


Texas Instruments
Computer Program
Writing Workbook

by Len Turner

ARCsoft Publishers
WOODSBORO, MARYLAND



FIRST EDITION

SECOND PRINTING

© 1983 by ARCsoft Publishers, P.O. Box 132, Woodsboro, MD 21798 USA

Printed in the United States of America

Reproduction or publication of the contents of this book, in any manner, without express permission of the
publisher, is prohibited. No liability is assumed with respect to the use of the information herein.

Library of Congress (L.C.) Number: 83-5990

Trademark credits and software copyrights:
TI-99/4A is a trademark of Texas Instruments Inc.

Programming advice and applications software in this book are copyright 1983 by ARCsoft
Publishers.

BASIC coding forms design and layout and graphics designing forms are copyright 1983 by
ARCsoft Publishers.

ISBN 0-86668-812-9



Texas Instruments Table of Contents

The BASIC Programming Language 4

Computer Graphics 12

BASIC Coding Forms 14

Graphics Grids 94

Programming Books 96



T.I. BASIC Programming Language

Texas Instruments personal computers are
practical, useful, fun, even exciting. But writing pro
grams can be a drag unless you know BASIC, the
most popular software language. In this book we
will introduce you to the T.I. BASIC in an easy-to-
understand explanation of the most-used words.

In addition, we will provide you with 80
program-writing worksheets for your use in
creating new and different software for your own
T.I. personal computer, whether it be the popular Tl-
99/4A, the new TI-99/2, or other T.I. model.

These worksheets are precision ruled so you
can write as many program lines as you like and be
able to keep them in a handy book for ready
reference in the future.

We also provide several grids for your use in
creating graphics designs for use on the T.I. com
puter.

Texas Instruments BASIC
Before writing programs for your T.I. be sure

you have thoroughly read and understand the
owner's manual which came with your computer. It

will tell you how to turn the machine on, how to
hook up the accessories, how to type in new pro
grams for the computer to run.

The introduction to T.I. BASIC which we offer

here will allow you to understand the most elemen
tary workings of your computer and its program
language. If you already know these basics, you
can skip over our introduction and start using the
coding-form worksheets immediately.

Notice that the worksheets have line numbers,
in steps of ten, printed along the left-hand margin.
The columns up to 80 are numbered across the top
of the form.

The graphics grids are designed for your use in
creating new and different video art on the TV
monitor of your T.I. personal computer. Visualize
the squares on the grids as if they were the dots
you can turn on and off on the face of your T.I. TV
picture tube. No matter whether you are working
low-resolution, medium-resolution or high-
resolution graphics, these sheets will allow you to
plan in advance your charts, graphs and other draw
ings.



This will be a straight-forward introduction to program
ming. We assume you have tried to read the owner's
manual which came with your computer. You know how
to turn it on. You know that pushing its buttons can't

break it. Don't be afraid to experiment. We'll show you
how to make it work for you.

However, the knowledge of BASIC which you will gain
from this book will be applicable to any microcomputer,
minicomputer, or main-frame computer using the BASIC
language. And all of today's popular microcomputers use
BASIC.

Our simple down-to-earth instruction will help you
quickly understand how to talk to your computer and
make it do what you want.

The name of the language is BASIC. That stands for
Beginner's All-purpose Symbolic Instruction Code. What
does that mean? Well, you know beginner. That's you. All-
purpose means it's generally useful for lots of different
things. Symbolic reflects the fact that the comupter uses
symbols to receive instructions from you. That is, sym
bols like the word PRINT or IF or THEN or FOR or NEXT.

The symbols mostly are words you already know. Code is
a buzz-word used by programmers to mean instructions to
a computer.

So, you can translate Beginner's All-purpose Symbolic
Instruction Code to mean "You use familiar words to tell

your computer how to do just about anything."
BASIC was invented at Dartmouth College in the 1960s

to be used by students, beginners, novices, newcomers,
to computers and programming. It's very much like every
day English, as you'll see as we go through this book.
We'll point out the familiar look-alike words which have

meanings you already know and understand. Words like
end, for, go, to, if, then, list, new, next, step, print, return,
run, stop, and others.

Building on what you already know, we'll show you how
the computer receives your instructions and uses them to
do what you want.

Universal BASIC

We will use what we consider the most-universal form

of BASIC, simplified so it is applicable to just about any
contemporary computer—large or small. These words,
when used to instruct a computer, would be understood
by just about any hardware. Be sure to check your
owners' manual to see how its BASIC words differ (if
they do) from those we use here.

