
Dragon’s Lair on the 
TI-99/4A

(8 bits should still be enough for anyone)



What’s Dragon’s Lair?

https://docs.google.com/file/d/1G90pCf3KoSLHS06xt-w_6gtnrNwG1yJ4/preview


What was the impact?
- Dragon’s Lair had orders for over 8500 machines in the first year worth over 

$34 million (US, 1983).
- Inspired roughly 45 other LaserDisc games (not all of which were released), 

including Cinematronics own follow-up Space Ace and sequel Dragon’s Lair: 
Time Warp

- Ported to nearly every 16-bit home computer that could play the graphics, and 
inspired games were created for the 8-bit Coleco Adam, Commodore 64, and 
Sinclair Spectrum. Ports are still being released today.

- By mid-1984 however, the LaserDisc fad was already fading, and Space Ace 
and other games were released to far less success.

- Still, it inspired a Saturday morning cartoon and countless merchandise.



Okay, so what’s a TI-99/4A?
- Released in 1981 by Texas

Instruments, this was an update 
of their 1979 TI-99/4

- The “home computer” attached 
to your television set and 
accepted software via cartridges 
or cassette (diskette came later).

- 3MHz TMS9900 (16-bit) CPU 
with 256x192, 15 color graphics, 
256 bytes of CPU RAM & 16K of 
video RAM



Wait, 8 bit or 16 bit?
Block diagram of the TI-99/4A components:

16-bit TMS9900 CPU

256 byte 
scratchpad

8K ROM

Video Display 
Processor

16KB 
Video 
RAM

32KB 
Expansion 

RAM

16-bit bus

16-to-8 bit 
multiplexer

DRAM 
Interface

Sound

8-bit bus

(optional)



What was its impact?
- Estimated to sell roughly 2.8 million units, although many were during the final 

fire sales. To compare, only roughly 100,000 expansion units were sold.
- Overall a large loss for Texas Instruments, who invested heavily in the home 

computer market and reportedly cancelled as many as 8 machines in 
development when they shut the division down.

- Most staying impact was probably the Speech 
Synthesizer, which, coupled with the game 
‘Parsec’, seems to be the most common 
memory. Speech Synthesizers were free with six 
cartridge purchases, so many people had them.



So how do I get from this… to this?



Engineering!
Start with the requisite back-of-the-napkin calculations:

- I tested that the TI could move about 1500 bytes per video frame (about 
1/60th of a second) from the cartridge port to the video chip

- This works out to a byte every 11 microseconds, which is slow enough for the 
video chip to accept the data

- A video frame on the TI is 12,288 bytes, so full screen video should be able to 
get about 7 frames per second. I wanted 10, however, so I reduced the 
screen size in half for a rough estimate of 14 fps.

- I interleaved audio after every 4 bytes. This would give an audio rate of 18kHz 
but reduce the video rate to about 11 fps.

SOUNDS GOOD!



Obstacles to overcome
- Needed a way to convert true color images to reasonable quality 15 color 

images in the TI’s unique bitmap graphics format.
- Needed a way to convert audio to a format consumable by the TI’s tone 

generator sound chip.
- Needed some form of hardware to provide the A/V data to the TI’s cartridge 

port.



Graphics
The TI bitmapped graphics mode has a limitation or “clash” that forces every 8 
pixels to be restricted to only 2 colors from a fixed 15 color palette.

FFBBFFBB -   (‘F’ - foreground color, ‘B’ - background color)

(the fixed 15 color palette - this is all we have!)

To deal with this, I developed a brute-force tool to search for the best matching 
patterns. However, coming up with pleasing dither patterns that align well with the 
clash is tricky.



Evolution of the converter...



Audio
The TI sound chip is a 4 channel sound generator with 15 discrete volume levels 
per channel. 3 of the channels are square wave tones, and one is a noise 
generator.

