = Z*«<F*

!GET CHA

: T =

OSE

EN 4

THE

b Sound and Graphics

112 :: F*="" :: PRINT #1:T,
#1 :: GOSUB 180 :: IF ASC(D

50 ELSE 490

N H=l :: GOSUB 1660 :: GOTO

THEN H=0 GOSUB 1660 GOTO

1 THEN 490 ELSE CALL DELSPRITE(
SUB 1850 :: GOTO 490
AT(20.2):Q$:: ACCEPT AT(8,14):
D$="" THEN GOSUB 180 :: GOTO 4

GOSUB 1260

TO CAPS

FOR 1=1 TO LEN(D*):: F$=SEG$(D

IF (ASC(F$) >96) * (ASC <F$)<123)T

HR$(ASC (F$) -L)

: : NEXT I : : D* = Z* : : RETURN

ttl. 14 3.FR (14) ,BR*8+1 .BC*3+ 1

ST(l.X.Y):: IF ABS(X)+ABS(Y)=8

0

=4)>(X=-4):: W=W-(X=4)+<X=-4)

=-4)+<Y=4):: W=W-(Y=-4)*28+(Y=4

THEN BC=29 :: BR=BR-1

THEN BC = 2 :: BR = E(RH

THEN BR=23 :: W=W+112

THEN BR=20 :: W=W-112

(1,KK,ST):: CALI KEY(0.K,S):: I
THEN GOSUB 1730 :: GOTO 1290

THEN F=l :: IF M=111 THEN RETUR

ALL DELSPRITE(#1):: RETURN

THEN CALL SOUND(10,110,2):: IF
HEN RETURN ELSE GOSUB 150 :: CA

RITE(#1):: RETURN

0

AT(10.14):"O DOODLE"

AT(11,1):"E EDIT";TAB(14):"N IN

AT(12.1):"R RESTORE CH";TAB<14)

ORE CHSET"

AT(13,1):"F COPY";TAB(14);"X SW

AT(14,1):"M MIRROR":TAB(14);"V

R

SPRITE(CALL

)

CALL

THEN

BC=BC-(X

BR= BR- (Y

) *28

IF BC<2

IF BC>29

IF BR<20

IF BR>23

CALL KEY

F K=122

IF SO0

N ELSE C

IF KK=18

M=l11 T

LL DELSP

GOTO 129

! MENU

DISPLAY

DISPLAY

PUT"

DISPLAY

;"H REST

DISPLAY

ITCH"

DISPLAY

REVERSE"

JOY

130

221

Sound and Graphics a

1470 DISPLAY AT(15,1):"A ROTATE";TAB(14);"C
CLEAR"

1480 DISPLAY AT(16,1):"I INSERT":TAB(14);"D
DELETE"

1490 DISPLAY AT(17.1):"W WRITE DATA";TAB(14)
:"Y QUIT"

1500 DISPLAY AT(18.1):"L LOAD FONT";TAB(14);
"S SAVE FONT"

1510 DISPLAY AT(19,1):»P PRINT CH";TAB(14):"
T PRINT CHSET-

1520 RETURN

1530 !DRAW A FEW CHARS

1540 FOR 1=0 TO 5 STEP 2 :: CALL HCHAR(7.17+
I TW) : : NEXT I : : RETURN

1550 [POSITION CURSOR

1560 R=20 :: C=2 :: W=L :: CALL SPRITE(#1,14
3,2,R*8+l,C*8+l):: RETURN

1570 IDISPLAY MODE

1580 GOSUB 160 :: DISPLAY AT(3,15):D* :: IF
T=l THEN DISPLAY AT(5.15>:"CHOOSE A CHA
R" :: T=0

1590 RETURN

1600 DISPLAY AT(5.15):D$:: ACCEPT AT(5.27>B
EEP VALIDATE("yn")SIZE<1): Z$:: IF Z$="
V" THEN T=l

1610 RETURN

1620 ISAVE ORIG CHAR PATS
1630 CALL CLEAR :: CALL SCREEN(E):: DISPLAY

AT (10, 8) -.».. .PATIENCE. .. " •, : DISPLAY AT
(12,2) : "LOADING CHARACTER PATTERNS"

1640 DISPLAY AT (23, 1):'• (ALPHA-LOCK KEY MUST
BE UP)" :: FOR 1=127 TO 140 :: CALL CHA
R < I . " ") : : NEXT I

1650 FOR I=L TO 140 :: CALL CHARPAT(I,A*<I-L
)):: N*(I-L)=A*<I-L):: NEXT I ::'RETURN

1660 DISPLAY AT(3,15):"PRINT MODE" :: OPEN tt
1:"RS232/2.BA=9600.DA=8.PA=N"

1670 TM=W :: IF H=1 THEN 1700
1680 FOR T=L TO 143 :: IF N*(T-L)OA*(T-L)TH

EN W=T ELSE 1750

1690 E=E+1 :: E=(E=17) *14+E :: CALL SCREEN(E

1700 IF (<F=1)*(H=l))+(H=0)THEN GOSUB 200 ••
GOSUB 1540

1710 FOR R=2 TO 9 :: IF R=5 THEN PRINT #J:TA
B(5):"CHR$ # - "&"<"&STR$(W)&">";

1720 PRINT #1:TAB(30);:: FOR C=3 TO 10 :: CA
LL GCHAR(R,C,X):: IF X=141 THEN X=45 EL
SE X=88

222

WSf$tiffl|

piKih

imm...uii,is,msm.i9,s^am,^.^rtmi Sound and Graphics

1730 PRINT #1:CHR$ (X) ;:: NEXT C :: IF R=5 TH
EN PRINT #1:TAB(47);"HEX CODE - "&"<"&N
$ (W-L> 8c" >"

1740 NEXT R :: PRINT #1 :: PRINT #1 :: IF H=
1 THEN 1760

1750 NEXT T

1760 CLOSE #1 :: F=0 :: H=0 :: E=15 :: W=TM
:: CALL SCREEN(E):: RETURN

1770 !TOGGLE COLORS
1780 FOR 1=1 TO 14 :: IF W5=0 THEN F0RE=2 ::

BACK=1 ELSE BACK= B(I):: FORE= FR (I)
1790 IF (IO 14) THEN 1820 ELSE IF ((K=122)*(M

Ol 1 1) * (W5= 0))+ ((M=122) * (W5= 0))THEN BAC

K=16

1800 IF M=lll THEN IF (W5=0)THEN TT=FR(14)::
FR(14)=F0RE ELSE FR(14)=TT :: FORE=TT

1810 IF M=lll THEN CALL COLOR(#1.FORE)
1820 CALL COLOR(#2.FORE):: CALL COLOR(I.FORE

.BACK):: NEXT I :: W5=-(W5=0):: IF (M=l
22) + ((K=122) * (M< >1 1 1))THEN RETURN

1830 I=INT(W/8)-3 :: FORE=-(W5=1>*2-<W5=0)*F
R(I):: RETURN

1840 .'DOODLE

1850 FOR J=l TO 15 :: CALL VCHAR(1.J,L,1?>::
CALL VCHAR(1.31-J,L.19):: NEXT J :: IF
W5=l THEN CALL COLOR(14,2,1)

1860 DISPLAY AT(1.1):"C F B M=MENU L S=

SAVE";

1870 W=L :: BR=20 :: BC=2 :: GOSUB 1830 :: G
OSUB 1290

1880 GOSUB 1830 :: IF F=l THEN 1960 ELSE BAC
K=-(W5=l)-(W5=0)*B<I)

1890 CALL SPRITE(#2,W,FORE.BR*8+1.BC*8+1)
1900 CALL JOYST(1.X,Y):: BR=BR-Y/4 :: BC=BC+

X/4

1910 BR= BR-(BR= 0) + (BR>19) : : BC = BC-iBC= 0> + (BC

= 31)

1920 CALL LOCATE<#1.BR*8+1.BC*3+1,#2,BR*8+1,

BC*8+1)

1930 CALL KE Y(1,KK.S) : : IF (KK < >13) +(BR >19)T
HEN 1950

1940 CALL HCHAR(BR+1,BC+1.W):: CALL SOUND(10
,110,2):: GOTO 1900

1950 CALL KEY(0,K.S)

1960 IF K=109 THEN CALL DELSPRITE(#1.#2):: C
ALL CLEAR :: CALL SCREEN(E):: F=0 :: GO

TO 460

1970 IF K=13 THEN CALL DELSPRITE<#2):: GOTO

1870

223

Sound and Graphics

1980 IF K=122 THEN GOSUB 1780 :: GOTO 1900
1990 IF K=115 THEN 2140

2000 IF K=108 THEN 224 0

2010 IF (K = 98) + (K =99) + (K=102)THEN GOSUB 2060
2020 IF F=l THEN F=0 :: GOSUB 1300 :: GOTO 1

880 ELSE GOTO 1900
2030 GOTO 1880

2040 CALL COLOR (I,FR (I) ,B :I))
2050 RETURN

2060 IF W5=l THEN 22 10

2070 IF K<>98 THEN 2090 ELSE B<I)=B(I)+1 ::
B(I)=B(I)+(B(I)>16)*16

2080 GOTO 2040

2090 IF KOI 02 THEN 2110 ELSE FR (I)=FR (I)+ 1
:: FR(I)=FR(I) + (FR(I) >16) *16

2100 GOSUB 1830 :: CALL COLOR(#2,FORE):: IF
1=14 THEN CALL COLOR(#1,FORE):: GOTO 20
40 ELSE 2040

2110 IF KO-99 THEN 2050 ELSE E=E+1 :: E=E+(E
> 1 6) * 1 5

2 120 CALL SCREENiE):: GOTO 2050
2130 ISAVE SCREEN & COLORS
2140 CALL DELSPRITE(ALL):: GOSUB 2280 :: DIS

PLAY AT(1.1):"PUTTING SCREEN IN ARRAY"
2150 FOR 1=2 TO 20 :: FOR J=l TO L :: CALL 6

CHARCI,JrZl (I, J)):: NEXT J :: NEXT I ::
CALL HCHAR(1,1.L,25)

2160 OPEN #1 :D*. INTERNAL.OUTPUT.FIXED
2170 FOR 1=2 TO 20 :: p*=»» ;: F0R j=i JO L

:: P*=P$S<CHR$ (Zl (I.J)):: NEXT J :: PR IN
T #1:P$:: NEXT I

2180 P*=CHR$(E):: PRINT #1:P$:: p$=»" :: F0
R 1= 1 TO 14 :: F$ =P*ScCHR* <FR <I))&CHR* <B
(I)):: NEXT I :: PRINT -ft 1:p*

2190 CLOSE #1 :: IF ASC(D$)<>67 THEN I860
2200 CALL CLEAR :: FOR I=L TO 143 :: PRINT C

HR*(I);:: NEXT I

2210 FOR 1=2 TO 20 :: FOR J=l TO L :: CALL H
CHARd, J.Z1 <IrJ) >:: NEXT J :: NEXT I

2220 GOTO 1860

2230 !LOAD SCREEN

2240 CALL DELSPRITE(ALL):: GOSUB 2280 :: OPE
N #1:D*.INTERNAL,INPUT .FIXED

2250 FOR 1=2 TO 20 :: INPUT #1:P% :: FOR J=l
TO L :: Z1 (I ,J)=ASC(SEGS(P*.J, 1)) : : NE

XT J :: NEXT I

2260 INPUT #1:P$:: E=ASC(P*):: CALL SCREEN(
E):: INPUT #1:P* :: FOR 1=1 TO 14 :: FR
(I)=ASC(SEG*(P*,2*1-1.1)):: B(I)=ASC(SE
G*(P$.2*1,1))

224

ftesa

fZ^xt)

•••'"•••••"••••' ••^••' Sound and Graphics

2270 CALL COLOR(I,FR(I) ,B(I) >: : NEXT I :: CL
OSE #1 :: IF ASC(D*)=67 THEN 2200 ELSE

2210

2280 DISPLAY AT(1,1):Q* :: FOR 1=1 TO 400 ::
p""° NEXT I :: ACCEPT AT(1.1)BEEP:D$:: IF

D*="" THEN 1860 ELSE GOSUB 1260

2290 RETURN

Program 2. SuperFont LOAD Demo
100 !GAME

110 'GET REDEFINED CHARS
120 DIM Zl (20.32) ,FR(14) .B (14) :: CALL CLEAR
130 B*="DSK1.FONT" :: C$="DSK1.SCREEN" :: RE

M B*,C*="CS1"::REM EQUIVALENT FOR CASSET
TE

140 OPEN #1:8*., INTERNAL- INPUT .FIXED
150 INPUT #1:F,NEWA* :: IF FOH2 THEN CALL

CHAR(F+32.NEWA*):: GOTO 150

160 CLOSE #1

170 !GET SCREEN & COLORS
180 OPEN #1:C*.INTERNAL,INPUT ,FIXED
190 FOR 1=2 TO 20 :: INPUT #1:P* :: FOR J=l

TO 32 :: Z1 (I,J)=ASC(SEG*(P*.J, 1)) :: NEX
T J :: NEXT I

200 INPUT #1:P* :: E=ASC(P*):: CALL SCREEN(E
):: INPUT #1:P* :: FOR 1= 1 TO 14 :: FR (I
)=ASC(SEG*(P*,2*1-1, 1)):: B(I)=ASC(SEG$ (
P$.2*I.1))

210 CALL COLOR(I,FR(I),B(I)):: NEXT I :: CLO
SE #1

220 CALL CLEAR :: FOR 1=2 TO 20 :: FOR J=l T
O 32 :: CALL HCHAR(I,J,Z1(I.J)):: NEXT J
:: NEXT I

230 FOR T=l TO 1000 :: NEXT T

225

Frank Elsesser

The TI-99/4A home computer can produce agreat variety of
sounds. "Sound Maker" will appeal to anyone who wants to
add sound effects or music to a program. It's also an easy,
but highly effective way to explore the audio capabilities of
your computer.

The TI-99/4A, like most other computers, requires that you
use numbers to program a sound's duration, pitch, and vol
ume. Finding the right numbers to produce exactly the sound
you want can be a fairly inefficient trial-and-error process. You
must type a CALL SOUND statement with each attempt, try
ing out different values for the parameters, until you find the
combination of numbers that matches the sound you're look
ing for. Wouldn't it be nice if this process were automated so
you could spend more time being creative and less time typing
and manipulating numbers?

"Sound Maker" does this and more. It allows you to
experiment easily with different settings of amplitude (vol
ume), frequency (pitch), and time (duration). You can work
with simple and complex tones, noise, and modulation to cre
ate a variety of special effects. The computer will even print
the program statements used to create the sounds so you can
add them to your own programs.

When you run the program, it will take awhile for the
computer to establish room for variables and arrays and do
other housekeeping chores before you see the introduction.
After a brief demonstration of tones and explosions, the main
menu will be displayed.

You have a choice of three basic tones: simple, noise, and
complex. Selecting simple tones allows you to experiment with
the amplitude, frequency, and time ofa simple tone. Choosing
noise tones brings you a menu of four tonal types: periodic,
periodic with tone, white, and white with tone. Complex tones
consist of three simple tones and one noise tone played
simultaneously. The frequency and amplitude of each tone can
be changed individually.

226

I^ESa

Sound and Graphics
fflnf^K?)

f333 After you have selected the basic tone and found the
combination of parameters which suits your taste, you will be
taken to the modulation menu. Here, you can make the am-

f5*1 plitude, frequency, or time change—while the note is play
ing—to create special effects. The procedure for modulating
frequency and time is fairly straightforward. However, choos-

F*5J ing amplitude modulation displays another menu. Three types
of amplitude modulation are available: on/off clicking, pos
itive ramp, and negative steps. On/off clicking turns the
sound on and off like the busy signal on a telephone. Positive
ramp makes the tone louder with time. Negative steps make it
quieter with time. Positive ramps and negative steps can be
used in your programs to give the effect of an approaching
and receding alien ship.

Experimenting with sounds using Sound Maker is so easy
that you will have the freedom to create sounds you never
thought possible on your TI.

Sound Maker
100 CALL CLEAR

110 DIM SI(60)

120 R$="SOUND MAKER"

130 CALL SCREEN(14)

140 FOR P=l TO 11

150 CALL SOUND(150,-4,1>
160 CALL HCHAR(12,9+ P, ASC(SEG$(R$,P, 1)))
170 NEXT P

180 FOR DE=1 TO 500

190 NEXT DE

200 CALL CLEAR

210 FOR 1=1 TO 8

220 CALL COLOR(I,16,1)

lr^> 230 NEXT I

240 PRINT " YOUR TI COMPUTER IS CAPABLEOF MA
KING AN ALMOST ENDLESS VARIETY OF SPECIA

-^ L EFFECTC3 SPACES3SOUNDS.": :
250 PRINT " THE PURPOSE OF THIS PROGRAMIS TO

HELP YOU FIND JUST THERIGHT SOUND FOR Y

OUR SPECIALEFFECT.": :

«b 260 PRINT " IT ALLOWS YOU TO GENERATE SIMPL

E TO COMPLEX SOUNDS ANDTO THEN ADD SPECI

AL EFFECT MODULATIONS.": : :

270 PRINT "C4 SPACES*(ONE MOMENT PLEASE)": :

280 REM COMPUTING 5-OCTAVES

290 FOR N=0 TO 60

300 SI (N) = INT(110* <2A(1/12)) VN + .5)

227

Sound and Graphics eeseshsss

310 CALL SOUND(-500,SI(N),4) «
320 NEXT N 1
330 FOR A=0 TO 20 STEP 5

340 CALL SOUND(700,-7,A)
350 NEXT A ""*!
360 REM START VALUES 8<MAIN MENU
370 CALL CLEAR

380 Tl=1000 ^
390 F2=30000 ;
400 A3=30

410 F4=30000

420 A5=30

430 F6=30000

440 A7=30

450 L8=l

460 A9=30

470 PRINT TAB(12);"MENU": : : :
480 PRINT TAB(5);"1.SIMPLE TONES": : :
490 PRINT TAB(5);"2.NOISE TONES": : :
500 PRINT TAB(5);"3.COMPLEX TONES": : :
510 PRINT TAB(5);"4.EXIT": : :
520 INPUT "SELECT NO.(1,2,3,OR 4)":M
530 ON M GOTO 650,1650,2830,5110
540 REM MODULATION MENU
550 CALL CLEAR

560 PRINT TAB(10);"MODULATIONS": : : :
570 PRINT

580 PRINT TAB(9)

590 PRINT TAB(9)

600 PRINT TAB(9)

610 PRINT TAB(9)

1.AMPLITUDE": :

2.FREQUENCY": :

3.TIME": :

4.MAIN MENU": : : : :

620 INPUT "ENTER NUMBER(1,2,3,4)":NS
630 ON NS GOTO 930,4570,4840,370
640 REM SINGLE TONE GEN

650 CALL CLEAR

660 PRINT TAB(9);"SIMPLE TONES": : :
670 PRINT

680 PRINT "(PRESS ENTER TO SELECT TONE)

690 A3=2 «_

700 FOR N=0 TO 60 !
710 F2=S1(N)

720 CALL SOUND(500,F2,A3)
730 CALL KEY(0.K,Z) •""J
740 IF K=13 THEN 770

750 NEXT N

760 GOTO 370

770 PRINT "FREQUENCY=";F2: : .
780 PRINT "TIME=1000,AMPLITUDE=2": : : : :
790 PRINT "CHANGE PARAMETERS(Y OR N)?": : :

MBS

228 i

f^ra^J

Sound and Graphics

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

CALL KEY(0,K,Z)
IF Z+l=l THEN 800

IF K=89 THEN 840

IF K=78 THEN 550 ELSE 800

INPUT "NEW TIME=":T1

INPUT "NEW AMPL=":A2

CALL CLEAR

CALL SOUND(Tl,F2,A3)
PRINT TAB(6);"TRY AGAIN(Y OR N)

CALL KEY(0,K,Z)
IF Z+l=l THEN 890

IF K=89 THEN 650

IF K=78 THEN 550 ELSE 890

REM AMPL MODULATION MENU

CALL CLEAR

PRINT "C3 SPACES3AMPLITUDE MODULATION

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1 100

1110

1 120

1 130

1 140

1 150

1 160

1 170

1 180

1190

1200

1210

1220

1230

1240

1250

1260

1270

PRINT

PRINT

PRINT

PRINT

INPUT

ON NM

REM O

CALL

PRINT

PRINT

PRINT

PRINT

PRINT

ZZ=10

Tl=50

GOSUB

PRINT

FOR Z

CALL

NEXT

CALL

IF 1 =

IF 1 =

INPUT

INPUT

GOTO

REM +

CALL

PRINT

PRINT

PRINT

PRINT

TAB(5);"1.ON/OFF CLICKING'
TAB(5);"2.P0S RAMP": :