Keep your owners' manual handy as you type in and

run programs. You may need it to make sure you are
properly turning on your equipment.

Please remember, no two programmers write identical
programs from scratch. Even when working toward the
same goal, different writers will create different logic pat
terns. If your program doesn't exactly match a suggestion

in this book, yours still may be correct.
Assuming your program runs and gets the required

result, judgment of writing quality should be made on
brevity, quickness of running time, and organizational
clarity. It's always best to write as few lines as possible.
The faster a computer completes its work, the better. And
instructions should appear to flow in a logical order so
they can be followed by others who might read your
writing.

What's Inside Your Computer

There are four main areas : the input keyboard, the tiny
microprocessor, a hulking memory, and the output
display.

Processor, input, output and memory are the important
parts of any computer. There are many accessory sec
tions but those four are where the most- interest

ing activity occurs.

Input and output, often abbreviated as I/O, allow a com
puter to receive work orders from its operator, to receive
information or data for use during a work period, and to
send out messages and work results to the operator.

Through the keyboard, an operator gives the computer
a list of instructions for carrying out one or more jobs.
That list, or program of action, is followed by the com
puter whenever told to do so. It does not have to be acted

upon immediately. The program can be remembered for
later action.

To achieve some of its work goals, the computer must
have additional information or data. That information also

is typed in through the keyboard.
So, the keyboard has two functions: sending in pro

grams of instructions and sending in additional data.

The output display might be a television set or a TV-like
monitor or a larger electric typewriter. The output display
has one main duty: showing messages and work results
to you.

Memory
The convenience of a computer would be lost if we had

to send in instructions, one at a time, and await action
after each instruction. The beauty of the beast lies in its
ability to memorize a long list of instructions and then,
upon later command, execute those orders. The computer
has a memory to store its various lists of instructions. It is
called program memory and it can hold more than one
complete program at a time.

At the same time, things would be slowed considerably
if each extra piece of information has to be keyed in
repeatedly every time the computer needed it. The com
puter can accept data one time and then store it away for
repeated use later. To keep such extra information on
hand, the computer has data memory.



Imagine 26 boxes labeled A through Z. The contents of
the boxes can be changed. Some contain something.
Some contain nothing. All are variable in that their con
tents can be changed.

Consider each box to be a single memory location,
identified by its label A or B or C on through Z.

Strings
The boxes can contain either numerical information or

words composed of combinations of letters, symbols and
even numbers. Such a word is thought of as a string of
data. Whenever one of our memory location boxes is stor
ing a word, it is a string variable. If it holds only numbers,
with no letters or other keyboard symbols, it is a
numerical variable.

The quantity of letters, symbols and numbers which
can be tied together in a string and stored in one memory
location is limited. In larger desktop computers, one
string in one memory location can hold hundreds of
characters. But in some computers, one string is
limited to seven characters.

This limitation applies only to string variables, not to
numerical variables. Here are some examples of what
variables contents might look like:

String Numerical

Variables Variables

JIM 86

@#$%ABC 1234567890

1/12/83 22.66

BIRTHDY 1

The program writer must keep track of which kind of
variable is being used in a particular memory location. For
example, if you store a word in location B and then try to
use that data in a math problem, an error will occur and
you'll get a message from your computer.

Only when you have numerical information stored in a
memory location can you use that data for math.

One way programmers keep such things straight is by
labeling string variables with a dollar sign ($). The dollar
sign means string and should be read as "string."

Empty boxes

If we were to put a number in A we would label it A. If
we were to put a word in A we would label it A$.

By the way, you can change the contents of the various
boxes during the running of a program. A location can go
from empty to full or from full to empty. Or a full location
can have its value changed. A program can be written so
the computer will continually check memory locations to
see what has been stored there.

Obviously, when we say a memory location is empty we
mean it has nothing in it. In effect, it has a big fat zero in

side. As a matter of fact, if you were to look at the con
tents of an empty variable, you would see that it contains
a zero. If you ask the computer to show you the contents
of an empty memory location, the output display will
show 0 if it is a numerical variable. If it is a string variable
with nothing stored inside, the display will show nothing.
Not even a zero. It will be blank.

You write in data memory by setting the data location
letter equal to the value you want to write in it. For in
stance:

A =1234

The value on the right is transferred into the storage loca
tion on the left.