The chip can not stop the wave generator, so the only way to get samples out of it 
is to set to the maximum frequency (which is around 48kHz!) and modulate the 
volume levels.

The 4 bits of audio resolution are not evenly distributed, rather there is a 
logarithmic curve with most of the resolution in the quietest part of the range.

This all means NOISY. But the fact is, it’s surprisingly recognizable!



Mapping
I ended up converting to 8 bit audio on 
the PC, then mapping the 256 discrete 
levels to the 16 levels of the TI sound 
chip. Experimentation showed that while 
a closest-match mapping sounded best 
for very clean input audio, soft sounds 
would become very noisy. To make my 
converter work with most inputs as-is, I 
stretched the softer sounds to make 
them a little louder and added more 
detail in the midrange. This also helps 
balance the positive and negative side 
of the waveform.



Testing!
At this point I had all I needed to create 
my first test video. I did a quick little 
video clip from Spaceballs as my proof 
of concept. This video was small 
enough to fit in the largest cart that 
already existed for the TI - 2 megabytes. 
This proved the concept, and let me 
tune the original calculations for reality, 
which turned out to be quite optimistic...

http://www.youtube.com/watch?v=A0BGfpzb-g8


Theory, meet reality!
- Video chip has set up time before you can write blocks of data (slows us 

down)
- Because my frame time (11fps) was slower than the video display (60fps), 

you could watch it paint. This meant an interleaving scheme was needed to 
hide this, meaning more setup time. (slows us down).

- You need set up time to select where you are reading data FROM (slows us 
down)

- The computer just wasn’t as fast as I thought in real life (slows us down)
- And though I didn’t know it till much later… writing to the sound chip is really, 

really slow. (The slowest operation on the motherboard - slows us down).
- Reality was about 8.6 fps, and about 13kHz audio.



How to Paint in Real Time
The television display that a TI image is viewed on updates 60 times per second. 
My animation updates at less than 9 frames per second - this means that every 
frame of animation takes 6 video frames to finish drawing.

This is just a fact of life, so we have to live with it. But there’s a wrinkle - the TI 
graphics consists of separate pattern and color tables, and we have to update 
each of them in turn. That would mean three frames drawing the pattern, and 
three frames drawing the color.

That means 1/3rd of a second during which one table is current and one table is 
out of date. That’s lots of time to be able to see it as corruption.



Interleaving fools the eye...
In order to make it less obvious that there are two display tables, we split the screen into 4 regions. Then 
we can update the color and pattern table for one region before moving on to the next region. 

https://docs.google.com/file/d/18oYOTsFfI2iWucpsOANtkQlnGH7sbZqv/preview


GPU To the Rescue!
While the interleaving is notably better, there is a tradeoff. Every time you change 
the video memory address you want to write to, you need to set up the address 
registers again. This means that the more slices you have, the more time is spent 
just changing the address. This digs into your frame rate, since no matter what 
they are for, you can only write so many bytes per frame.

The F18A is a video enhancement by Matthew Hagerty of codehackcreate.com. 
While its major claim to fame is the VGA output, the hidden gem of this device is 
the embedded GPU with an extra 2k of RAM. The GPU allows direct access to 
video memory, meaning that writing to the video and color table individually is 
essentially free.



GPU Block Writing
This video demonstrates the difference 
between the standard video update and 
the F18A GPU update in slow motion. On 
the left are the two video chips, with 
pattern data on the top and color data on 
the bottom. As they are updated one byte 
at a time, real time samples of the display 
appear on the right side. The GPU’s rapid 
update of both tables at the same time 
means that ‘sparkles’ caused by 
mismatched color and pattern data are 
almost non-existent.

https://docs.google.com/file/d/1tOHz1pKQplmgluwQlqxCio8FTn-LsHlU/preview


But How Does it Sound?
To generate sound in sync with the video, the audio is interleaved with the video. 
Every fifth byte of data is transferred to the audio chip directly. The transfer rate of 
the hardware dictates the playback rate.