TAB(5>;"3.NEG STEPS": :
TAB(5);"4.MODULATION MENU'

"SELECT(1,2,3,OR 4)":NM
GO TO 1030,1230,1450,550

N/OFF AM GEN

CLEAR

TAB(B);"ON/OFF CLICKING":

"FOR Z=l TO 10"

"CALL SOUND(50,F2,A3,...I

"NEXT Z": : : :

4640

"CHANGE PARAMETERS(Y OR N)?": :

=1 TO ZZ

SOUND(TI,F2,A3,F4,A5,F6,A7,-L8,A9)

Z

KEY(0,I,J)
89 THEN 1190

78 THEN 940 ELSE 1130

"NEW Z MAX=":ZZ

"TIME=":TI

1 120

RAMP AM GEN

CLEAR

TAB(8);"POSITIVE RAMP": : :
"FOR A=30 TO 0 STEP -2"

"CALL SOUND(-200,F2,A,F4,A, . . .) "

"NEXT A": : : :

229

Sound and Graphics

1280 Tl=-200

1290 SS=2

1300 GOSUB 4640

1310 PRINT "CHANGE PARAMETERS(Y OR N)?":
1320 FOR A=30 TO 0 STEP -SS

1330 CALL S0UND(T1.F2,A,F4,A,F6,A,-L8,A)
1340 NEXT A

1350 FOR D=0 TO 500

1360 NEXT D

1370 CALL KEY(0,K,Z)
1380 IF Z+l=l THEN 1320

1390 IF K=89 THEN 1410

1400 IF K=78 THEN 940 ELSE 470

1410 INPUT "AMPL STEP SIZE=-":SS
1420 INPUT "TIME=',:T1
1430 GOTO 1310

1440 REM NEG STEPS AM GEN

1450 CALL CLEAR

1460 PRINT TAB(6);"NEGATIVE STEPS": : :
1470 PRINT "FOR A=0 TO 30 STEP 5"

1480 PRINT "CALL SOUND(500,F2,A,F4,..)"
1490 PRINT "NEXT A": : :
1500 Tl=500

1510 SS=5

1520 GOSUB 4640

1530 PRINT "CHANGE PARAMETERS(Y OR N)?":
1540 FOR A=0 TO 30 STEP SS

1550 CALL SOUND(Tl,F2,A,F4,A,F6,A,-L8,A)
1560 NEXT A

1570 CALL KEY(0,K,Z)

1580 IF Z+l=l THEN 1540

1590 IF K=89 THEN 1610

1600 IF K=78 THEN 940 ELSE 1530

1610 INPUT "AMPL STEP SIZE=":SS

1620 INPUT "TIME=":T1

1630 GOTO 1530

1640 REM NOISE MENU

1650 CALL CLEAR

1660 PRINT TAB(8);"NOISE TONES": : : :

1670 PRINT TAB(6);"1-PERIODIC NOISE": :
1680 PRINT TAB(6);"2.PERIODIC WITH TONE"
1690 PRINT TAB(6):"3.WHITE NOISE": :

1700 PRINT TAB(6):"4.WHITE WITH TONE": :

1710 PRINT TAB(6);"5.MAIN MENU": : : :

1720 INPUT "NOISE TYPE(1.2,3,4,5)":NT
1730 ON NT GOTO 1750.1970,2290,2510.370
1740 REM PERIODIC N GEN

1750 CALL CLEAR

1760 PRINT TAB<3):"PERIODIC NOISE": : :
1770 T1=1000

230

/ftfcn

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

21 10

2120

2 1 30

2 140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

Sound and Graphics

A9= 2

FOR L

CALL

PRINT

NEXT

PRINT

CALL

IF Z +

IF K=

IF K =

INPUT

INPUT

CALL

PRINT

CALL

IF Z +

IF K =

IF K =

REM T

CALL

PRINT

PRINT

8=1 TO 4

SOUND(TI.-L8.A9>

TAB<12):"TYPE=":L3: :

L8

"SELECT TYPE?«TIME<Y f»R SM)

KEY <0.K, Z)

1=1 THEN 1340

78 THEN 1640

89 THEN 1880 ftl.SF 2 340

"TYPE=":L3

"TIME=":TI

SOUND(TI, L8.A9)
TAB(8>:"TRV AGAIN!.' OR NT

KEY(0.K,Z)

1=1 THEN 1920

89 THEN 1380

78 THEN 550 -.LSE i920

YPE 4 N WITH TONF

CLEAR

PERIODIC N'OISE W

(PRESS ENTER SEt

TH

ECT

awE"

TONE

!000

0

Tl =

A = 3

A9 =

Z = 0

FOR

F6=

CAL

IF

CAL

L8=

NEX

GOT

CAL

PRI

PRI

PRI

PRI

PRI

PRI

CAL

CAL

IF

IF

IF

IF

INP

INP

N=0 TO 60

SI (N)

L KEY(0,K,Z)

K=13 THEN 2 120

L SOUND(TI.F6,A,F6,A,F6

4

T N

O 1650

L CLEAR

NT " TYPE -4 PARAMETERS": : :

NT "CALL SOUND(TI.F,30,F...-4,2

NT "TIME=2000": :

NT "FREQUENCY=":F6: : :

NT " (DEPRESS ""R""TO REPEAT)"

NT "TRY NEW PARAMETERS(Y OR N)?

L SOUND(TI.F6,30.F6.30,F6,30,-4
L KEY (0,K, Z)

Z+l=l THEN 2200

K=89 THEN 2250

K=82 THEN 2 190

K=78 THEN 550 ELSE 2200

UT "TIME=":T1

UT "AMPL=":A9

A.-4,A9)

) "

A9)

231

Sound and Graphics

2270 GOTO 2180

2280 REM WHITE N GEN

2290 CALL CLEAR

2300 PRINT TAB(9);"WHITE NOISE": : : :

2310 T1=2000

2320 A9=2

2330 FOR L8=5 TO 8

2340 CALL SOUND(TI,-L8,A9)
2350 PRINT TAB (9) ; "TYPE=";L8: : :
2360 NEXT L8

2370 PRINT "SELECT TYPE?<TIME(Y OR N)?": : :
2380 CALL KEY(0,K,Z)
2390 IF Z+l=l THEN 2380

2400 IF K=78 THEN 1650

2410 IF K=89 THEN 2420 ELSE 2380

2420 INPUT "TYPE=":L8

2430 INPUT "TIME=":T1

2440 CALL SOUND(TI.-L3,A9)

2450 PRINT TAB(8);"TRY AGAIN(Y OR N)?": :
2460 CALL KEY(0,K,Z)
2470 IF Z+l=l THEN 2460

2480 IF K=89 THEN 2420

2490 IF K=78 THEN 550 ELSE 2460

2500 REM WHITE N WITH TONES

2510 CALL CLEAR

2520 PRINT " <.Z SPACES>WHITE NOISE WITH TONES

" : : :

2530 PRINT "(PRESS ENTER TO SELECT TONE)": :

2540 PRINT "NOTE:GOOD EFFECTS AT HIGH

<3 SPACES3FREQUENCIES": :

2550 Tl=1000

2560 A9=2

2570 L8=8

2580 Z=0

2590 FOR N=0 TO 60 -SB^
2600 F6=S1(N)

2610 CALL SOUND(TI,F6,30,F6,30,F6,30,-L8,A9)]
2620 CALL KEY(0,K,Z)
2630 IF K=13 THEN 2660 -«*]
2640 NEXT N i
2650 GOTO 1650

2660 CALL CLEAR

2670 PRINT TAB(7) ;"TYPE -8 PARAMETERS": : : """!
2680 PRINT "CALL SOUND(T1,F,30,F..-8,A9)": :
2690 PRINT "<3 SPACES3TIME=1000": :

2700 PRINT "C3 SPACES3FREQUENCY=" ;F6: : : —*t
27 10 PRINT "C3 SPACES3NOISE AMP=2": : : : j
2720 PRINT "C4 SPACES3(PRESS""R""TO REPEAT)"

232

SSKi

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

31 10

3120

3130

3140

3150

3160

3170

3180

PRINT

CALL

CALL

IF Z +

IF K =

IF K =

IF K =

INPUT

INPUT

GOTO

REM C

CALL

PRINT

PRINT

PRINT

PRINT

C4 SP

PRINT

C3 SP

PRINT

PRINT

PRINT

PRINT

PRINT

C4 SP

T 1 = 1 0

Z = 0

PRINT

) " :

PRINT

REM S

F2=ll

A3= 5

F4=l 1

A5=5

F6=l 1

A7 = 5

L8=l

A9= 5

REM S

D1* = S

CALL

FOR L

CALL

NEXT

IF Z +

D3* = S

CALL

FOR L

CALL

=s==] Sound and Graphics

NEW PARAMETERS(Y OR N)?": :

SOUND(TI,F6,30,F6,30, F6, 30, -L8,A9)
KEY(0,K,Z)
1=1 THEN 2750

89 THEN 2800

82 THEN 2740

78 THEN 550 ELSE 2750

"TIME=":TI

"AMPL=":A9

2730

OMPLEX TONE

CLEAR

"CALL SOUND(T1,F2,A3,F4,A5,F6"
"Cll SPACES3A7,-L8,A8) " : :
•I __ _ •• •

"-USE KEYS 1-9 TO INCREASE

ACES3 VALUES"

"-DEPRESS SHIFT&1-9 KEYS TO

ACES3DECREASE VALUES"

"-DEPRESS""ENTER""FOR REPEAT"

"-DEPRESS »"E" " TO EXIT"
•i ii . .

"Tl2~SPACES>TlT3~SPACESJF2~~A3":
"CALL SOUND(C4 SPACES3,

ACES3,

00

"C9 SPACES3, ,C4 SPACES3, ,- ,

"{6 SPACES3F4 A5 F6 A7 L8 A9"

TART VALUES

0

TRING PRINT(TI,F2,..)
TR*(T1)

HCHAR(20,17,32)

=1 TO LEN(D1$)

HCHAR(20.L+13,ASC(SEG$(D1$,L,1)))
L

1=1 THEN 3150 ELSE 3600

TR$(F2)

HCHAR(20,22,32)
=1 TO LEN(D3*)

HCHAR(20,L+18,ASC(SEG*(D3$.L.1)))

233

Sound and Graphics
«^fti

3190 NEXT L «an

3200 IF Z+l=l THEN 3210 ELSE 3600 i

3210 D4*=STR*(A3)

3220 CALL HCHAR(20,25,32)
3230 FOR L=l TO LEN(D4*) "^
3240 CALL HCHAR(20,L+23,ASC(SEG*(D4$,L,1)))
3250 NEXT L

3260 IF Z+l=l THEN 3270 ELSE 3600 «.
3270 D54=STR*(F4) J
3280 FOR L=l TO LEN(D5$)

3290 CALL HCHAR(21,11,32)
3300 CALL HCHAR(21,L+7,ASC(SEG*(D5$.L, 1)))
3310 NEXT L

3320 IF Z+l=l THEN 3330 ELSE 3600

3330 D6*=STR$(A5)

3340 FOR L=l TO LEN(D6*»)

3350 CALL HCHAR(21,14,32)
3360 CALL HCHAR(2i !,L+12, ASC (SEG* (D6* ,L,1)))
3370 NEXT L

3380 IF Z+l=l THEN 3390 ELSE 3600

3390 D7*=STR4(F6)

3400 FOR L=l TO LEN(D7*)

3410 CALL HCHAR(21,19,32)

3420 CALL HCHAR(21.L+15,ASC(SEG*(D7*,L,1)))
3430 NEXT L

3440 IF Z+l=l THEN 3450 ELSE 3600

3450 D8*=STR*(A7)

3460 FOR L=l TO LEN(D8$)

3470 CALL HCHAR(21,22,32)
3480 CALL HCHAR(21,L+ 20, ASC(SEG$(D8$,L, 1)))
3490 NEXT L

3500 IF Z+l=l THEN 3510 ELSE 3600

3510 D9*=STR*(L8)

3520 CALL HCHAR(21,25,ASC(D9«))
3530 IF Z+l=l THEN 3540 ELSE 3600

3540 D0$=STR*(A9>

3550 FOR L=l TO LEN(D0*) **)
3560 CALL HCHAR(21,28,32)
3570 CALL HCHAR(21.L+ 26,ASC(SEG$(D0$,L, 1)))

3580 NEXT L «^
3590 REM SEPARATE UP-DN?<EXIT

3600 CALL KEY(0,K,Z)

3610 IF K=69 THEN 550

3620 CALL KEY (0,1,J) *"**'
3630 IF K>13 THEN 3660

3640 GOSUB 4140

3650 GOTO 3600 m^c,
3660 IF Z+l=l THEN 3600

3670 IF K>32 THEN 3680 ELSE 3600

3680 IF K=42 THEN 4530

—"I
234

Sound and Graphics

3690 IF K<42 THEN Â 220

3700 IF K=64 THEN 4170

3710 IF K=94 THEN 4400

3720 IF K>48 THEN 31740 ELSE 3600

3730 REM UP COMMANDS

3740 ON (K-48)G0T0 3750,3790,3840,3880.,3930,

3970,4020,40621, 4100

3750 IF Tl>3900 THEN 3090

3760 T1=T1+100

3770 GOSUB 4140

3780 GOTO 3090

3790 IF N2>59 THEN 3150

3800 N2=N2+1

3810 F2=S1(N2)

3820 GOSUB 4140

3830 GOTO 3150

3840 IF A3>29 THEN 3210

3850 A3=A3+1

3860 GOSUB 4140

3870 GOTO 3210

3880 IF N4>59 THEN 3270

3890 N4=N4+1

3900 F4=S1(N4)

3910 GOSUB 4140

3920 GOTO 3270

3930 IF A5>29 THEN 3330

3940 A5=A5+1

3950 GOSUB 4140

3960 GOTO 3330

3970 IF N6>59 THEN 3390

3980 N6=N6+1

3990 F6=S1(N6)

4000 GOSUB 4140

4010 GOTO 3390

4020 IF A7>29 THEN 3450

4030 A7=A7+1

4040 GOSUB 4140

4050 GOTO 3450

4060 IF L8>7 THEN 3510

4070 L8=L8+1

4080 GOSUB 4140

4090 GOTO 3510

4100 IF A9>29 THEN 3540

41 10 A9=A9+1

4120 GOSUB 4140

4130 GOTO 3540

4140 CALL SOUND(-T1
)

RETURN

,F2,A3,F4,A5,F6,A7,--L8,A9

4150

4160 REM DOWN COMMPkNDS

235

Sound and Graphics

4170 IF N2<1 THEN 3150

4180 N2=N2-1

4190 F2=S1(N2)

4200 GOSUB 4140

4210 GOTO 3150

4220 ON (K-32)G0T0 4230,4230.4270,4310,4360
4450,4400,4490

4230 IF Tl<200 THEN 3090
4240 T1=T1-100

4250 GOSUB 4140

4260 GOTO 3090

4270 IF A3<1 THEN 3210

4280 A3=A3-1

4290 GOSUB 4140

4300 GOTO 3210

4310 IF N4<1 THEN 3270
4320 N4=N4-1
4330 F4=S1(N4)

4340 GOSUB 4140

4350 GOTO 3270

4360 IF A5<1 THEN 3330

4370 A5=A5-1

4380 GOSUB 4140

4390 GOTO 3330

4400 IF N6<1 THEN 3390

4410 N6=N6-1

4420 F6=S1<N6)

4430 GOSUB 4140

4440 GOTO 3390

4450 IF A7<1 THEN 3450

4460 A7=A7-1

4470 GOSUB 4140

4480 GOTO 3450

4490 IF A9<1 THEN 3540

4500 A9=A9-1

4510 GOSUB 4140

4520 GOTO 3540

4530 IF L8<2 THEN 3510

4540 L8=L8-1

4550 GOSUB 4140

4560 GOTO 3510

4570 REM FREQ MOD

4580 CALL CLEAR

4590 PRINT "C3 SPACESJFREQUENCY MODULATION":

4600 PRINT "FOR D=0 TO 100 STEP 2"

4610 PRINT "CALL SOUND(-50,F2+D,A3,F4+D, ...
-L8,A9)"

4620 PRINT "NEXT D": : :

4630 GOTO 4680

236

4640

4650

4660

4670

4680

4690

4700

4710

4720

4730

4740

4750

4760

4770

4780

4790

4800

4810

4820

4830

4840

4850

4860

4870

4880

4890

4900

4910

4920

4930

4940

4950

4960

4970

4980

4990

5000

5010

5020

5030

5040

5050

5060

5070

5080

5090

5100

5110

Sound and Graphics

PRINT "Tl=";T1;"F2=";F2;"A3=
PRINT "F4=";F4;"A5=";A5;"F6=
PRINT "A7=";A7;"L8=";L8;"A9=
RETURN

Tl=-50

DD=100

FS = 2

GOSUB 4640

PRINT "CHANGE

FOR D=0 TO DD

CALL SOUND(TI

L8,A9)
NEXT D

CALL KEY(0,K,Z)
IF Z+l=l THEN 4730

IF K=89 THEN 4800

IF K=78 THEN 550 ELSE

INPUT "FREQ RANGE=":DD

INPUT "FREQ STEPS=

INPUT "TIME=":T1

GOTO 4720

REM TIME MOD

CALL CLEAR

PRINT TAB(5);"TIME

"FOR Tl=l TO

"CALL SOUND(TI

"FOR D=0 TO 5"

"NEXT D"

T 1 " : : :

VALUES"

A3

F6

A9

PARAMETERS(Y OR N)?": :

STEP FS

F2+D,A3,F4+D,A5,F6+D,A7,-

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

GOSUB

TM=300

D = 5

TS=10

PRINT "CHANGE PARAMETERS(Y OR N)?": :

FOR Ti=TS TO TM STEP TS

FOR T=0 TO D

NEXT T

CALL SOUND(T1,F2,A3,F4,A5,F6,A7,-L8,A9)
NEXT TI

CALL KEY(0,K,Z)
IF Z+l=l THEN 4980

IF K=89 THEN 5070

IF K=78 THEN 540 ELSE 4980

INPUT "TOT TIME=":TM

INPUT "TIME STEP=":TS

INPUT "DELAY=":D

GOTO 4970

END

"NEXT

"LAST

4640

4730

FS

MODULATION": :

300 STEP 10"

F2,A3,...A9)

237

Steven Kaye
TI Translation by Patrick Parrish

"Sound Shaper" manipulates volume and frequency to give
the TI with Extended BASIC a smoother, more musical
sound.. The program also runs on the TI with regular BASIC.

The TI produces waveforms which are square. One micro
second the sound is off, the next it's on. This abrupt onset of
sound produces somewhat nonmusical sounds. The tones
sound electronic and unlike any acoustic instrument.

As an alternative to turning the sound on and off
abruptly, we can increase and decrease the amplitude (vol
ume) more gradually under control of the program.

"Sound Shaper" has two sound producing routines that
can be used in your programs. Echo effect produces a sound
that its name implies. The actual routine producing the sound is
in lines 550 to 670. The routine can be extracted as is and used.

The Shaped Musical Notes routine is a bit more flexible.
The program will ask for a rise and fall value. Experiment
with different values. Try low values like .5,2 and .1,1 and
higher values like 10,10. For an eerie sound try 5,20. If the in
put values are much higher the program seems to continue
endlessly, but will eventually return to the main menu.

Experiment with values and write down the ones you
like. Once you have found the effect you want for a particular
application, copy the routine from lines 400 to 490. Be sure to
supply values for R and D.