Program memory
Now you know how to write information in data

memory, and recall it. How about writing in program
memory?

Your computer is built to use the BASIC program
language. BASIC requires each line of a program to start
with a line number. Here's a typical three-line program.
Notice the numbers at the beginning of each line:

10 CLEAR

20 A$ = "WORD"

30 PRINT A$

The computer needs those line numbers to be able to
follow your instructions in sequence. It knows that line 20
comes after line 10 and line 30 comes after line 20. Here's

the same program with different line numbers:
5 CLEAR

21 A$ = "WORD"

189 PRINT A$

This program will run just the same as the first one. The
line numbers are in the same sequence and the com
mands within each line are the same.

It is possible to write a program which uses every
single step of program memory!

NEW

The command NEW erases everything stored in pro
gram memory, no matter how many different programs
you have there.

The processor
Be an electronic mouse inside the computer again.

Notice the master-controller in charge of everything.
That's the microprocessor. Micro means small. Processor
means it follows instructions in manipulating data to do
work. It's not very big but it sure is powerful!

The processor is a very logical worker, dutifully going
about its business in a proper order, carrying out instruc
tions, doing work.

Built into the processor are instructions for how to
handle its chores. As it follows that internal set of instruc-



tions, it knows how to follow your external set of instruc
tions and do the work you want done.

To make a long story short, the processor takes inform
ation from memory, does something with it, and then
either returns data to memory or displays it as output for
you to read. It is able to do this many, many times each se
cond and that's why we love the microprocessor!

Suppose you tell the microprocessor to fetch the con
tents of memory location B. It looks in there and finds
WORD there. It reads that word, leaves the original behind
in memory location B, and takes the information about
what is in B away to work with it. The processor actually
has a tiny memory inside itself so it can remember what it
read in B.

If we instruct the processor to store something in
memory location C, it writes data to that memory location.
When it writes in that memory location, it destroys
whatever was there before. For example, suppose we
have the number 1234 stored in memory location C. As a
result of an operation, we instruct the microprocessor to
store the number 6789 in memory location C. It will put
6789 into C and we will lose the original number, 1234,
forever.

Remember: reading destroys nothing but writing
replaces old information with new.

In carrying out activities, the processor follows exactly
the set of instructions you gave it as a program. It can't do
anything else. If you make a mistake, it makes a mistake.
If your work was perfect, its work will be perfect.

Program language
A program is composed of sets of alphabet letters

which the processor understands as words. A complete
set of such words makes up a language. BASIC is a
language composed of words such as GO, TO, FOR,
NEXT, IF, THEN, STEP, PRINT, RETURN, INPUT, PAUSE,
WAIT, SET, STOP, END, SAVE, LOAD, GET, PUT, RUN,
LIST, NEW and many others.

Since our computers are so very small, they
have been given only the very best, most useful, of these
words.

The more extensive the BASIC vocabulary, the more
flexible the writer can be in creating programs. The total
number of BASIC words invented to date is well over 500.

You have the best of these in your computer.

It's easy to see why BASIC is the most popular com
puter language today. It's most like everyday English and,
therefore, most readily used.

Writing and Running Programs

Writing programs means creating line lists of instruc
tions and storing them, one at a time, in program memory.

Running means having the computer recall those sets
of instructions, one line at a time, and do them.

RUN

Let's put an instruction in program memory and then
run it.

RUN is an instruction to the computer to start at the
lowest program line number and begin executing com
mands it finds there.

You can make the computer start its run at a different
line number by typing that line number immediately after
the word RUN. For instance, to start at line 100, type:

RUN 100

The computer will skip over any program lines with
numbers less than 100.

REMarks

Suppose you were to write a very long, 50-line program
of instructions for your computer. You might forget what
each line was to accomplish. You need some way to put
information in program memory which won't be acted
upon by the computer during a run. Information such as
notes to yourself so that when you list your program you
can recall what the various parts of the program were sup
posed to do. These notes to yourself, and for other pro
grammers to read, are called remarks. The REM command
is used. Anything in a program line after REM will be ig
nored by the computer during a run. For example:

10 REM PRINT "NAME"

20 PRINT "WORD"

Type in this program and run it. You'll see that the com
puter has ignored, or skipped over line 10 and done line
20. Anything on a line after REM is ignored. Here's
something different. Try this one:

10 PRINT "WORD": REM PRINT "NAME"

Here the program did the first part of line 10 but ignored
the last half of the line following REM.