One issue is that the write to the sound chip is 3-5 times slower than the write to 
the video chip, which means that after every four bytes there is a small delay. 
However, seen in groups of 5 bytes, the overall output is evenly spaced. In 
Dragon’s Lair, this happens roughly 13,000 times per second, for a 13khz audio 
playback rate.



Now I needed hardware...
The TI’s cartridge space is 8 kilobytes. My estimates for Dragon’s Lair showed that 
it was going to need about 80 megabytes. There was not much available that 
could do it.

I spent a lot of time with paper and datasheets to see whether SD cards or 
Compact Flash could manage it. They easily had the needed throughput, but 
setup times were too long, and the TI did not have any storage space for caching 
data (even if the video player could handle the additional overhead).

I could conceivably have lost the setup times in the beginning of the first frame of 
a sequence, but I decided to fall back on a simpler scheme...



Hardware Selection
While in Shanghai, I came across a 128MB parallel flash chip. Parallel flash is 
becoming less common as more and more systems use high speed serial 
memory, but it’s ideal for interfacing to older systems. However, to interface 
128MB to the TI was going to take a lot of connections to a larger latch than was 
ever used before - in fact 14 bits would need to be added to the address bus. (We 
need 27 bits, the TI itself only presents 13!)

This large latch would allow us to page the large ROM into memory, a bite-sized 
8k at a time. Fan-made hardware had already taken the paging up to 2MB, so it 
was just an extension of the existing scheme.



First, The TI writes the 
desired page index to 
the latch...

How to flip pages...

LATCH

The latch provides the 
missing address bits to 
select a single page in the 
ROM.

The TI then reads 
one 8k page at a 
time...

In this case, there are 16,384 
pages to get 128MB of ROM.



Laying out the cartridge
The actual circuit design was straight forward - data to data, address to address. I 
learned KiCAD since I knew I would need to manufacture this one.



Prototypes...



CPLDs and VHDL
To get both the relatively large latching logic as well as voltage conversion 
between the old TI’s 5 volts and the modern memory chip’s 3.3 volts, I selected a 
CPLD. At $3, it was cheaper than the numerous discrete chips that it would 
otherwise take.

I had to learn some basic VHDL to do this, which is one of several languages used 
to describe circuits to the computer, which can then be implemented on CPLDs, 
FPGAs, and sometimes other devices.

Once the basic latch was working, I was also able to add emulation of TI’s 
proprietary boot chips, which makes my cart work on later hardware, all within the 
CPLD.



Sample of the VHDL
-- handle the ROM latch on write
PROCESS (ALL)
BEGIN

-- capture on rising edge of WE (if ROM is active)
IF (rising_edge(ti_we)) THEN

IF (ti_rom='0') THEN
-- we dont capture the TI lsb because it ALWAYS
-- changes due to the 16->8 bit multiplexer
-- remember TI bit order - 0 is MSB
latch(11) <= ti_adr(3); -- MSB
latch(10) <= ti_adr(4);
latch(9) <= ti_adr(5);
latch(8) <= ti_adr(6);
latch(7) <= ti_adr(7);
latch(6) <= ti_adr(8);
latch(5) <= ti_adr(9);
latch(4) <= ti_adr(10);
latch(3) <= ti_adr(11);
latch(2) <= ti_adr(12);
latch(1) <= ti_adr(13);
latch(0) <= ti_adr(14); -- LSB

-- two extra bits come from the data bus
latch(13) <= ti_data(6); -- MSB
latch(12) <= ti_data(7); -- LSB

-- two bits of chip select (for 512MB mode over 4 chips)
-- chip(1) <= ti_data(4); -- MSB
-- chip(0) <= ti_data(5); -- LSB

END IF;
END IF;

END PROCESS;



Booting on QI 2.2
Just before the end, TI revised their console with a “version 2.2” boot that locked 
out ROM-only cartridges (commonly attributed as a direct attempt to lock out 
AtariSoft games). The only way to boot was to implement TI’s proprietary “GROM” 
memories, which contained a multiplexed data/address bus and a built-in address 
counter with integrated select and automatic increment. The cost of implementing 
this in discrete logic was too much for most third party developers, who just 
abandoned the machine.