Sound Shaper

100 CALL CLEAR

110 CALL SCREEN(15)

120 PRINT TAB(7):"SHAPING TI SOUNDS"
130 FOR T=l TO 6

140 PRINT

150 NEXT T

160 PRINT "CHOOSE:"

170 PRINT

180 PRINT

190 PRINT TAB(4);"1) SHAPED MUSICAL NOTES

238

mSound and Graphics

f«s* 200 PRINT
• 210 PRINT TAB(4);"2) ECHO"

220 PRINT

230 PRINT TAB(4):"3) QUIT"

P*1 240 PRINT
250 INPUT A*

260 IF (VAL(A*)<1)+(VAL(A$)>3>THEN 250

(ess 270 ON VAL(A*)GOTO 290,520,690
280 REM THIS PART PRODUCES "SHAPED" MUSICAL

NOTES

290 CALL CLEAR

300 CALL SCREEN(13)

310 PRINT TAB(3);"« SHAPED MUSICAL NOTES *"

320 FOR T=l TO 10

330 PRINT

340 NEXT T

350 PRINT "ENTER RISE AND FALL TIMES -"

360 PRINT "USE VALUES GREATER THAN ZERO";

370 PRINT

380 INPUT R.D

390 IF (R=0)+(D=0)THEN 380

400 FOR F=110 TO 880 STEP 30

410 FOR DB=30 TO 0 STEP -5/R

420 CALL SOUND(-10,F.DB)

430 NEXT DB

440 FOR DB=0 TO 30 STEP 5/D

450 CALL SOUND(-10,F,DB)

460 NEXT DB

470 FOR T=l TO 50

480 NEXT T

490 NEXT F

500 GOTO 100

510 REM THIS PART CREATES AN ECHO EFFECT

520 CALL CLEAR

530 CALL SCREEN(14)

^ 540 PRINT TAB(8);"« ECHO EFFECT *"
550 FOR T=l TO 12

560 PRINT

570 NEXT T

^ 580 FOR F=110 TO 880 STEP 30
590 FOR DB=1 TO 30

600 CALL SOUND(-10,F,DB)

riss> 610 FOR T=l TO 10
620 NEXT T

630 CALL SOUND(-10,990-F,DB)
640 FOR J=l TO 10

^* 650 NEXT J

660 NEXT DB

670 NEXT F

^ 680 GOTO 100
690 END 239

Donald J. Eddington
TI Translation by Gregg Peele

Your computer can compose music with this special tech
nique. The compositions are remarkably Mozartian in style.

If you've ever gone through the steps to make your computer
play a particular piece of music, you realize that it can be a
significant programming task. To have your computer actually
write music is a real feat.

To accomplish this, we've first got to find a way to work
with CALL SOUND values in DATA statements in order to
make the measures of music. Also, we need to be able to
READ the values in any order so that the songs will be dif
ferent with each run of the program. The commonly used
string manipulation methods won't work very well here. We
need variety, and the traditional way of working with strings
quickly results in a tangled mess.

Array Referencing
The shortest, best way to solve this problem is to use a tech
nique called array referencing. First, to get the measures of
music, you set up an array of all variables, then reference
them by subscript in a loop. Specifically, 14 variations on nine
variables are required to make the music for this program. The
random number generator is used to make the music different
every time the program is run.

A Mozartian flavor results from a deliberate shortening of
the low notes and making the high notes of varying lengths.
And to keep the music from becoming totally random, DATA
statements select the measures by their underlying tonality—
tonic, subdominant, dominant, or supertonic. In keeping with
classical style, a cadence is provided every four measures with
a final ending chord for each tune.

240

S—SrA

•stat

Sound and Graphics

TI Mozart

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

DIM X(14,9)

REM THE TICLANG

CALL CLEAR

CALL SCREEN(14)

AMAZIUS MOZART

I AM TICLAN

MOZART."

THE CHILD"

AMADEUS "

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT "

PRINT

PRINT "

PRINT "

PRINT "

PRINT "

PRINT

PRINT "

PRINT "

PRINT "

PRINT

PRINT

PRINT

FOR T=l

FOR TT=1

READ X(T

C3

C6

SPACES3WELCOME

SPACES:! AMAZIUS

"I PLAY SONGS LIKE
"PRODIGY, WOLFGANG

MOZART MIGHT HAVE DONE."

C5 SPACES3MOZART LIVED FROM
C8 SPACES?1756 TO 1791"
AND WROTE OVER 626 WORKS IN
C8 SPACESJ31 YEARS."

G"

THE 5 PIECES YOU HEAR ARE"
<3 SPACES3BEING WRITTEN BY

COMPUTER AS YOU LISTEN!"

THE

NEXT

NEXT

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

P = 250

DATA 1,3

,6,2,1,3

DATA 1,1

,6, 9
DATA 1,4

.3,7.1,4

TO 14

TO 9

TT)

TT

T

196

196

196

196

196

196

220

220

220

220

220

196

196

196

494.

494

494

523

523

659

523

440

659

523

523

494

587

659

494

587

523

587

659

523

587

587

784

494

494

523

,523

,587

247,

247,

247,

262,

j-O i- ,

"~>A *•>x. O jl. ,

262,

220,

262.

262,
262,

247,
220.440

1,4,6

494

587,

587,

659

659

392

784

523

587

440

440

587

587

523

523

784

587

659

587

494

523

494

494

587

440
C <-> T C «-»'

3,4,1

294

294

294

330

330

330

294

294

294

330

330

294

294

330

494

494

494

784

523

523

523

4 40

494

523

-* -* a «=:r> -*

587

440,

52

220

294

294

262

262

196

220

262

220

220

262

294

220

262

1.4,6,7,1,4

1,4,6,2,3,4,1,5,1,4,1 1,4

1 ,4

241

3,6, 1 1,4,6,7,3,4,6

Sound and Graphics

550 DATA 1,4,3,7,1,6,4,5,6,3,6,2,4,6,1,5,1,4
,6,9

560 DATA 1,4,3,7,6,3,6,2,4,6,1,5,1,3,6,7,3,6
,1,5,1,4,6,9,8

570 READ RR -"j

580 ON RR GOTO 650.590.730.780,610.860,640,9 J
40,1040

590 Y=12

600 GOTO 990 ""I
610 Y=14]
620 GOTO 990

630 Y=13

640 GOTO 990

650 Y=l

660 RANDOMIZE

670 IF RND>.35 THEN 700
680 Y=3

690 RANDOMIZE

700 IF RND<.75 THEN 720
710 Y=2

720 GOTO 990
730 Y=10

740 RANDOMIZE

750 IF RND>.4 THEN 780
760 Y=ll

770 GOTO 990
780 Y=4

790 RANDOMIZE

800 IF RND>.35 THEN 820
810 Y=5

820 RANDOMIZE

830 IF RND<.75 THEN 850
840 Y=6

850 GOTO 990

860 Y=7

870 RANDOMIZE

880 IF RND>.35 THEN 900 ""^
890 Y=8

900 RANDOMIZE

910 IF RND<.75 THEN 930 _
920 Y=9 1
930 GOTO 990

940 PRINT "<5 SPACES3WELL. THAT'S ALL"
950 PRINT "C4 SPACES;HOPE YOU LIKED IT!!" ***]
960 PRINT "RUN IT AGAIN AND HEAR FIVE "
970 PRINT "<.& SPACESJMORE SONGS."
980 END —n

990 FOR 1=1 TO 9 STEP 3

1000 CALL SOUND(P,X(Y,I),2,X<Y,1+1),2)

242 !

(SP)

\'w*smi

Sound and Graphics

{*» 1010 CALL SOUNDCP,X(Y, I) ,30,X(Y, 1+2) ,2)
1020 NEXT I

1030 GOTO 570

1040 CALL SOUND<1800,196,2,494,2,784,2)
f"™ 1050 FOR T=l TO 800

1060 NEXT T

1070 K0L=INT<RND*8)+8

rasa 1080 CALL SCREEN(KOL)

1090 GOTO 570

J-.w^Sipj

243

(•PI

.•5

••s^l

f!5!rGS9S5

f£5^

Gary K. Hamlin

Sprites are easy to create and use. They enhance the graphic
displays and make smooth moving objects simple to control.
This program requires Extended BASIC.

An exciting feature of most personal computers is their color
graphics capability. Even if the computer was purchased for
financial management or complex mathematical computations,
it's hard to resist experimenting with graphics. Defining
and manipulating your own characters—from oddly shaped
"doodles" to those resembling actual objects—can be a lot of
fun, and can have practical applications too.

Graphics are quite easy to use on the TI-99/4A, with TI
BASIC'S series of built-in graphics subprograms. Once they are
learned, subprograms used with sprites are also easy. Sprites
require the addition of the TI Extended BASIC cartridge, and
will greatly enhance the computer's possible graphics
applications.

Sprites Vs. Characters
A sprite can be one of the characters from the TI character set
or can be made from user-created dot patterns, just as is done
in standard BASIC, using the CHAR subprogram. Sprites,
however, are more versatile than standard BASIC characters.

f"* Sprites can be positioned at 49,152 different screen locations
(192 rows by 256 columns); standard characters have only
768 possible screen positions (24 rows by 32 columns). This

!** permits faster and smoother character movement, a significant
advantage in game programming.

The CALL CHAR statement is used in defining Extended
** BASIC sprites much as it is in standard BASIC character defi

nition. The same 8X8 dot grid and hexadecimal on/off
codes are used (Figure 1), but sprites can occupy up to four 8

r*S4 X 8 dot blocks. The resulting hexadecimal code pattern identi
fiers can contain up to 64 characters. The computer will auto
matically reserve four blocks for each sprite, whether or not all

tff^MTI

247

Sprites t==

of them are actually used; therefore, it's advisable to think in
sets of four blocks even if the sprite is to occupy only a small
portion of the reserved area. Figure 2 illustrates the arrange
ment of the blocks.

Figure 1. Pattern Identifier Guide

Binary
Code

(0 = OFF 1 =

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

El
m
if S

m
H •
m
m '

a
m
g m
m m i

il •
• to P
• m :
M s ai 2

ON)

Hexadecimal

Code

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Figure 2. Order of 8 X 8 dot blocks
for sprite definition and placement

w

6 D

248

«OR»

Sprites

P^ Defining a Sprite
Sprite characters should be assigned character codes divisible
by four if they are to occupy more than one of the four blocks.

^ This is less critical for single-block sprites, but the character
code assigned to a single-block sprite will affect which
blocks—A, B, C, or D—the sprite will occupy. The computer
will always assign a character code divisible by four to block A.

The order of the blocks, as shown in Figure 2, is also criti
cal when writing out the pattern identifier of a multiple-block
sprite. If the order is not observed—and if block A's character
code is not evenly divisible by four—the four segments of the
sprite will become jumbled when displayed on the screen. Al
ways begin with the pattern identifier for block A, at the up
per left, proceeding to the lower left (B), upper right (C), and
concluding with block D at the lower right.

It should also be kept in mind that in program references
to the screen location of a sprite, the specified location identi
fies the dot occupying the upper-left corner of the four re
served blocks (shown as the shaded dot in block A, Figure 2).
This is true whether or not that dot constitutes a visible part of
the sprite.

The sprite mapped out in Figure 3 is intended to occupy
four 8X8 blocks. To illustrate the proper sequence of the
hexadecimal code pattern identifiers, the pattern identifiers
will be referred to as string variables with the letter of the
variable corresponding to the letter designation of each of the
four blocks. The program statements would be:

100 A*="010204020123568D"

110 B$="8D56230102040201"

120 C*="8040204080C46AB1 "

130 D*="B16AC48040204080"

140 CALL CHAR <96r A*8<B$ScC*8<D* >

While it isn't necessary to use separate statements in this
manner, it may be helpful to do so until the arrangement of
pattern identifiers becomes familiar. The same thing could be
accomplished by a single program statement:
100 CALL CHAR(96/"0102040201
23568D8D562301020402018040204

080C46AB16AC48040204080")

f1^TOT*&

|tt$Wj

249

Sprites

It's only necessary to specify one character code in the
CALL CHAR statement; the computer automatically assigns
the other three. Even in the case of single-block sprite charac
ters, three character codes will be set aside for the sprite in
addition to the specified character code.

Again, the computer will always assign a character code
evenly divisible by four to block A, the upper-left portion of
the sprite. For the snowflake sprite just identified (Figure 3),
character 96 was specified. 96 is evenly divisible by four;
therefore, character 96 is assigned to block A. Block B will
automatically be assigned 97; block C will be assigned 98, and
character 99 will be assigned to block D.

Figure 3. Snowflake Sprite

• ii
m

vm m
• a

• •
m m |S5 • ii m

m w m m • m m •
tstJffl m M m • m • •
m m m ii • m m i!

m m m m m w$ m m
m m m • • a

m •
m is

w H
p m

B •

Hexadecimal Code

01 80
02 40
04 20
02 40

01 80
23 C4

56 6A
8D Bl

8D Bl

56 6A

23 C4
01 80
02 40
04 20
02 40
01 80

The spaceship sprite shown in Figure 4 will occupy only
one of the four blocks. If the character code used for the
spaceship were 90, the sprite itself would be placed in block
C. Since the next lower number evenly divisible by four is 88,
character code 88 would be assigned to block A.

The program line identifying the spaceship sprite would
read:

150 CALL CHAR(90."1818183C3C3C66C3")

250

n

r^BQu)

Pwj^ffFj

fTPwl

f-WMfiJ

Figure 4. Spaceship Sprite

si in

• K
• fiij

fl fi H E;
B • S 1
S e if •

IB ii II 9
• P • •

Hex.

Code

18

18

18

3C

3C

3C
66

C3

Sprites

Displaying the Sprite
Once a sprite has been defined, the CALL SPRITE statement is
used to display it on the screen. The syntax for the CALL
SPRITE statement is: CALL SPRITE (sprite number, character
code, sprite color, row, column, row velocity, column velocity).
Values for row and column velocities, which cause the sprites
to move, are optional. The CALL MOTION statement is an
other method to move a sprite. Both methods will be dem
onstrated below.

The sprite number can be any number from 1 to 28. The
sprite number is always preceded by a #. The character code
must correspond to the one specified in the CALL CHAR
statement. Since the CALL SPRITE statement requires naming
a sprite color, no separate CALL COLOR is needed. The back
ground color of sprites is always transparent, so only the fore
ground color is named in the statement.

The row and column determine the sprite's location on
the screen. Each can be in the range of 1 to 256, but only rows
above 193 will be visible on the screen: Rows 193 and 256 are
offscreen. Position 1,1 is the upper-left corner of the screen.
The values used for row and column will determine the screen
placement of the dot in the upper-left corner of the space
allotted to the sprite.

The following program lines, combined with lines 100 to
150 above, will clear the screen, color it gray, color the snow-
flake sprite red and the spaceship black, and place the sprites

251

Sprites

on the screen. Once the RUN command is given, line 200 will
cause the program to continue running until CLEAR (FCTN 4)
is pressed.

160 CALL CLEAR

170 CALL SCREEN*15)

180 CALL SPRITE(#1,96,7,95,75)
190 CALL SPRITE (4*2,90,2, 170, 125)
200 GOTO 200

Magnify the Sprite
This places the two sprites on the screen. However, the snow-
flake sprite is displaying just the upper-left (block A) part of
the sprite. Only that part of a sprite whose character code is
named in the CALL SPRITE statement will appear.

A CALL MAGNIFY statement can be used to double the
size of sprites or to display multiple-block sprites—our snow-
flake. It can perform either function separately, or both to
gether, depending upon the magnification factor specified.

CALL MAGNIFY(l) would make no change in either the
size or appearance of the sprites. CALL MAGNIFY(2) would
double the size of all sprites displayed on screen. Rewriting
line 200 and adding line 210 to the sample program will simply
double the size of the spaceship and the upper-left portion of
the snowflake.

200 CALL MAGNIFY<2)

210 GOTO 210

In order to correct the problem with sprite #1, line 200
must read:

200 CALL MAGNIFY <3) ""^J
This displays the snowflake correctly, but introduces a prob
lem with the spaceship sprite. Extraneous characters have sur- *••]
rounded it. The same condition would exist if a magnification '
factor of four were used; only the sprites, and the extraneous
characters, would be twice as large. ***)

j

200 CALL MAGNIFY(4)

The extraneous characters correspond to the ASCII codes """I
of the characters used for the sprite. Block A is character 88
(X); block B is character 89 (Y); and the open bracket ([) is 1

tarn

252]

Sprites

p*1 character 91. This problem can be avoided by using one of the
' "free" character codes (128 to 143) for sprites which will oc

cupy fewer than four blocks.
p> Note that the CALL MAGNIFY statement affects all
• sprites in the program, and cannot be used to single out in

dividual sprites.
rThe extraneous characters can be removed by changing

statements 150 and 190 to:

150 CALL CHAR(130,"1818183C3C3C66C3")
190 CALL SPRITE(#2,130,2,170,125)

All other program lines will remain the same. After making
the changes, try running the program with both magnification
factors three and four used in line 200. The two sprites will
now appear as intended. For the remaining program demon
strations, the magnification factor should be set at three.

Where's the Sprite?
Once sprites have been correctly displayed on screen, various
subprograms can be CALLed to manipulate them. Motion can
be added, the appearance ofa sprite can be altered, and infor
mation can be obtained about character pattern identifiers,
sprite location, and the distance between sprites.

The POSITION subprogram is used when the numeric
values of the screen location of a sprite are desired. In the
CALL POSITION statement, sprite number is first specified,
followed by two numeric variables. When the statement is
executed, the numeric variables are set equal to the values of
the sprite's row and column, respectively. Values returned are
for the location of the upper-left corner of the four block sprite

P*1 allotment.
The following changes and additions to the demonstration

program will illustrate the operation of the POSITION
f"" subprogram:

210 CALL POSITION(#1,DR1,DC1)
^a 220 CALL POSITI ON(#2,DR2,DC2)

230 PRINT TAB<6):"ROW","COL"

240 PRINT "#ls ";DR1,DC1
250 PRINT "#2: ";DR2,DC2

F** 260 STOP

253

Sprites

When the program is run, the result will be: *°^
ROW COL

#1: 95 75
#2: 170 125 •"']

What Does It Look Like?
Another built-in Extended BASIC subprogram allows the re- """]
view of character pattern identifiers. The CALL CHARPAT
statement is not exclusive to sprites and can also be used with
standard user-defined characters as well as with predefined
alphanumeric characters.

The CALL CHARPAT statement calls for the character
code of the character whose pattern identifier is to be found,
followed by a string variable. The result of the string variable
will be the named character's 16-character pattern identifier,
expressed in hexadecimal. For a multiple-block sprite like the
snowflake, a FOR-NEXT loop should be used in order to ob
tain all four of its pattern identifiers. By making the following
alterations to the sample program, the pattern identifiers of
the snowflakes and spaceship sprites will be displayed, along
with the asterisk (*) and the numeral four (4) and their charac
ter pattern identifiers.

210 CALL CHARPAT(130,CP2$)::PRINT CP2*
220 FOR CC=96 TO 99

230 CALL CHARPAT<CC,CP1$)
240 PRINT CP1*:: NEXT CC

250 FOR CC=42 TO 52 STEP 10

260 CALL CHARPAT<CC,CP*)
270 PRINT TAB (3) ;CHR* (CO : " "; CP*
280 NEXT CC

290 STOP «j
J

This will display:
1818183C3C3C66C3 —*
010204020123568D !
8D56230102040201

8040204080C46AB1 ^
B16AC48040204080]

* 000028107C102800

4 00081828487C0808

254

PR

Sprites

r-' How Far Is It?
The CALL DISTANCE statement is used to determine the dis
tance between two sprites, expressed as the square of the

|**» number of dots separating them. It uses the dot occupying the
! upper-left corner of the four-block allotment as the point of

measurement. CALL DISTANCE can also be used to measure
p*» the distance between a sprite and a given screen location.

The statement will include either two sprite numbers, or a
sprite number and the row and column values of a screen
location, followed by a numeric variable. The actual dot dis
tance is found by taking the square root of the value found for
the numeric variable. The results are calculated to eight deci
mal places, so if it is preferred that values be expressed as
integers, the INT function can be added to the appropriate
program lines. Changing the demonstration program with the
lines below will make the program find the distance between
the two sprites and the distance between the snowflake sprite
and the upper-left corner of the screen (position 1,1):

210 CALL DISTANCE(#1,«2,X)

220 DST=SQR(X)

230 PRINT DST

240 CALL DISTANCE(#1,1,1,Y)

250 DIS=SQR(Y)

260 PRINT DIS

270 STOP

280 REM DELETE THIS LINE

The results of the sample program will be:
90.13878189
119.6327714

Moving Sprites
CALL LOCATE is used to change the screen location of a

^ sprite. It does so immediately upon execution of the program
.i line, producing an abrupt change rather than gradual motion.

The syntax is CALL LOCATE(sprite number,row,column).

P555 210 CALL LOCATE (#2, 1,200)
220 FOR DELAY=1 TO 1000 :: NEXT DELAY

230 CALL LOCATE(#2,15,15)
pmn 240 FOR DELAY=1 TO 1000 :: NEXT DELAY
I 250 CALL LOCATE (#2. 170. 125)

260 GOTO 210

270 REM DELETE THIS LINE

fatfSiptHjJ

255

Sprites

l

These lines move the spaceship sprite from its original po- «•»!
sition first to a point near the upper right of the screen, then J
near the upper left, then back to its original location. The pro
gram will continue to run until CLEAR (FCTN 4) is pressed. p*w

If a change in the character pattern is wanted without
otherwise affecting the sprite, the CALL PATTERN statement
is used. It can be used to completely reshape a sprite or to *am
make more subtle changes in appearance. When combined 1
with other statements, it can be used to simulate the visual
effects of motion. By changing the sample program lines as
follows, the spaceship sprite will change from vertical to hori
zontal orientation, then back again.