By the way, you put multiple statements in one pro
gram line by using the colon (:).

The colon indicates to the computer that a new state
ment is coming. Thus, you can place several statements
in one line if you wish. Separate them with colons. Here's
an example of a one-line program including several
statements*

10 PRINT "WORD":PRINT "NAME": PRINT "DOG"

:PRINT "CAT"

The computer will follow these statements of command
in sequence as it reads through line 10. It will print WORD
first, then NAME, then DOG, then CAT.

If, after typing in a program, you get an error message
check your owners' manual to see how its BASIC words
differ from those we use here.



REMarks are good for notes but very wasteful of where it recalls the contents of memory locations A$ and
memory. And we don't have much memory to spare in the B$ and prints them on the display.

Let's see how INPUT works when you want to collect
numerical data. It works the same. Try this short program:

computer. Use REM infrequently!

BREAK

What to do when your computer goes blitzo!
BREAK is used whenever you need to stop a RUN dead

in its tracks. It's your panic button.

STOP

But suppose you want the program to STOP
automatically at some point in a run? Use the STOP com
mand. Write it into your program as one line.

How to continue after STOP? Use CONT. STOP stops
it. CONT makes it continue.

END

You can, at your option, tell the computer a program
has ended. Use the END command.

The CONT function won't work after an END command.

Input and Output

Input means giving the computer something to store in
memory, whether data or program.

Output means displaying messages and work results
for you to see.

INPUT

Information can be permanently placed in memory
when you write a program. That is, data will actually be
part of the program as written. This fixed information
could look like this:

10 A$ = "WORD"

Whenever you run the program the computer will always
start with the memory that WORD is the data in memory
location A$.

But, suppose you want the computer to pick up
changeable data during a run? Use the INPUT function.
Try this program:

10 A$ = "ITIS"

20 INPUT "WHAT IS THE WORD",B$
30 PRINT A$;B$

When you run this program, the computer starts at line 10
and stores the string IT IS in memory location A. At line
20, the computer displays the question, WHAT IS THE
WORD, and waits for a reply. You type in any string of
characters in reply to give your answer to the
computer. The computer stores your answer in B$.
Then, the computer moves on to line 30

8

10 Q = 111

20 INPUT "PICK A NUMBER",N

30 R = Q+N

40 PRINT N;"PLUS ";Q;" = ";R

Here, line 10 puts the value 111 into memory location Q.
Line 20 displays the message, PICK A NUMBER, and
awaits your response. Whatever number you select, key it

in. The computer will store your number in memory loca
tion N.

Line 30 does the math work for you by adding. It recalls
that 111 was stored in Q and your number was stored in N.
It adds those two values to get a new total. The total is
stored in memory location R. The program moves on to
line 40.

At line 40 the computer prints the results in sentence
form. Try it with several different numbers. It's fun!

Suppose your number were 59. The program result,
after printing line 40, would look like this:

59 PLUS 111 = 170

You don't have to use the message part of the INPUT
function if you don't want to. For instance:

10

20

30

40

INPUT N

INPUT P

PRINT N

PRINT P

This program allows the computer to take in your
numerical data and store it in memory locations N and P
and then print the values on the display. The computer
will start at the lowest line number, as usual, line 10.
Since no message has been supplied, the computer will
display only a question mark (?). The ? tells you the com
puter wants some information. Try it on yourcomputer.

PRINT

You already have used the PRINT output command but
here's some further information.

PRINT causes a message to be displayed on the
computer's display. The printed message consists of
whatever is contained within the quotation marks follow
ing the PRINT command. For instance:

10 PRINT "I LIKE ICE CREAM"

The computer reproduces exactly what you place bet
ween the quotes, including blank spaces. Try it in your
computer. Now, type in this program:

10 PRINT "I LIKE ICE CREAM"

20 PRINT "DO YOU?"



These PRINT messages need not be in the same line as
the PRINT command, by the way. Rather, you can store a
message in data memory and recall it for PRINTing. For
example:

10 N = 1234.56789

20 PRINT N

The computer, at line 10, stores the number 1234.56789 in
memory location N. At line 20, the computer recalls the
value of N and prints it on its display. Here's another
example:

10 G$ = "WORD"

20 PRINT G$

Here the computer stores the string of characters, WORD,
in memory location G. At line 20 it recalls G$ and prints it.