So, of course, I was challenged to implement this as well, so that this new 
cartridge “could have worked” back then, giving a bit of serendipity to the people 
who grew up with one of those limited consoles.



GROM Memory
GROMs had a built-in 13-bit address bus along with 3 bits of hard-wired address 
match. This let them respond on 8k divisions (although official GROMs had only 
6k of actual memory with the remaining 2k wasted). Through an 8-bit bus and 2 
control pins, the address could be read or written, or data could be read. These 
memories were also slow, clocked by a 400khz clock, and so had a busy signal 
that could halt the CPU, and all pins were attached to a shared bus that all 
GROMs responded to.

I had previously implemented an emulation using an Atmel AVR. So of course I 
said it would be easy.



Scaling it down...
My AVR implementation provided 128k of GROM memory in a single package, but 
the slow execution of a software implementation made it much more tolerant of the 
noisy TI memory bus. The exact concepts used for software did not work as well 
under a CPLD.

To deal with the noisy bus, I needed to implement delays after detecting logic level 
switches (to give the bus time to become stable). This took logic resources from 
the CPLD, which was already tight for resources.

Next I needed a memory latch, to hold the internal address bus. And here I already 
ran into a problem.



Latching the GROM Address
The 13 bit address bus of the GROM took too many resources in the CPLD - it 
simply didn’t fit. I did experiment with trying to share the ROM latch, but it was 
getting tricky and reduced the utility of the system (switching between memory 
types would then require special code to restore the correct memory bank).

Ultimately, I did a number of experiments. I finally settled on an 8-bit address latch 
- this gave me 256 bytes of addressable GROM. To deal with the 2-byte sequence 
of setting the address (so I know whether MY address is being accessed), I 
captured a single “set/not set” bit from the outgoing bytes (which would otherwise 
become the MSB of the address word). This gave me the GROM emulation, in a 
limited way, with just 9 bits of data stored.



Reality Steps In Again
Now that I could finally move everything to physical hardware - I ran into a small 
challenge… the hardware didn’t work.

I wrote diagnostic software, and found, bizarrely, that everything seemed to be 
working, except that the flash chip would randomly return empty data for entire 
128KB blocks of data (far larger than the TI’s 8KB window!) This correlated with 
the size of an erase sector, but other than that, I had no clues. Furthermore, the 
bad sectors moved with every power cycle, and all other data was 100% correct.

Read your datasheets.



Finally, the software!?
With all the technology pieces in place, I still had to create a game.

I first needed to convert all the video files, which I extracted from the HD release 
for PC (they were conveniently in WMV). FFMPEG, SOX, my own image 
converter and a handful of custom tools provided me with the TI video data.

I then needed to go through these 
images, frame by frame, and note 
every frame index that marked a 
notable action point. In particular, 
begin and end of each clip, and 
begin and end of each point input 
became valid.

0176 a1drawbridge.bin
0176-018A Resurrection
018B-01BF Castle intro

01C0-01DA Approach drawbridge (drawbridge is technically a lost scene)
01DB-01DF Fall through
01E0-01E9 Monsters approach
01EA-01EF Approaching - press sword
01F0-01F7 Swing sword
01F8-01FF Move up/right needed
0200-0219 Climb up and run in

021A-0231 Doors slamming shut

0232-023E Enter vestibule
023F-0244 Crumbling
0245-0255 Stumbling (down/right needed, UL die)
0255-025A Collapsing (Move right needed, UL die)
025B-026C Escaping

026D-028B Game over

028C-0299 Caught by drawbridge monster

029A-02AB Falling into pit



What about porting?
Although Dragon’s Lair is well documented, two things made a direct port less 
helpful:

- None of the disassembled listings I could find covered the scene data
- The laserdisc frames would not line up with my converted frames anyway

Thus, the inputs and timing would need to be redetermined. Fortunately for me, 
the people at dragons-lair-project.com have detailed breakdowns of all the scenes, 
sequencing, inputs, and scoring. While I made some interpretations, having this 
reference made the job possible.