210 FOR D=l TO 1000 :: NEXT D

220 CALL CHAR(140,"80C07S3F3F78C080")
230 CALL PATTERN(#2,140)
240 FOR D=l TO 1000 :: NEXT D

250 CALL PATTERN(#2,130)
260 GOTO 210

The CALL CHAR statement containing the pattern identi
fier for the modified sprite need not immediately precede the
CALL PATTERN statement; it can be included anywhere in
the program before the CALL PATTERN statement.

Motion of the sprites can be accomplished in either of two
ways: by specifying row and column velocities in the CALL
SPRITE statement, or by adding a CALL MOTION statement
later in the program. In the CALL SPRITE statement, row and
column velocities are specified following row and column val
ues, which then become the sprite's starting point; in CALL
MOTION statements, row and column velocities follow the
sprite number.

Values for row and column velocity fall within the range j
of —128 to 127. The closer the value is to zero, the slower the
motion will be. Negative values for row velocity move the
sprite upward while negative column velocity moves the sprite j
to the left. Conversely, positive values move the sprite down
or to the right. A value of zero for row velocity means that
there is no vertical movement; likewise a column velocity of ***]
zero prevents horizontal movement. When unidirectional
movement is desired, zero must be specified as a velocity for
the direction in which motion is not wanted. ^^

256

RwSm

i»"iB»™t*B***^^^&Mc'ggn*j*BwE»*TOBrcj ^priics

Examples of both methods of initiating sprite motion can
be added to the demonstration program as follows:

Change line 180 and lines 210 to 240, and add line 250:

180 CALL SPRITE (#1 .96,7,95,75,50,-50)

210 REM

220 REM

230 REM

240 CALL M0TI0N<#2,-5,0)

250 GOTO 250

These changes cause the snowflake sprite to move down
and to the left at a diagonal, while the spaceship moves
slowly upward. Notice that motion begins as soon as the pro
gram line is executed and is continuous until the program is
stopped. The spaceship cycles from the bottom to the top of
the screen over and over. A time-delay FOR-NEXT loop can
be inserted to end the movement of the sprite by deleting the
sprite. Differences in sprite velocity necessitate experimenting
to find the upper limit needed in the FOR-NEXT loop. In this
case, changing the program to:

250 FOR DELAY=1 TO 2200 :: NEXTDELAY

260 CALL DELSPRITE<#2)

270 GOTO 270

allows the spaceship to move as far as the top of the screen
when it will disappear. The DELSPRITE subprogram deletes
the specified sprite as soon as the program statement is ex
ecuted. DELSPRITE can also be used to clear all sprites from
the screen by writing CALL DELSPRITE(ALL).

To restore the sprite to the screen after motion is stopped,
P^ rewrite line 270 to send the computer back to line 240, or fol

low line 260 with a new CALL SPRITE statement duplicating
line 190. As it was written, once the CALL DELSPRITE state-

(*• ment is executed, the spaceship will not return to the screen.
Motion begins as soon as the CALL SPRITE or CALL

MOTION statement is reached. The start of motion can easily
f"*» be controlled, however. Adding a KEY subprogram allows mo

tion to begin only after a certain key has been pressed. Add
these lines in place of the three REM statements:

^ 210 CALL KEY(0,K,S>
220 IF S=0 THEN 210

230 IF K=32 THEN 240 ELSE 210

' 257

Sprites

Now, when the program is run, the spaceship will not <a»
move until the space bar is pressed. !

Different values for row and column velocity will, of
course, change both the speed and direction of sprite move- *•»
ment. Changing the values may also affect the angle at which !
the sprites move. The closer the values, the greater the angle
at which the sprites move. If values of 50 were specified for mm
both row and column velocity, the angle would be 45 degrees. I
If row velocity were increased to 90, the angle of movement
would be smaller, and motion would be more vertical. Accord
ingly, a greater value for column velocity would make move
ment more horizontal. This is true even if a negative value is
specified for either row or column velocity while the other is
positive, as demonstrated by the motion of the snowflake
sprite. Try changing the values of the row and column veloc
ities given for both sprites. Experimenting with different val
ues demonstrates how they change the speed and angle of
sprite motion.

Detecting Collision
The CALL COINC statement performs a function especially
useful in game programming. It instructs the computer to
monitor sprite movement to determine when two or more
sprites occupy the same position, or are within a certain num
ber of dots of each other. It can also be used to determine
when a sprite reaches a specific screen location, or passes
within a certain number of dots of the screen position.

If information is needed for all sprites, then CALL
COINC(ALL) is used in the program; otherwise, CALL
COINC is followed by two sprite numbers, or a sprite number
and the row and column of a screen location, a tolerance ^.
value, and a numeric variable. Tolerance is simply the number \
of dots which may separate the two sprites or the sprite and
screen position in order for coincidence to exist. Again, the dot «
in the upper-left corner of the sprite is used for measurement j
purposes.

When the CALL COINC statement is executed, the com- „_
puter assigns a value to the numeric variable in the statement.]
If there is no coincidence, the numeric variable is set equal to
zero; if there is coincidence within the allowance of the tol- ^
erance specified, the value is set equal to —1. Instructions can J
be given to the computer to act based on the value of the vari-

258

r

Sprites

pB» able. IF-THEN statements employed in this way can be used
' to change a score or screen color, sound a tone, or even play a

tune by using the proper sequence of CALL SOUND
f^ statements.

It should be remembered that the coincidence of two
sprites, or of a sprite and screen location, does not have to be

r visible.

Program lines 250 to 390 below demonstrate the opera
tion of the COINC subprogram.

250 CALL COINC (#1 ,=t»2. 10, CI)

260 CALL COINC<*2,1,125,1,C2)

270 PRINT CI

280 IF Cl=-1 THEN 300 ELSE 290

290 IF C2=-l THEN 350 ELSE 250

300 CALL SCREEN(ll)

310 CALL SOUND(100,262,2)

320 FOR D=l TO 200 :: NEXT D

330 CALL SCREEN<15)

340 GOTO 250

350 CALL SCREEN(4)

360 CALL SOUND(100,523,2)

370 FOR D=l TO 200 :: NEXT D

380 CALL SCREEN<15)

390 GOTO 250

Line 270 will continuously print the value of CI as the
program runs. If CI = —1, coincidence of the two sprites ex
ists, and control shifts to line 300, where the screen color is
changed to yellow and middle-C is sounded. When the space
ship sprite comes within one dot of the top of the screen, C2
is set equal to —1, and control moves to line 350, where the

~ screen becomes green, and C above middle-C is sounded. The
program will continue to run until CLEAR (FCTN 4) is
pressed. It will probably be necessary to allow the spaceship
sprite to cycle the screen several times before coincidence with

I the snowflake sprite is detected.
You may notice that sometimes the sprites appear to col-

lide but no coincidence is detected. Coincidence is only de-
; tected when the CALL COINC statement is being executed—

in this program, line 250. One way to avoid this problem is to
check coincidence often. This solution, though, tends to make

; the program longer than it needs to be, thus slowing it down.
The best solution is to keep the loop (in the example, program

psjfti

259

Sprites

lines 250-290) to as few lines as possible and adjust the tol- **^
erance. Since too large a tolerance will cause coincidence too i
often, it is best to experiment with different values.

Demonstration Program j
These are the essentials of sprite programming, and the
demonstrations used are only representative of what can be ^
done with sprites. After experimenting with the different sub-]
programs, you'll discover how to best use sprites in your own
programs.

Below is a complete listing of the sprite demonstration
program.

Sprite Demonstration

100 CALL CLEAR

110 PRINT TAB(5):"****SPRITE DEMO****"

120 PRINT :: PRINT "DESIGNED TO ACCOMPANY"

130 PRINT """ A BEGINNER'S GUIDE TO

<6 SPACES3SPRITES IN TI EXTENDED

C5 SPACES3BASIC

370 FOR D=l TO 1000 :: NEXT D

180 CALL CLEAR

190 PRINT "THIS DEMONSTRATION FOLLOWS THE S

EQUENCE OF THE ARTICLE."

200 PRINT :: PRINT "THE PROGRAM STEPS USED A

RE THE SAME AS THOSE USED INC3 SPACESJT

HE ARTICLE."

210 PRINT :: PRINT "AT THE END OF EACH DEMO.

A TONE WILL SOUND."

220 PRINT :: PRINT "THEN PRESS LETTER Q TO C

ON- TINUE WITH THE NEXT DEMO."

230 FOR D=l TO 1000 :: NEXT D

240 CALL CLEAR ,_
250 A*="010204020t23568D" >

260 B$="3D56230102040201" }
270 C*="80402040S0C46AB1 "

280 D$="B16AC48040204080" «j
290 CALL CHAR (96. A*8<B$S<C*2<D*) 1

300 CALL CHAR(90."13181S3C3C3C66C3 ")

310 CALL SCREEN(15)

320 CALL SPRITE(#1.96.7,95.75)

330 CALL SPRITE(#2,90.2,170,125)

335 FOR D=l TO 500 :: NEXT D

340 GOSUB 2500

350 CALL MAGNIFY(2)

360 DISPLAY AT(3.3):"MAG. FACTOR 2"

370 FOR D=l TO 500 :: NEXT D

260

~1

[ife^J

fi&H&S

pfe)

piffMrJ

fftfel

s Sprites

380 CALL MAGNIFY(3)

390 DISPLAY AT(3.3)ERASE ALL:"MAG. FACTOR 3"

400 FOR D=l TO 500 :: NEXT D

4 10 CALL MAGNIFY(4)

420 DISPLAY AT(3.3)ERASE ALL:"MAG. FACTOR A"

' 430 FOR D=l TO 500 :: NEXT D
440 CALL CLEAR

prtn 450 CALL CHAR(130."1818183C3C3C66C3"t
460 GOSUB 3000

465 DISPLAY AT>2.3):"MAG. FACTOR 3"

467 DISPLAY AT(3.3):"UNWANTED CHARACTERS NOW

RE-C3 SPACESJMOVED WHEN ""FREE"" CHAR-

C3 SPACESJACTER CODE USED"

468 FOR D=l TO 500 :: NEXT D

470 FOR D=l TO 500 :: NEXT D

480 CALL MAGNIFY(4)

490 DISPLAY AT(3,3)ERASE ALL:"MAG. FACTOR 4"

500 FOR D-=l TO 500 :: NEXT D

510 CALL MAGNIFY(3)

520 DISPLAY ERASE ALL

530 GOSUB 2500

535 DISPLAY AT(?.3):"POSITION DEMO"

536 FOR D=l TO 500 :: NEXT D

540 CALL POSIT ION(ttl . DR1 .DC 1)

550 CALL POSITION(#2.DR2.DC25

560 PRINT TAB(5);"ROW"." COL"

570 PRINT "#1: ";DR1.DC1

580 PRINT "#2: ":DR2.DC2

590 FOR D=l TO 500 :: NEXT D

600 GOSUB 2500

6 10 CALL CLEAR

620 GOSUB 3000

625 DISPLAY AT(2.3):"CHARPAT DEMO"

626 FOR D=l TO 300 :: NEXT D

630 CALL CHARPAT<130.CP2*):: PRINT CP2$
640 FOR CC=96 TO 99

650 CALL CHARPAT (CC.CP1*>

660 PRINT CP1$:: NEXT CC

670 FOR CC=42 TO 52 STEP 10

prta 680 CALL CHARPAT(CC,CP$)

690 PRINT TAB(2);CHR*(CO;" ";CP* :: NEXT CC
700 FOR D=l TO 500 :: NEXT D

710 GOSUB 2500

720 CALL CLEAR

730 GOSUB 3000

735 DISPLAY AT(2,3):"DISTANCE DEMO"
i^> 736 FOR D=l TO 300 :: NEXT D
! 740 CALL DISTANCE<#1,#2,X)

750 DST=SQR(X)

760 PRINT DST

261

Sprites ^

770 CALL DISTANCE(#1,1,1,Y) ^
780 DIS=SQR(Y) J
790 PRINT DIS

800 FOR D=l TO 500 :: NEXT D

810 GOSUB 2500 "^
820 CALL CLEAR j
830 GOSUB 3000

835 DISPLAY AT(2,3):"LOCATE DEMO" ^
836 FOR D=l TO 300 :: NEXT D J
840 CALL L0CATE<#2,1,200)
850 FOR D=l TO 500 :: NEXT D

860 CALL LOCATE(#2,16,16)

870 FOR D=l TO 500 :: NEXT D

880 CALL L0CATE<#2,170,125)
890 FOR D=l TO 500 :: NEXT D

900 GOSUB 2500

905 DISPLAY AT<2,3)ERASE ALL:"PATTERN DEMO"
906 FOR D=l TO 300 :: NEXT D

910 CALL CHAR(140,"80C0783F3F78C080")
920 CALL PATTERN(#2,140)
930 FOR D=l TO 500 :: NEXT D

940 CALL PATTERN(#2,130)
950 GOSUB 2500

960 GOSUB 3500

965 DISPLAY AT(2,3)ERASE ALL:"MOTION DEMO"

966 FOR D=l TO 300 :: NEXT D

967 DISPLAY ERASE ALL

970 FOR D=l TO 3000 :: NEXT D

980 GOSUB 2500

990 GOSUB 3500

995 DISPLAY AT<2,3)ERASE ALL:"DELSPRITE DEMO
•i

996 FOR D=l TO 300 :: NEXT D

997 DISPLAY ERASE ALL

1000 FOR D=l TO 2200 :: NEXT D

1010 CALL DELSPRITE(#2)

1020 FOR D=l TO 1000 :: NEXT D "*1
1030 GOSUB 2500 J
1040 CALL CLEAR

1045 CALL SPRITE(#2,130,2,170,125)
1050 GOSUB 4000

1055 DISPLAY AT(2,3):"USE OF CALL KEY TO INI
TIATE MOTION"

1056 FOR D=l TO 300 :: NEXT D "^
1057 DISPLAY ERASE ALL »

1060 FOR D=l TO 2000 :: NEXT D

1080 GOSUB 2500 ^
1090 GOSUB 3500

1095 DISPLAY AT(2.3)ERASE ALL:"COINC DEMO"

1096 FOR D=l TO 300 :: NEXT D

"1

262

Sprites

f^» 1100 CALL C0INC(#1,#2,15,CI)
1110 CALL COINC(#2.1.125,1.C2)

1120 PRINT CI

_-, 1130 IF CI =-1 THEN 1150 ELSE 1140
J 1140 IF C2=-l THEN 1200 ELSE 1100

1150 CALL SCREEN(ll)

1160 CALL SOUNDS 100,262.2)
F^ 1170 FOR D=l TO 200 :: NEXT D
' 1180 CALL SCREEN(IS)

1190 GOTO 1100

1200 CALL SCREEN(4)

1210 CALL SOUND(100.523,2)

1220 FOR D=l TO 200 :: NEXT D

1230 CALL SCREEN<15)

1240 GOTO 1100

1250 STOP

2500 DISPLAY BEEP

2510 CALL KEY(0.K,S>

2520 IF S=0 THEN 2510

2530 IF K=81 THEN 2540 ELSE 2510

2540 RETURN

3000 CALL SCREEN(15)

3010 CALL SPRITE(#1,96,7,95,75)
3020 CALL SPRITE(#2. 130,2, 170, 125)
3030 CALL MAGNIFY(3)

3040 RETURN

3500 CALL SPRITE(#1,96,7,95,75,50,-50)
3510 CALL M0TI0N(#2,-5,0)
3520 RETURN

3530 STOP

4000 DISPLAY AT(3,3):"PRESS SPACE BAR TO STA
RT MOTION OF SPACESHIP SPRITE"

4005 FOR D=l TO 200 :: NEXT D

4006 DISPLAY ERASE ALL

4010 CALL KEY(0,K,S)
-T?fe» 4020 IF S=0 THEN 4010

4030 IF K=32 THEN 4040 ELSE 4010

4040 CALL M0TI0N(#2,-5,0)
4050 RETURN

IffiSSpfl

Iwwircrcf

n^^j

263

Larry Long

Here's a way to get maximum use of sprites on the 77-
99/4A—and a program that generates listings for your
sprite creations. Requires Extended BASIC.

A very powerful yet often unused feature of the TI-99/4A is
its ability to display and control sprites. With the 99/4A and
the Extended BASIC Module, it's possible to generate 28
sprites for display and independent simultaneous movement.
Program 1 should convince any doubters that this can be
done. Although a lot of colored letters floating around the
screen are a bit pointless, if we can modify and control the
sprites, we will have a most useful feature.

Sprites can be designed by drawing on a piece of graph
paper and then converting the on/off pixels to a hexadecimal
number. If the two largest sizes of sprites are used, the hexa
decimal number describing the shape of the sprite would be
64 characters long (for a more extensive discussion on sprite
creation see "A Beginner's Guide to Sprites" elsewhere in this
book). A solution is a sprite editor that will allow us to draw
the pattern we want on the screen and then have the com
puter create the program we need to make that sprite pattern.
Program 2 will do exactly that, and more. It will allow us to
edit the sprite pattern. Then, when we press the L key, it will
display a complete listing that would, if copied on paper and
then entered into the computer, provide a sprite and the nec
essary routine to control its movement.

Your Options
When you run the program, the first display screen will be a
design grid with a box-shaped cursor. The area under the
cursor will initially be white (signifying an off pixel). Press 1
to change the color beneath the cursor to black (representing J
an on pixel) or to move the cursor about the grid using the ar
row keys. To turn off a particular pixel, press 0 and the back
ground color will be returned to white. When you have ""*]
completed your design, press the P key to see it displayed as a
sprite.

264 '

|E3^|

timtatf

ras^

|JJSS}

Sprites

At this point, you are given several options. You can mag
nify your newly constructed sprite (M key), change its color. (C
key), change its background color (B key), or set it in motion
(E, S, D, X keys). If you are not pleased with the sprite's
shape, you can modify it by striking the T key or (if the
changes required are quite drastic) simply press the A key to
start with a fresh grid. On the other hand, if you are satisfied
with your sprite and its color and directional parameters, press
the L key to create the BASIC statements needed to achieve
these effects.

If using the sprite editor is your only concern, then skip
the rest of this article and go straight to Program 2 and enjoy
this easy access to sprites.

How the Editor Works
To understand what makes the editor work, let's take a gen
eral overview of the program:

Lines

100-260 Set up screen display.
270-460 The main loop of the designing portion of the program.
470-680 Evaluate the design, put its values in an array, read the

values in the array, convert them to hexadecimal num
bers, and then build a 64-character string to describe the
sprite pattern.

690-770 Put the sprite on the screen and display new program
instructions.

780-930 Main loop of the implementation portion of the program.
940-980 Change size of sprite.
1000-1150 Display a listing of the sprite program.
1160-1220 Change the color of the sprite and screen.

A cursor is needed to indicate where you are located on
the design grid. I chose to use a sprite (line 220) because I
could move it around freely without disturbing the display un
der it. Repositioning the cursor is accomplished in line 380
with a CALL LOCATE. The arrow keys reposition the cursor,
and the ENTER key changes the area under the cursor.

What makes "Sprite Editor" so valuable is its ability to
generate the hexadecimal pattern for the sprite. The loop from
line 500 through line 560 determines the character in each
position of the design grid and stores that value in the array
B (R,C). Line 570 provides a string with all of the possible

265

Sprites
iwB^I

hexadecimal digits placed in ascending order. Line 580 sets "**]
M$ to null. The loop from line 590 to line 630 evaluates the *
array elements and converts each row in the left half of the
design grid to a pair of hexadecimal digits and concatenates —1
them to M$. Line 620 is probably the most significant line in '
this loop, as it provides the hexadecimal numbers. It causes
the computer to look at a particular digit (element) in HEX$ p*ol|
determined by the values calculated for HIGH and LOW. Lines '
630-680 perform the same operation as 590-630, only for the
right half of the design grid.

Line 690 assigns the hexadecimal numbers to ASCII
characters 104, 105, 106, and 107. It is necessary to specify
only the first character number in the CALL CHAR statement.
When this feature is used, it is required that you start with a
character that is evenly divisible by 4. Line 730 actually dis
plays the sprite.