Here's an even more complex program:

10 A = 6

20 B = 7

30 C = 2

40 D=A+B+C

50 PRINT D

The computer stores the number 6 in memory location A;
the number 7 in location B; and 2 in C. At line 40 it recalls
the values in A, B and C and adds them together. The
result of that addition is stored in D. Line 50 recalls the

contents of D and prints the number on the display. Try it.

The Real Computer Power!

When folks talk about a computer having power, they
often are referring to its ability to make decisions. And its
looping ability. And its jumping ability. These capacities,
when combined, make for some very powerful computing
ability.

FOR/NEXT/STEP

You already know loops are fun but we need a way to
control them to put them to a useful purpose. Here's one
way:

10 FORL = 1 TO 100

20 PRINT L

30 NEXT L

40 PRINT "END OF COUNT"

Lines 10 and 30 create a FOR/NEXT loop. A FOR/NEXT
loop probably is the most frequently used of the super
power BASIC commands.

In this program, line 10 actually contains a built-in
counter which advances the value stored in L by one every
time the program reaches line 30. In fact, until the count
reaches 100, line 30 causes the program to jump back to

line 10. When the value in L reaches 100, then and only
then will the FOR/NEXT loop let the action drop on down
to line 40. Here's a variation:

10 FOR A =10 TO 100

20 PRINT A

30 NEXT A

The memory location used in the loop can be any of those
available to you in your computer.

Unless you tell it otherwise, the count will step up by
ones. Try this change:

10 FOR X = 2 TO 40 STEP 2

20 PRINT X

30 NEXTX

Here the count goes up by twos. Try this program to make
the computer count down by ones:

10 FOR J = 100 TO 1 STEP-1
20 PRINT J

30 NEXT J

The computer starts at 100 and counts down to 1, and
then stops. Very convenient. Very powerful!

The STEP statement is not used unless you want in
crements other than + 1. Minus numbers after STEP will

cause the computer to count down in numbers while
positive numbers will cause it to count up. Now make the
computer take some giant steps:

10 FOR R = 999 TO 1 STEP -100
20 PRINT R

30 NEXT R

The computer counts down by hundreds. At that rate, it
doesn't take very long to run out of numbers.

Sometimes you need a time delay in the middle of a
program as it is running. The loop can be used to create
such a time delay.

10 FOR N = 1 TO 999
20 NEXTN

Get a stopwatch and keep an eye on the running time
for the program. Line 10 is a FOR/NEXT loop all on one
line, without any output during the loop. The computer
merely counts internally up to 999 and then moves on.

How long does it take such a loop to run its course?
Use a stopwatch to time it . A nice long delay! Now
try counting to 100:

10 FOR N = 1 TO 100
20 NEXTN

How long is the delay?
10 FORN = 1 TO 10
20 NEXT N

Counting only to 10 reduces the delay.
10 FORN = 1T0 5
20 NEXT N

Counting only to 5 makes things happen even more quick
ly. 10 FORN = 1T0 3

20 NEXTN

Why is a one-second loop useful? Well, maybe you
would like to turn your computer into a clock!

9



Here's a simple timer, for starts:

10 CLEAR

20 T = T+1

30 FOR N = 1 TO 3

40 NEXT N

50 PRINT T;"SECONDS"
60 GOTO 20

This is a crude clock. You can adjust its speed by
changing the number 3 in line 30. It will count seconds un
til you stop it with the BREAK key.

Can you figure out why it takes a bit longer for the first
display, 1 SECONDS, to appear? Because the computer
uses up time as it works it way through lines 10,20 and 30.
You planned on it using up time at line 30 but you may
have overlooked the amount of time it takes to carry out

the instructions at line 10 and line 20.

IF/THEN

Did we say earlier the computer has the ability to make
decisions? Yes! The IF/THEN statement is an important
part of the decision-making process.

IF something happens or is true, THEN and only then
will something else happen. IF nothing happens or
something is not true, THEN nothing will happen. The
IF/THEN test is one of the superpowers of the com
puter.

Here are examples of typical IF/THEN program lines:

FA = 222 THEN PRINT A

FB$ = "DOG" THEN 200

FJ = A/2 THEN PRINT J

F Q$ = "WORD" THEN INPUT X$

FT = 2*4 THEN 900

F A$ PRINT B$

IF something is true, THEN some action is taken. That ac
tion can be a GOTO jump to a new program line. Or a
PRINT command. Or an INPUT or any of the many BASIC
statements.