Also, porting is not any fun compared to writing it yourself…



Making it interactive
I had a video player, so the first step was to get it reading the joystick.

To read the joystick on the TI hardware, you need to use a special I/O hardware 
system called the ‘CRU’. There are just two steps to get input:

- Set the output CRU bits to select the joystick
- Read the input CRU bits

Fortunately there was enough time in delays between the screen output blocks to 
read the joystick in one game frame, check for new inputs, and respond if they 
match an input mask (for ‘valid’ directions). (I also had to switch to keyboard and 
check for the soft reset sequence, which is a similar task.)



Scripting the game
In order to keep the complexity of managing hundreds of little clips within dozens of scenes, each with six possible 
outcomes, I created a simple engine that handled the game as a set of scripts, with one script for each scene. A script is 
simply a list of clips to play, with a link to to next clip based on input.

** start frame, frame count (byte), death? (byte), valid joystick (byte), good joystick (byte),
** hint sprites, up scene, down scene, left scene, right scene, fire scene, timeout scene, score

SCENEDATA
DATA >0176,21 * resurrection
DATA >026D,31 * game over

** scenes **
DATA >01C0,>2A00,>0000,HINTNONE,0,0,0,0,0,A01EA,49 * drawbridge through monsters approach

A01EA
DATA >01EA,>0600,>0101,HINTFIRE,0,0,0,0,A01F0,A028C,0 * approaching, press sword

A01F0
DATA >01F0,>0800,>0000,HINTNONE,0,0,0,0,0,A01F8,49 * swing sword

A01F8
DATA >01F8,>0800,>1414,HINTUP,A0200,0,0,A0200,0,A028C,0 * move up/right needed

A0200
DATA >0200,>1A00,>0000,HINTNONE,0,0,0,0,0,A021A,49 * climb up and run in

A021A
DATA >021A,>1800,>0000,HINTNONE,0,0,0,0,0,0,0 * slamming doors

** deaths **

A028C
DATA >028C,>0Eff,>0000,HINTNONE,0,0,0,0,0,0,0 * caught by drawbridge monster



Game Engine
The game engine itself has two main paths, which select different sequences of 
scenes (depending on whether we are representing the arcade version, or the 
optimized home version). Scenes are cued up into a simple list, which is walked 
through by the scene selection code until all lives are exhausted, or the list is 
completed. In most cases, a death causes the scene to be added to the end of the 
list, to be completed before the player is permitted into the Dragon’s Lair.

The only real challenge here was memory management. The TI-99/4A, 
unexpanded, has only 256 bytes of CPU RAM (and 16KB of video RAM). Up until 
this point, all game data had been maintained in CPU RAM. The lists, however, 
had to be stored in video RAM.



Diagnostics
With the issues I’d had with the hardware, and with the need to solder by hand, I 
needed a way to confirm that the cartridge was working 100%.

To this end, I added a small checksum to 
each page of the cartridge, and built code to 
verify it. The original arcade game used 
photographed sheets of paper for the 
progress screens, so I made similar screens 
for my own, and integrated CPU, sound and 
control tests just to be similar to the arcade 
game.



Debugging
Although the code itself was not very complicated, there was a lot of it, spread out 
across a large system. More importantly, there was a lot of data. Keeping the code 
in manageable pieces, and using scripts to keep the build organized - these help 
but only take you so far. Eventually, you have bugs and need to solve them.