Lines 740-770 provide instructions for the implementa
tion portion of the program. Lines 780-830 check for specific
key presses and provide appropriate branching to list the pro
gram; end the program; start from the beginning; change the
background color; modify the existing sprite; change sprite
size; or change sprite color. Lines 840-920 check for arrow key
presses and then increment or decrement sprite speed.

Lines 940-980 change sprite size. Lines 1000-1150 dis
play a program listing that would generate a sprite like the
one designed by the Sprite Editor. One problem with listing
the program is displaying the quote character. The computer
interprets it to mean that you want to end the PRINT state
ment. The solution is to redefine an unused character (I chose
the lowercase n) to look like the quote character.

Finally, lines 1160-1220 allow you to change the color of "^
the sprite and screen.

Program 1. Sprite Generation —j

100 CALL MAGNIFY(2):: FOR X=l TO 28 :: CALL

SPRITE <#X,64+X,X/2.96. 12S, INT(RND*100)-5 .^
0,INT(RND*100)-50):: NEXT X :: GOTO 100 |

Program 2. Sprite Editor _-

100 REM SPRITE EDITOR

110 DIM B(16,16):: SC=8

266 !

tl\-0m\

rt^SraJ

ii.i'.wfliUJ

130

140

150

160

170

180

190

200

210

212

215

217

220

225

230

240

250

260

265

270

271

272

274

280

290

300

310

312

320

330

340

350

380

420

430

460

470

480

490

500

510

520

530

540

Cl=7

CALL

CALL

CALL

CALL

CALL

CHARC100,"")
CHAR(101,"FFFFFFFFFFFFFFFF")
CHAR(102,"FFFFC3C3C3C3FFFF")
COLOR(9,2,16)
CLEAR

DISPLAY AT(1,10):"SPRITE EDITOR"
FOR R=l TO 16 :: CALL HCHAR(4+R,2
):: NEXT R

CALL MAGNIFY(1)

IF K=84 THEN GOTO 217

CALL SCREEN(8)

CALL DELSPRITE(ALL)

CALL SPRITE(#28, 102, 14,

Sprites

100,16

CALL HCHAR(21

,32,31)
DISPLAY

IGHT"

DISPLAY

- OFF"

DISPLAY

ITE"

R=l :: C=l

KHAR=100

CALL KEY(0,K,S)
IF S=0 THEN 270

K=48 THEN

31)

1,8)
CALL HCHAR(

AT (22,2) : "E = UP X = DOWN S = LEFT D = R

AT(23,2):"PRESS 1 - PIXEL ON

AT(24,2):"PRESS P TO DISPLAY SPR

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

K = 49

K = 83

K = 68

K = 69

K = 88

K = 80

C< 1

KHAR=100

KHAR=101

C = C-1

C = C+1

R = R-1

R = R+1

470

C=16

THEN

THEN

THEN

THEN

THEN

THEN

THEN

GOTO

GOTO

GOTO

GOTO

320

320

320

320

C>16 THEN C=i

R<1 THEN R=16

R>16 THEN R=l

L0CATE(#28,(8*R)+25
HCHAR(4+R,1+C,KHAR)
SOUND(20,200,5)
270

DELSPRITE(ALL)

HCHAR(21,1,32,128)

CALL

CALL

CALL

GOTO

CALL

CALL

DISPLAY AT(22,2)
INK. "

FOR R=l TO 16

FOR C=l TO 16

CALL GCHAR(4+R, 1+C,GO
GC=GC-100

B(R,C)=GC

8*C+1)

PLEASE WAIT WHILE I TH

267

Sprites

550 NEXT C ^
560 NEXT R !

570 HEX*="0123456789ABCDEF"

580 M*=" "

590 FOR R=l TO 16 "^
600 LOW=B(R,5)*8+B(R,6)*4+B(R,7)*2+B(R,8)+1 -1
610 HIGH=B(R,1)*8+B(R,2)*4+B(R,3)*2+B(R,4)+l
620 M*=M*&SEG*(HEX*,HIGH, 1)&SEG*(HEX*, LOW, 1) ^
630 NEXT R]
640 FOR R=l TO 16

650 LOW=B(R,13)*8+B(R,14)*4+B(R,15)*2+B(R,16
) +1

660 HIGH=B(R,9)*8+B(R,10)*4+B(R,11)*2+B(R,12
) +1

670 M*=M*&SEG*(HEX*,HIGH, 1)&SEG* (HEX*, LOW, 1)
680 NEXT R

690 CALL CHAR(104,M*)

700 CALL MAGNIFY(3)

710 MM=3

720 M=4

730 CALL SPRITE (#1, 104,CI,50, 170,0,0)
740 DISPLAY AT(21,2):"C COLOR M MAGNIFY T

EDIT"

750 DISPLAY AT(22,2):"A ERASE Q QUIT B BAC

KGRD"

760 DISPLAY AT(23,2):"E=UP X=DOWN S=LEFT D=R
IGHT"

770 DISPLAY AT(24,8):"L LISTS PROGRAM"
780 CALL KEY(0,K,S)
790 IF K=76 THEN GOTO 1000

800 IF K=81 THEN GOTO 990

810 IF K=65 THEN GOTO 100

812 IF K=66 THEN GOSUB 1200

815 IF K=84 THEN GOTO 210

820 IF K=77 THEN GOTO 940

830 IF K=67 THEN GOTO 1160

840 IF K=83 THEN H=H-2

850 IF K=68 THEN H=H+2

860 IF K=69 THEN V=V-2

870 IF K = 88 THEN V = V + 2 mm.
880 IF V>120 THEN V=120]
890 IF V<-120 THEN V=-120

900 IF H>120 THEN H=120

910 IF H<-120 THEN H=-120 "=1

920 CALL MOTION(#1,V,m '
930 GOTO 780

940 CALL MAGNIFY(M)

950 MM=M j
960 IF M=3 THEN M=4 ELSE M=3

970 FOR D=l TO 20 :: NEXT D

268

OBS1

Sprites

ftJWflEKl 930 GOTO 780

990 STOP

1000 REM PROGRAM LISTER-

1005 CALL SCREEN(8)
l^swmj

1010 CALL CHAR<110,"0024 24")
1020 CALL CLEAR-

1030 PRINT " C6 SPACES3PROGRAM LISTING"

fflptaM 1035 CALL DELSPRITE(ALL)

l 1040 PRINT

1050 PRINT ">100 CALL CHAR(104,n";:: FOR W=1
TO 64 :: PRINT SEG*(M*.W, 1) : : : NEXT W

: : PRINT "n > "

1055 PRINT ">105 CALL SCREEN(":SC;">"

1060 PRINT ">110 CALL MAGNIFY (": MM; ") ,!

1070 PRINT ">120 CALL SPRITE<#J . 104. " ;CI : ", 1
50. 150, " : V: " . " ; l-i: " » "

1080 PR I NT " > 1 30 CAL. L KEY (0 , K , S ; "

1090 PRINT ">140 IF K=63 THEN H=H+2"

1 100 PRINT " >150 IF K=83 THEN H=H-2"

1110 PRINT ">160 IF K = 88 THEN V=V+2"

1 120 PRINT " =170 IF K=69 THEN V=V-2"

1 130 PRINT ":130 CALL MOT I ON<# 1 ,V,H> "
1 140 PRINT ">190 GOTO 130"

1 150 PRINT :: PRINT :: PRINT :: PRINT :: PR I

NT

1 155 DISPLAY AT(21.3):"A - ERASEC3 SPACES 3-Q

- QUIT"

1 156 CALL KEY(0,K,ST):: IF ST=0 THEN 1156
1 157 IF K=81 THEN GOTO 990

1 158 IF K=65 THEN GOTO 100

1 159 GOTO 1156

1 160 C1=C1+1 :: IF C1>16 THEN Cl=2

1 170 CALL COLOR (#1 ,CI>

1 180 CALL KEY(0,K,S):: IF S THEN 113-?' ELSE '
80

1200 REM SCREEN COLOR CHANGE
ff-MWM^I

1210 SC=SC+1 :: IF SC=17 THEN SC=2

1220 CALL SCREEN(SC)

1230 CALL KEY(O.K,S):: IF 3 THEN 1230 ELSE
|UMF&J RETURN

269

James Dunn
1

The efficient, remarkable sprite-handling ability ofExtended
BASIC is clearly evident in this game. The author discusses
creating sprites and explores sprite manipulation. There are
several valuable pointers here for those interested in graph
ics, animation, orgame programming.

One of the biggest problems in designing an arcade-type game
in BASIC is that BASIC can move only one character at a
time, usually slowly and not very smoothly. Ideally, we need
the ability to move an object independently of the operation
of the main program. Once set in motion, the object would
continue in motion until acted upon by a new command from
the main program. Sprites accomplish this.

Although a sprite is a type of subprogram that runs
concurrently with a main program, the main program first
must create the sprite, define its shape, and set it in motion. A
sprite then continues its motion without requiring continuous
control from the main program, except that the main program
may at any time test the sprite for position, change the color
or pattern, delete, or change its motion (see "A Beginner's
Guide to Sprites" and "Sprite Editor" in this chapter).

Included in TI-99/4A Extended BASIC are 11 commands
to control sprites: CALL COLOR, CALL CHAR, CALL H
SPRITE, CALL PATTERN, CALL MAGNIFY, CALL MOTION,
CALL POSITION, CALL LOCATE, CALL DISTANCE, CALL
COINC, and CALL DELSPRITE. To illustrate the use of these ""]
commands, we'll look at an airplane landing game, "Runway
180." Try some examples for yourself to get a feel for sprite
programming. "H

Creating Sprites
Certain considerations must be taken into account before *H
sprites are created. If a special graphics character is to be used
for the sprite, the character must be created by use of CALL

270 J

Sprites

f^ CHAR. For example, in the game there are three special
characters defined for the aircraft. One is with the wheels up
(lines 430-460), one is with the wheels down (lines 510-540),

P and one is debris after a crash (lines 550-580).
To create a special character, it's necessary to redefine an

existing standard character. The standard characters carre
ls spond to the numbers 32 through 127 (part of what's called
! the ASCII number code). The new pattern is created by using

CALL CHAR and is referenced by its ASCII number.
Before we choose which ASCII number to use, we must

examine some other factors. CALL MAGNIFY can enlarge a
sprite to one of four magnification factors. Factor four is used
in the game (line 630). This enlarges the sprites to double-size
pixels and uses a block of four sequential characters. The
ASCII number used to define the sprite must be evenly divis
ible by four and represents the upper-left character in the
block of four. The next three ASCII numbers represent the
lower-left, upper-right, and lower-right characters respectively
in the block of four.

The sprite may be colored independently of the other
characters in the same character set. In addition, the sprite
with the lower sprite number (this is a different number from
the ASCII number) will pass in front of (that is, over) the
higher numbered sprite. Since the aircraft should pass in front
of the tower, it should have a lower sprite number for each of
its three configurations (line 610).

To set up a list of sprites, first number the lines on a sheet
of paper from 32 to 143. Then beside each number, write
what set it belongs to (set 1 to 14). Since you may want to use
letters or numbers in a screen display at the same time, mark

H* out ASCII numbers 48 through 57 and 65 through 90. The
remaining ASCII numbers can be used to define special
characters for graphics and sprites.

r^ For sprites, using CALL MAGNIFY(4), select four sequen
tial numbers starting at one of the numbers divisible by four.
Now you are ready to use CALL SPRITE.

"•* CALL CLEAR will not remove a sprite from the screen.
To completely clear the screen, you must also use CALL
DELSPRITE (line 1350).

271

(HB9

Sprites i-msssssss

Sprites in Motion ^
Now that the sprite has been created, there are two ways of
moving it around the screen. Let's call these two methods ab
solute and relative. The absolute method uses exact row and "^
column positions via the CALL LOCATE command. The rel
ative method uses row and column motion values via the
CALL MOTION command. *")

The absolute method uses a loop with CALL JOYST to in
crement row and column variables, and then a CALL LO
CATE to move the sprite one step each time the loop is
executed. This is analogous to nonsprite methods of anima
tion. The drawback in using this method is that the sprite does
not move independently; the main program causes the move.
A modified form of this method is used for the stall subroutine
(line 1470) and the new approach routine (line 1380).

The relative method is similar, using a loop with CALL
JOYST to increment row and column motion variables which
are used in a CALL MOTION command. This allows the
sprites to continue moving independently of the main pro
gram. By this method, the runway stripe is moved horizontally
only (line 680) and the aircraft vertically only (also line 680).

The sprite's shape may be changed anytime during the
program by using CALL PATTERN to substitute a different
ASCII character number and therefore a different pattern.
When the fire button is depressed (line 1130), the aircraft
landing gear comes down (line 1190). The pattern is changed
again if the aircraft crashes (line 1720).

Testing for Game Conditions
During the operation of the program, it may become necessary
to test for certain conditions. For example, we see if the air- ^
craft has touched down on the runway (line 690), if the tower
has reached the left side of the screen (line 700), or if the air
craft is going off the top of the screen (line 710). CALL *"1
COINC is used to test for these conditions.

However, there is a problem with this method. Since the
main program tests for coincidence only when CALL COINC "|
is executed and since the sprite moves independently of the
main program, it is quite possible to miss an exact coincidence
when it occurs. For this reason a tolerance factor is included in ^
CALL COINC. So the test is really for arange of + or —tol- '
erance. If the tolerance is too large, coincidence can be re-

272 '

Sprites

r turned too early. If the tolerance is too small, coincidence can
be missed altogether. How large the tolerance should be de
pends upon two things: the speed of the sprite and the speed

F^ of the loop which is testing for coincidence.
1 The test for the tower reaching the left side of the screen

is in both the main loop (line 700) and the stall loop (line
pB» 1480). The tolerance in the stall loop is much smaller because
I- the execution speed is so fast and the sprite moves so slowly

that coincidence is actually read twice before the sprite leaves
the tolerance range. Trial and error is the only way to find out
how large the tolerance should be.

However, after programming this game, it's obvious that
very fast-moving sprites will require tolerance ranges that will
make arcade-style, fast-action games nearly impossible in Ex
tended BASIC. The problem is that the coincidence test is ex
ecuted from the main program. If it were part of the sprite
subprogram instead, it would be possible to keep the tolerance
very small.

CALL POSITION and CALL DISTANCE both suffer from
the same problem as CALL COINC. By the time a position or
distance can be computed and returned to the main program,
the sprite has moved elsewhere. But it's possible to stop the
sprite by using a CALL MOTION before using CALL PO
SITION or CALL DISTANCE (line 1330), then to restart what
ever motion is required.

Despite a few shortcomings, the sprite capabilities in Ex
tended BASIC are remarkable. For true arcade-type play, ma
chine language is still necessary, but Extended BASIC sprites
will carry the programmer a lot closer to this goal.

pm Runway 180

130 CALL CLEAR :: CALL SCREEN(5):: CALL COLO
p^ R(1,16, 1,2, 16, 1,3, 16, 1.4, 16, 1,5,16,1,6,1

6,1-7.16.1,8,16,1)
140 DISPLAY AT (10.9) -.USING "RUNWAY 180"
150 FOR B=0 TO 30 STEP 2 :: CALL SOUND(-10, 1

P** 10,30, 110. 30. 2500, 30, -8, B) :: CALL SOUND (
-10,110,30.110,30.4000,30,-8,8):: NEXT B

160 CALL CLEAR:: DISPLAY AT«10,9):USING "PR
« ESS" :: DISPLAY AT(12,9) :USING "I-FOR IN
i STRUCTIONS"

170 DISPLAY AT(14,14):USING "OR" :: DISPLAY
AT(16,9):USING "G-FOR GAME"

ti&rtel

273

Sprites

180 CALL KEY(0,K,S) : : IF SOI THEN 180
190 IF K=103 THEN 330

200 IF K=105 THEN 220

210 PRINT "ALPHA LOCK MUST BE OFF" :: PRINT
:: PRINT "TRY AGAIN" :: FOR DELAY=1 TO 6 "™|
00 :: NEXT DELAY :: GOTO 160

220 CALL CLEAR :: PRINT "YOU ARE PILOTING A
JET" :: PRINT :: PRINT "AIRCRAFT WHICH H —l
AS BEEN " :: PRINT :: PRINT "CLEARED TO J
LAND ON": :

230 PRINT "RUNWAY 180." :: PRINT :: PRINT ::
GOSUB 310

240 CALL CLEAR :: PRINT "USE YOUR JOYSTICK T
O CONTROL" :: PRINT :: PRINT "SINK RATE
AND AIRSPEED. ": :

243 PRINT "JOYSTICK CONTROL-" :: PRINT
245 PRINT "LEFT: ACCELERATE" :: PRINT "RIGHT

: BRAKE" :: PRINT "UP: DECREASE SINK RAT
E"

247 PRINT "DOWN: INCREASE SINK RATE" :: PRIN
T

250 PRINT "FIREBUTTON CONTROLS LANDING" :: P
RINT :: PRINT "GEAR." :: PRINT :: PRINT
:: GOSUB 310 :: CALL CLEAR

260 PRINT "TO RECOVER FROM A STALL" :: PRINT
:: PRINT "INCREASE AIRSPEED ABOVE 60."

:: PRINT :: PRINT "IF YOU CANNOT STOP BE
FORE": :

270 PRINT "TOWER REACHES LEFT SIDE OF" :: PR
INT :: PRINT "SCREEN, INCREASE AIRSPEED"
:: PRINT

280 PRINT "TO 60 AND LIFT OFF FOR " :-. PRINT
:: PRINT "ANOTHER PASS." :: PRINT :• PR

INT :: GOSUB 310 :: CALL CLEAR
290 PRINT "YOU MAY HAVE FOUR PASSES" :: PRIN

T :: PRINT "AT THE RUNWAY " :: PRINT «•»
:: PRINT "BEWARE OF THE WIND SHIFTS'" •

: PRINT :: PRINT

300 PRINT "GOOD LUCK!!!!" :: PRINT :: PRINT
:: PRINT :: PRINT :: GOSUB 310 :i GO TO
330

310 PRINT :: DISPLAY AT(24, 1) :USING "HIT ANY
KEY TO CONTINUE"

320 CALL KEY(0,R8,S8) :: IF SSOl THEN 320 EL "^
SE RETURN " " '

330 Al=l

340 REM INITIALIZE —>
350 A=0 :: B=-75 :: LG=0 :: CALL SCREEN(2) J
360 CALL CLEAR :: CALL CHAR(33,"FFFFFFFFFFFF

FFFF"):: CALL COLOR(1,8,1)

274

tSHWi

CMS!)

H

•**>&

(i'AsSI

(^WiH^

fflfflSS

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

Sprites

LC=0 :: FOR Z=l TO 16 :

33,32):: NEXT Z
CALL CHAR(42,"FFFFFFFFFFF
COLOR(2,13,1)
FOR Z=17 TO 20 :: CALL HC

: NEXT Z

RANDOMIZE

REM DEF CHAR

CALL CHAR(96,"00000000FFF
00000000000000FFFFFFFFFFF

CALL HCHAR(Z,1,

FFFFF"):: CALL

HAR(Z,1,42,32):

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

REM DRAW DISPLAY

CALL SPRITE (#1,96,2, 180, 1

LOR(#1,16)
CALL SPRITE(#2,120,2,10,2

C0L0R(#2,7)
CALL SPRITE(#3,104,2,110,

CALL MAGNIFY(4)

FOR C5=l TO 40 :: CALL LO

: NEXT C5 :: GOSUB 870

REM MAIN LOOP

GOSUB 1120 :: GOSUB 890

IF J=0 THEN 690

CALL MOTION(#1,0,B,#2rA,0
CALL COINC(#2, 170,40, 9, T)

CALL COINC(33

CALL C0INC(*2

A=l :: GOSUB

IF DA=-1 THEN

IF TO-1 THEN

CHAR(120

CHAR(121

CHAR(122

CHAR(123

CHAR(104

CHAR(105

CHAR(106

CHAR(107

CHAR(124

CHAR(126

CHAR(125

CHAR(127

CHAR(128

CHAR(129

CHAR(130

CHAR(131

FFFFFFFFFFFFF00

FFFFF")

1F0700")

FF8000")

1 F 1 5 1 F ")

030203")

F8A8F8")

C0C0C0")

1F07050000")

FF88840000")

"0030181C3F

"000000")

"00000000FC

"00000000")

"0000000007

"0203030203

"00008080E0

"C040C0C040

"0030181C3F

"00000000FC

"00000000")

"00000000")

"0000000002

"000000000E

"00000000

"00000000

1F3B00")

56E300")

,0,B):: CALL CO

45,A,0):: CALL

250,0,-2)

CATE(#2.10,C5):

1 10, 1,4,DA)
240,40,9,E)

890 :: GOTO

1320

660

: IF E=-l THEN

680

CALL MOTION(#2,0,0)

IF A>1 THEN GOSUB 920

TO 1660

IF LG=0 THEN 1660

GOTO 1760

GOSUB 960 :: GO

275

Sprites m

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

REM UPDATE

IMAGE SINK

IMAGE

IMAGE

IMAGE

IMAGE

IMAGE

IMAGE

IMAGE

DISPLAY

RATE: ###

Y ENDS ### YDS

EED: ###

DOWN

RATE TOO HIGH

EED TOO HIGH

LANDING

WARNING!