Try this simple program in your computer:
10 A$ = "DOG"

20 B$ = "BONE"

30 IF A$ PRINT B$

The computer first stores string data DOG in memory
location A and then BONE in B. Line 30 then causes the

computer to examine location A and make a decision. The
phrase IF A$ means "if there is anything in A$" then do
whatever comes next in the same line.

In this case, we place DOG in A$ so we know the com
puter will find something there. Finding something there,
it goes on to the last part of line 30 and carries out the
specified action. It prints BONE on its display. If it would
have found nothing there, it would have ignored the last
half of line 30.

That was a simple test, merely to see if there happened
to be anything in location A. Now let's change the pro-

10

gram to make a harder test for the computer:

10 A$ = "DOG"

20 B$ = "BONE"

30 IF A$ = "BONE" PRINT A$

40 IF B$ = "BONE" PRINT B$

As before, line 10 stores DOG in memory location A$ and
BONE in B$. Having done that, the computer moves on to
do line 30.

At line 30, it finds an instruction from you to do a test
and make a decision. The test is to look at the contents of
A$ and see if they are BONE. If, and only if they are BONE,
then go on to the last half of line 30. The last half of line 30
calls for the computer to recall the contents of A$ and
print them on the display.

We know we stored DOG in A$. When the computer

checks A$ it finds DOG, not BONE. Therefore, it uses its
decision-making ability to proceed to line 40 rather than
do the last half of line 30. It found that the IF
A$ = "BONE" was not true so it could not go on to the last
half of that line.

Since the line 30 test failed, the computer moved on to
line 40. At line 40 it finds another test. It follows orders

and checks the contents of B$. At B$ it finds BONE so the

idea that B$ = "BONE" is true. With that found to be true,
the computer decides to go ahead with the action called
for in the last half of line 40. It recalls BONE from B$ and

prints it on the display.
To recap, we stored DOG in A$ and BONE in B$. We

asked the computer to print the word DOG if it found the
word BONE in A$. It looked and did not find BONE so it

did not print DOG. Then we asked it to print BONE if it
found the word BONE in B$. It looked at B$, found BONE,
and printed BONE on the display.

GOTO
You know that the computer does your list of BASIC in

structions by following line numbers. First it does line 10,
then line 20, etc. But, suppose you want the computer to
do things in a different order. Maybe you would like it to
jump over a group of lines. Or skip down to a different part
of the program. This ability to branch out and around
some lines to do other lines is an important power in the
computer. It involves the GOTO and GOSUB statements.

GOTO means "go to a line." The GOTO statement must
include the destination where you wish the program to

go. For example:
GOTO 100

When the computer finds a GOTO statement, it im
mediately leaves the list, searches for and finds the
destination line, and reenters operations at that point.
Here's a small example:

10 GOTO 30

20 PRINT "NAME"

30 PRINT "WORD"



In this program, the computer starts at line 10 where it im
mediately finds a command to GOTO line 30. It skips
down the list until it finds line 30. At line 30 it resumes do

ing what you asked. It prints WORD. In this case, the in
struction in line 20 never gets done.

You can jump backward and forward within the pro
gram. Here's an example:

10 INPUT "ENTER A NUMBER",A
20 INPUT "ENTER ANOTHER NUMBER",B
30 GOTO 100

40 PRINT"THE TOTAL IS ";T
50 GOTO 10

100 T = A+B

110 GOTO 40

Again the program starts running at the lowest line
number, line 10. At line 10 it asks you for a number which
it stores in memory location A. At line 20 it asks for
another number which it puts in B.

At line 30 it finds an order to branch down to line 100

which it does. When it finds line 100 it does the instruc

tion in line 100. It recalls the contents of A and B and adds

them together, storing the total in T. Having completed
line 100, it moves on down to line 110.

At line 110 the computer finds your instruction to jump
back up to line 40. Doing that, it finds at line 40 an instruc
tion to print THE TOTAL IS and the value in T. Putting that
message on the display, it goes on to line 50.

At line 50 it comes upon your command to go up to line
10. It does that, thereby starting the entire process over
again. The computer will go through this elaborate loop
as long as you are willing to keep giving it numbers.

GOTO is, in fact, one of the most-used words in the
BASIC language. Our programs are strewn with such
jumps.