In the old days, you were stuck with changing the screen color, text on screen, 
beeps from the speaker, maybe even LEDs if you were clever enough. This could 
help you infer what was actually going wrong in most cases, with enough 
iterations...



Emulation
Today emulation is advanced 
enough to make a lot of this 
easier. Classic99 performs 
checks for common illegal 
operations, allows insight of the 
system memory and registers 
(permitting modification or 
logging), plus a large array of 
breakpoint options - including 
hardware breakpoints that would 
be difficult or impossible on real 
hardware.



Support the masses...
With the game largely working, the last task was to add keyboard mode. This 
concerned me, because the playback code was carefully cycle counted.

While the joystick required setting a single CRU select, and reading once for all 
the bits, the layout of the keyboard required three sets of this to get the same 
result (at least with keys that are useful to the average user).

Ultimately, I gained back a few cycles by removing the edge detection code. 
Rather than looking for new keys, I allowed the keyboard version to just check the 
currently held key at any given point. It was still a few hundred microseconds 
slower per frame, but this turned out to be neither visible nor audible.



ROM layout
Since I had lots of space available on the cartridge, I didn’t need to be stingy with 
my cartridge layout. To keep things simple, the three main programs (keyboard, 
joystick, and diagnostics) all have their own 8k page. 

In addition, every scene table, and a little bit of support code to queue it up, also 
gets its own 8k page. This means that a scene can be selected by simply selecting 
a ROM page, and jumping to a fixed address.

Most of the pages have lots of space free.



Packaging
Of course, there’s more to a product than just the 
development, hardware, software, and testing… you 
also need a package.

After a bit of searching, I went with a printed 
corrugated box, containing a poster with instructions 
on the back and spare labels for the cartridge, in case 
the user wished to use their own shell. Towards the 
end, I added a postcard with the copyright information 
on the back.



Version 2
After I started shipping, I found that a large percentage of 
the flash chips I had simply would not program in my 
EPROM programmer. Rather than come up very short, I 
decided to get a quick-turnaround set of PCBs from a US 
company. I was able to find a modern version of the flash 
chip, and layout a new PCB that I hoped would allow me 
to program the flash chip in-circuit, allowing it to be fully 
manufactured.

Of course, while I was waiting, I needed to make it 
possible to program and test the carts...



How to program in-circuit...
To program the flash in-circuit, I needed 
to solve three issues:

- How do I interface with the card 
edge connector?

- How do I get 80MB of data into that 
card edge connector?

- How do I get the data from the card 
edge connector to the flash chip?



Interfacing with the card edge connector
Although I considered numerous options, including 
feeding the data through the JTAG port under the CPLD 
and building an interface for the PC, ultimately I decided 
that the best interface for the cartridge’s card edge 
connector would be the TI itself.

To make this useful, I would need to figure out how to load 
software when the cart port was occupied. The ultimate 
solution was to disassemble an Editor/Assembler 
cartridge, commonly used to load assembly code, and 
connect it directly to the motherboard...



Getting 80MB into the Cart
The TI is a rather small memory system by today’s specs, 
but I did have one large storage device - a compact flash 
adapter. However, it was designed to throw away half of the 
16-bit data, and to emulate only three 90k floppy disks.

After tracing through its BIOS with the debugger in my 
emulator, I was able to get the information I needed to talk 
directly to the card. I decided to try and get direct 8-bit 
access in order to make writing the data from the PC 
simpler. After some experimentation, I was able to get this to 
work, although I found that some cards did not work in 8-bit 
mode correctly. But, I only needed one that did.



Getting the data to the flash chip
This was the largest challenge. In order to program a flash chip, precise sequences of writes 
to specific addresses need to be performed. The TI hardware meant that every 16-bit access 
was broken into two 8-bit accesses (with no ability to perform only one or the other). 
Furthermore, I still needed to control my 14-bit latch so that I could access the entire chip 
rather than only 8k of it.