1.10)SIZE(20):USING "ATTEMPT

RUNWA

AIRSP

TOUCH

SINK

AIRSP

CRASH

STALL

DISPLAY AT(

NO. #":A1

RETURN

DISPLAY AT(

DISPLAY AT(

RETURN

DISPLAY

RETURN

DISPLAY AT(

DISPLAY AT(

: RETURN

DISPLAY AT(

RETURN

CALL HCHAR(

IZE(20):USI

RETURN

DISPLAY AT

3,10)SIZE(20):USING 790:A

5,10)SIZE(20):USING 810:-B

AT (7,5)SIZE(20) :USING 830

DISPLAY

RETURN

CALL HCHAR(7,5,33,27)::
CALL HCHAR(9^5^33!, 27) ::
CALL HCHAR(11,5,33,27):
DISPLAY AT(9,5)SIZE(20)
" :: CALL HCHAR(11,5,33
DISPLAY AT(3,10):USING

7,5)SIZE(20)BEEP:USING 840

9,5)SIZE(20):USING "BOUNCE" :

9,5)SIZE(20):USING 850

7,5,33,27):: DISPLAY AT(9,5)S
NG 820

(9,5)SIZE(20):USING "WARNING

AT (11,5)SIZE(20) :USING 800:RE

RETURN

RETURN

: RETURN

:USING "LIFT OFF

,27):: RETURN

"END OF RUNWAY "

1080

1090

:: DISPLAY AT(5,10):USING "NEW APPROAC
H" :: DISPLAY AT(7, 10) :USING "NECESSARY
ii

RETURN

PRINT "THAT'S 5 PASSES AT THE" :: PRINT
:: PRINT "RUNWAY. TURN IN YOUR" :: PRI

NT :: PRINT "PILOT LICENSE AND PUT": :
PRINT "SOMEONE ELSE IN THE" :: PRINT ::
PRINT "COCKPIT" :: PRINT :: RETURN

DISPLAY AT(7,9)BEEP SIZE(20) :USING 860
:: RETURN

REM JOYST/ LANDING GEAR
CALL KEY(1,RV,ST):: IF RV=18 AND LG=0 T
HEN 1190

1 100

1110

1 120

1 130

276

(SBEEl

n

(SSSSi

I

f^&£&K^|

ft^^^J

(•-^ws^i

Sprites

1140 CALL JOYST(1,X,Y):: IF X=0 AND Y=0 THEN
GOSUB 1210 :: RETURN

1150 A=A-Y/4 :: B=B+X/4

1160 IF ABS(A)>127 THEN A=127*SGN(A)

1170 IF B>-50 THEN 1430

1180 J=l :: RETURN

1190 CALL PATTERN(#2,124)
1200 A=A+3 :: B=B+20 :: LG=1 :: GOTO 1160

1210 REM COMPLICATIONS

1220 CP=INT(RND*16>

1230 IF CP=1 THEN B=B-1

1240 IF CP=6 THEN B=B+1

1250 IF CP=10 THEN A=A-1

1260 IF CP=15 THEN A=A+1

1270 J=0 :: RETURN

1280 IF ABS(A)>127 THEN A=127*SGN(A)

1290 GOTO 1310

1300 IF B<-127 THEN B=-127

1310 J=l :: RETURN

1320 REM NEW APPROACH

1330 CALL MOTION(#2,0,0):: CALL P0SITI0N(#2,
R4,C4)

1340 IF Al>4 THEN 1400

1350 CALL DELSPRITE(#1,#3) : : CALL CLEAR

1360 GOSUB 1070

1370 CALL PATTERN(#2,120)
1380 FOR X = C4 TO 255 :: CALL LOCATE(#2, INT (R

4),X):: R4=R4-(R4/(255-C4)):: NEXT X
1390 A1=A1+1 :: GOTO 340

1400 CALL DELSPRITE(ALL):: CALL CLEAR

1410 GOSUB 1090

1420 FOR DELAY=1 TO 900 :: NEXT DELAY :: GOT

O 1970

1430 REM STALL

1440 GOSUB 1110

1450 CALL MOTION(4»2,0,0)
1460 CALL P0SITI0N(#2,SR,SC)

1470 CALL L0CATE(#2,SR,SC)
1480 CALL C0INC(#2,170,40,2,T)
1490 CALL COINC(#3,110,1,2,DE>:: IF DE=-1 TH

EN A1=A1+1 :: GOSUB 870 :: IF Al>4 THEN

1400

1500 IF T=-l THEN 1660

1510 SR=SR+4

1520 CALL KEY(1,RV,ST)
1530 IF RV=18 AND LG=1 THEN 1610

1540 CALL JOYST(1,X,Y):: IF X=0 AND Y=0 THEN
1470

1550 B=B+X/4

1560 REM

277

GOTO 1300

GOTO 1300

GOTO 1280

GOTO 1280

Sprites

1570 IF B<-60 THEN 1640 ••*

1580 CALL M0TI0N(#1,0,B) I
1590 GOSUB 890

1600 GOTO 1470

1610 CALL PATTERN(#2,120) "^
1620 A=A-3 :: B=B-22 :: LG=0]
1630 GOTO 1560

1640 GOSUB 1030

1650 RETURN

1660 REM CRASH

1670 CALL MOTION(#l,0,0,#2,0,0,#3,0,0,#4,0,0
)

1680 CALL SOUND(1000,-7,0)
1690 FOR P=l TO 10

1700 CALL SCREEN<2)

1710 CALL SCREEN(16):: NEXT P :: CALL SCREEN
(2)

1720 CALL PATTERN(#2,128)
1730 FOR DELAY=1 TO 400 :: NEXT DELAY
1740 CALL DELSPRITE(ALL)

1750 GOTO 1970

1760 REM TOUCHDOWN/BRAKE/T&G

1770 GOSUB 980 :: IF B<-53 THEN 1940

1780 CALL JOYST (1,X,Y) :: B= B+ X/2
1790 IF B>-1 THEN 1880

1800 CALL MOTION(#1,0,B)
1810 CALL C0INC(#3,110,1,4,DA)
1820 IF DA=-1 THEN RE=0 :: GOSUB 1010 :: GOT

O 1660

1830 CALL DISTANCE(#3,110,1,RQ)
1840 RE=INT(SQR(RQ)):: GOSUB 1000 :: GOSUB 9

00

1850 CALL KEY(1,RV,ST):: IF RV=18 AND B<-60
THEN GOSUB 1060 :: A=A-2 :: GOTO 1870

1860 GOTO 1780

1870 CALL M0TI0N(#2,A,0):: FOR DELAY=1 TO 20 «
0 :: NEXT DELAY :: GOTO 650 j

1880 REM SCORING

1890 CALL MOTION(#l,0.0,#2,0.0 ,#3,0,0,#4,0,0
)

1895 FOR DELAY=1 TO 800 :: NEXT DELAY
1900 CALL DELSPRITE(ALL):: CALL CLEAR
1910 PRINT "CONGRATULATIONS !": :
1920 PRINT "YOUR SCORE IS :"; (RE/A1) *10: :
1930 GOTO 1990

1940 a=a-2 :: CALL MOT ION(#2,A.0) :: GOSUB 94
0

1950 FOR DELAY=1 TO 20 :: NEXT DELAY
1960 A=A+2 :: GOSUB 1030 :: GOSUB 1040 :: GO

TO 650

278

MR)

•di\

"i

r

{ifvm*&$

1970 REM PLAY AGAIN

1980 CALL CLEAR

1990 PRINT "PLAY AGAIN (Y/N)?

2000 CALL KEY(2,RV,SV)
2010 IF SV=0 THEN 2000

2020 IF RV=15 THEN 2050

2030 IF RV=18 THEN 330

2040 GOTO 1990

2050 END

Sprites

279

ffflfflfcs&l

(..'Tv^lW^J

Patrick Parrish

Now you can catalog and delete files on your TI-99/4A disks
from BASIC. And you can print the catalog. Runs in Console
or Extended BASIC.

Although the TI-99/4A has a DELETE command in its BASIC,
its disk operating system (DOS) lacks a cataloging command.
To overcome this limitation, TI provides the Disk Manager
Command Module with its disk systems. Both delete and cat
alog options are available with this ROM cartridge.

Unfortunately, using this cartridge is not particularly
convenient. First, you must shut down your system, insert the
cartridge, and then power the system back up again. Even
then, a number of keystrokes may still be required to execute
the delete and catalog options. For instance, if you're unsure
of the names of the files you wish to delete, you must se
quence through all the files on your disk from within the de
lete option. Alternately, you can run the catalog option,
carefully record the names of files for deletion, and then re
turn to the delete option. Either way, this is a slow and labori
ous process.

If you happen to be programming in Extended BASIC,
this is an additional annoyance. Replacement of the Extended
BASIC Module with the Disk Manager Command Module is
not only a time-consuming interruption, but it also puts a lot
of wear and tear on the motherboard cartridge connection.
Eventually, you may even begin to experience shorting prob
lems at this interface.

It's possible to delete a file and catalog the disk entirely
from BASIC. First, you can delete a file with DELETE
"DSK1.FILENAME". Then, you can catalog the disk with a
BASIC program provided in the TI Disk Memory System
manual.

But this approach is also somewhat tedious. Again, if you
are unsure of the names of the files you wish to delete, you
must first run the cataloging program and carefully record
each filename.

283

ews

Utilities msm

Of course, you can combine these two methods. For in- —B]
stance, you can DELETE from BASIC and then catalog the
disk with the Disk Manager cartridge or vice versa. But again,
there is little, if any, advantage in this. "^

An Easier Way
Structured much like TI's BASIC catalog program, "TI Disk *•}
Deleter" combines the delete and catalog functions in a single '
program that runs in Console or Extended BASIC.

When run, the program immediately prompts you for the
number of the drive you wish to access. If you have only a
single drive, this drive is usually referenced as Drive 1. Enter
the appropriate number and the drive will begin to whir as the
directory is read.

Once the directory has been read, the disk name, the
amount of disk space used (in sectors where 1 sector = 256
bytes), the amount of free disk space (also in sectors), and the
page number (filenames may occupy as many as four screens)
are printed at the top of the screen. Then, a series of filenames
are printed in a two-column format. Protected files, or files
which cannot be erased or written over, will appear with an
asterisk before their names.

Next, a menu with several handy options is given at the
bottom of the screen. The six options in this menu—Advance,
Back, Kill, Print, Catalog, and Quit—are called by typing their
first letters.

The Options
At this time, a pointer (an arrow-shaped character) will be po
sitioned next to the first filename on your screen. This pointer
is used to indicate which file will be purged when you execute "^
the Kill function. Move this pointer to any other filename with *
the arrow keys (E, S, D, and X). When the pointer is next to
the file you wish to delete, press K. "**f

After you press K, you'll be asked "Are you sure ?" Press '
Y (for yes) to delete the file. The filename will disappear from
the screen once the file has been deleted. Press N (for no) to ma^
abort the deletion and return to the menu. If the file is pro- *
tected, you cannot delete it without first changing its status to
unprotected with the Disk Manager Command Module. *•*]

The Advance and Back options are used to move forward *
and backward through pages of filenames. If you happen to be

"1
284

flpR^

Utilities

f^ on the last page of filenames and press A for Advance, nothing
will happen. Likewise, if you are on the first page of filenames
and press B for Back, nothing happens.

P51 The last three options are very straightforward. Print
sends a list of the remaining files on the disk (original catalog
minus deleted files) to the printer—you'll have to adjust line

F*3 390 to suit your printer. The filename, the size of each file (in
sectors), the file type (see below), and its status (protected files
are indicated with a P) are given. The Catalog option catalogs
any disk in the drive. So, you can clean up all your disks at
one time without rerunning the program. The last option,
Quit, simply ends the program.

File Types and Program Description
Up to 127 filenames and information on each file are read in
from disk in line 700. Filenames are read in as A$(I). Each file
type is represented as E(I). The five file types are defined in
lines 100-150 as X$(I).

The first four file types are used to store data in records.
Data in these files is stored either in binary (INTernal) or
ASCII format (Display). Also, each record in these files is
either FIXed or VARiable in length.

If the value of E(I) is negative, the file is protected. (Only
with the Disk Manager Command Module can the protect sta
tus be removed.) Next, the length of each file (in sectors) is
read as F(I). And finally, G(I) is the record length of files used
for data storage.

TI Disk Deleter Program Structure

Lines

100-190 DIMension and initialize variables
210-240 Subroutine to PRINT at any screen position
250-380 Subroutine to INPUT and PRINT general disk

information
390-470 OPEN printer file, define character and set color codes
490-550 Clear out prior filenames
680-730 Routine to INPUT directory information
840-1180 PRINT each page of filenames
1190-1710 Main loop
1210-1450 Pointer movement

1460-1590 Scroll screen
1630-1650 Routine to catalog
1670-1690 Quit program

285

ffi'twOfa

Utilities

1720-2040 Routine to DELETE file *"|
2050-2240 Printer routine •

Disk Deleter *7

100 DIM A$ (127) ., E (127) .F (127> ,G (127) .H* (127>
,PAGE(4)

110X*(1)="DIS/FIX" l

120 X*(2)="DIS/VAR"

130 X*(3)="INT/FIX"

140 X*(4)="INT/VAR"

150 X*(5)="PROGRAM"

160 PAGE(1)=1

170 PAGE(2)=37

180 PAGE(3)=73

190 PAGE(4)=109

200 GOTO 390

210 FOR T=l TO LEN(R*)

220 CALL HCHAR(PROW,PCOL+T.ASC(SEG*(RS»,T,1))
)

230 NEXT T

240 RETURN

250 OPEN #1 : "DSK"?<STR$ (M) &" .". INPUT ,RELATIV
E,INTERNAL

260 INPUT #1:B*,CC,A
270 IF D=0 THEN 380

280 PROW=l

290 R$=STR*(C-A)

300 CALL HCHAR(PROW,21.32,3)
310 PC0L=23-LEN(R$)

320 GOSUB 210

330 R$=STR*(A)

340 CALL HCHAR(PROW,28.32,3)
350 PCOL=30-LEN(R$)

360 GOSUB 210

370 D=0

380 RETURN

385 REM CHANGE THE PARAMETERS IN LINE 390 TO
SUIT YOUR PRINTER (SEE YOUR MANUAL) ^^

390 OPEN #2: "RS232.BA=9600.PA=N.DA=8" ~
400 CALL CHAR(128- "080C0EFFFF0E0C08")
4 10 CALL CHAR(136,"")

420 CALL COLOR (14, 1, 1) •«
430 CALL CLEAR [
440 CALL SCREEN(9)

450 FOR 1=9 TO 12

CALL COLOR (I, 2,1) *"*f460

470 NEXT I

480 IF FL=0 THEN 560

286

ULjS,\

si Utilities

/SITj^Ssl

p«i 490 PRINT "...CLEARING OLD FILENAMES"
J 500 FOR 1=1 TO 127

510 A$(I>^""

520 NEXT I

F** 530 FL=0
' 540 CALL CLEAR

550 GOTO 570

—•» 560 PRINT TAB(6);"TI DISK DELETER": :

570 HI=2

580 PRINT " DRIVE NUMBER i1-3C.3 ? ";
590 CALL KEY(0,K,S)
600 IF (S=0)+((K<49)+(K>51))THEN 590
610 M=K-4B

620 CALL CLEAR

630 CALL SCREEN(15)

640 FOR 1=9 TO 12

650 CALL COLOR(I, 16, 1)

660 NEXT I

670 GOSUB 250

680 PRINT TAB(3);"...READING DIRECTORY"

690 FOR 1=1 TO 127

700 INPUT #1:A$(I),E(I),F(I),G(I)
710 IF LEN(A*(I))<>0 THEN 730

720 1=127

730 NEXT I

740 SC=1

750 LAST=20

760 1=1

770 R0W=3

780 C0L=3

790 CALL CLEAR

800 CALL SCREEN((SC+1)*2+l)

810 PRINT "DSK: ";B*;TAB(16) ; "U: ";TAB(21-LEN(
STRUKC-A)));C-A;TAB(23);"F:";TAB(28-LEN(
STR*(A)));A

I**1 820 PRINT TAB(21);"PAGE #";SC;
830 IF A5=l THEN 850

840 IF (LEN(A$(I))=0)+((1=37)+(1=73)+(1=109)

)THEN 950

850 A5=0

860 PRINT TAB(1);CHR*(136);

870 IF E(I)>=0 THEN 890

P*w 880 PRINT "*";
890 PRINT TAB(3);A*(I);TAB(15);CHR*(136);
900 IF E(I+1)>=0 THEN 920

910 PRINT "*";
<*sgB 920 PRINT TAB(17) ; A* (1+1)

930 1=1+2

940 GOTO 040

287

^jfet

Utilities

)

950 HI = INT ((I -2> /36+1)

960 ON HI GOTO 970,990,1010,1030
970 DIFF=37-I

980 GOTO 1040

990 DIFF=73-I

1000 GOTO 1040

1010 DIFF=109-I

1020 GOTO 1040 a^
1030 DIFF=145-I |
1040 HI=HI+1

1050 U=INT(DIFF/2)

1060 LAST=20-U

1070 FOR 0=1 TO U

1080 PRINT

1090 NEXT 0

1100 PRINT

1110 PRINT "AdvanceCS SPACES3Back17 SPACES3K
ill"

1120 PRINT "Print(6 SPACES]Cat a 1oq
£5 SPACES]-Quit"

1130 PRINT " (USE ARROW KEYS TO MOVE)":
1140 ODD=0

1150 IF LEN(A$(I-1))<>0 THEN 1180

1160 CALL HCHAR(2+(I-((SC-1)*36)-1)/2,17.32)
1170 0DD=1

1180 CALL HCHAR (ROW.COL. 128)
1190 CALL KEY(0,K.S)
1200 IF S=0 THEN 1190

1210 IF K<>69 THEN 1290

1220 OLDROW=ROW

1230 R0W=R0W-1

1240 CALL GCHAR(ROW,COL,Q>
1250 IF Q=136 THEN 1270

1260 ROW=LAST-(0DD=1)*(C0L=17)

1270 CALL HCHAR(OLDROW.COL,136)
1280 GOTO 1700

1290 IF (K<>68) * <K< >83)THEN 1380 **]
1300 OLDCOL=COL i
1310 COL=20-COL

1320 CALL GCHAR (ROW,COL.0) m^^
1330 IF Q=136 THEN 1360 [
1340 COL=20-COL

1350 GOTO 1190

1360 CALL HCHAR(ROW.OLDCOL.136) «*»»
1370 GOTO 1700 I
1380 IF K<>88 THEN 1460

1390 OLDROW=ROW

1400 R0W=R0W+1 ***
1410 CALL GCHAR(ROW,COL,Q) '
1420 IF (3=136 THEN 1440

288 i

t!0$h)

irpW.^

FisSSS

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520

1530

1540

1550

1560

157 0

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1330

1390

1900

1910

1920

R0W = 3

CALL HCHAR(OLDROW.COL.136)

GOTO 1700

IF K<>65 THEN 1520

A5=l

SC=SC+1

IF (SC<=HI) * (LEN(A*(I))

SC=SC-1

GOTO 1190

IF K<>66 THEN 1600

A5=l

SC=SC-1

IF SC=0 THEN

I=PAGE (SO

GOTO 770

SC=1

GOTO 1190

IF K=75 THEN

IF K=80 THEN

IF K<>67 THEN

CLOSE #1

FL=1

GOTO 430

IF K<>8 1 THEN 1190

CLOSE #1

CLOSE #2

STOP

CALL HCHAR(ROW,COL.128)

GOTO 1190

J=(SC-1)*36+((ROW-2)*2-l)-(C0L=17)

IF E(J)<=0 THEN 1190

C*=" "

FOR T=2 TO 11

CALL GCHAR(ROW,COL+T,Z)

IF (Z< >32)+<T<>2)THEN 1810

T=l 1

FL=1

GOTO 1850

IF Z<>32 THEN 1840

T=l 1

GOTO 1850

C$=C*&CHR$(Z)

NEXT T

IF FL=0 THEN 1390

FL = 0

GOTO 1190

PR0W=21

PCOL=5

R*="ARE YOU SURE (Y/N) ?"