GOSUB/RETURN
Often you will need to repeat the exact same set of in

structions at different points in a program. You could type
the required program lines into the program each time
they are needed. Or you can type them once and make the
program jump to them when needed.

Typing of repeating sequences wastes your program-
writing time, and, more importantly, wastes program
memory space. It's easier for you and uses less memory
when you create one subroutine to be repeatedly used by
the computer.

Why not use a GOTO statement to get to a subroutine?
The answer lies in the RETURN from the subroutine. If

you were to use GOTO to get to a subroutine from several
different places in a program, the designation of where to
return to after completion of the subroutine would be long
and clumsy. GOSUB was invented to take care of just that
problem.

A subroutine is a small program which you can imagine
as being set aside from the main program. A subroutine

can be used as often as you like while running the main
program. Each time a subroutine is completed, the com
puter automatically returns to the line in the main pro
gram immediately following the line from which it earlier
had left the main program. Here's a small example:

10 A = 555

20 GOSUB 100

30 PRINT T

40 END

100 T = A+1

110 RETURN

The main program is contained in lines 10, 20, 30 and 40.
The subroutine is lines 100 and 110. The jump to the
subroutine is the instruction in line 20. Note that it con
tains the destination line number. The return from the
subroutine is from line 110 to line 30.

At line 10, we assign the value 555 to memory location
A. At line 20, we ask the computer to branch to the
subroutine at line 100.

At line 100 the computer finds an instruction to recall
the value of A and add one to that value. The new total is

stored in memory location T.

The program moves on to line 110 where it finds
RETURN. That instruction, which must always be at the
end of a subroutine, tells the program to jump back to the
line immediately following.the line where it left the main
program. In this case, the program left the main routine at
line 20 so RETURN will kick it back to line 30.

At line 30 the computer finds a command to recall the
contents of T and to display it. It does that and moves on
to line 40. At line 40 it finds the END command and

ceases operations.

Why an END in line 40? Because you need to make sure
the subroutine is entered only from the GOSUB instruc
tion. After line 30, without an END in line 40, the program
would automatically move from line 30 to the next
available higher line number which is 100. At line 100 it
would enter the subroutine. At line 110 it would find a

RETURN which did not come from a GOSUB and an error

message would occur.

Just as a GOSUB must have a RETURN, the RETURN
statement must come after a GOSUB.

The computer has a tiny private "scratchpad" bit of
memory within itself where it writes temporary notes to
itself. When it executes a GOSUB command, it makes
note of the line number from which it left the main pro
gram. Later, when it finds a RETURN, it refers to its
scratchpad to see where it left the main program. It deter
mines the next available program line after that exit point
and re-enters the main body of the program at that point.

If the computer encounters a RETURN without having
left the main program via GOSUB, it won't be able to find a
"where to" note on its scratchpad and will send you an er
ror message. You don't want error messages so you pre
vent the computer from getting into subroutines by
means other than GOSUB jump commands.

11



Computer Graphics
Your personal computer is a system with four major

parts: input, processor, memory and output.
Processor and memory are the innards, the brain

which does the internal work you ask for.
Input is composed of the various parts of the equip

ment which allow you talk to the computer, to send in in
formation for the memory to store and for the processor
to work on. Input includes the typewriter-style keyboard, a
tape, a disk, etc.

Output is the equipment available for the computer
to talk back to you, to report the results of work you asked
it to do. Output includes the video display screen, a line
printer, or other devices.

This is concerned with a special use of one
piece of output equipment, the video display screen. We
hope you will learn from these pages how to make the
computer display useful pictures on the face of the video
tube.

When you turn the power on, the computer knows
how to operate because the manufacturer has written
software and inserted it into the computer's innards. That
internal program is system software.

The computer can go beyond its basic internal
housekeeping functions to do real-world jobs you ask of it
because you write additional programs for it to follow.
Your added instructions are applications software.

This , then, will show you how to write applica
tions software especially to create pictures on the video
display.

You hear a lot of talk, these days, about various types
of resolution. Some graphics are said to be low-
resolution. Some are high-resolution. There is a middle
ground which could be thought of as medium resolution.
What's the difference?