I cheated and modified my console hardware. Using the GROM select line, I repurposed it as 
a second memory select line, at a different address. I then created a new CPLD load that 
would relay writes to the new address directly to the flash chip, while writes to the old 
address would manipulate the latch as before.

In order to control whether MSB, LSB, or both would be sent to the flash chip, I defined a 
couple of extra latch bits. Since I could remove GROM emulation for this programming load 
(and put it in later for runtime), there was space for it.



Finally, the software again
Finally, I just needed to put all the 
pieces together. I updated my emulator 
with (sketchy) emulation of the compact 
flash card and the new flash chip itself, 
so that I could build and test the 
software before I had the hardware in 
hand. It took a few passes, but this 
helped a great deal, because when I got 
the hardware… there was a problem.



Hello, reality...
Upon arrival, the new cartridges didn’t work. Using a direct debugger, I was not 
able to edit any of the flash bytes, even though everything else appeared to work.

Eventually, I found that I had tied the write protect pin to active on the old board. It 
didn’t matter on the old board, since I programmed the flash chip externally, but 
the new chips had the boot block at the beginning of the flash, and so the first 
128KB was write protected.

Better still, the necessary pin was routed under the flash chip, so could not be 
easily cut. All I would have needed to do was cut the trace, but it was inaccessible.

Label your schematic components.



Making room...
There was only one option - move the code to ignore the first 128KB. There was 
plenty of space in the ROM, but I needed to change all the page index references. 

(Use named values, not magic numbers. I had most offsets as equates but would 
have loved it if they ALL were...) 

Fortunately, the GROM boot code was located at the top of the GROM, so 
required no changes. But it could have easily been moved with a change to the 
CPLD. Ultimately, and with the help of emulation, everything was working.

Of course, the first cartridge took over 4 hours to program. This was a bit more 
than I expected, and with over 100 carts to go, it felt like a bit too long...



One more round of optimizations...
The programming code contained three important loops:

- Read from the CF card into a memory buffer
- Write the flash chip from the memory buffer
- Verify the flash against the memory buffer

The TI’s 256 bytes of CPU RAM, called the scratchpad, would today probably be 
called a cache. Like most cache, it’s faster than the rest of the memory in the 
system, being fully 16 bit (instead of 8 like the rest of the system). Moving the 
loops into the scratchpad RAM brought the programming time down to 90 minutes.



And the end...
During the whole of the version 2 phase, I was still programming, building, and 
testing original cartridges in order to get shipments out to people. In the end, the 
last shipments went out just about a week after my license expired (I had checked 
with Digital Leisure in advance if it’d be okay to finish my orders). Given the large 
number of unexpected challenges, I’m happy enough with this outcome.

Although I didn’t plan for the round number, in the end 150 modules were 
produced - 50 more than my initial estimate. 125 were boxed (mostly because I 
only had that many extra posters for the box contents).

I’m also quite happy to be done. At least, with this project. :)



Tools and software used
Classic99 (Emulation), Visual Studio (C++ for tools), GCC (C for other tools), SOX 
(for audio conversion), ffmpeg (for video conversion and extraction, ImageMagick 
(for image resizing), Convert9918 (for image conversion), dircmd (for batching), 
KiCAD (for schematic capture and PCB layout), xdt99 (for assembler), Photoshop 
(for image manipulation), Krita (for more image manipulation), cmd (for batching), 
ispLEVER (for CPLD development, program and test), Rigol (oscilloscope), Aoyue 
(rework station), Hakko (soldering iron), AmScope (microscope), Extech (bench 
power), TI-99/4A (for final test and programming), F18A (for testing GPU code), 
MiniPEB (for compact flash interface), OSHPark (for prototypes), PCBExpress (for 
prototypes), pcbcart (for initial PCBs), PCB4U (final PCBs), Digikey (components), 
Mouser (components), Vistaprint (posters and postcards), Packola (boxes), 
StickerGiant (cartridge labels), Spansion (flash), Lattice (CPLD).