GOSUB 210

Utilities

•0) THEM 770

1580

1 7 20

2050

1660

289

Utilities

1930 CALL KEY(0,K,S)
1940 IF S=0 THEN 1930

1950 IF (K<>78) * (K<>89)THEN 1930

1960 CALL HCHAR(21,5,32,20)
1970 IF K<>89 THEN 1190

1980 D=l

1990 DELETE " DSK "&STR* (M> Sc " . "&C*
2000 CLOSE #1

2010 GOSUB 250

2020 CALL HCHAR(ROW,COL+2,32,10)
2030 A*(J)=" "

2040 GOTO 1190

2050 PRINT #2:"DSK":STRS(M):TAB(8);"DISKNAME
: ";B$:"FREE= ";A:"C8 SPACES>USED= ";C

-A

2060 PRINT #2:" FILENAME SIZEC4 SPACES3TYPE
C4 SPACES3 ST" : "

FOR J=l TO 127

IF A*(J>=" " THEN 2200

IF LEN(A*(J))<>0 THEN 2 120
J = 127

GOTO 2200

PRINT #2:A* (J) ;TAB(12) ;F(J) ;TAB(19) ;X* (
ABS(E(J))):

IF ABS(E(J))=5 THEN 2 160
W*=" "?<STR$ (G (J))

PRINT #2:SEG$(W*.LEN(W$)-2,3);
IF E(J)<0 THEN 2190

PRINT #2

GOTO 2200

PRINT 4*2: TAB (28) ; "P"
NEXT J

FOR J=l TO 5

PRINT #2

NEXT J

GOTO 1190

2070

2080

2090

2100

21 10

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

290

1

riO£^

masn

F?^n

^^m^—^^mi Raymond J. Herold

This menu-driven utility lets you update, list, search, delete,
sort, and print a directory of the files on your disks. It also
displays the number and length offiles, and the remaining
free sectors per disk. Extended BASIC, disk drive, and 32K
memory expansion are required.

"Master Disk Directory," for the TI-99/4A, requires the
following system configuration: Peripheral Expansion box, Ex
tended BASIC command module, disk controller card, at least
one disk drive, and 32K memory board. For those who have
this system, this program provides an easy way to keep track
of the various disks and the programs and files you have
stored on them. Anyone who has a library of 20 or more disks
and a hundred or more programs knows the headache involved
in trying to keep track of where a particular program is.

Master Disk Directory maintains a catalog of all your
disks and the programs and files stored on them. This pro
gram lets you display a list of all your disks, showing how
many files and how much free space is available on each. You
can also display a list of all your programs and files, indicating
how large they are and identifying the disk on which they re
side. You can search the directory by disk number or program
name. You can also sort the directory in program name se
quence, list the directory on a printer, delete the entries for a
particular disk, and update and save your directory, which will
hold data for up to 50 disks and 450 programs and files.

Main Menu Options
When the program is first run, the main menu listing all avail-

^* able functions is displayed. Figure 1 shows the format of this
menu. Simply type in the appropriate number for the option
you choose. The program provides prompts for easier use.

291

Utilities

Figure 1. Disk Directory Menu
1—LOAD CURRENT DIRECTORY
2—ADD NEW DISKS TO DIR.
3—LIST ALL DISKS IN DIR.
4—LIST ALL FILES IN DIR.
5—SEARCH DIR. BY DISK #
6—SEARCH DIR. BY FILENAME
7—DELETE DISK # FROM DIR.
8—SORT DIR. BY FILENAME
9—SAVE NEW/UPDATED DIR.

10—PRINT DIRECTORY SELECTION—>

1—Load current directory. This first option allows you to
load an existing disk directory into the computer's memory. It
assumes that a directory exists with the default filename
DSK1.DISKDATA which is created by the SAVE option (9).
This operation will overlay any directory currently residing in
memory. To insure that a directory in memory is not in
advertently destroyed, you will be asked to verify loading of
an exiting directory.

2—Add new disks to directory. This allows you to place
information for new disks into the directory file. This option is
used when a directory file is initially created, or when new
disks are to be added to the directory. The program will
prompt you to indicate which drive is to be used to load the
disks. Once this is established, you will be instructed to insert
a disk into the assigned drive. The program will then display
the name of that disk and ask you to enter its number (1-50).
If you enter 00 the program will return to the menu.

You must number your disks consecutively. You must
have cataloged disks 1 to 5 before you number a disk 6. If you
are adding to an existing directory, it is best to follow this
procedure: From the menu, load the current directory (option
1), list all disks in directory (option 3) to find out how many
disks you have already cataloged, use this information to
determine the next available disk number, then go to the
menu and select option 2.

3—List all disks in directory. This option displays a list
of all disks currently in the directory. The display includes the
disk number and name, number of files on the disk, and the
number of available sectors on the disk. The format of this
display is shown in Figure 2.

292

OSf?!

Utilities

p Figure 2: Disks on File

SECT

t0mS
#NAME FILES FREE

1 WORKDISK 7 256

2 RHSOFTWARE 11 102

3 EDITASSMWK 5 252
|tff?W??5^

4 ASSMDEBUG 7 94
L 5 ASSMGAMES2 3 301

6 CJFMASTER1 8 158

7E/A 11 1

8 E/A*PARTB 9 5

PRESS ENTER TO CONTINUE

4—List all files in directory. This displays a list of all
files (data files and programs) in the directory. For each file,
the display provides the filename, file type, file size in sectors,
and the disk number on which the file resides. If a particular
filename exists on more than one disk, it will be listed the
appropriate number of times. This can be helpful in reducing
redundancy and, consequently, increasing available storage
space. It is helpful if the filenames have first been sorted
alphabetically. Figure 3 shows a typical screen display for this
option.

Figure 3: Files in Directory
NAME TYPE SIZE DISK

ARTICLES PROGRAM 30 11

ASSM1 PROGRAM 33 3

ASSM1 PROGRAM 33 7

ASSM2 PROGRAM 20 3

ASSM2 PROGRAM 20 7

BACHMUSIC PROGRAM 31 2

BARCHARTS PROGRAM 31 6

BARRICADE PROGRAM 30 10

pno PRESS ENTER TO CONTINUE
5—Search directory by disk #. This allows you to search

the directory file by disk number. It will generate a display
'3S* similar to Figure 3. However, the list will contain only those

files on the indicated disk number. This is useful for determin
ing which files are on a particular disk.

<** 6—Search directory by filename. This allows you to
search the directory file for a particular filename. It will dis
play the disk number and name on which the requested file

IIJJfHMJ^

293

Utilities

resides. This is useful when you want to locate a particular file •*•
or program, but don't remember which disk it is on. The
search routine will handle a generic argument. For example, a
search argument of ASSM will display the location of ASSMA, *•*
ASSMB, ASSMSORT, and so on. This way you can find the
location of a program even if you don't remember its exact
name. as=m

7—Delete disk # from directory. This option allows you J
to delete all data for a particular disk from the directory. The
program will display the disk name and ask if you are sure
you want to delete it. If you respond with Y, all information
for that disk is erased. The filenames deleted will be displayed
on the screen.

This option has two main purposes. First, it can be used
to delete information for a disk which has been erased or de
stroyed. Second, this option in conjunction with the add op
tion (2) can be used to easily update the directory periodically.
For example, if disk 5 has had files added, changed, or deleted
since the last directory update, you would do the following:
delete disk 5; invoke the add option (2) and put disk 5 into
the appropriate drive; invoke the sort routine (8). The direc
tory would then be updated to reflect any changes to disk 5.
Of course, you can update more than one disk at a time this
way. You would only need to invoke the sort routine once at
the end. Since deletion creates "holes" in the directory array,
an array compression routine is automatically invoked after
the delete function is complete.

8—Sort directory by filename. This option alphabetically
sorts the directory file by filename. The routine involves a
BASIC sort and is therefore the slowest function in the pro
gram. Just so you don't think the machine has bogged down, b^
the routine will continuously display the number of sort '<
passes remaining. In my own tests, the program took 13 min
utes to sort 220 records. —^

9—Save new/updated directory. This will save the i
newly created or updated directory file on a disk. The direc
tory will be saved with the default filename: —^
DSK1.DISKDATA. The file may then be referenced or updated >
at a later time.

10—Print directory. This provides a hard copy list of the «*n
directory. The print routine is set up to use a parallel printer. !

294

1.,-^^MS^

P^

Utilities

If you are using a serial printer or have different parameters
than mine, you will have to change the OPEN statement in
line 10015.

Master Disk Directory

10 DIM D*(50),F*(400).TF*(5)

20 TF*<1)="DIS/FIX" :: TF*(2>="DIS/VAR" :: T
F*(3)="INT/FIX" :: TF*(4)="I NT/VAR" :: TF

* <5> ="PROGRAM"

30 D=0 :: F=0

100 CALL CLEAR :: CALL SCREENS)
110 CALL CHAR(96,"FFFFFFFFFFFFFFFF">
112 CALL CHAR(112,"E0E0FFFFFFFFFFFF">

113 CALL CHAR(120,"00FFFFFFFFFFFF00")

115 CALL CHAR(104,"01071F3F3F7F7FFFFF7F7F3F3
F1F070180E0F8FCFCFEFEFFFFFEFEFCFCF8E080"

)

120 CALL C0L0R(9,2,2)

130 FOR L=10 TO 18

135 CALL HCHAR(L,12,96,9)

140 NEXT L

150 CALL SPRITE(#1. 104,6, 100, 115) : : CALL MAG
NIFY(3)

160 CALL HCHAR<10.13.112,1)
170 DISPLAY AT(3,11):"D I S K" :: DISPLAY AT

(5,6):"D I R E C T O R Y"
190 DISPLAY AT(22,3):"PRESS ANY KEY TO BEGIN

200 CALL KEY(3.K,ST):: C = C + 1 :: IF C=20 THEN
DISPLAY AT(24.1):RPT*(" ",28)

202 IF C=40 THEN C=0 :: GOTO 190

205 IF ST=0 THEN 200

210 CALL DELSPRITE(#1)

500 CALL CLEAR :: CALL SCREEN(14)

510 DISPLAY AT(1,2):"** DISK DIRECTORY MENU
**"

520 DISPLAY AT(4,1):"1 - LOAD CURRENT DIRECT
ORY"

530 DISPLAY AT(6,1):"2 - ADD NEW DISKS TO Dl

R. "

540 DISPLAY AT(8,1):"3 - LIST ALL DISKS IN D
IR. "

550 DISPLAY AT(10,1):"4 - LIST ALL FILES IN

DIR. "

560 DISPLAY AT(12,1):"5 - SEARCH DIR. BY DIS
K #"

570 DISPLAY AT(14.1):"6 - SEARCH DIR. BY FIL

E NAME"

295

Utilities

575 DISPLAY AT(16.1):"7 - DELETE DISK # FROM
DIR. "

580 DISPLAY AT (18,1): "8 - SORT DIR. BY FILE
NAME"

590 DISPLAY AT(20,1):"9 - SAVE NEW/UPDATED D
I R . "

600 DISPLAY AT(22,1):"10- PRINT DIRECTORY"
610 DISPLAY AT(24,4):"SELECTION >" :: ACC

EPT AT (24, 19)SIZE(2)VALIDATE(NUMERIC)BEE
P: S

615 IF S>10 OR S<1 THEN 610

620 ON S GOTO 1000,2000,3000.4000.5000.6000,
7000,8000,9000,10000

999 GOTO 500

1000 CALL CLEAR :: CALL SCREEN(8)

1010 DISPLAY AT(4,1):"THIS OPTION WILL LOAD
THE"

1020 DISPLAY AT(6,1):"DIRECTORY FILE FROM Dl
SK . "

1030 DISPLAY AT(S.1):"IT WILL OVERLAY ANY FI

LE"

1040 DISPLAY AT(10,1):"CURRENTLY IN MEMORY."
1050 DISPLAY AT(14,1):"LOAD DIRECTORY FILE (

Y/N)? ." :: ACCEPT AT(14, 28)VALI DATE ("Y
N")SIZE(-1)BEEP:O*

1060 IF 0*="N" THEN 500

1100 OPEN #2:"DSK1.DISKDATA",INPUT ,INTERNAL
-FIXED 20

1105 INPUT *2:ND.NF

1110 FOR L=l TO ND

1120 INPUT #2:D*(L)

1130 NEXT L

1140 FOR L=l TO NF

1150 INPUT #2:F*(L)

1160 NEXT L

1180 DISPLAY AT(20,1):"DIRECTORY FILE LOADED
" :: DISPLAY AT(22,1):"PRESS ANY KEY FO
R MENU"

1185 CLOSE #2

1190 CALL KEY(3rK,S):: IF S=0 THEN 1190
1199 GOTO 500

2000 CALL CLEAR :: CALL SCREEN(8)

2005 DISPLAY AT(4,1):"DISKS WILL BE PLACED I
N" :: DISPLAY AT(6,1):"DRIVE 1, 2 OR 3?
" :: ACCEPT AT(6, 18>VALI DATE("123")SIZE
(1)BEEP:N :: CALL CLEAR

2010 DISPLAY AT(4,1):"INSERT DISK AND PRESS
ENTER"

2015 FOR L=l TO 100 :: NEXT L

296

s%

r^^!"!
si Utilities

P* 2020 CALL KEY(3.K,S):: IF KOI 3 THEN 2020
2030 OPEN #1 :"DSK"&STR* (N) ?<".", INPUT ,RELATI

VE,INTERNAL
r2040 INPUT #1:A*,I,J,A

2050 DISPLAY AT(10,1):"DISKNAME: ";A*
2060 DISPLAY AT (12. 1) : "ENTER DISK NUMBER: __

" :: ACCEPT AT (12,20)VALI DATE (NUMERIC)S

I** IZE(-2)BEEP:DN
2062 IF DN= 00 THEN CLOSE #1 :: GOTO ts00

2065 IF DN>50 THEN 2060

2070 IF D*(DN)="" THEN 2 100
2080 DISPLAY AT(16.1):"DISK NUMBER ALREADY U

SED" :: DISPLAY AT(18,1):"PRESS R TO RE
TRY" :: DISPLAY AT(19,1>:"PRESS M FOR M
ENU"

2085 CALL KEY(3,K,S):: IF S=0 THEN 2085
2090 IF K=82 THEN CALL CLEAR :: GOTO 2050
2095 IF K=77 THEN CLOSE #1 :: GOTO 500

2097 GOTO 2085

2100 DN*=A*&(RPT*(" ", 10-LEN(A*))) : : AV* = RPT
* (" ",3-LEN (STR*(A) >)?<STR* (A)

2105 C=0

2110 FOR L=l TO 127

2120 INPUT #1:A*,I,J,K
2130 IF LEN(A*)=0 THEN 2200

2140 C=C+1 :: NF=NF+i

2150 N*=A*&RPT*(" ", 10-LEN (A* > >
" ,3-LEN (STR* (J)) >&STR* (J) :

(I)):: DD*=RPT$(" ",2-LEN(ST!

R*(DN)

2160 F*(NF)=N*&S*&T*&DD*

2190 NEXT L

2200 NF*= RPT*(" ", 3-LEN (STR* <C))) ?.STR* (C)
2202 D* (DN) =DN*?<AV*S/NF*

2205 CLOSE #1 :: ND=ND+1

2210 DISPLAY AT(16.1):"DISK CATALOGED" :: Dl

SPLAY AT(18,1):"PRESS A TO ADD ANOTHER
DISK" :: DISPLAY AT<19,1>:"PRESS M FOR
MENU"

2220 CALL KEY(3„K,S):: IF S=0 THEN 2220

2230 IF K=65 THEN CALL CLEAR :: GOTO 2010

2240 IF K=77 THEN 500

2250 GOTO 2220

3000 CALL CLEAR :: CALL SCREENO)

3005 X=0

3010 GOSUB 3 100

3020 FOR L=l TO 50

3022 IF D* (!_)="" THEN 3040

3025 GOSUB 3300

3030 DISPLAY AT(X*2+7,1):USING "## ####*####

###C7 SPACES3###":L,DN*,NF«,AV*

297

r^fe^i

s* =RPT*("

T* = STR* •: ABS

R* (DN))) ?<ST

Utilities

3035 X=X+1 :: IF X=8 THEN GOSUB 3200 «|
3040 NEXT L

3050 DISPLAY AT(24,1):"PRESS ENTER FOR MENU"

3060 CALL KEY(3,K.S):: IF K<>13 THEN 3060 ^
3070 GOTO 500 \

3100 DISPLAY AT(2.4);"** DISKS ON FILE **" '
3110 DISPLAY AT(4.24):"SECT"

3120 DISPLAY AT(5,1):" tt NAMEC7 SPACES^ FILES «**j
<4 SPACES]FREE" J

3125 CALL HCHAR (6.3,45,28)

3130 RETURN

3200 X=0

3210 DISPLAY AT(24.1>:"PRESS ENTER TO CONTIN

UE"

3220 CALL KEY(3,K.S):: IF KOI 3 THEN 3220
3230 CALL CLEAR :: GOSUB 3100

3240 RETURN

3300 DN*=SEG*(D*(L),1.10)

3310 AV* = SEG*(D*(L) , I 1,3)

3320 NF*=SEG*(D*(L),14^3)
3330 RETURN

4000 CALL CLEAR :: CALL SCREEN(15s

4005 X=0

4010 GOSUB 4 100

4020 FOR L=l TO NF

4022 IF F*(L)="" THEN 40 40

4025 GOSUB 4300

4030 DISPLAY AT(X*2+7,1>:USING "#####«#### #
###C3 SPACES***":N*,TF*(ABS(VAL<
T*))),S*,DD*

4035 X=X+1 :: IF X=S THEN GOSUB 4200

4040 NEXT L

4050 DISPLAY AT (24. 1): "PRESS ENTER FOR MENU"
4060 CALL KEY(3,K.S):: IF KOI 3 THEN 4060
4070 GOTO 500

4100 DISPLAY AT(2.3):"** FILES IN DIRECTORY
**•'

4110 DISPLAY AT(4.1):"NAMEC9 SPACES*TYPE SI

ZE DISK"

4115 CALL HCHAR (5, 3, 45, 23) **]
4 120 RETURN

4200 X=0

4210 DISPLAY AT(24,1):"PRESS ENTER TO CONTIN «».

UE" [
4220 CALL KEY(3,K,S):: IF KOI 3 THEN 4220
4230 CALL CLEAR :: GOSUB 4100

4240 RETURN ^
4300 N*=SEG*(F*(L),1,10) >
4310 S*=SEG*(F*(L),11,3)
4320 T*=SEG*(F*(L),14,1) mm.

298

I'.iv!:m3*j

nji^BaiEJl

Utilities

4330 DD*=SEG*(F*(L),15,2)

4340 RETURN

5000 GOSUB 5500
5003 CALL CLEAR :: CALL SCREEN(8)

J**1 5005 X=0
L 5010 GOSUB 5100

5015 IF D*(DN)="" THEN DISPLAY AT (12. 1) : "* *
#v NO SUCH DISK # IN DIR. **" :: GOTO 5050
J 5020 FOR L=l TO NF

5022 IF F*(L)="" THEN 5040
5023 DW*=RPT*(" ".2-LEN (STR* (DN)))5<STR* (DN)
5024 IF DW*<>SEG*(F*(L),15,2)THEN 5040

5025 GOSUB 4300
5030 DISPLAY AT(X*2+7.i):USING "##**###### #

tt##<3 SPACES>##":N*,TF*(ABS(VAL(

T*))),S*.DD*

5035 X=X+1 :: IF X=3 THEN GOSUB 5200
5040 NEXT L

5050 DISPLAY AT(24,1):"PRESS ENTER FOR MENU"
5060 CALL KEY(3,K,S):: IF KOI 3 THEN 5060
5070 GOTO 500
5100 DISPLAY AT(2,3):"** FILES ON DISK tt";DN

• " * * "

5110 DISPLAY AT(4,1):"NAME<9 SPACES3TYPE SI
ZE DISK"

5115 CALL HCHAR(6.3,45,28)

5120 RETURN

5200 X=0

5210 DISPLAY AT(24,1):"PRESS ENTER TO CONTIN
UE"

5220 CALL KEY(3.K,S):: IF KOI 3 THEN 5220
5230 CALL CLEAR :: GOSUB 5100

5240 RETURN

5500 CALL CLEAR :: CALL SCREEN(6)
5510 DISPLAY AT(4,1):"SEARCH DIRECTORY BY Dl

SK #"