Low vs. high resolution
Letters, symbols, numbers, entire words, pictures,

charts, graphs, anything displayed on the face of your TV
screen or video display monitor is created as a series of
lighted dots against a dark background. Imagine your TV
screen as a large grid of tiny square rectangles like a
piece of graph paper. Suppose you wanted to create the
letter P on that grid, as in this approximate drawing:

The overall screen is dark. The light spots, when viewed
together, create the image of the letter P. Your education
leads you to see the letter P rather than an assortment of

12

13 white spots against a black background.
To create the letter P on the face of your TV, the com

puter lights several small rectangular dots in a pattern
you recognize as P. The same for the letters C and A and
T, the number 1 or the symbol we call an exclamation
point or any others you can think of:

The size of the face of a TV set is fixed, but it is possible
to make the lighted dots larger or smaller. The smaller the
dot, the more dots we can squeeze onto the face of the
video screen. Like creating graph paper with ever-smaller
squares, the more dots we squeeze onto the face of the
video tube, the less likely you are to be able to see any
one dot.

Fewer dots filling a screen mean each dot is bigger,
more easily seen. More dots filling a screen mean smaller
dots, each less easily seen. For example, look at these
two grids. Each is the same size. But one has twice as
many small squares in it.

Let's try our letter P in each of two grids. The P on the left,
below, contains more dots. We'll call it "high resolution"
since it has a higher number of dots in the same space.

The P on the right contains fewer dots. We'll call it
"low resolution" since it contains a lower number of dots

in the same space:

High Resolution Low Resolution



If we had a P with more dots than in our low-resolution P,
but with fewer dots than in our high-resolution P, we
would have a medium-resolution P.

All information transmitted to you from the computer
on the video screen is created the same way, as a pattern
of lighted dots.

Text vs. graphics mode
Text mode is used for common letters, numbers,

symbols, words, formulas and other kinds of frequently-
used English-language communication. In the text mode,
the computer calls upon data imbedded in its permanent
memory to create the patterns of lighted dots we will
recognize as letters of the alphabet or numbers or sym
bols.

The quantities and descriptions of those patterns of
lighted dots are previously established inside the com
puter and beyond your control. Call for the letter A and
you'll always get the same A. You cannot make that text-
mode A short-legged or fatter or slimmer. In text mode, an
A is an A is an A...

Graphics mode, on the other hand, is your own per
sonal sketch pad. You can draw shapes and sizes of all
sorts of characters and figures to suit your own desires.

When you turn power on, your computer wakes
up in the text mode. Many of the BASIC words you use in
programs automatically create text displays. For in
stance, use of the PRINT instruction makes a text display.

Video graph paper
Remember we said the TV screen can be imagined as

having a grid like graph paper? Well, like graph paper you
can precisely locate one spot on the face of the screen by
counting rows and columns. Here's a grid:

Count the dots across the grid. Start on the left and count
toward the right. As you move toward the right hand side
of the grid you get more and more dots. The number of
dots is increasing. Each new dot adds one to the total.
Each new dot is plus one.

Now move backward, right to left. Each new dot sub
tracts one from the total previously counted. Each is
minus one.

To move left to right, then, add one to the value of X.
To move right to left, subtract one from the value of X.

"2 —
_3

31
/•

I X 3 H r 6 7 9 4 & tf a I$ H i<r

Similarly, to go up or down the screen, the value of Y
changes.

Count the dots from bottom to top of the grid. Start at
the bottom and count toward the top. As you move toward
the top, you get more dots. The number of dots is increas
ing. Each new dot adds one to the total. Each new dot is
plus one.

Now, move downward, from top to bottom. Each new
dot subtracts one from the total previously counted. Each
is minus one.

To move bottom to top, then, add one to the value of
Y. To move from top to bottom, subtract one from the
value of Y.

1

%
3
* *
S
6

7

t 1 > «

4 •f
H>
II

a

15
H
IS

Now, suppose we thought of all the horizontal rows
as X and the vertical columns as Y. We might think of
lines moving across the TV screen as moving in the X
direction and lines moving up and down the screen as
moving in the Y direction.

You will note that the position where X,Y is 1,1 is in the
upper left hand corner of the grid in figures 8 and 9. What
would the lower left hand corner be? Since it is in the
fifteenth position for both X and Y it would be 15,15.

Any position on the screen can be located as an X,Y
point. For instance 1,1 or 15,15 or 7,8. Where is 7,8?

*

1

%
3
M
S
6

7
9 I
*
10

li

12

)1
H
ff

i xiisc.7fqi6ii i2isi4is-

13










































































































































































	front-cover
	Binder1
	content000
	content001
	content002
	content003
	content004
	content005
	content006

	back-cover