F» 5520 DISPLAY AT(8,1):"ENTER DISK # __" :: AC
CEPT AT(8,14)VALIDATE(NUMERIC)SIZE(-

2)BEEP:DN

5530 IF DN<0 1 OR DN>50 THEN 5520

5550 RETURN

6000 GOSUB 6500

6003 CALL CLEAR :: CALL. SCREEN (8)

(ffisn 6005 X = 0 : : SW = 0

6010 GOSUB 6100

6020 FOR L=l TO NF

6022 IF F*(L)="" THEN 6040

i 6024 IF SEG*(PW*. 1,LEN(PW*^)<>SEG* (F*(L) , 1 ,L

EN(PW*))THEN 6040

299

Utilities

6030

6035

6040

6045

6050

6060

6070

6100

6110

61 15

6120

6200

6210

6220

6230

6240

6500

6510

6520

6550

7000

7010

7020

7030

7050

7055

7057

7059

7060

7070

7080

300

DISPLAY AT (X*2+7, 1) :USING "##
iZ SPACES3########## ##########":SEG*(

F*(L) , 15,2) ,SEG*(D*(VAL(SEG*(F*(L) , 15,2
))) , 1, 10) ,SEG* (F*(L) , 1 , 10)
X=X+1 :: SW=1 :: IF X = 8 THEN GOSUB 6200

NEXT L

IF SW= 0 THEN DISPLAY AT(12,4) : "* * NO MA
TCH FOUND **"

"PRESS ENTER FOR MENU"

IF KOI 3 THEN 6060

DISPLAY AT (24, 1
CALL KEY(3,K,S)
GOTO 500

DISPLAY AT(2,6)

DISPLAY AT(5,1)
iZ SPACES3FILENAME

CALL HCHAR(6,3,45.
RETURN

X = 0

DISPLAY AT (24. 1)

UE"

CALL KEY(3.K,S):

CALL CLEAR :

RETURN

CALL CLEAR :

DISPLAY AT(4,1):"SEARCH DIRECTORY BY FI
LENAME"

DISPLAY AT (-8, 1) : "ENTER FILE NAME " :: A
CCEPT AT(8,17)SIZE(10)BEEPrPW*
RETURN

CALL CLEAR :: CALL SCREEN(10)

DISPLAY AT(4,1):"THIS OPTION WILL
E ALL" :: DISPLAY AT (6, 1) : "FILES
SPECIFIED DISK"

DISPLAY AT (8, 1) : "NUMBER. " :: DISPLAY
(10.1)s"DELETE DISK? Y/N _" :: 0*="" s:
ACCEPT AT (-10, 18-) VAL IDATE ("YN")SIZE<~1)

BEEP:0*

IF 0*="N" THEN 500

DISPLAY AT< 12, 1) : "DISK =t» TO BE DELETED?
" :: DEL=0 :: ACCEPT AT(12,23)VALIDA

TE(NUMERIC)SIZE(-2)BEEP:DEL

IF DEL=00 THEN 500

IF DEL>50 THEN 7050

IF D*0»" THEN 7100

DISPLAY AT(16,1):"*« NO SUCH
DIR." :: DISPLAY AT(1S,1):"R
M FOR MENU"

CALL KEY<3,K„S):: IF S=0 THEN 7070

)

"SEARCH FOR ":PW*

"DISK DISKNAME

!8>

"PRESS ENTER TO CONTIN

IF KOI 3 THEN 622!

GOSUB 6100

CALL SCREEN(6)

1):"SEARCH DIRECTORY

IF K=82 THEN CALL HCHAR<16,1
ALL HCHAR(18,1,32,32):: GOTO

DELET

FOR A

AT

DISK # IN

TO RETRY -

)

70!

#i^$ff

1

•""=)

-^

i'.m^&l

p>

3 Utilities

7085 IF K=77 THEN 7200

7090 GOTO 7070

7100 CALL CLEAR :: DISPLAY AT(2,1):"DISK TO
DELETE = "&SEG*(D*(DEL),1,10):: DISPLAY
AT (4, 1): "DELETE? Y/N „"

7110 0*="" :: ACCEPT AT(4, 13)VALI DATE("YN">S
IZE<-2)BEEP:O* :: IF 0*="N" THEN 7200

7115 IF 0*O"Y" THEN 7 100

7120 CALL CLEAR :: DISPLAY AT(1,4):"»* FILES

DELETED **"

7130 L2=0 :: D*(DEL)="" :: DELSTR*=RPT*(" ",
2-LEN(STR*(DEL)))&STR*(DEL):: XX=NF ::

DC= 0

7140 FOR L=l TO XX

7150 IF DELSTR*=SEG*(F*(L),15,2)THEN GOSUB 7
300 :: DISPLAY AT(3+INT(DC/2),PC):SEG*(
F*(L),1,10)::: F*(L)="" :: DC=DC+1 :: D

S=l

7160 NEXT L

7170 DISPLAY AT(24,1):"PRESS ANY KEY TO CONT
INUE"

7175 CALL KEY(3,K,S):: IF S=0 THEN 7175
7180 CALL CLEAR :: DISPLAY AT(4,1):"DELETE A

NOTHER DISK? Y/N _" :: 0*="" :: ACCEPT

AT (4,26)VALIDATE("YN")SIZE(-1)BEEP: O*

7190 IF 0*="Y" THEN 7050

7200 IF DS=0 THEN 500

7210 CALL CLEAR :: CALL SCREEN(4):: DISPLAY

AT(8,4):"AUTOMATIC COMPRESSION" :: DISP
LAY AT(10,6):"ROUTINE ACTIVATED"

7215 DISPLAY AT(14,1):" > PLEASE STAND BY

7220 L2=0 :: XX=0

7230 FOR L=l TO NF

7240 IF F*(L)="" THEN 7260

7250 L2=L2+1 :: F*(L2)=F*(L):: XX=XX+1

**"* 7260 NEXT L
7262 FOR L=NF+1 TO 400

7264 F*(L)=""

rma 7266 NEXT L

7270 NF=XX

7290 GOTO 500

7300 IF DC/2=INT(DC/2)THEN PC=1 ELSE PC=15

f*® 7310 RETURN
8000 CALL CLEAR :: CALL SCREEN(6)

8010 DISPLAY AT(10,5)s"SORTING...."
pfite, 8020 F*(0)=" " :: Y=l :: HX=0

8025 SS= 0 :: DISPLAY AT (10, 17) : NF-Y
8030 FOR L=Y TO NF

301

Utilities

8040

8050

8060

8070

8080

8090

9000

9010

9020

9030

9040

9050

9060

9100

9105

9110

9120

9130

9140

9150

9160

9180

9185

9190

9199

10000

10010

10015

10020

10030

10040

10050

10060

10070

10075

10090

1 1000

302

IF F*(L)

: SS=1

NEXT L

IF SS=1 THEN

F*(HX)=HF*

Y=Y+1 :: F*(0)=F*(Y)

IF Y<NF THEN 8025

GOTO 500

CALL CLEAR :

DISPLAY AT(4

F*(0)THEN F*(0)=F*(L) HX = L

HF*=F*(Y):: F*(Y)=F*(HX)::

CALL SCREEN(8)

1):"THIS OPTION WILL WRITE
THE"

DISPLAY

IT-

DISPLAY

OUS"

DISPLAY

DISPLAY

:: ACCEPT

-1)BEEP:O*

IF 0*="N" THEN 500

OPEN #2:"DSK1.DISKDATA",OUTPUT
,FIXED 20

PRINT #2:ND,NF
FOR L=l TO ND

PRINT #2:D*(L)

NEXT L

FOR L=l TO NF

PRINT #2:F*(L)

NEXT L

DISPLAY AT(20,1):"UPDATE•COMPLETE" :: D
ISPLAY AT(22,1):"PRESS ANY KEY FOR MENU

AT (6, 1): "DIRECTORY FILE TO DISK

AT (8. 1) : "WILL OVERLAY ANY PREVI

AT(10,1):"DIRECTORY FILE."
AT (14, 1) : "WRITE FILE (Y/N)?

AT(14,20)VALIDATE("YN")SIZE <

INTERNAL

CLOSE #2

CALL KEY(3, K,S) ;
GOTO 500

CALL CLEAR :: CALL SCREEN(6)

DISPLAY AT(8, 1): "PRINTING "
OPEN #3:"PIO.LF",OUTPUT
GOSUB 12000

FOR L=l TO NF

GOSUB 4300

PRINT #3,USING "<6 SPACES3#####*####
€5 SPACES3###<:5 SPACES3 #######
€4 SPACES3##":N*,S*,TF*(VAL(T*)),DD*
LC=LC+1 :: IF LC=58 THEN GOSUB 11000
NEXT L

CLOSE #3

GOTO 500

FOR X=LC TO 65 :: PRINT #3:
X

IF S=0 THEN 9 190

NEXT

ms^

-*I

Utilities

p^wrEi
11010 GOSUB 12000

1 1020 RETURN

12000 PRINT #3:"<16 SPACES?DI RECTORY INDEX"

fwRF^tj 12010

12020

PRINT #3:" " :: PRINT #3:" " ::

#3: " "

PRINT #3:"{6 SPACES3 F I LENAME

<7 SPACES3 SIZEC5 SPACES3TYPE

PRINT

<5 SPACES3DISK"

12030 PRINT #3:" "

12040 LC= 6

12050 RETURN

\^^m

xtwM-i??]

303

H)

What Is a Program?
A computer cannot perform any task by itself. Like a car with
out gas, a computer has potential, but without a program, it
isn't going anywhere. The programs published in this book are
written in a computer language called BASIC. BASIC is easy
to learn and is built into the TI.

BASIC Programs
Computers can be picky. Unlike the English language, which
is full of ambiguities, BASIC usually has only one right way of
stating something. Every letter, character, or number is signifi
cant. A common mistake is substituting a letter such as O for
the numeral 0, a lowercase 1for the numeral 1, or an upper
case B for the numeral 8. Also, you must enter all punctuation
such as colons and commas just as they appear in the book.
Spacing can be important. To be safe, type in the listings ex
actly as they appear. Enter all programs with the ALPHA
LOCK on (in the down position). Release the ALPHA LOCK
to enter lowercase text.

Braces

The exception to this typing rule is when you see the braces,
such as {10 SPACES}. This special situation occurs in PRINT
statements. For example,
ENERGY{10 SPACES}MANAGEMENT

means that ten spaces should be left between the words
ENERGY and MANAGEMENT. Do not type in the braces or
the words 10 SPACES.

306

1

.1

Appendix

About DATA Statements

Some programs contain a section or sections of DATA state
ments. These lines provide information needed by the pro
gram; they are especially sensitive to errors.

If a single number in any one DATA statement is
mistyped, your machine could lock up, or crash. The keyboard
may seem dead, and the screen may go blank. Don't panic—
no damage is done. To regain control, you have to turn off
your computer, then turn it back on. This will erase whatever
program was in memory, so always save a copy of your program
before you run it. If your computer crashes, you can load the
program and look for your mistake.

Sometimes a mistyped DATA statement will cause an er
ror message when the program is run. The error message may
refer to the program line that READs the data. The error is still
in the DATA statements, though.

Get to Know Your Machine
You should familiarize yourself with your computer before
attempting to type in a program. Learn the statements you use
to store and retrieve programs from tape or disk. You'll want
to save a copy of your program, so that you won't have to
type it in every time you want to use it. Learn to use your ma
chine's editing functions. How do you change a line if you
made a mistake? You can always retype the line, but you at
least need to know how to backspace. It's all explained in
your owner's manual.

A Quick Review
1. Type in the program a line at a time, in order. Press ENTER

at the end of each line.
2. Check the line you've typed against the line in the book.

You can check the entire program again if you get an error
when you run the program.

3. Make sure you've typed all the DATA statements and CALL
CHAR statements correctly.

307

algorithms 41
Al Khuwarizmi 41

alphabetical/linear search 44
animation 201-7

annuity formula 103
arccosine 31

arcsine 30-31

arrays 41-42
arrow keys 11
ASC function 20
ASCII character set 23-24
ASCII codes 9, 43-44, 49-50, 147, 211,

266, 271
ATN function 29

base 16 199

"Basic Bubble Sort" program 38
"Basic Shell Sort" program 38-39
"Basic Sort C" program 39
"Basic Sort D" program 39-40
binary search 45
"Bowling Champ" program v, 179-85
bubble sort 36
budgeting 77-78
CALL CHAR 20, 24, 49-54, 197, 203-7,

211, 247-51, 256, 266, 270-71
CALL CHARPAT 254
CALL CLEAR 202-7, 271
CALL COINC 258-60, 270, 272, 273
CALL COLOR 56, 204-7, 251, 270
CALL DELSPRITE 257, 270, 271
CALL DISTANCE 255, 270, 273 .
CALL GCHAR 147, 152, 202-5
CALL HCHAR 19, 202-3
CALL JOYST 272
CALL KEY 12, 19, 24, 34-35, 152
CALL LOCATE 255, 265, 270, 272
CALL MAGNIFY 252-53, 270-71
CALL MOTION 251, 256-57, 270, 272
CALL PATTERN 256, 270, 272
CALL POSITION 253-54, 270, 273
CALL SCREEN 14

CALL SOUND 3-4, 226, 240
CALL SPRITE 9, 251-52, 270, 271
CALL VCHAR 19, 202
cassette recorder 6, 109, 111-13
character set 18-25

redefining 211-16
character table 202-3

308

characters, numeric codes and 19-20
redefining 49-54

CHARPAT subprogram 49
"Chase, The" program 165-71
CHR$ function 20
CLEAR key 15
command modules 5

compound savings formula 102
"Computer Visuals" program 55-59
COS function 29

data base management 109
DATA statement 55
defined functions 29-33
DEF statement 29-33
degrees 30
DIM statement 41
disk controller 6, 291
disk directory 291-95
disk drives 6, 283-303
Disk Manager Command Module 283
DISPLAY AT statement (Extended

BASIC) 8
"Duck Leader" program 150-57
duration (sound) 226
editing 14-17
ERASE key 15
Extended BASIC 8, 9, 36, 56, 84, 109,

158, 201, 247, 264, 270, 283
fantasy, in game programming 179
FCTN key 14-15
features, of TI-99/4A computer 3-8
"Financial Interest" program 99-108
formulae

annuity 103
compound savings 102
loan payment 103
mortgage payment 103

FOR-NEXTloop 152
"Freeway 2000" program 158-64
function key codes 22-23
games, writing 9-13, 158

increasing speed of 165
graphics 3, 55-56, 197-200
graphics characters, user-definable 24-25
INPUT statement 21, 24, 35

1

r^^sw9 -

fwvmQ

(?«?£!

Ifl^^lJ

interest, simple and compound 99-100
INT function 10, 29
joysticks 11-13, 147, 158, 165
keys, functions of 14-16
linear search 44

linked list file access 127
LINPUT statement 128

LIST command 16

loan payment formula 103
logarithms 30
LOG function 29
"Mailing List" program v, 65-74
"Marble" program 207-10
"Master Disk Directory" program

291-303

mazes 150

mean 75-78

MERGE (Extended BASIC) 8
"MINI-DBMS" program 109-13, 115-20
"MINI-REPT" program 109, 113-14,

120-26

modulo 33

mortgage payment formula 103
mortgage 100-101
moving objects 11
music 3

naming variables 4-5
NUM command 5, 1
numeric codes 19-22

OPEN statement 61
Panasonic RQ2309A cassette recorder 6
"Passing Variables" program 53
pattern-identifier 49-52, 197-200, 211,

248

peripheral box 7
pitch (sound) 226
pixel 201, 264
portability 55
printers 60-62
PRINT USING (Extended BASIC) 8
radians 30

RANDOMIZE command 1-11

random numbers 10-11
range 76
reality, game simulation of 179
"Receiving Variables" program 54
RES command 5,16-17
RND function 10

rounding 31
RS-232 interface 60-61

"Runway 180" program 270-79
"Searching Algorithms" program 46-48
searching data 41-48
sexagesimal numbers 32
shell sort 37

SIN function 29

sorting 36-40
"Sound Maker" program 226-37
"Sound Shaper" program v, 238-39
speech 5, 7, 158
speed, game design and 165
spreadsheets 84-92
"Sprite Demonstration" program 260-63
"Sprite Editor" program v, 264-69
sprites 8, 9, 158, 201, 247-79

collisions 258-60

defining 249-51, 270-72
displaying 251-52
magnifying 252-53
moving 255-58, 272

standard deviation 76-78

"Statistics" program 78-83
strings 4
"SuperFont Load Demo" program 225
"SuperFont" program v, 211-25
TAN function 29

telecommunications 7

Terminal Emulator I Command Module 7
Terminal Emulator II Command Module 7
text 3

"Thinking Harder" modification of
"Thinking" program 173

"Thinking" program v, 172-78
TI BASIC 4
"TIcalc" program 84-98

commands 90-91

hardware requirements 84-85
missing values 89-90

"TI Disk Deleter" program 283-90
TI Extended BASIC. See Extended BASIC
"TI Mozart" program 240-42
TI RS-232 interface 7-8
"TI Word Processor" program 127-43

hardware requirements 127
operation 128-32
printing 132-33

TMS9918 video display processor 201
TMSS9900 chip 201
TRACE command 5

transferring variables 49-54
"Trap" program 147-49
unbiased random sample 75
user's reference manual 5, 211
variable data

storing 51-52
recovering 52

variables 41

volume (sound) 226
"Worm of Bemer" program v, 186-94

309

p=r

f$fft55l

COMPUTE! Books

Ask your retailer for these COMPUTE! Books or order
directly from COMPUTE!.
Call toll free (in US) 800-334-0868 (in NC 919-275-
9809) or write COMPUTE! Books, P.O. Box 5406,
Greensboro, NC 27403.

Quantity THte Price* Total

COMPUTEI's First Book of TI Games $12.95
COMPUTEI's Guide to Extended BASIC
Home Applications on the TI-99/4A $12.95
Creating Arcade Games on the TI-99/4A $12.95
Programmer's Reference Guide to the TI-99/4A $14.95
TI Games for Kids $12.95
33 Programs for the TI-99/4A $12.95
COMPUTEI's Guide to TI Sound & Graphics $12.95
COMPUTEI's TI Collection, Volume 1 $12.95
BASIC Programsfor Small Computers $12.95
Computing Together: A Parents & Teachers
Guide to Computing with Young Children $12.95
Personal Telecomputing $12.95
COMPUTEI's Guide to Adventure Games $12.95

'Add $2.00 per book for shipping and handling.
Outside USadd $5.00 air mail or $2.00 surface mail.

Shipping & handling: $2.00/book
Total payment

All orders must be prepaid (check, charge, or money order).
All payments must be in US funds.
NC residents add 4.5% sales tax.
• Payment enclosed.
Charge D Visa • MasterCard • American Express

Acct. No Exp. Date

Name

Address

City State Zip
'Allow 4-5 weeks for delivery.
Prices and availability subject to change.
Current catalog available upon request.

If you've enjoyed the articles in this book, you'll find
the same style and quality in every monthly issue of
COMPUTEI's Gazette for Commodore.

For Fastest Service
Call Our Toil-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTEI's

P.O. Box 5406
Greensboro. NC 27403

My computer is:
• Commodore 64 • VIC-20 • Other

• $24 One Year US Subscription
• $45 Two Year US Subscription
• $65 Three Year US Subscription

Subscription rates outside the US:

• $30 Canada
• $45 Air Mail Delivery
• $30 International Surface Mail

Name
Address
City State Zjp
Country

Payment must be in US funds drawn on a US bank, international
money order, or charge card. Your subscription will begin with the
next available issue. Please allow 4-6 weeks for delivery of firstissue.
Subscription prices subject to change at any time.
• Payment Enclosed • Visa
• MasterCard • American Express

Acct. No. Expires /

The COMPUTEI's Gazette subscriber list Is made available to carefully screened
organizations with a product orservicewhich may be of Interestto our readers. If you
prefer not to receive such mailings, please check this box Q

	front-cover
	ti-collection-volume-one.pdf
	chapter001
	content001
	chapter002
	content002
	chapter003
	content003
	chapter004
	content004
	content005
	content006
	chapter005
	content007
	content008
	chapter006
	content009
	content010
	chapter007
	content011
	chapter008
	content012
	chapter009
	content013

	back-cover

